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Abstract: This research aims to investigate the consimilarity of hybrid number matrices and to develop
solutions for matrix equations associated with these numbers. Hybrid numbers are an innovative
algebraic structure that unifies dual, complex, and hyperbolic (perplex) number systems. These
numbers are isomorphic to split quaternions and hold significant importance in mathematical theory
and physical applications, especially in the context of non-commutative algebraic structures. The paper
demonstrates how linear matrix equations associated with hybrid numbers, such as AX̃ − XB = C,
can be solved by reducing them to Sylvester equations through real matrix representations. The
concept of consimilarity, defined as a transformation preserving structural properties of matrices
without requiring invertibility, is thoroughly examined. This concept is applied to analyze eigenvalues,
diagonalization, and both linear and nonlinear matrix equations involving hybrid number matrices. By
investigating the consimilarity of hybrid number matrices, the study introduces new algebraic methods
and computational techniques, expanding classical results in matrix theory to hybrid numbers. This
research not only advances theoretical insights into hybrid number systems but also opens avenues for
practical applications in scientific and engineering fields.

Keywords: hybrid numbers; split quaternions; hybrid number matrices; consimilarity; matrix
equations
Mathematics Subject Classification: 11R52, 15A24, 15B33

1. Introduction

The study of linear matrix equations represents a cornerstone of matrix theory, with broad
applications spanning control and systems theory, stability analysis, optimal control, and neural
networks [1–3]. Notably, matrix equations such as AX − XB = C and X − AXB = C hold critical
importance in various fields, including control theory, stability analysis, and system dynamics. These
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equations are intimately connected to the classical Lyapunov and Stein equations in matrix theory [4,5].
Quaternion and split quaternion matrices play significant roles in both pure and applied

mathematics, particularly in areas such as matrix theory, algebra, and physics [6–8]. The study of real
quaternion matrices has been a subject of interest since the early 20th century, with several researchers
investigating key properties such as eigenvalues and consimilarity [9–11]. While real quaternions are
non-commutative, their structure presents unique challenges and opportunities in the analysis of matrix
equations and linear systems. Consimilarity, a relationship between matrices, has been explored in
the context of quaternion matrices, with results closely linked to their Jordan canonical forms and
diagonalization properties [10–12]. Additionally, split quaternions, which extend the concept of real
quaternions, have found applications in representing Lorentzian relations and solving geometric and
physical problems [13–15].

Hybrid numbers, introduced by Özdemir in 2018, form an innovative algebraic structure that
combines the dual, complex, and hyperbolic (perplex) number systems. This system is isomorphic
to split quaternions and has gained significance in mathematical theory and physical applications,
particularly in non-commutative algebraic structures [16,17]. Hybrid numbers provide a new approach
to solving various problems in fields like theoretical physics, control theory, and stability analysis [16].
Öztürk and Özdemir investigated the concept of similarity for hybrid numbers by solving the linear
equations px = xq and qx − xp = c [18]. Subsequently, they discussed elliptic transformations using
hybrid numbers and proved the Rodrigues and Cayley transformations [19]. Çakır and Özdemir studied
hybrid number matrices using the properties of complex matrices [20].

Matrix equations play a significant role in control theory, system dynamics, and optimization,
particularly those of the form AX − XB = C and X − AXB = C, which are fundamental for analyzing
linear systems. However, classical matrix theory primarily focuses on matrices with real or complex
coefficients, leaving limited direct methods applicable to more complex algebraic structures, such as
hybrid number matrices.

The motivation of this study lies in extending the classical concepts of similarity and consimilarity
to hybrid number matrices, which exhibit non-commutative structures similar to quaternions. The
primary goal is to investigate the eigenvalues, diagonalizability, and solutions to matrix equations
involving hybrid numbers. Specifically, the matrix equation AX̃ − XB = C is explored within the
context of hybrid numbers, with the objective of relating it to Sylvester’s equation. Given that
hybrid numbers are isomorphic to split quaternions, their applications span areas such as geometric
transformations, Lorentzian relations, and stability analysis in control systems. This research aims to
contribute to the theoretical understanding of hybrid number matrices and provide new insights into
the generalization of classical matrix theory to non-commutative algebraic structures.

