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1. Introduction

The study of nonlinear wave phenomena has been a cornerstone of mathematical physics. An
important model governing weakly nonlinear and weakly dispersive long waves, described by the field
u(x, t), is the Korteweg-de Vries (KdV) equation,

ut + q1uux + uxxx = 0, (1.1)

where q1 is a real constant (this constant can be trivially scaled out of the equation but is kept here
for reasons that will become apparent later), and subscripts denote partial derivatives. This model,
originally derived in the context of shallow water waves, has been a benchmark for understanding
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nonlinear wave phenomena, finding extensive applications in various physical contexts, such as shallow
water wave dynamics [1, 2], plasma physics [3], nonlinear lattices [4], and so on.

An important variant of the KdV model is the modified KdV (mKdV) equation, where the quadratic
nonlinear term uux is replaced by the cubic nonlinear term u2ux, namely:

ut + r1u2ux + uxxx = 0, (1.2)

where r1 is, again, a real constant. Much like the KdV equation, the mKdV equation finds many
applications in various fields, ranging from fluid mechanics [5, 6], plasmas [7, 8], and nonlinear optics
with few-optical-cycle pulses [9, 10] to traffic flow [11].

Both the KdV and mKdV equations are completely integrable via the Inverse Scattering Transform
(IST) [12]. Moreover, the equations are linked through the Miura transformation [5, 13], which allows
solutions of one equation to be mapped onto the other. This transformation not only highlights the
deep connection between these systems but may also provide a pathway for deriving extended versions
of the equations—incorporating higher-order dispersive and nonlinear terms—while preserving their
integrable structure [14, 15]. The relevant extended versions of the KdV and mKdV models are first,
the extended KdV (eKdV) equation [16], which reads:

ut + q1uux + uxxx + ε
(
q2u2ux + q3uxuxx + q4uuxxx + q5uxxxxx

)
= 0, (1.3)

where q j ( j = 2, 3, 4, 5) are constants and ε � 1. Second, the extended mKdV (emKdV) equation is of
the form [17, 18]:

ut + r1u2ux + uxxx + ε
(
r2u3

x + r3u4ux + r4uuxuxx + r5u2uxxx + r6uxxxxx

)
= 0, (1.4)

where r j ( j = 2, 3, . . . , 6) are constants.
The need for higher-order equations arises from the limitations of simpler systems in accurately

capturing the complexities of nonlinear wave phenomena. In physical problems, by systematically
retaining higher-order terms in the perturbation expansion, extended equations provide corrections
to wave speeds, amplitudes, and stability properties that align more closely with experimental and
observational data. In this way, the eKdV equation has been derived from a variety of physical
systems, including shallow water waves [16, 19], solid mechanics [20], nonlinear optics of nematic
liquid crystals [21], and plasma dynamics [22, 23]. Importantly, the eKdV retains many properties
of its integrable counterpart, such as soliton solutions, modulation theory solutions for dispersive
shock waves (also known as “undular bores” in fluid mechanics [24]), and conservation laws. These
properties make the eKdV equation a powerful tool for understanding the limitations of simpler models.
It is thus not surprising that it has been used to describe complex solitary wave interactions [25, 26],
distinct regimes of shallow water dispersive shock propagation in the presence of surface tension
effects [27, 28], the transition from nonlocal to local effects in the evolution of defocusing nematic
resonant dispersive shocks [21], and resonant soliton radiation in shallow water and optical media [29].
Recent studies have also explored its asymptotic integrability [30–32] and connections to higher-order
hierarchies, further emphasizing its significance in both theoretical and applied contexts.

