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Abstract: This work investigated analytical solutions for a coupled system of nonlinear perturbed
Schrödinger equations in fiber Bragg gratings (FBGs), characterized by sixth-order dispersion and a
combination of Kerr and parabolic nonlocal nonlinear refractive indices. Chromatic dispersion, which
restricts wave propagation in standard optical fibers, was effectively compensated using FBGs,
making them indispensable in modern optical networks. In this study, the modified Sardar
sub-equation technique (MSSE) was applied to the system for the first time. This method was chosen
for its advantages, including low computational cost, high consistency, and simplicity in calculations.
The novelty of this work lied in the derivation of new analytical solutions, such as exponential,
singular periodic, hyperbolic, and rational solutions, which have not been previously reported in the
literature. Additionally, bright gap solitons and singular gap solitons, previously studied, were also
obtained. All solutions were rigorously verified by direct substitution into the system. Another
significant contribution of this work was the derivation of modulation instability (MI) analysis using
linear stability analysis. For the first time in the literature, an analytical expression for the MI gain
spectrum was derived. This gain spectrum depended on key parameters such as normalized power,
perturbation wave number, dispersion coefficients, phase modulation coefficients, and nonlinearity
coefficients. The study also included 2D and 3D graphical representations of selected exact solutions,
with parameters chosen to satisfy specific limiting conditions, as well as visual illustrations of the MI
gain spectrum. The solutions derived in this work have profound implications for optical
communication systems. Exponential and hyperbolic solutions can model pulse propagation in FBGs
with high accuracy, enabling better design of dispersion-compensating devices and improving signal
integrity over long distances. Singular periodic and rational solutions provided insights into the
behavior of nonlinear waves in FBGs, which can be exploited for advanced signal processing
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applications, such as pulse shaping and wavelength conversion. Bright and singular-gap solitons were
crucial for maintaining stable signal transmission in FBG-based systems, particularly in high-power
scenarios where nonlinear effects were significant. The MI analysis further enhanced the practical
relevance of this work. By understanding the conditions under which MI occured, engineers can
design FBG systems that minimize signal degradation and optimize performance. The MI gain
spectrum provided a tool to predict and control instability, ensuring robust and efficient optical
communication networks. This work not only advanced the theoretical understanding of nonlinear
wave dynamics in FBGs but also offered practical tools and solutions for improving optical
communication systems. The derived solutions and MI analysis have direct applications in enhancing
signal stability, dispersion management, and overall system performance, making this research highly
relevant to the field of photonics and optical engineering.

Keywords: perturbed nonlinear Schrödinger equations; fiber Bragg gratings; modulation instability
analysis; Kerr nonlinearity; gap solitons
Mathematics Subject Classification: 35C07, 35C08, 35C09

1. Introduction

A Solitary wave is a particular kind of long-wave which is not dispersive and travels with constant
speed, keeping its original shape. This wave appears among the solutions of nonlinear partial
differential equations (NLPDEs) [1–3]. Unlike normal waves, solitary waves don’t merge and when
colliding with each other, and they keep their original shapes, sizes, and speeds. This particle-like
behavior was the reason for calling these solitary waves “solitons” [4, 5]. Gap solitons appear inside
finite gaps within the domain of continuous systems. They differ from regular solitons in the group
velocity dispersion of photonic band structure [6]. Recent studies have focused on the dynamics of
high-order solitons in optical fibers with engineered dispersion profiles. These solitons exhibit
complex interactions and splitting behaviors, which are crucial for applications in ultrafast optics and
wavelength-division multiplexing (WDM) systems [7]. Advances in understanding the soliton
self-frequency shift (SSFS), particularly in photonic crystal fibers (PCFs), have enabled the generation
of tunable frequency combs and supercontinuum sources. These developments are significant for
applications in metrology and spectroscopy [8]. Recent work has explored the use of solitons for
nonlinear pulse compression in fibers, achieving few-cycle pulses with high peak powers. This has
implications for ultrafast laser systems and attosecond science [9]. Recent research has investigated
the behavior of gap solitons in chirped fiber Bragg gratings (FBGs), where the grating period varies
along the fiber length [10, 11]. These solitons exhibit unique trapping and slowing properties, making
them promising for optical delay lines and buffering applications [12–14]. In optical fiber, information
is sent as packets like solitons which provide high speed connectivity. This is because they travel in
optical fiber at the speed of light [15]. Optical fiber is constructed by a core coated with a translucent
cladding material having lower refractive index. Soliton’s transmission through optical fiber depends
on the equilibrium of chromatic dispersion with fiber nonlinearity. The decrease in chromatic
dispersion restricts wave propagation through the fiber, which poses a significant problem [16]. Bragg
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gratings technology is used to solve this problem by compensating the low chromatic dispersion. In
this technology, an intense ultraviolet source is applied to create repetitive refractive index differences
in the core of the optical fibe, which is called FBGs. When the light travels through the FBGs, the
refractive index differs. This causes a small light quantity to be reflected on boundaries. If the periods
of the light wavelength and the grating match, a positive backward reflection is achieved as power
couples from forward to backward directions. Light with other wavelengths can’t travel through fiber.
Gap solitons arise from the resonant reflection of light on Bragg gratings [6, 17, 18].

The applications of FBGs are numerous in optical communications and sensors. FBG sensors are
used in geothermal engineering field observation, communication systems as multiplexers and
demultiplexers with optical circulators or optical add-drop multiplexers, health monitoring systems
for aircraft, underwater acoustic sensors, biomedical applications, robotics, and other fields. FBG
sensors offer many advantages that make them widely used in real-life applications, such as being
lightweight, stable, resistant to electromagnetic interference, fast-responding, corrosion-resistant,
capable of multi-point sensing, affordable, and compact [17, 19, 20]. The use of FBGs in artificial
intelligence and machine learning is expected to increase the abilities of optical fiber sensors in the
future. This will introduce new levels of accuracy of data and real time monitoring [21, 22].

These important applications encouraged intensive studies of solitons in FBGs with variant
formulas of nonlinear refractive index like Kerr nonlinearity law [23], parabolic nonlinearity law [24],
polynomial nonlinearity law [25], quadratic-cubic nonlinearity law [26], parabolic-nonlocal combo
nonlinearity law [27], and many others in the literature [28, 29].