In matrix theory, the concept of similarity plays a foundational role. Two square matrices A and
B are said to be similar if there exists an invertible matrix P such that B = P−1AP [3, 21]. Similar
matrices share many important properties, including eigenvalues, determinant, trace, and characteristic
polynomial [3, 21]. However, when considering algebraic structures like quaternions and hybrid
numbers, the notion of matrix similarity becomes more intricate due to the non-commutative nature of
these structures.

Beyond similarity, the concept of consimilarity has emerged as an important structural relation
between matrices [11]. Consimilarity refers to transformations that preserve the structural properties
of matrices without requiring the existence of an invertible matrix. In contrast to similarity, which relies
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on invertibility, consimilarity focuses on preserving certain inherent characteristics of matrices, such as
eigenvalues and block structure [11]. The concept of consimilarity is particularly relevant for matrices
over non-commutative rings, such as those involving hybrid numbers or quaternions. Investigating the
consimilarity of hybrid number matrices can provide deeper insights into their algebraic properties and
applications.

The aim of this study is to explore the consimilarity of hybrid number matrices, a concept that
concerns the structural similarity between matrices without necessarily requiring invertibility, and
to investigate solutions to matrix equations involving these numbers. Consimilarity preserves the
structural properties of matrices, making it a powerful tool for understanding the behavior of hybrid
number systems. By examining the consimilarity of hybrid number matrices, we can gain a deeper
understanding of their eigenvalues, matrix diagonalization, and solutions to both linear and nonlinear
matrix equations. Moreover, this investigation can lead to the development of new algebraic methods
and computational techniques for solving matrix equations involving hybrid numbers.

One of the key goals of this research is to extend classical results in matrix theory to hybrid number
matrices, particularly in the context of consimilarity and matrix equations. The study of hybrid number
matrices offers the opportunity to generalize existing theories and apply them to new and emerging
mathematical structures. Furthermore, the geometric and physical interpretations of hybrid numbers,
particularly in relation to Lorentz transformations and Minkowski space, offer significant opportunities
for future research. By studying the consimilarity of hybrid number matrices, we can explore their
potential applications in areas such as quantum mechanics, special relativity, and control systems. The
insights gained from this research may not only advance mathematical theory but also contribute to the
development of practical solutions in various scientific and engineering fields.

In this paper, we investigate the consimilarity of hybrid number matrices, exploring their algebraic
properties and solutions to related matrix equations. By examining the connections between hybrid
numbers, split quaternions, and matrix theory, we aim to extend classical results and propose new
techniques for solving matrix equations involving hybrid numbers. Specifically, we solve the hybrid
matrix equation AX̃ − XB = C by reducing it to Sylvester’s equation. This research is expected to
contribute both to the theoretical understanding and the practical applications of hybrid numbers in
various domains, including control theory and theoretical physics.

2. Algebraic properties of hybrid numbers

The set of hybrid numbers can be represented as

K =
{
a + bi + cε + dh : i2 = −1, ε2 = 0, h2 = 1, ih = −hi = i + ε, a, b, c, d ∈ R

}
.

For every hybrid number p = p1 + p2i + p3ε + p4h, we define S p = p1 as the scalar part of p, and
Vp = p2i + p3ε + p4h as its vector part. The hybrid number’s conjugate is denoted by p, and it is
expressed as p = S p − Vp = p1 − p2i − p3ε − p4h.

Addition of two hybrid numbers p = p1 + p2i + p3ε+ p4h and q = q1 + q2i + q3ε+ q4h is defined by

p + q = (q1 + q1) + (p2 + q2) i + (p3 + q3) ε + (p4 + q4) h.

The multiplication table of the units i, ε, and h is as follows, and the product of two hybrid numbers is
done with the help of Table 1.
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Table 1. The multiplication table of the units i, ε, and h.

• 1 i ε h
1 1 i ε h
i i −1 1 − h ε + i
ε ε h + 1 0 −ε

h h −ε − i ε 1

Therefore, the multiplication of two hybrid numbers p = p1 + p2i + p3ε + p4h and q = q1 + q2i +

q3ε + q4h can be found by

pq = p1q1 − p2q2 + p4q4 + p2q3 + p3q2 + i (p1q2 + p2q1 + p2q4 − p4q2)

+ε (p1q3 + p3q1 + p2q4 − p4q2 − p3q4 + p4q3) + h (p4q1 + p1q4 − p2q3 + p3q2) .