Our scope in this work is to delve into the physical and mathematical origin of the eKdV and emKdV
equations. To be more specific, we aim to investigate whether the emKdV equation (1.4), which is
directly connected with the eKdV equation (1.3) via a Miura map as mentioned above, results—as a
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higher-order correction of the regular mKdV equation (1.2)—in a physical problem. To address this
question, we consider a model of a plasma of cold positive ions in the presence of a two-temperature
electron population. Employing the reductive perturbation method [33, 34], we show that while the
eKdV equation (1.3) can indeed result as a higher-order correction of the KdV equation (1.1), this is not
the case with the higher-order mKdV equation: indeed, after deriving the regular mKdV equation (1.2),
at the next order of approximation, we obtain a higher-order mKdV equation that is not of the form
of Eq (1.4). Hence, unlike previous studies where the mKdV equation and its higher-order extensions
were primarily derived as mathematical constructs, this study grounds a novel, physically relevant
form of an emKdV equation. Thus, our study bridges the gap between physical and mathematical
derivations of higher-order evolution equations and reveals nonlinear interactions that are absent in
standard formulations.

The extended KdV and mKdV equations derived in this work not only enhance our understanding of
plasma dynamics but also provide a platform for exploring the asymptotic integrability of higher-order
systems. Connections between the extended equations via Miura transformations further highlight
the intricate relationship between these nonlinear systems and their integrable counterparts. We
thus provide a comprehensive framework for analyzing these equations, with implications for both
theoretical and applied research.

The paper is organized as follows: In Section 2, we present the model and derive the KdV and eKdV
equations. Section 3 is devoted to the derivation of the mKdV and emKdV equations. In Section 4,
we present Miura map connections between the regular and extended KdV and mKdV models, while
in Section 5, we establish an asymptotic integrability argument for the emKdV model derived in this
work. Finally, in Section 6 we summarize our conclusions and discuss perspectives for future work.

2. Model, KdV and eKdV equations

Our analysis is based on a set of equations describing a three-component plasma comprising cold
fluid ions and two Boltzmann electron species at different temperatures [7]. The system consists of the
continuity and momentum equations for the cold ions and Poisson’s equation coupling the electrostatic
potential to the plasma densities. In normalized/dimensionless form, the model under consideration
expressed in (1 + 1)-dimensions reads:

∂n
∂t

+
∂

∂x
(nu) = 0, (2.1a)

∂u
∂t

+ u
∂u
∂x

+
∂ϕ

∂x
= 0, (2.1b)

∂2ϕ

∂x2 + n − f exp(αcϕ) − (1 − f ) exp(αhϕ) = 0. (2.1c)

Here, n and u refer to the ion density and fluid velocity, respectively; φ is the electrostatic potential; and
f is the fractional charge density of the cool electrons. The temperatures Tc and Th of the Boltzmann
electrons are expressed through αc = Teff/Tc and αh = Teff/Th for the cool and hot species, respectively,
whereas the effective temperature is given by Teff = TcTh/[ f Th+(1− f )Tc], such that fαc+(1− f )αh = 1.

Our goal is to reduce Eq (2.1) to a single nonlinear evolution equation whose solutions are known
and thus can asymptotically represent the solutions of the original system. To do so, we identify the
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equilibrium solution n = n0 (where n0 is the equilibrium density), u = 0, and φ = 0, and consider the
following asymptotic expansions of the unknown fields:

n = n0 + εn1 + ε2n2 + ε3n3 + . . . , (2.2a)
u = εu1 + ε2u2 + ε3u3 + . . . , (2.2b)
ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3 + . . . , (2.2c)

where 0 < ε � 1 is a formal small parameter. Of particular interest is the linearized system occurring
at O(ε):

∂η1

∂t
+ η0

∂u1

∂x
= 0, (2.3a)

∂u1

∂t
+
∂φ1

∂x
= 0, (2.3b)

∂2φ1

∂x2 −
[
f (αc − αh) + αh

]
φ1 + η1 = 0. (2.3c)

The dispersion relation of the above system can be obtained upon considering plane wave solutions
of the form exp[i(kx − ωt)], where k and ω denote the wavenumber and frequency, respectively.
Substituting, we obtain

ω2 =
k2

k2 + [ f (αc − αh) + αh]
, (2.4)

where η0 = 1, so that O(1) is also satisfied. Focusing our analysis on long waves (i.e., waves with small
wave number k), we substitute [3, 35] k = εpk (with p > 0), where the exponent p is unknown (to be
determined). Hence, the phase θ = kx − ωt of the plane waves is written as