The standard model of light propagation in nonlinear FBGs is based on a system of coupled-mode
nonlinear Schrödinger equations for the right (forward) and left (backward) traveling waves [6, 30].
Many different forms of coupled-mode systems were suggested and investigated earlier in the
literature with higher dispersion orders and different nonlinearity laws. For example, in [31], the
auxiliary equation method was used to investigate a coupled system of second order dispersion with
Kudryashov’s law of self-phase modulation. The Lie symmetry analysis is applied to a different
version of the coupled system of fourth order dispersion with Kerr law of nonlinearity in [23]. The
Jacobi elliptic function approach is used in [32] to investigate another coupled system of second order
dispersion and parabolic law of nonlinearity. In [33], three integration schemes, the unified Riccati
equation method, new extended auxiliary equation method, and unified auxiliary equation method, are
applied on a different version of the coupled system of second order dispersion with parabolic
nonlocal combo nonlinearity. In [34], a different version of the coupled system of second order
dispersion and anti-cubic nonlinearity is investigated by the extended auxiliary equation approach.
The extended trial function approach is applied to a coupled system of second order with parabolic
nonlocal combo nonlinearity in [27] and many others [35, 36].

Following the same motivation, this paper investigates a coupled system of sixth-order,
incorporating both even and odd dispersion orders, describing the propagation of light waves in FBGs
with Kerr and parabolic nonlocal combo laws of nonlinearity by the modified Sardar sub-equation
(MSSE) technique. Rezazadeh et al. [37] introduced an efficient method, the Sardar sub-equation
method (SSE), to solve the Benjamin-Bona-Mahony equation. SSE is a general method from which,
under specific conditions, many techniques such as the functional variable method and first integral
techniques can be derived [37]. Akinyemi et al. [38] proposed a modification to SSE, called MSSE,
from which many techniques, such as the (G′/G) - expansion method, generalized auxiliary equation
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method, and extended tanh-function method, can be derived. Subsequently, various forms of MSSE
were introduced, involving different substitutions or wave transformations. These forms either
simplify the sub-equation or introduce a novel procedure to solve it. The advantages of MSSE over
other techniques for solving NLPDEs include computational efficiency, fast equation solving, and
high accuracy, particularly in cases of high nonlinearity [37, 39, 40]. One observed limitation of the
MSSE technique in this research is its inability to generate dark solitons.

In this work, the MSSE technique is applied to solve the following coupled system of highly
dispersive perturbed nonlinear Schrödinger equations in FBGs with parabolic nonlocal combo
nonlinear refractive index [41]:

i
∂Q
∂t
+ i a1
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+ a2

∂2R
∂x2 + i a3

∂3R
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(1.1)
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(1.2)

which models the light wave propagation in nonlinear FBGs with Q ≡ Q(x, t) and R ≡ R(x, t) as
forward and backward light waves. The coordinate along the fiber is x and t is time. a1, b1, α1, α2 and
a2, b2 are the inter-modal dispersion and the chromatic dispersion coefficients, respectively.
an, bn (n = 3, 4, 5, 6) are coefficients of nth order dispersion. cn, en (n = 1, 2) are self-phase
modulation coefficients. dn, gn (n = 1, 2) are coefficients of cross phase modulation. fn (n = 1, 2) are
nonlinear terms coefficients. ln, mn (n = 1, 2) are nonlocal nonlinearity terms coefficients. βn, γn and
σn (n = 1, 2) are detuning parameters, self-steeping terms, and four wave mixing parameters
coefficients, respectively. θn, µn (n = 1, 2) are nonlinear dispersion terms coefficients [41]. This
coupled system was suggested and investigated by the extended auxiliary equation approach earlier
in [41], producing only bright gap solitons and singular gap solitons. Different versions of this
coupled system were studied earlier in the literature. For example, a modified version of Eqs (1.1)
and (1.2) including a conformable fractional derivative is studied in [42] using the modified extended
direct algebraic method producing bright and singular solitons, as well as hyperbolic and
trigonometric solutions. Meanwhile in [43], a different version of Eqs (1.1) and (1.2) with only
nonlocal law of self-phase modulation and differential group delay was studied using SSE approach,
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yielding bright and singular solitons. Also, in [44], the dynamics of highly dispersive gap solitons
within the framework of the Kundu-Eckhaus equation with a new addition of multiplicative white
noise were investigated by two methods, the extended simplest equation approach and the generalized
Riccati equation mapping scheme, yielding bright, singular, and dark-singular straddled solitons.

The motivation and novelty of the present study is to derive novel solutions for the coupled system
of Eqs (1.1) and (1.2). In addition, to apply the MSSE technique for the first time to the coupled
system of Eqs (1.1) and (1.2) is to get benefit of the great advantages of the MSSE technique in
dealing with this highly dispersive system with high nonlinearity. The MSSE technique succeeded to
derive various types of solutions such as bright gap solitons, singular gap solitons, which were
previously obtained in [41], as well as hyperbolic, exponential, singular periodic, and rational
solutions, which are novel solutions that were not previously obtained in the literature. The obtained
solutions are verified by direct substitution in the system under study. Furthermore, the modulation
instability analysis for the governing system of Eqs (1.1) and (1.2) is investigated using linear stability
analysis, and the analytical expression for the modulation instability gain spectrum is derived for the
first time in the literature, to the best of our knowledge. The modulation instability can cause the
appearance of optical rogue wave in the process of supercontinuum generation [45]. Furthermore,
visual illustrations of the modulation instability gain spectrum for the system under study and are
presented in this work for the first time. The modulation instability phenomena suggests that any
small deviations from the steady-state solutions will amplify and lead to diverging behavior. That is
why the modulation instability analysis is important for higher-order nonlinear models. These models
exhibit an instability that requires the investigation of steady-state modulation due to the interaction of
nonlinear and dispersive effects [46–48].

The structure of the rest of the paper is: Section 2 explains the MSSE technique algorithm. Then, the
application of the MSSE technique algorithm step by step to the coupled system of Eqs (1.1) and (1.2)
and the obtained analytic solutions, using the Mathematica software, is in Section 3. In Section 4, the
modulation instability analysis for the governing system using linear stability analysis is presented.
The derivation of analytical expression for the modulation instability gain spectrum is presented also
in Section 4. After that, the graphical illustrations of a sample of derived solutions, with 2D and 3D
graphs, as well as the visual illustrations of the modulation instability gain spectrum, with 2D and 3D
graphs, are presented in Section 5. The conclusion is in Section 6.

2. The algorithm of the suggested technique

The suggested MSSE technique is:
For the NLPDE with the unknown wave function f (x, t):

H( f , fx, ft, fxx, ftt, ...) = 0, (2.1)

1 Let
f (x, t) = Y(η)ei( r t+ρ x), η = v t + λ x, (2.2)

with Y(η), ρ, r , λ, and v as the wave’s amplitude, number, frequency, length, and velocity, respectively.
Hence, Eq (2.1) reduces to:

H(Y, Y ′, Y ′′, Y ′′′, ...) = 0, (2.3)
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H is a function in Y, Y ′ =
dY
d η

, Y ′′ =
d2Y
d η2 , ...etc.