The set of hybrid numbers constitutes a non-commutative ring; thus, in a general context, the non-
equivalence of pq , qp is anticipated for p,q ∈ K.

The character of the hybrid number p = p1 + p2i + p3ε + p4h is defined as the real number C (p) =

pp = pp = a2 + (b − c)2
− c2 − d2. Moreover, a hybrid number’s character is determined through the

product C (p) = pp. If C (p) < 0, C (p) > 0, or C (p) = 0, then p is categorized as spacelike, timelike,
or lightlike. Additionally, one can demonstrate the equivalence C (pq) = C (p) C (q) using the product
of hybrid numbers.

The norm of a hybrid number is defined as

‖p‖ =
√
|C (p)| =

√∣∣∣p2
1 + (p2 − p3)2

− p2
3 − p2

4

∣∣∣.
The inverse of the hybrid number p is

p−1 =
p

C (p)
, ‖p‖ , 0.

Consequently, it can be said that lightlike hybrid numbers are not inverted. The article by Özdemir [16]
provides comprehensive information about hybrid numbers.

Theorem 2.1. [20] The following properties are satisfied for any p,q, r ∈ K.

(1) hx1 = x1h for x1 ∈ C.
(2) h (x1 + x2h) = x2 + x1h for x1, x2 ∈ C.
(3) ph = −hp.
(4) p2 = S 2

p −
∥∥∥Vp

∥∥∥ + 2S pVp.
(5) pq = qp.
(6) (pq) r = p (qr).
(7) pq , qp in general.
(8) p = p⇔ p ∈ R.

(9) If p2
1 + (p2 − p3)2 , p2

3 + p2
4, then p−1 =

p
‖p‖2

.

(10) ∀p ∈ K there exists a unique representation of the form p = x1 + x2h ∈ K such that x1, x2 ∈ C.
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The linear transformations designated by

ϕp : K→ K
q→ ϕp (q) = pq and

τp : K→ K
q→ τp (q) = qp

are called the left and right product matrices of the hybrid number algebra K, respectively. Utilizing
these transformations, the 4× 4 real product matrices on the right and left sides of a hybrid number are
respectively derived as follows:

ϕp =


p1 −p2 + p3 p2 p4

p2 p1 − p4 0 p2

p3 −p4 p1 + p4 p2 − p3

p4 p3 −p2 p1

 and τp =


p1 p3 − p2 p2 p4

p2 p1 + p4 0 −p2

p3 p4 p1 − p4 p3 − p2

p4 −p3 p2 p1

 ,
where p = p1 + p2i + p3ε + p4h ∈ K. Moreover, we have detϕp = det τp = ‖p‖4 [18].

Theorem 2.2. [18] Let p,q ∈ K and λ ∈ R. Then

(1) ϕp = ϕq ⇐⇒ p = q⇐⇒ τp = τq,
(2) ϕp+q = ϕp + ϕq, τp+q = τp + τq,
(3) ϕpq = ϕpϕq, τpq = τpτq,
(4) ϕpτq = τqϕp,
(5) ϕλp = ϕpλ = λϕp, τλp = τpλ = λτp,
(6) ϕ1 = τ1 = I4,
(7) ϕp + ϕp = 2p1I4, τp + τp = 2p1I4,
(8) ϕp−1 = ϕ−1

p , τp−1 = τ−1
p where ‖p‖ , 0,

(9) µτp = ϕpµ , µ =

[
1 0
0 −I3

]
.

In the work by Özdemir [16], an isomorphism between 2 × 2 real matrices and hybrid numbers is
established, leading to the representation of hybrid numbers using 2 × 2 real matrices as denoted by

ℵp =

[
p1 + p3 p2 − p3 + p4

p3 − p2 + p4 p1 − p3

]
,

for p = p1 + p2i + p3ε + p4h ∈ K. Additionally, Çakır [20] elucidates certain attributes of this matrix
ℵp.

Theorem 2.3. [20] Every hybrid number can be represented by a 2 × 2 complex matrix.