θ = kx − ωt = kx − (a1k + a2k3)t = εpk(x − a1t) − ε3pk3a2t, (2.5)

where a1 = [ f (αc − αh) + αh]−1/2 and a2 = 0.5[ f (αc − αh) + αh]−3/2. As such, a natural rescaling based
on Eq (2.5) is

ξ = εp(x − ct), τ = ε3pβt, (2.6)

where c is the velocity and β is an auxiliary parameter. These new variables ξ and τ are “slow”, in the
sense that it needs a large change in x and t in order to change ξ and τ appreciably. The value of p can
be determined upon requiring the leading-order dispersion and nonlinearity terms of the system (2.1a)–
(2.1c)—for the considered form of the asymptotic expansions in Eqs (2.2a)–(2.2c)—to be of the same
order; this way, the perturbation scheme leads to a reduced model (which turns out to be the KdV
equation in this case) that can support soliton solutions. This “maximal balance” condition [1] leads to
p = 1, and hence, the slow variables become

ξ = ε1/2(x − ct), τ = ε3/2βt. (2.7)

Note that the above slow variables are consistent with the similarity of the asymptotic behavior of the
KdV equation, which holds for a coordinate system satisfying ζ ∝ (x − ct)/t1/3 = const. [1]; hence, the
asymptotic behavior along the direction defined by (2.7) is expected to be the same as that of the KdV
equation.
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To proceed, we assume that the perturbations around the equilibrium solution, n j, u j and φ j (with
j = 1, 2, . . .) in (2.2a)–(2.2c) depend on the slow variables (2.7), with the velocity c to be determined
in a self-consistent manner (also, the value of β will be chosen below). Substitute back to Eq (2.1) and
collect the different orders of the parameter ε. At the lowest order, O(1), we obtain the value of the
equilibrium density, n0 = 1, while at O(ε) we obtain

n1ξ −
[
f (αc − αh) + αh

]
ϕ1ξ = 0, (2.8)

and at O(ε3/2) we obtain

n0u1ξ − cn1ξ = 0, (2.9a)
−cu1ξ + ϕ1ξ = 0. (2.9b)

The compatibility of Eqs (2.8) and (2.9) yields the velocity c:

c2 =
n0

f (αc − αh) + αh
. (2.10)

Nonlinear equations arise at the next orders, O(ε2) and O(ε5/2). Differentiating with respect to ξ the
equations at order O(ε2), we find

n2ξ −
[
α2

h + f
(
α2

c − α
2
h

)]
ϕ1ϕ1ξ −

[
f (αc − αh) + αh

]
ϕ2ξ = 0, (2.11)

so that the fields n2, u2, and ϕ2, are eliminated from the system at O(ε5/2):

βn0

c2 ϕ1τ + n0u2ξ − cn2ξ +
2n0

c3 ϕ1ϕ1ξ = 0, (2.12a)

β

c
ϕ1τ − cu2ξ +

ϕ1ϕ1ξ

c2 + ϕ2ξ = 0. (2.12b)

Then, using (2.11) and eliminating the fields n2, u2, and ϕ2, we obtain the regular KdV equation:

ϕ1τ + c1ϕ1ϕ1ξ + ϕ1ξξξ = 0, (2.13)

where we have chosen β = c3/(2n0), and the nonlinearity coefficient c1 is given by

c1 =
1
n0

[
3(αc − αh)2 f 2 − (αc − αh) (αh (n0 − 6) + αcn0) f − (n0 − 3)α2

h

]
. (2.14)

To extend the analysis to higher-order, i.e., derive an extended KdV equation, we take into account the
higher-order of approximation, at O(ε7/2), and obtain

βn2τ +
∂

∂ξ
(u1n2 + u2n1 + n0u3 − cn3) = 0, (2.15a)

βu2τ +
∂

∂ξ
(u2u1 − cu3 + ϕ3) = 0. (2.15b)