2 The suggested solution of Eq (2.3) is:

Y(η) =
M∑
j=0

K j φ
j(η), KM , 0, (2.4)

with φ(η) satisfying:

φ
′2

(η) = w0 + w1 φ
2(η) + w2 φ

4(η), (2.5)

where M is an integer, K j ( j = 0, 1, ..., M), and w0, w1, and w2 are constants.

3 M is known from Eq (2.3) by balancing the highest nonlinearity and dispersion orders.

4 Inserting Eqs (2.4) and (2.5) in Eq (2.3) produces a polynomial in φ(η). The polynomial’s
coefficients are then set to vanish, developing a system of equations in K j ( j = 0, 1, ..., M), w0, w1 ,
w2, ρ, r, λ, and v. Software like Mathematica produces this system’s solution.

5 The general analytical solutions of Eq (2.5), with k as any arbitrary constant, are:
Case I: For w0 = 0, w1 > 0, and w2 , 0,

φ1(η) = ±
√
−

w1

w2
sech

(√
w1 (η + k)

)
, (2.6)

φ2(η) = ±
√

w1

w2
csch

(√
w1 (η + k)

)
. (2.7)

Case II: For w0 = 0, w1 > 0, and w2 = ±4B1B2, with B1 and B2 as two arbitrary parameters,

φ3(η) = ±
4 B1
√

w1(
4B2

1 − w2

)
cosh

(√
w1 (η + k)

)
±

(
4B2

1 + w2

)
sinh

(√
w1 (η + k)

) . (2.8)

Case III: For w0 =
w2

1

4 w2
, w1 < 0, and w2 > 0, with B1 and B2 as two arbitrary parameters,

φ4(η) = ±
√
−

w1

2w2
tanh

(√
−

w1

2
(η + k)

)
, (2.9)

φ5(η) = ±
√
−

w1

2w2
coth

(√
−

w1

2
(η + k)

)
, (2.10)

φ6(η) = ±
√
−

w1

8w2

(
tanh

(√
−

w1

8
(η + k)

)
+ coth

(√
−

w1

8
(η + k)

))
, (2.11)
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φ7(η) = ±
√
−

w1

2w2


±

√
B2

1 + B2
2 − B1 cosh

(√
−2h1 (η + k)

)
B1 sinh

(√
−2h1 (η + k)

)
+ B2

 . (2.12)

Case IV: For w0 = 0, w1 < 0, and w2 , 0,

φ8(η) = ±
√
−

w1

w2
sec

(√
−w1 (η + k)

)
, (2.13)

φ9(η) = ±
√
−

w1

w2
csc

(√
−w1 (η + k)

)
. (2.14)

Case V: For w0 =
w2

1

4 w2
, w1 > 0, and w2 > 0, with B2

1 − B2
2 > 0 for any two arbitrary parameters B1

and B2,

φ10(η) = ±
√

w1

2w2
tan

(√
w1

2
(η + k)

)
, (2.15)

φ11(η) = ±
√

w1

2w2
cot

(√
w1

2
(η + k)

)
, (2.16)

φ12(η) = ±
√

w1

2w2

(
tan

( √
2w1 (η + k)

)
± sec

( √
2w1 (η + k)

))
, (2.17)

φ13(η) = ±
√

w1

8w2

(
tan

(√
w1

8
(η + k)

)
− cot

(√
w1

8
(η + k)

))
, (2.18)

φ14(η) = ±
√

w1

2w2


±

√
B2

1 − B2
2 − B1 cos

(√
2w1 (η + k)

)
B1 sin

(√
2h1 (η + k)

)
+ B2

 , (2.19)

φ15(η) = ±
√

w1

2w2

 cos
(√

2w1 (η + k)
)

sin
(√

2w1 (η + k)
)
± 1

 . (2.20)

Case VI: For w0 = 0 and w1 > 0,

φ16(η) =
4 w1 e±

√
w1(η+ k)

e± 2
√

w1(η+ k)
− 4w1 w2

, (2.21)

φ17(η) =
± 4 w1 e±

√
w1(η+ k)

1 − 4w1 w2 e± 2
√

w1(η+ k)
. (2.22)
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Case VII: For w0 = w1 = 0 and w2 > 0,

φ18(η) = ±
1

√
w2 (η + k)

. (2.23)

These listed steps of the MSSE algorithm will be applied to the system under study in the next
section in detail.

3. MSSE technique implementation

3.1. Methodology

The first step of implementation of the MSSE technique, explained in Section 2, is to assume the
analytic solutions to Eqs (1.1) and (1.2) as:

Q(x, t) = P1(η) ei (r t+ ρ x),

R(x, t) = P2(η) ei (r t+ ρ x), η = v t + λ x,
(3.1)

where P1(η) and P2(η) are the forward and backward waves’ amplitudes, respectively. The insertion of
Eq (3.1) in Eqs (1.1) and (1.2) generates the following real and imaginary parts:

e1P5
1(η) + (−ρ a1 − ρ

2 (a2 + ρ
3(a5 + ρ a6)) + ρ3 a3 + ρ4 a4 + β1) P2(η)

+P3
1(η) (c1 + ρ (γ1 + µ1) + f1 P2

2(η)) + 2 λ2 l1 P2
1(η) P

′′

1(η)

+(λ2 a2 − 3 λ2 ρ a3 − 6 λ2 ρ2 a4 + 10 λ2 ρ3 a5 + 15 λ2 ρ4 a6) P
′′

2(η)

+P1(η)(−r − ρ α1 + 2 λ2 (l1 P
′2

1 (η) + m1 P
′2

2 (η)) + P2(η) (P2(η)(d1 + σ1 + g1 P2
2(η)) + 2 λ2 m1 P

′′

2(η)))

+(λ4 a4 − 5 λ4 ρ (a5 + 3ρ a6)) P(4)
2 (η) + λ6 a6 P(6)

2 (η) = 0,

(3.2)
e2P5

2(η) + (−ρ b1 − ρ
2 (b2 + ρ

3(b5 + ρ b6)) + ρ3 b3 + ρ4 b4 + β2) P1(η)

+P3
2(η) (c2 + ρ (γ2 + µ2) + f2 P2

1(η)) + 2 λ2 l2 P2
2(η) P

′′

2(η)

+(λ2 b2 − 3 λ2 ρ b3 − 6 λ2 ρ2 b4 + 10 λ2 ρ3 b5 + 15 λ2 ρ4 b6) P
′′

1(η)

+P2(η)(−r − ρ α2 + 2 λ2 (l2 P
′2

2 (η) + m2 P
′2

1 (η)) + P1(η) (P1(η)(d2 + σ2 + g2 P2
1(η)) + 2 λ2 m2 P

′′

1(η)))