3. Consimilarity of hybrid number matrices

The consimilarity of matrices using hybrid numbers as inputs will be the subject of this section.
The set of m × n matrices with entries in the algebra of hybrid numbers, denoted byMm×n (K), forms a
ring with unity under the standard operations of matrix addition and multiplication. If m = n, then the
set of hybrid matrices is denotedMn (K). The set of hybrid number matrices can be represented as

Mm×n (K) = {A = A1 + A2i + A3ε + A4h : A1, A2, A3, A4 ∈ Mm×n (R)} .
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Mm×n (K) is a module over the ring K [20]. As with complex matrices, let A =
(
ast

)
∈ Mm×n (K) ,

AT = (ats) ∈ Mn×m (K) and A∗ =
(
A
)T
∈ Mn×m (K) be the conjugate, transpose, and conjugate transpose

of A = (ast) ∈ Mm×n (K), respectively.

Corollary 3.1. [20] The following properties generally hold true for any A ∈ Mm×n (K) ,B ∈ Mn×k (K),
and C ∈ Mn (K).

(1)
(
C
)−1

,
(
C−1),

(2)
(
CT

)−1
,

(
C−1

)T
,

(3)
(
AB

)
, A B,

(4) (AB)T , BT AT .

Theorem 3.1. [20] Let A,B ∈ Mn (K) and p ∈ K. Then the following are satisfied:

(1)
(
A
)T

= (AT ),
(2) (AB)−1 = B−1A−1 if A and B are invertible.
(3) (AB)∗ = B∗A∗,
(4) (A∗)−1 =

(
A−1

)∗
if A is invertible.

Definition 3.1. Let A, B ∈ Mn (K). A and B are called to be similar hybrid number matrices if there
exists a hybrid number matrix P, (det P , 0), satisfying the equality P−1AP = B, and it is denoted by
A ∼ B. “ ∼ ” is an equivalence relation onMn (K) .

If A,B ∈ Mn (K), it generally holds that AB , A B. Consequently, the mapping A→PAP−1 does
not define an equivalence relation on Mn (K). Therefore, it is necessary to introduce a new definition
of consimilarity for matrices over hybrid numbers.

Definition 3.2. Let A ∈ Mn (K); then we define Ã = hAh =A1 − A2i − A3ε + A4h. We say that Ã is the
h-conjugate of A.

The following equalities are readily verifiable for any given matrices A,B ∈ Mm×n (K) and C ∈
Mn×s (K):

(1) Ã = A⇔ A ∈ Mn (P) , whereMn (P) is the hyperbolic number matrices set,

(2)
(̃
Ã
)

= A,
(3) ˜(A + B) = Ã + B̃,
(4) (̃AC) = ÃC̃,
(5)

(
Ã
)

=
(̃
A
)
,

(6)
(
Ã
)T

= ÃT .

Definition 3.3. Let A, B ∈ Mn (K). A and B are called to be consimilar hybrid number matrices if
there exists a hybrid number matrix P, (det P , 0), satisfying the equality P̃AP−1 = B, and it is denoted
by A c

∼ B. “ c
∼ ” is an equivalence relation onMn (K) .

Theorem 3.2. For three hybrid number matrices A,B,C ∈ Mn (K) the following statements hold:
Reflexive relation: A c

∼ A,
Symmetric relation: if A c

∼ B, then B c
∼ A,

Transitive relation: if A c
∼ B, B c

∼ C, then A c
∼ C.
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Proof. Reflexive: IAI−1 = A trivially, for A ∈ Mn (K) and unit matrix I. Therefore, consimilarity is a
reflexive relation.

Symmetric: Let P̃AP−1 = B. As P is invertible, we have(
P̃
)−1

BP =
(
P̃
)−1

P̃AP−1P = A.

Therefore, consimilarity is a symmetric relation.
Transitive: Let P̃AP−1 = B and Q̃BQ−1 = C. Then

C = Q̃P̃AP−1Q−1 = Q̃PA (QP)−1 .

Therefore, consimilarity is a transitive relation. �

Thus, the relation c
∼ defines an equivalence relation on hybrid matrices.

Theorem 3.3. If A, B ∈ Mn (K) , then

A c
∼ B⇔ hA ∼ hB⇔ Ah ∼ Bh⇔ hA ∼ Bh.