Proceeding as above, we differentiate the equations at O(ε3) with respect to ξ and obtain

c
2

u2τ +
c2

2n0
n2τ +

2
c2ϕ1ϕ1τ +

2n0

c3 u2ϕ1ξ +
1
c2 n2ϕ1ξ
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−

(
α3

h +
(
α3

c − α
3
h

)
f
)

c6 − 10n0

2c6 ϕ2
1ϕ1ξ −

[
α2

h +
(
α2

c − α
2
h

)
f
]
ϕ2ϕ1ξ

−

[
α2

h +
(
α2

c − α
2
h

)
f
]

c4 − 3n0

c4 ϕ1ϕ2ξ −

[
αh + (αc − αh) f

]
c2 − n0

c2 ϕ3ξ + ϕ2ξξξ = 0. (2.16)

Next, define Φ = ϕ1 + εϕ2 and eliminate the fields n3, u3, and ϕ3 from the higher-order equations to
conclude with the eKdV equation:

Φt + c1ΦΦξ + Φξξξ + ε
(
c2Φ

2Φξ + c3ΦξΦξξ + c4ΦΦξξξ + c5Φξξξξξ

)
= 0, (2.17)

where

c2 =
3
[
α2

h +
(
α2

c − α
2
h

)
f
]2

c8 − 2n0

[
α3

h +
(
α3

c − α
3
h

)
f
]

c6 + 2n0

[
α2

h +
(
α2

c − α
2
h

)
f
]

c4 − 3n2
0

4n0c6 , (2.18a)

c3 =
−9

[
α2

h +
(
α2

c − α
2
h

)
f
]

c4 + 19n0

4n0c2 , (2.18b)

c4 =
−3

[
α2

h +
(
α2

c − α
2
h

)
f
]

c4 + n0

2n0c2 , (2.18c)

c5 =
3c2

4n0
. (2.18d)

The solutions of the regular KdV equation, Eq (2.13), are well known and will be used to construct the
solutions of the extended KdV equation, Eq (2.17), above. This will be done in a section below, as we
now turn our attention to the derivation of the mKdV and extended mKdV equations.

3. mKdV and emKdV equations

As above, the starting system is Eq (2.1). We use the asymptotic expansions:

n = n0 + εn1 + ε2n2 + ε3n3 + . . . , (3.1a)
u = εu1 + ε2u2 + ε3u3 + . . . , (3.1b)
ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3 + . . . , (3.1c)

where the perturbations of the equilibrium solution now depend on the new slow variables:

ξ = ε(x − ct), τ = ε3βt. (3.2)

Substitute back to the system, and, similarly to the previous section, we obtain at different orders
the following results. At order O(1), we find n0 = 1. At O(ε), we obtain

n1ξ −
[
f (αc − αh) + αh

]
ϕ1ξ = 0, (3.3)

and at O(ε2) we obtain

u1ξ − cn1ξ = 0, (3.4a)
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−cu1ξ + ϕ1ξ = 0. (3.4b)

The compatibility of the above equations leads again to the velocity c:

c2 =
1

(αc − αh) f + αh
, (3.5)

as before. Continuing along the same lines, we get at O(ε2), after differentiating with respect to ξ,

n2ξ −
[
f (α2

c − α
2
h) + α2

h

]
ϕ1ϕ1ξ −

[
f (αc − αh) + αh

]
ϕ2ξ = 0, (3.6)

and at O(ε3):

u2ξ − cn2ξ +
∂

∂ξ
(n1u1) = 0, (3.7a)

ϕ2ξ − cu2ξ + u1u1ξ = 0. (3.7b)

These lead to the following compatibility condition:

3(αc − αh)2 f 2 − (αc − αh) (ac − 5αh) f + 2α2
h = 0. (3.8)

Contrary to the derivation of the KdV equation, here, and for the sake of consistency, the constants of
the original system have to satisfy the above relation, Eq (3.8). As such, obtaining an mKdV equation
is more challenging and restrictive than the KdV equation. Note that throughout our analysis, this is
found to be true for any of the mKdV properties (solutions and Miura transformations).