+(λ4 b4 − 5 λ4 ρ (b5 + 3ρ b6)) P(4)
1 (η) + λ6 b6 P(6)

1 (η) = 0,
(3.3)

and
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(v + λα1 − λ (3γ1 + 2θ1 + µ1)P2
1(η))P

′

1(η) + λ (a1 + 2ρ a2 − 3ρ2 a3 − 4ρ3 a4 + 5ρ4 a5 + 6ρ5 a6)P
′

2(η)

+λ3 (a3 + 4ρ a4 − 10ρ2 a5 − 20ρ3a6)P(3)
2 (η) + λ5 (a5 + 6ρ a6)P(5)

2 (η) = 0,
(3.4)

(v + λα2 − λ (3γ2 + 2θ2 + µ2)P2
2(η))P

′

2(η) + λ (b1 + 2ρ b2 − 3ρ2 b3 − 4ρ3 b4 + 5ρ4 b5 + 6ρ5 b6)P
′

1(η)

+λ3 (b3 + 4ρ b4 − 10ρ2 b5 − 20ρ3b6)P(3)
1 + λ

5 (b5 + 6ρ b6)P(5)
1 = 0.

(3.5)
Now, under the assumption:

P2(η) = ψP1(η), (3.6)

where the constant is ψ ∈ R− {0, 1}, Eq (3.2) and Eq (3.5) are reduced to:

(c1 + ψ2 (d1 + σ1) + ρ (γ1 + µ1))P3
1(η) + (e1 + ψ

2 f1 + ψ
4 g1) P5

1(η)

−(r + ψ(ρ a1 + ρ
2 (a2 + ρ

3(a5 + ρ a6)) − ρ3 a3 − ρ4 a4 − β1) + ρ α1) − 2 λ2 (l1 + ψ
2 m1)P

′2

1 (η)) P1(η)

+2 λ2 (l1 + ψ
2 m1)P2

1 P
′′

1(η) + λ2 ψ (( a2 − 3 ρ a3 − 6 ρ2 a4 + 10 ρ3 a5 + 15 ρ4 a6)P
′′

1(η)

+(λ2 a4 − 5 λ2 ρ (a5 + 3ρ a6)) P(4)
1 (η) + λ4 a6 P(6)

1 (η)) = 0,
(3.7)

ψ (d2 + σ2 + ψ
2 (c2 + ρ (γ2 + µ2)))P3

1(η) + ψ (g2 + ψ
2 f2 + ψ

4 e2) P5
1(η)

−(r ψ + ρ b1 + ρ
2 (b2 + ρ

3(b5 + ρ b6)) − ρ3 b3 − ρ4 b4 + ρψα2 − β2) − 2 λ2 ψ (m2 + ψ
2 l2)P

′2

1 (η)) P1(η)

+2 λ2 (m2 + ψ
2 l2)P2

1 P
′′

1(η) + λ2 (( b2 − 3 ρ b3 − 6 ρ2 b4 + 10 ρ3 b5 + 15 ρ4 b6)P
′′

1(η)

+(λ2 b4 − 5 λ2 ρ (b5 + 3ρ b6)) P(4)
1 (η) + λ4 b6 P(6)

1 (η)) = 0,
(3.8)

(v + λ (ψ a1 + ψρ (2 a2 − 3ρ a3 − 4ρ2 a4 + 5ρ3 a5 + 6ρ4 a6) + α1 − (3 γ1 + 2 θ1 + µ1)P2
1(η)) )P

′

1(η)

+λ3ψ (a3 + 4ρ a4 − 10ρ2 (a5 + 2 ρa6)) P(3)
1 (η) + λ5 ψ (a5 + 6ρ a6)P(5)

1 (η) = 0,
(3.9)

(vψ + λ (b1 + ρ (2 b2 − 3ρ b3 − 4ρ2 b4 + 5ρ3 b5 + 6ρ4 b6) + ψα2 − ψ
3 (3 γ2 + 2 θ2 + µ2)P2

1(η)) )P
′

1(η)

+λ3ψ (b3 + 4ρ b4 − 10ρ2 (b5 + 2 ρ b6)) P(3)
1 (η) + λ5 (b5 + 6ρ b6)P(5)

1 (η) = 0.
(3.10)

AIMS Mathematics Volume 10, Issue 3, 6952–6980.



6961

Equating the coefficients of Eqs (3.9) and (3.10) to zero gives:

ρ = −a5/6 a6 = −b5/6 b6,

a3 = −4 ρ a4 + 10 ρ2(a5 + 2 ρ a6),

b3 = −4 ρ b4 + 10 ρ2(b5 + 2 ρ b6),

µn = −(3 γn + 2 θn); (n = 1, 2),

v = −λ (ψ a1 + ψρ (2 a2 − 3ρ a3 − 4ρ2 a4 + 5ρ3 a5 + 6ρ4 a6) + α1)

= −
λ

ψ
(b1 + ρ (2 b2 − 3ρ b3 − 4ρ2 b4 + 5ρ3 b5 + 6ρ4 b6) + ψα2).

(3.11)

Both of the Eqs (3.7) and (3.8) are the same and can be written as:

A1 P3
1(η) + A2 P5

1(η) + (A3 + A4 P
′2

1 (η)) P1(η) + (A5 P2
1 + A6) P

′′

1(η) + A7 P(4)
1 (η) + P(6)

1 (η) = 0,
(3.12)

where

A1 = (c1 + ψ2 (d1 + σ1) + ρ (γ1 + µ1))/(λ6 ψ a6) = ψ (d2 + σ2 + ψ
2 (c2 + ρ (γ2 + µ2)))/(λ6 b6),

A2 = (e1 + ψ
2 f1 + ψ

4 g1)/(λ6 ψ a6) = ψ (g2 + ψ
2 f2 + ψ

4 e2)/(λ6 b6),

A3 = −(r + ψ(ρ a1 + ρ
2 (a2 + ρ

3(a5 + ρ a6)) − ρ3 a3 − ρ4 a4 − β1) + ρ α1)/(λ6 ψ a6)

= −(r ψ + ρ b1 + ρ
2 (b2 + ρ

3(b5 + ρ b6)) − ρ3 b3 − ρ4 b4 + ρψα2 − β2)/(λ6 b6),

A4 = −A5 = −2 (l1 + ψ
2 m1)/(λ4 ψ a6) = −2ψ (m2 + ψ

2 l2)/(λ4 b6),

A6 = ψ ( a2 − 3 ρ a3 − 6 ρ2 a4 + 10 ρ3 a5 + 15 ρ4 a6)/(λ4 ψ a6)

= ( b2 − 3 ρ b3 − 6 ρ2 b4 + 10 ρ3 b5 + 15 ρ4 b6)/(λ4 b6),

A7 = ψ (a4 − 5 ρ (a5 + 3ρ a6))/(λ2 ψ a6) = ( b4 − 5 ρ (b5 + 3ρ b6))/(λ2 b6).
(3.13)

From Eqs (3.11) and (3.13), the following relations are deduced:

bn = ψ
2 an; (n = 1, 2, ..., 6),

f2 = f1, e2 = g1, g2 = e1, α2 = α1, l2 = m1, m2 = l1,

ψ2 = c1/c2 = d2/d1 = σ2/σ1 = β2/β1 = γ1/γ2 = µ1/µ2 = θ1/θ2.