Proof. Let A c
∼ B. Since A c

∼ B ⇔there exists a nonsingular matrix P ∈ Mn (K) so that P̃AP−1 =

hPhAP−1 = B. Therefore, A c
∼ B ⇔ PhAP−1 = hB ⇔ hA ∼ hB. Since h−1hAh = Ah, we get

hA ∼ Ah and hB ∼ Bh. Thus, hA ∼ hB⇔ Ah ∼ Bh⇔ hA ∼ Bh. �

Definition 3.4. Consider an arbitrary matrix A ∈ Mn (K) and λ ∈ K. In the event that λ ∈ K satisfies
the equation Ax̃ = xλ

(
or Ax̃ = λx

)
for some nonzero hybrid number column vector x, the term ‘right

(left) coneigenvalue’ designates λ as the right (left) coneigenvalue of A, while x assumes the role of
the right (left) coneigenvector of A corresponding to the specific right (left) coneigenvalue. The set of
the right coneigenvalues is defined by

σ̃r (A) =
{
λ ∈ K : Ax̃ = xλ, for some nonzero x

}
.

The set of left coneigenvalues is similarly defined and is denoted by σ̃l (A) .

Theorem 3.4. If A ∈ Mn (K) is consimilar to B ∈ Mn (K) , the right coneigenvalues of A and B are the
same.

Proof. Let A c
∼ B. Then, there exists a nonsingular matrix P ∈ Mn (K) such that B = P̃AP−1. Suppose

that λ ∈ K is a right coneigenvalue of the matrix A. Then we can find a hybrid number column vector
x such that Ax̃ = xλ, x , 0. Let y = Px̃. Then

By = P̃AP−1y = P̃AP−1Px̃ = P̃Ax̃ = P̃xλ = ỹλ.

Therefore, right coneigenvalues of A and B are the same. �

Theorem 3.5. If A ∈ Mn (K) , then λ is right coneigenvalue of A if and only if, for any β ∈ K with
‖β‖ , 0, the term β̃λβ−1 is a right eigenvalue of A.
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Proof. From the definition of the coneigenvalue of A we find

Ax̃ = xλ⇔ Ax̃β−1 = xλβ−1

⇔ Ax̃β−1 = x
(
β̃−1β̃

)
λβ−1

⇔ A
(̃
xβ−1

)
= xβ̃−1

(
β̃λβ−1

)
⇔ A

(
x̃β̃−1

)
= xβ̃−1

(
β̃λβ−1

)
.

Therefore, β̃λβ−1 is a right eigenvalue of A. �

Definition 3.5. [20] For A =C1 + C2h ∈ Mn (K), we shall call the 2n × 2n complex matrix[
C1 C2

C2 C1

]
uniquely determined by A, the complex adjoint matrix or adjoint of the hybrid number matrix A,
symbolized χA.

Theorem 3.6. [20] Let A,B ∈ Mn (K); then the following properties are satisfied:

(1) χIn = I2n,

(2) χA+B = χA + χB,

(3) χAB = χAχB,

(4) χA−1 = (χA)−1 if A−1 exist,
(5) χA∗ , (χA)∗ in general.

Proof. Its proof can be shown easily. �

4. Real matrix representation of hybrid number matrices

Hybrid number matrices exhibit diverse real number depictions. This section inaugurates a novel
real rendering for the hybrid number matrix, which shall be employed in the context of consimilarity,
and deliberates upon the attributes inherent in the authentic portrayal.

Consider A = A1 + A2i + A3ε + A4h ∈ Mm×n (K) to be a hybrid number matrix. The linear
transformation RA shall be delineated as

RA : Mm×n (K)→ Mm×n (K)
RA (B) = AB̃.

Using this operator and the basis {1, i, ε,h} of the moduleMn (K), we can write

RA (1) = A1 = A1 + A2i + A3ε + A4h,
RA (i) = Ãi = −A1i + A2 − A3 (h+1) − A4 (−ε − i)

= A2 − A3 + (A4 − A1) i + A4ε − A3h,
RA (ε) = Aε̃ = −A1ε − A2 (1−h) − A4ε

= −A2 − (A1 + A4) ε + A2h,
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RA (h) = Ah̃ = A1h + A2 (ε + i) − A3ε + A4

= A4 + A2i + (A2 − A3) ε + A1h.

Then, the following real matrix representation can be found as

RA =


A1 A2 − A3 −A2 A4

A2 A4 − A1 0 A2

A3 A4 −A1 − A4 A2 − A3

A4 −A3 A2 A1


4m×4n

.