Continuing the analysis, at O(ε3) we obtain—after differentiating with respect to ξ—the following
equation:

n3ξ−
1
2

[
f (α3

c−α
3
h)+α3

h

]
ϕ2

1ϕ1ξ−
[
f (α2

c−α
2
h)+α2

h

]
(ϕ1ξϕ2+ϕ1ϕ2ξ)−

[
f (αc−αh)+αh

]
ϕ3ξ+ϕ3ξξξ=0, (3.9)

and at O(ε4) we obtain the system:

βn1τ +
∂

∂ξ
(n2u1 + n1u2 + u3 − cn3) = 0, (3.10a)

βu1τ +
∂

∂ξ
(u1u2 − cu3 + ϕ3) = 0. (3.10b)

Eliminating the fields n3, u3, ϕ3, and using the condition (3.8), we obtain the mKdV equation:

ϕ1τ − c1ϕ
2
1ϕ1ξ + ϕ1ξξξ = 0, (3.11)

where β = c3/2 and the coefficient c1 is given by

c1 =

[(
α3

c − α
3
h

)
f + α3

h

]
c6 − 15

2c6 . (3.12)

At the next order of approximation, O(ε5), we obtain the following equations:

βn2τ +
∂

∂ξ
(n3u1 + n2u2 + n1u3 + u4 − cn4) = 0, (3.13a)
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βu2τ +
∂

∂ξ

(
u1u3 +

1
2

u2 − cu4 + ϕ4

)
= 0, (3.13b)

as well as

n4 −

(
α4

c − α
4
h

)
f + α4

h

24
ϕ4

1 −

(
α2

c − α
2
h

)
f + α2

h

2
ϕ2

2 −
[(
α2

c − α
2
h

)
f + α2

h

]
ϕ3ϕ1

−

(
α3

c − α
3
h

)
f + α3

h

2
ϕ2ϕ

2
1 −

[
(αc − αh) f + αh

]
ϕ4 + ϕ2ξξξ = 0. (3.14)

Proceeding as in the case of the eKdV equation, we differentiate the above equation with respect to ξ,
define Φ = φ1 + εφ2, and eliminate n3, u3, and φ3. In this way, we end up with the following extended
mKdV equation:

Φ1τ + c1Φ
2Φξ + Φξξξ + ε

(
c2Φ

3Φξ + c3ΦξΦξξ + c4ΦΦξξξ

)
= 0, (3.15)

where the coefficients c2, c3, and c4 are given by

c2 = −
1

6c8

{[(
c2αc − 14

)
α3

c −
(
c2αh − 14

)
α3

h

]
c6 f +

(
c2αh − 14

)
c6α3

h + 105
}
, (3.16a)

c3 = −
2
c2 , (3.16b)

c4 = −
4
c2 . (3.16c)

This is a rather unexpected result. Indeed, as can be readily seen, the form of the emKdV
equation (3.15) differs significantly from Eq (1.4), which can be derived from the eKdV via a Miura
map, as will be shown below. In particular, there are no higher-order terms that yield resonant nonlinear
dispersive wave solutions, such as resonant solitary and dispersive shock waves. This is due to the
pure convexity or concavity of the associated linear dispersion relation [36, 37], in contrast to the one
governed by Eq (1.4).

4. The Miura map

Consider the regular form of the KdV equation:

Φτ + c1ΦΦξ + Φξξξ = 0, (4.1)

which can be shown to be converted to the relative mKdV equation:

Φ̃τ + c̃1Φ̃
2Φ̃ξ + Φ̃ξξξ = 0, (4.2)

under the Miura map:

Φτ + c1ΦΦξ + Φξξξ =

(
2AΦ̃ + B

∂

∂ξ

) (
Φ̃τ + c̃1Φ̃

2Φ̃ξ + Φ̃ξξξ

)
= 0, (4.3)

where Φ = AΦ̃2 + BΦ̃ξ, A = c̃1/c1 and B2 = −6c̃1/c2
1.
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However, when the extended systems are considered, while such a map may still exist, certain
restrictions have to apply. In particular, the extended KdV (denoted below as eKdV[Φ]), Eq (2.17),
can be mapped to an extended mKdV (denoted below as emKdV[Φ̃]) [15],

emKdV[Φ̃] = Φ̃τ + c̃1Φ̃
2Φ̃ξ + Φ̃ξξξ + ε

(
c̃2Φ̃

3
ξ + c̃3Φ̃

4Φ̃ξ + c̃4Φ̃Φ̃ξΦ̃ξξ + c̃5Φ̃
2Φ̃ξξξ + c̃6Φ̃ξξξξξ

)
= 0, (4.4)

which is very different from Eq (3.15), as

eKdV[Φ] = eKdV[AΦ̃2 + BΦ̃x] = (2AΦ̃ + B∂x)(emKdV)[Φ̃], (4.5)

where A = c̃1/c1, B2 = −6c̃1/c2
1, as before. However, certain conditions now apply not only for the

constants of the emKdV equation but also for the original eKdV equation; these are

c̃2 =
2c̃1c2

c2
1

, c̃3 =
c̃2

1c2

c2
1

, c̃4 =
8c̃1c2

c2
1

, c̃5 =
2c̃1c2

c2
1

, c̃6 =
6c2

5c2
1

, (4.6)

and for the eKdV equation:

c3 =
4c2

c1
, c4 =

2c2

c1
, c5 =

6c2

5c2
1

. (4.7)

Note that these are consistent with the findings of Ref. [15].

5. Asymptotic integrability and solitons

In this section, we will discuss the possibility of connecting the above derived eKdV (2.17) and
emKdV (3.15) equations with their regular counterparts, the KdV and mKdV equations, respectively,
employing the concept of asymptotic integrability. The latter refers to the transformation of a
complicated, higher-order evolution equation (which may not be exactly solvable or integrable in
the strict mathematical sense) to a simpler, integrable system [30–32]. Importantly, the connection
of higher-order nonlinear evolution equations with their lower-order integrable counterparts with
the asymptotic integrability argument allows for the derivation of solutions of such higher-order
equations—see also Refs. [38] and [18] for asymptotic soliton solutions of the eKdV and emKdV
equations, respectively.

For the eKdV equation, which we write here with general coefficients,

Φt + c1ΦΦξ + Φξξξ + ε
(
c2Φ

2Φξ + c3ΦξΦξξ + c4ΦΦξξξ + c5Φξξξξξ

)
= 0, (5.1)

we introduce the transformation:

Φ = Ψ + ε

(
λ1Ψ

2 + λ2Ψξξ + λ3Ψξ

∫
Ψdξ + λ4ξΨξξξ + λ5ξΨΨξ

)
, (5.2)

where

λ1 =
−18c2 + 3c1c4 + 2c2

1c5

18c1
, λ2 =

−6c2 + c1c3 − c2
1c5

2c2
1

, λ3 =
−3c4 + 4c1c5

9
, λ4 =−

c5

3
, λ5 =−

c1c5

3
, (5.3)

so that
Ψt + c1ΨΨξ + Ψξξξ = 0. (5.4)
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The above KdV system is IST integrable, and its solutions may now be used to approximate the
solutions of the eKdV equation. For example, consider the single soliton solution of Eq (5.4):

Ψ(ξ, τ) =
12η2

c1
sech2[η(ξ − 4η2τ) + ξ0], (5.5)

where η and ξ0 are O(1) real parameters. Then the O(ε) correction based on Eq (5.2) reads:

Φ(ξ, τ) =
12η2

[
c1 + 4η2 (λ2c1 − 6λ3) ε

]
c2

1

sech2[η(ξ − 4η2τ) + ξ0]

−
96η5λ4ε

c1
ξ sech2[η(ξ − 4η2τ) + ξ0] tanh[η(ξ − 4η2τ) + ξ0]

+
72η4 (2λ1 − c1λ2 + 4λ3) ε

c2
1

sech4[η(ξ − 4η2τ) + ξ0]

+
288η5 (c1λ4 − λ5) ε

c2
1

ξ sech4[η(ξ − 4η2τ) + ξ0] tanh[η(ξ − 4η2τ) + ξ0]. (5.6)

Here it should be noted that, in principle, a similar procedure could be used to identify other decaying
approximate solutions of the eKdV equation from relevant solutions of the KdV equation. Such
solutions include the rational solutions of the KdV (see, e.g., Refs. [39–42]) and are particularly
relevant because they are connected with rogue waves [43]—especially in the context of the complex
KdV equation [44, 45].