(3.14)

The next step of the MSSE technique in Section 2 is the balancing of the dispersion term P(6)
1 (η)

and the nonlinear term P5
1(η) in Eq (3.12), i.e., 5 M = (M + 6), and, hence, M = 3/2. In order to get an
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integer value of M, the following transformation is introduced:

P1(η) = U3/2(η), (3.15)

which, when inserted in Eq (3.12), gives:

64( A2U12(η) + A1 U9(η) + A3 U6(η)) + 96 A4 U7(η) U
′2

(η) + 48 A6 U4(η) U
′2

(η) + 36 A7 U2(η) U
′4

(η)

+315 U
′6

(η) + 96 ( A6 U5(η) − A4 U8(η)) U
′′

(η) + 144 A7 ( U4(η) U
′′2

(η) − U3(η) U
′2

(η) U
′′

(η))

+1620 U2(η) U
′2

(η)U
′′2

(η) − 1350 U(η) U
′4

(η)U
′′

(η) − 360 U3(η) U
′′3

(η) + 192 A7 U4(η) U
′

(η)U (3)(η)

+720 U2(η) U
′3

(η)U (3)(η) − 1440 U3(η) U
′

(η) U
′′

(η) U (3)(η) + 480 U4(η) U (3)2
(η) + 96 A7 U5(η) U (4)(η)

−360 U3(η) U
′2

(η) U (4)(η) + 720 U4(η) U
′′

(η) U (4)(η) + 288 U4(η) U
′

(η) U (5)(η) + 96 U5(η) U (6)(η) = 0.

(3.16)
Now, balancing the nonlinear term U12(η) and the dispersion term U5(η) U (6)(η) of Eq (3.16), i.e.,

12M = 5 M + (M + 6), and, hence, M = 1, yields:

U(η) = K0 + K1 φ(η), K0 + K1 φ(η) > 0, K1 , 0. (3.17)

The following system is generated from the insertion of Eqs (2.5) and (3.17) in Eq (3.16), followed
by forcing the coefficients of φ(η) to vanish:

φ0 coe f f : 64 K6
0(A3 + A1 K3

0 + A2 K6
0) + 48 w0 K4

0(A6 + 4 w1( A7 + 4 w1)

+72 w0 w2 + 2 A4 K3
0) K2

1 + 36 w2
0 (A7 + 20 w1) K2

0 K4
1 + 315 w3

0 K6
1 = 0,

φ1coe f f : 96 K5
0(4 A3 + A6 w1 + w3

1 + 132 w0 w1 w2 + A7 (w2
1 + 12 w0 w2) + (6 A1 − A4 w1) K3

0

+8 A2 K6
0) K1 + 24 w0 K3

0( 8 A6 + 26 A7 w1 + 53 w2
1 + 396 w0 w2 + 28 A4 K3

0) K3
1

+18 w2
0 (4 A7 + 5 w1)K0 K5

1 = 0,

φ2coe f f : 48 K4
0(20 A3 + 11 A6 w1 + 41 w3

1 + 2052 w0 w1 w2 + A7 (17 w2
1 + 144 w0 w2)

+2 (24 A1 − 7 A4 w1) K3
0 + 88 A2 K6

0) K2
1 + 36 w0 K2

0( 8 A6 + 22 A7 w1

+7 (9 w2
1 + 48 w0 w2 + 8 A4 K3

0)) K4
1 + 9 w2

0 (4 A7 + 35 w1) K6
1 = 0,
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φ3coe f f : 4 K0 K1(48 w2 K4
0(A6 + 10 A7 w1 + 91 w2

1 + 252 w0 w2 − A4 K3
0) + 4 K2

0(80 A3

+9 w1(8 A6 + 3 w1(5 A7 + 11 w1)) + 18 w0(55 A7 + 848 w1) w2 + 42 (8 A1 − 3 A4 w1) K3
0

+880 A2 K6
0) K2

1 + 3 w0(16 A6 + 40 A7 w1 + 91 w2
1 + 567 w0 w2 + 280 A4 K3

0)K4
1) = 0,

φ4coe f f : 3K2
1(48w2K4

0(80A7w1 − 10A4K3
0 + 7A6 + 882w2

1 + 2184w0w2) + 4K2
1 K2

0(56K3
0(12A1 − 5A4w1)

+104A6w1 + 5A7(43w2
1 + 294w0w2) + 2640A2K6

0 + 80A3 + 479w3
1 + 23748w0w1w2)

+w0K4
1(40A7w1 + 1120A4K3

0 + 16A6 + 91w2
1 + 567w0w2)) = 0,

φ5coe f f : 6K0K1(336A4w0K0K6
1 + K4

1(112K3
0(12A1 − 5A4w1) + 112A6w1 + 4A7(61w2

1 + 402w0w2)

+8448A2K6
0 + 64A3 + 547w3

1 + 26634w0w1w2) + 4w2K2
0 K2

1(7(−28A4K3
0 + 1849w2

1 + 4428w0w2)

+1102A7w1 + 88A6) + 384w2
2K4

0(A7 + 35w1)) = 0,

φ6coe f f : 672A4w0K0K8
1 + K6

1(672K3
0(8A1 − 3A4w1) + 9w1(9w1(4A7 + 9w1) + 16A6)

+18w0w2(116A7 + 1951w1) + 59136A2K6
0 + 64A3) + 12w2K2

0 K4
1(2458A7w1 − 728A4K3

0

+184A6 + 29869w2
1 + 70308w0w2) + 576h2

2K4
0 K2

1(23A7 + 910w1) = 0,

φ7coe f f : 24K1(4A4w0K8
1 + 4K2

0 K6
1(−7A4w1 + 528A2K3

0 + 24A1)

+3w2K0K4
1(224A7w1 − 140A4K3

0 + 16A6 + 2781w2
1 + 6477w0w2)

+12w2
2K3

0 K2
1(103A7 + 4310w1) + 2880w3

2K5
0) = 0,

φ8coe f f : 96K0K8
1(−A4w1 + 330A2K3

0 + 6A1) + 3w2K6
1(5w1(232A7 + 2923w1)

−2464A4K3
0 + 80A6 + 33795w0w2) + 180w2

2K2
0 K4

1(181A7 + 7820w1) + 432000w3
2K4

0 K2
1 = 0,

φ9coe f f : −3360A4w2K2
0 K7

1 + 630w2
2K0K5

1(28A7 + 1235w1)

+64K9
1(220A2K3

0 + A1) + 1008000w3
2K3

0 K3
1 = 0,

φ10coe f f : 3K4
1(−288A4w2K0K4

1 + 315w2
2K2

1(4A7 + 179w1) + 1408A2K2
0 K6

1 + 378000w3
2K2

0) = 0,

φ11coe f f : 12K5
1(−8A4w2K4

1 + 64A2K0K6
1 + 51975w3

2K0) = 0,

φ12coe f f : K6
1(64A2K6

1 + 135135w3
2) = 0.