Within this framework, RA is called the real matrix representation of A corresponding to the linear
transformation RA (B) = AB̃. It is feasible to establish a correspondence between a real matrix A ∈
M4m×n (R) and a hybrid number matrix A ∈ Mm×n (K). Via employment of the symbol �, we will denote

A = A1 + A2i + A3ε + A4h � A =


A1

A2

A3

A4

 ∈ M4m×n (R) .

Subsequently, the multiplication operation involving A ∈ Mm×n (K) and B ∈ Mn×k (K) can be
equivalently expressed through the ordinary matrix multiplication AB̃ � RAB.

Let

Pn =


In On On On

On −In On On

On On −In On

On On On In


4n×4n

, Qn =


On −In In On

In On On −In

On On On −In

On On In On


4n×4n

,

Rn =


On On On In

On In On On

On In −In On

In On On On


4n×4n

, S n =


On On In On

In On On −In

In On On On

On −In In On


4n×4n

,

where In and On are, respectively, an n × n identity matrix and a zero matrix.
By the operation of block matrices, we have

Proposition 4.1. (1) If A ∈ Mm×n (K) , then P−1
m RAPn = RÃ, Q−1

n RAQn = −RA, R−1
n RARn = RA,

S −1
n RAS n = −RA.

(2) If A,B ∈ Mm×n (K) , then RA = RB ⇐⇒ A = B.
(3) If A,B ∈ Mm×n (K) , then RA+B = RA + RB.
(4) If A,B ∈ Mm×n (K) , then RAB = RAPnRB = RARB̃Pn = PnRÃRB.
(5) If A ∈ Mm×n (K) and λ ∈ R, then RλA = RAλ = λRA.
(6) If A ∈ Mm (K) , in this case A is nonsingular if and only if RA is nonsingular, R−1

A = PmRA−1 Pm.
(7) If A ∈ Mm×n (K) , then RA = PnRÃPn.
(8) If A ∈ Mn (K) ,

A = A1 + A2i + A3ε + A4h =
1
3

[
In iIn εIn hIn

]
RA


In

iIn

εIn

hIn

 .
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Proof. It can be easily seen by the definition of real matrix representation of hybrid number matrices.
�

5. Hybrid number matrix equation AX̃ − XB = C

In this section, we investigate the solutions to the hybrid number matrix equations

AX̃ − XB = C (5.1)

by means of real representation, where A ∈ Mn (K) ,B ∈ Mn (K), and C ∈ Mn (K) . We begin by
defining the real representation matrix corresponding to Eq (5.1) by

RAY − YRB = RC. (5.2)

By (4) in Proposition 4.1, the Eq (5.1) is equivalent to the equation

RA (RXPn) − (RXPn)RB = RC. (5.3)

Proposition 5.1. Hybrid number matrix equation AX̃ − XB = C has a solution X ∈ Mm×n (K) if and
only if the real matrix equation RAY − YRB = RC has a solution Y = RXPn.

Proof. Let X ∈ Mm×n (K) be a solution to the hybrid number matrix equation AX̃ − XB = C. Then, we
get

AX̃ − XB = C
⇔ RAX̃ − RXB = RC

⇔ RAPnRX̃ − RXPnRB = RC

⇔ RARXPn − RXPnRB = RC

⇔ RA (RXPn) − (RXPn)RB = RC.

Therefore, the solution of the hybrid number matrix equation AX̃ − XB = C is X ∈ Mm×n (K), if and
only if the solution of the real matrix equation RAY − YRB = RC is Y = RXPn. �

Theorem 5.1. [3] (Sylvester) Let A ∈ Mn and B ∈ Mm be given. The equation AX − XB = C has a
unique solution X ∈ Mn×m for each given C ∈ Mn×m if and only if σ (A)∩σ (B) = ∅, that is, if and only
if A and B have no eigenvalue in common. In particular, if σ (A)∩σ (B) = ∅, then the only X such that
AX − XB = 0 is X = 0. If A and B are real, then AX − XB = C has a unique solution X ∈ Mn×m (R) for
each given C ∈ Mn×m (R).