In a similar manner, consider the extended mKdV equation

Φ1τ + c1Φ
2
1Φ1ξ + Φ1ξξξ + ε

(
c2Φ

3Φξ + c3ΦξΦξξ + c4ΦΦξξξ

)
= 0, (5.7)

and introduce the transformation

Φ = Ψ + ε

(
λ1Ψ

2 + λ2Ψξ

∫
Ψdξ

)
, (5.8)

where now
λ1 =

−c3 + c4

6
, λ2 = −

c4

3
, 3c2 − c1c3 + c4/3 = 0. (5.9)

This results in the integrable mKdV equation:

Ψt + c1Ψ
2Ψξ + Ψξξξ = 0. (5.10)

Notably, an additional restriction between the equation’s coefficients needs to be held in order for
the reduction to the simpler equation, also consistent with the method of Ref. [18] to asymptotically
approximate the soliton of Eq (1.4).

As in the case of the KdV, we proceed with the single soliton solution of the mKdV Eq (5.10),
which is of the form

Ψ(ξ, τ) =

√
6
c1
η sech[η(ξ − η2τ) + ξ0]. (5.11)
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Then substituting this solution into Eq (5.8) leads to the O(ε) correction:

Φ(ξ, τ) =

√
6
c1
η sech[η(ξ − η2τ) + ξ0] +

6η2λ1ε

c1
sech2[η(ξ − η2τ) + ξ0]

+
6η2λ2ε

c1
cot−1(sinh[η(ξ − η2τ) + ξ0]) sech[η(ξ − η2τ) + ξ0] tanh[η(ξ − η2τ) + ξ0]. (5.12)

Similarly to the above discussion, one should expect that rational solutions of the emKdV equation
could also be found by pertinent ones existing in the mKdV equation (see, e.g., Refs. [39, 46–49]).
Furthermore, relevant considerations could also be extended to the case of rogue waves thanks to the
connections of the mKdV model with the nonlinear Schrödinger equation [50, 51].

6. Conclusions

In this work, we have derived and analyzed extended Korteweg-de Vries (KdV) and modified
Korteweg-de Vries (mKdV) equations from a physical model describing a three-component plasma
composed of cold fluid ions and two species of Boltzmann electrons at different temperatures. While
we manage to recover the “usual” higher-order KdV system, our analysis provides a fundamentally
different derivation compared to the conventional mKdV equation obtained through integrability
considerations. Through the analysis of this new formulation, we have explored its structural
properties and solutions, offering insights into its connection with the extended KdV equation via
Miura transformations.

One of the significant aspects of our study is the broader implication of these equations in the context
of nonlinear wave theory. The KdV equation is widely regarded as a universal equation for weakly
nonlinear, weakly dispersive wave systems. This universality arises due to its emergence in a diverse
range of physical settings, from shallow water waves to plasma dynamics, optical fibers, and liquid
crystals. A natural extension of this perspective is to investigate whether the extended mKdV equation
we have derived could also share similar universal properties. Given that the standard mKdV equation
appears in various contexts, including nonlinear optics and fluid dynamics, its extended version might
exhibit a similarly broad applicability. Future work should focus on identifying physical systems
where this equation naturally arises and exploring its integrability and solution structures in greater
depth. Additionally, further investigations into asymptotic integrability and constructing the higher
KdV system (if that exists) that is connected, through a Miura transformation, to the physically relevant
mKdV system may provide useful information towards the “universal” character of the equation.
Finally, the construction of rational and, when relevant, rogue wave solutions for the extended models
considered in this work constitutes a very interesting future direction.
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