(3.18)
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The following result is found for the system in Eq (3.18) using the Mathematica software (14):
Result:

K0 = 0, K1 =

√
3

2

(
−5005 w3

2

A2

)1/6

, w0 = 0,w1 = −
4

179
A7,

A1 = 0, A4 = 0, A3 =
53361

5735339
A3

7, A6 =
7459

32041
A2

7 .

which, under the conditions: a6 (176484 a6 ρ
4 + 7459 a2) > 0, l1 m1 < 0, A2 w2 < 0, yields:

d2 = −(ψ2(ρ(γ2 + µ2) + c2) + σ2), c1 = −(ρ(γ1 + µ1) + ψ2(d1 + σ1)), ψ = ±

√
−

l1

m1
,

a4 =
−15762 a6 ρ

2 ± 179
√

a6 (176484 a6 ρ4 + 7459 a2)
7459

,

r = −
1

5735339 a2
6

(a2
6 ρ(185828714 a6ρ

5ψ + 5735339ψ(ρ(a2 − a3 ρ) + a1)

+5735339α1) − 5735339 a2
6 β1 ψ + 185828714 a5 a2

6 ρ
5 ψ + 60031125 a2

5 a6ρ
4 ψ

+6670125 a3
5 ρ

3 ψ − a4 ρ
2 ψ(41754014 a2

6 ρ
2 + 24012450 a6 a5 ρ + 4002075 a2

5)

+800415 a2
4 ρψ(3a6 ρ + a5) − 53361 a3

4 ψ).

(3.19)

Solution verification:
The obtained result is verified by direct substitution as follows:
First, the insertion of parameters from Eq (3.19) into Eqs (2.5), (3.15), (3.17), and (3.1) yields:

φ
′2

(η) = −
4

179
A7 φ

2(η) + w2 φ
4(η), (3.20)

P1(η) =

 √3
2

(
−5005 w3

2

A2

)1/6

φ(η)

3/2

, (3.21)

and, hence,

Q(x, t) =

 √3
2

(
−5005 w3

2

A2

)1/6

φ(η)

3/2

ei (r t+ ρ x),

R(x, t) = ψ

 √3
2

(
−5005 w3

2

A2

)1/6

φ(η)

3/2

ei (r t+ ρ x), η = v t + λ x.

(3.22)

After that, the solutions in Eq (3.22) are substituted into Eqs (1.1) and (1.2), followed by the
separation of real and imaginary parts. Under the conditions in Eq (3.11), the imaginary part vanishes
and the real part in Eq (3.12) reduces to:
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7459A2
7P′′1 (η)

32041
+ A2P1(η)5 +

53361A3
7P1(η)

5735339
+ A7P1

(4)(η) + P1
(6)(η) = 0, (3.23)

Finally, the substitution of P1 from Eq (3.21) and its derivatives, with the aid of Eq (3.20), into Eq
(3.23), yields an identity using the Mathematica software where all coefficients of φ reduce to zero.

3.2. Derived analytic solutions

The generated result’s parameters are inserted in Eq (3.17), then in Eq (3.1). Then, using Eq (2.6)
through Eq (2.23), the analytic solutions for forward and backward traveling waves in the coupled
system of Eqs (1.1) and (1.2) are:
Form 1: With w0 = 0, w1 > 0, and w2 , 0, the bright (w2 < 0) and singular (w2 > 0) solitons are:

Q1,1(x, t) =
1

2
√

2

(
135135 w3

1

A2

)1/4

sech3/2
(√

w1 (k + v t + λ x)
)

ei (r t+ ρ x), (3.24)

R1,1(x, t) =
ψ

2
√

2

(
135135 w3

1

A2

)1/4

sech3/2
(√

w1 (k + v t + λ x)
)

ei (r t+ ρ x), (3.25)

and

Q1,2(x, t) =
1

2
√

2

(
−135135 w3

1

A2

)1/4

| csch
(√

w1 (k + v t + λ x)
)
|3/2 ei (r t+ ρ x), (3.26)

R1,2(x, t) =
ψ

2
√

2

(
−135135 w3

1

A2

)1/4

| csch
(√

w1 (k + v t + λ x)
)
|3/2 ei (r t+ ρ x). (3.27)

Form 2: With w0 = 0, w1 > 0 , and w2 = ±4B1B2, B1 and B2 are arbitrary parameters, and the
hyperbolic solutions are:

Q2(x, t) =
2
√

2 B3/2
1

(
−135135 w3

1 w3
2

A2

)1/4

ei (r t+ρ x)

| (4 B2
1 − w2) cosh(

√
w1(k + v t + λ x) ) + (4 B2

1 + w2) sinh(
√

w1(k + v t + λ x)) |3/2
,

(3.28)

R2(x, t) =
2
√

2ψ B3/2
1

(
−135135 w3

2

A2

)1/4

ei (r t+ ρ x)

| (4 B2
1 − w2) cosh(

√
w1(k + v t + λ x) ) ± (4 B2

1 + w2) sinh(
√

w1(k + v t + λ x)) |3/2
.