Lemma 5.1. Let A = A1 + A2i + A3ε+ A4h ∈ Mn (K) and B = B1 + B2i + B3ε+ B4h ∈ Mm (K) be given.
The equation AX̃ − XB = C has a unique solution X ∈ Mn×m (K) for each given C ∈ Mn×m (K) if and
only if σ (RA) ∩ σ (RB) = ∅.

Proof. Let A = A1 + A2i + A3ε + A4h ∈ Mn (K) and B = B1 + B2i + B3ε + B4h ∈ Mm (K) . Then, we
have

AX̃ − XB = C⇔ RAX̃ − RXB = RC ⇔ RAPnRX̃ − RXPnRB = RC

⇔ RARXPn − RXPnRB = RC ⇔ RA (RXPn) − (RXPn)RB = RC.
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In this case, according to Theorem 5.1, the necessary and sufficient condition for the solution of the
equation RA (RXPn) − (RXPn)RB = RC is

σ (RA) ∩ σ (RB) = ∅.

Therefore, for the equation AX̃ − XB = C to have a unique solution of X ∈ Mn×m (K) for each given
C ∈ Mn×m (K), if and only if σ (RA) ∩ σ (RB) = ∅. �

Theorem 5.2. Let A ∈ Mm (K) ,B ∈ Mn (K), and C ∈ Mm×n (K) . Then the hybrid number matrix
Eq (5.1) has a solution X ∈ Mm×n (K) if and only if the real representation matrix Eq (5.2) has a
solution Y ∈ M4m×4n (R) ; in this case, if Y is a solution to (5.2), then the following matrix:

X =
1
12

[
Im iIm εIm hIm

] (
Y + Q−1

m YQn + R−1
m YRn + S −1

m YS n

) 
In

−iIn

−εIn

hIn

 (5.4)

is a solution to the hybrid number matrix Eq (5.1).

Proof. We show that if the real matrix

Y =


Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44

 , Yst ∈ Mm×n (R) , s, t = 1, 2, 3, 4 (5.5)

is a solution to (5.2), then the matrix given in (5.4) is a solution to (5.1). Since Q−1
m RXQn = −RX,

R−1
m RXRn = RX, S −1

m RXS n = −RX, and Y = RXPn, we have

RA
(
−Q−1

m YPnQn

)
Pn −

(
−Q−1

m YPnQn

)
PnRB = RC,

RA
(
R−1

m YPnRn

)
Pn −

(
R−1

m YPnRn

)
PnRB = RC,

RA
(
−S −1

m YPnS n

)
Pn −

(
−S −1

m YPnS n

)
PnRB = RC.

(5.6)

The equations in (5.6) demonstrate that if Y is a solution of (5.2), then
(
−Q−1

m YPnQn

)
Pn,(

R−1
m YPnRn

)
Pn, and

(
−S −1

m YPnS n

)
Pn are also solutions to (5.2). Hence, the following real matrix:

Ŷ =
1
4

(
Y −

(
Q−1

m YPnQn − R−1
m YPnRn + S −1

m YPnS n

)
Pn

)
(5.7)

is a solution to (5.2). By substituting (5.5) into (5.7) and simplifying the resulting expression, we
readily obtain

ŶPn = RX =


X1 X2 − X3 −X2 X4

X2 X4 − X1 0 X2

X3 X4 −X1 − X4 X2 − X3

X4 −X3 X2 X1

 , (5.8)
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where
X1 = 1

4 (Y11 + Y22 + Y33 + Y44) , X2 = 1
4 (Y21 + Y13 + Y24 − Y43) ,

X3 = 1
4 (Y12 + Y13 + Y31 + Y24 + Y42 − Y34) , X4 = 1

4 (Y14 − Y22 − Y23 + Y41 + Y33) .

Next, we construct a hybrid number matrix utilizing Proposition 4.1(8):

X = X1 + X2i + X3ε + X4h =
1
3

[
Im iIm εIm hIm

]
Ŷ


In

−iIn

−εIn

hIn


=

1
12

[
Im iIm εIm hIm

] (
Y + Q−1

m YQn + R−1
m YRn + S −1

m YS n

) 
In

−iIn

−εIn

hIn

 .
Hence, X serves as a solution to the equation presented in (5.1). �

As a special case of Theorem 5.2 for C = 0, we have the following result for consimilarity of hybrid
number matrices.