(3.29)
Form 3: With w0 = 0, w1 < 0, and w2 > 0, the singular periodic solutions are:

Q3,1(x, t) =
1

2
√

2

(
135135 w3

1

A2

)1/4

| sec
(√
−w1 (k + v t + λ x)

)
|3/2 ei (r t+ ρ x), (3.30)
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R3,1(x, t) =
ψ

2
√

2

(
135135 w3

1

A2

)1/4

| sec
(√
−w1 (k + v t + λ x)

)
|3/2 ei (r t+ ρ x), (3.31)

and

Q3,2(x, t) =
1

2
√

2

(
135135 w3

1

A2

)1/4

| csc
(√
−w1 (k + v t + λ x)

)
|3/2 ei (r t+ ρ x), (3.32)

R3,2(x, t) =
ψ

2
√

2

(
135135 w3

1

A2

)1/4

| csc
(√
−w1 (k + v t + λ x)

)
|3/2 ei (r t+ ρ x). (3.33)

Form 4: With w0 = 0, w1 > 0, and w2 < 0, the exponential solutions are:

Q4,1(x, t) =
2
√

2
(
−135135 w3

2 w6
1

A2

)1/4

e
i (r t + ρ x) ±

3
√

w1

2
(k + v t + λ x)

(
e± 2

√
w1 (k + v t + λ x) − 4w1 w2

)3/2 ,
(3.34)

R4,1(x, t) =
2
√

2ψ
(
−135135 w3

2 w6
1

A2

)1/4

e
i (r t + ρ x) ±

3
√

w1

2
(k + v t + λ x)

(
e± 2

√
w1 (k + v t + λ x) − 4w1 w2

)3/2 ,
(3.35)

and

Q4,2(x, t) =
2
√

2
(
−135135 w3

2 w6
1

A2

)1/4

e
i (r t + ρ x) ±

3
√

w1

2
(k + v t + λ x)

(
1 − 4w1 w2 e± 2

√
w1 (k + v t + λ x)

)3/2 ,
(3.36)

R4,2(x, t) =
2
√

2ψ
(
−135135 w3

2 w6
1

A2

)1/4

e
i (r t + ρ x) ±

3
√

w1

2
(k + v t + λ x)

(
1 − 4w1 w2 e± 2

√
w1 (k + v t + λ x)

)3/2 .
(3.37)

Form 5: For w0 = w1 = 0 and w2 > 0, the rational solutions are:

Q5(x, t) =

(
−135135

A2

)1/4

ei (r t+ ρ x)

2
√

2 | (k + v t + λ x) |3/2
,

(3.38)
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R5(x, t) =
ψ

(
−135135

A2

)1/4

ei (r t+ ρ x)

2
√

2 | (k + v t + λ x) |3/2
.

(3.39)

The visual illustrations of some of these obtained solutions will be presented in Section 5 after
investigating the modulation instability of the system under study in the next section.

4. Modulation instability analysis

The analysis of modulation instability (MI) is a crucial aspect for understanding the behavior of
various physical systems. This type of analysis focuses on the conditions under which modulation
instability occurs and its implications for the dynamics of wave patterns. The standard linear stability
technique is employed to explore the MI of the system under study in this section. The analysis starts
by the formation of a steady-state solution followed by introducing perturbations to the steady-state
solution, then ends by finding an analytical expression for the modulation instability gain spectrum
[49–51].

Assume that Eqs (1.1) and (1.2) have the following steady-state solutions:

Q(x, t) =
√
A ei(B t), (4.1)

R(x, t) = ψ
√
A ei(B t), (4.2)

where
√
A is a real constant amplitude (normalized power), B is the phase shift, and ψ ∈ R− {0, 1} as

in Eq (3.6). The substitution of the steady-state solutions in Eqs (4.1) and (4.2) into Eqs (1.1)
and (1.2) gives:

B = A2
(
e1 + f1ψ

2 + g1ψ
4
)
+ A

(
c1 + d1ψ

2 + σ1ψ
2
)
+ β1ψ. (4.3)

To perform a stability analysis, small perturbations are introduced in Eqs (4.1) and (4.2), then the
perturbed steady-state solutions take the following form:

Q(x, t) =
[
F(x, t) +

√
A

]
ei(B t), (4.4)

R(x, t) = ψ
[
F(x, t) +

√
A

]
ei(B t). (4.5)

F(x, t) is the perturbation complex amplitude and | F(x, t) |<<
√
A. By incorporating Eqs (4.4) and

(4.5) into Eqs (1.1) and (1.2) then linearizing the equations with respect to F(x, t) and its conjugate
F∗(x, t), both equations reduce to the following equation:

iFt(x, t) + (F(x, t) + F∗(x, t))
(
A2

(
2e1 + 2 f1ψ

2 + 2g1ψ
4
)
+ A

(
c1 + (d1 + σ1)ψ2

))
+i (a1ψ − Aγ1 − Aµ1 + α1) Fx(x, t) + a2ψFxx(x, t) + ia3ψFxxx(x, t) + a4ψFxxxx(x, t)

+ia5ψFxxxxx(x, t) + a6ψFxxxxxx(x, t) = 0,

(4.6)
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where the coefficients obey Eq (3.14). Now, assume the solution of Eq (4.6) is in the form:

F(x, t) = r1 ei(L x−ω t) + r2 e−i(L x−ω t), (4.7)

where r1, r2 are constants, ω is the perturbation frequency, and L is the perturbation wave number. The
substitution of Eq (4.7) into Eq (4.6), followed by the separation of the coefficients of ei(L x−ω t) and
e−i(L x−ω t), yields:

r1T1 + r2T2 = 0,

r1T3 + r2T4 = 0,
(4.8)

which can be rearranged in matrix form as:[
T1 T2

T3 T4

] [
r1

r2

]
=

[
0
0

]
, (4.9)

where

T1 = ω − α1L +
(
−a6L5 − a5L4 + a4L3 + a3L2 − a2L − a1

)
Lψ + 2A2

(
e1 + f1ψ

2 + g1ψ
4
)

+ A
(
c1 + (γ1 + µ1) L + (d1 + σ1)ψ2

)
,

T2 = A
(
ψ2

(
2A

(
f1 + g1ψ

2
)
+ d1 + σ1

)
+ 2Ae1 + c1

)
,

T3 = A
(
ψ2

(
2A

(
f1 + g1ψ

2
)
+ d1 + σ1

)
+ 2Ae1 + c1

)
,

and

T4 = α1L − ω +
(
−a6L5 + a5L4 + a4L3 − a3L2 − a2L + a1

)
Lψ + 2A2

(
e1 + f1ψ

2 + g1ψ
4
)

+ A
(
c1 − (γ1 + µ1) L + (d1 + σ1)ψ2

)
.

The system of equations in Eq (4.9) has a nontrivial solution if:

∣∣∣∣∣∣T1 T2

T3 T4

∣∣∣∣∣∣ = 0, and, hence, the

dispersion relation is:

ω = L
(
ψ

(
a5L4 − a3L2 + a1

)
+ α1 − A (γ1 + µ1)

)
±

√
S

(
S − 2A

(
2A

(
e1 + f1ψ2 + g1ψ4) + (

c1 + (d1 + σ1)ψ2))), (4.10)

where S = L2ψ
(
a6L4 − a4L2 + a2

)
. The stability of the perturbed steady-state solutions in Eqs (4.4)

and (4.5) depends on ω in Eq (4.10). If ω is complex, the steady-state solution becomes unstable as the
perturbations will grow exponentially in Eqs (4.4) and (4.5) this is known as MI. The MI suggests that
any small deviations from the steady-state will amplify and lead to diverging behavior. Meanwhile, if
ω is real, the steady-state solution is stable and the MI does not occur [45, 49, 50]. Therefore, from
Eq (4.10), the MI occurs if
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S
(
S − 2A

(
2A

(
e1 + f1ψ

2 + g1ψ
4
)
+

(
c1 + (d1 + σ1)ψ2

)))
< 0.