Theorem 5.3. Let A,B ∈ Mn (K) . If C = 0 in the equation AX̃ − XB = C, and X ∈ Mm×n (K) is
nonsingular, then the hybrid number matrix A is consimilar to B. Furthermore, the associated real
matrix RA is similar to RB.

Proof. If the matrix C = 0 and X is nonsingular in the equation AX̃ − XB = C, then we obtain

AX̃ = XB⇒ X
−1

AX̃ = B,

and
AX̃ = XB⇒RAX̃ = RXB

⇒ RAPnRX̃ = RXPnRB

⇒ (RXPn)−1
RAPnRX̃ = RB

⇒ (RXPn)−1
RA (RXPn) = RB.

Therefore, the hybrid number matrix A is consimilar to B, and the real matrix RA is similar to RB. �

Example 5.1. Solve hybrid number matrix equation[
1 − ε i + 2ε − h

3 − 2h 2 − i + 2h

]
X̃ − X

[
2 + i ε + h
1 − h 3 − 2i + h

]
=

[
−7 + 16i + 5ε − 3h −4 + i − 9ε − 6h
4 + 15i + 5ε + 6h −2 − 11i − 11ε − 2h

]
by utilizing its real representation.

The real representation of given equation is

1 0 1 −1 0 −1 0 −1
3 2 0 −1 0 1 −2 2
0 1 −1 −1 0 0 0 1
0 −1 −5 0 0 0 0 −1
−1 2 0 −1 −1 1 1 −1
0 0 −2 2 −1 −4 0 −1
0 −1 1 −2 0 1 1 0
−2 2 0 0 0 −1 3 2


Y − Y



2 0 1 −1 −1 0 0 1
1 3 0 −2 0 2 −1 1
1 0 −2 1 0 0 1 0
0 −2 −2 −2 0 0 0 −2
0 1 0 1 −2 −1 1 −1
0 0 −1 1 0 −4 0 −2
0 1 0 −1 1 0 2 0
−1 1 0 0 0 −2 1 3


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=



−7 −4 11 10 −16 −1 −3 −6
4 −2 10 0 −15 11 6 −2

16 1 4 −2 0 0 16 1
15 −11 2 0 0 0 15 −11
5 −9 −3 −6 10 10 11 10
5 −11 6 −2 −10 4 10 0
−3 −6 −5 9 16 1 −7 −4
6 −2 −5 11 15 −11 4 −2


.

The solution to this equation yields

Y =



0 1 2 1 −3 0 2 1
1 −1 1 −1 −1 2 3 1
−3 0 −2 0 0 0 −3 0
−1 2 −2 −2 0 0 −1 2
−1 1 −2 −1 2 2 −2 −1
0 1 −3 −1 4 0 −1 1
2 1 −1 1 3 0 0 1
3 1 0 1 1 −2 1 −1


.

Then,

X=
1

12

[
I2 iI2 εI2 hI2

](
Y + Q−1

2 YQ2 + R−1
2 YR2 + S −1

2 YS 2

)
I2

−iI2

−εI2

hI2

=

[
−3i − ε + 2h 1 + ε + h

1 − i + 3h −1 + 2i + ε + h

]
.

6. Conclusions

In this study, we have explored the consimilarity of hybrid number matrices, an important structural
relationship between matrices that preserves key matrix properties without requiring invertibility. By
investigating the eigenvalues, diagonalizability, and solutions to matrix equations involving hybrid
numbers, we have extended classical matrix theory concepts, specifically the notions of similarity and
consimilarity, to non-commutative algebraic structures.

The primary focus of this research was to examine the matrix equation AX̃ − XB = C in the
context of hybrid numbers and relate it to Sylvester’s equation. This approach provides new insights
into solving matrix equations involving hybrid numbers, contributing to the development of new
algebraic methods and computational techniques. Furthermore, the study of hybrid numbers, which are
isomorphic to split quaternions, opens up opportunities for applications in geometric transformations,
Lorentzian relations, and stability analysis in control systems.

The results obtained from this work not only enhance the theoretical understanding of hybrid
number matrices but also have practical implications for areas such as quantum mechanics, special
relativity, and control systems. Future research may explore further applications of these matrices,
extending the current findings and potentially leading to new breakthroughs in both mathematics and
physics.
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