Otherwise, the steady-state solution is stable. Consequently, the MI gain spectrum G(A, L), which
quantifies the degree of instability, can be written as:

G(A, L) = 2 Im(ω)

= 2
√

S
(
2A

(
2A

(
e1 + f1ψ2 + g1ψ4) + (

c1 + (d1 + σ1)ψ2)) − S
)
.

(4.11)

From Eq (4.11), the MI gain spectrum is a function of the normalized power, the perturbation wave
number, the dispersion coefficients, the phase modulation coefficients, and the nonlinearity coefficients.
The visual illustrations of the MI gain spectrum in Eq (4.11) are presented in the next section.

5. Results

5.1. 3D and 2D graphics of derived solutions

The MSSE technique is implemented for the coupled system of Eqs (1.1) and (1.2), modeling the
forward and backward light waves propagation through FBGs with Kerr and parabolic nonlocal combo
laws of nonlinearity. The proposed MSSE technique succeeded to derive various types of solutions
such as bright gap solitons, singular gap solitons, which were previously obtained in [41], as well as
hyperbolic, exponential, singular periodic, and rational solutions, which are novel solutions that were
not previously obtained in the literature. Graphs (3D and 2D) of a sample of achieved solutions are
shown in Figures 1–4.
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Figure 1. Graphs of bright solitons |Q1,1(x, t)|2 in Eq (3.24) and |R1,1(x, t)|2 in Eq (3.25) for
c1 = 3.98, c2 = 0.9, λ = 0.57, a1 = 1.2, a2 = 0.6, a4 = −0.62, a5 = 0.7, α1 = 0.5, a6 =

0.65, k = 0.95, e1 = 0.8, f1 = 0.9, g1 = 0.8, and r = 0.7
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The graphs of bright solitons |Q1,1|
2 and |R1,1|

2 from Eqs (3.24) and (3.25) are presented in Figure 1.
Bright solitons are characterized by a centered peak of maximum intensity [52]. These solitons are
crucial in optical communication systems because they can propagate over long distances without
distortion, supporting high-speed data transmission efficiency [42]. The 2D and 3D plots illustrate
the stable propagation of bright solitons, emphasizing their role in maintaining signal integrity and
enabling high-performance optical communication networks.

The graphs of singular solitons |Q1,2|
2 and |R1,2|

2 from Eqs (3.26) and (3.27) are shown in Figure 2.
Singular solitons feature a centered infinite amplitude and are valuable for studying extreme wave
phenomena, aiding in the development of realistic models [52]. The plots highlight the unique
properties of singular solitons, which can be used to model extreme wave behavior and enhance the
understanding of nonlinear dynamics in FBGs.
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Figure 2. Graphs of singular solitons |Q1,2(x, t)|2 in Eq (3.26) and |R1,2(x, t)|2 in Eq (3.27)
for c1 = 4, c2 = 0.5, λ = −0.7, a1 = −0.53, a2 = 0.7, a4 = −0.97, a5 = 0.8, α1 = 0.5, a6 =

0.65, k = 0.95, e1 = 0.8, f1 = 1.64, g1 = 1.58, and r = 0.69

Figure 3 presents the 2D and 3D graphs of singular periodic solutions |Q3,1|
2 and |R3,1|

2 from Eqs
(3.30) and (3.31). Singular periodic solutions have significant applications in advanced signal
processing techniques [52]. The graphical representations demonstrate the oscillatory nature of these
solutions, which can be exploited for pulse shaping, wavelength conversion, and other signal
processing applications in optical communication systems.

The dynamics of rational solutions |Q5|
2 and |R5|

2 from Eqs (3.38) and (3.39) are depicted in
Figure 4. The 2D and 3D plots illustrate the behavior of rational solutions, providing insights into
their potential applications in modeling complex wave interactions and optimizing signal transmission
in FBGs.

AIMS Mathematics Volume 10, Issue 3, 6952–6980.



6971

(a)

3.1(x,0.5)
2

-40 -20 0 20 40
x

10

20

30

40

50

(b) (c)

ℛ3.1(x,0.5)
2

-40 -20 0 20 40
x

10

20

30

40

50

(d) (e)

3.1(x,0.5)
2

ℛ3.1(x,0.5)
2

-40 -20 0 20 40
x

10

20

30

40

50

(f)

Figure 3. Graphs of singular periodic solutions |Q3,1(x, t)|2 in Eq (3.30) and |R3,1(x, t)|2 in
Eq (3.31) for c1 = 3.98, c2 = 0.9, λ = 0.57, a1 = 1.2, a2 = 0.6, a4 = −0.62, a5 = 0.7, α1 =

0.5, a6 = 0.65, k = 0.95, e1 = 0.8, f1 = 0.9, g1 = 0.8, and r = 0.7
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Figure 4. Graphs of rational solutions |Q5(x, t)|2 in Eq (3.38) and |R5(x, t)|2 in Eq (3.39) for
c1 = 3.9, c2 = 0.26, a1 = −0.64, λ = −0.5, a2 = 0.75, a4 = 2.97, a5 = 1.1, α1 = 0.65, a6 =

−0.59, k = 0.61, e1 = 0.76, f1 = 1.7, g1 = 1.59, and r = 0.7
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5.2. 3D and 2D graphics of MI gain spectrum

In this section, the graphical illustrations of the MI gain spectrum G(A, L) derived in Eq (4.11)
versus different parameters are discussed and plotted in Figures 5–7.

Figure 5 (a) presents the 3D graph of the MI gain spectrum G(A, L) derived in Eq (4.11). Figure
5 (b) presents the 2D graph of G(A, L) versus the perturbation wave number L for three different
values of normalized power A = {0.5, 1, 1.5}. Figure 5 (c) presents the 2D graph of G(A, L) versus the
normalized power A for three different values of perturbation wave number L = {1, 1.5, 2}. The graph
of G(A, L) versus L in Figure 5 (b) shows that the gain does not depend on the sign of L. Also, Figure
5 (b) shows that the gain has two local maxima. If the normalized power A increases, these two local
maxima occur at higher values of L, and the instability region width increases. The graph of G(A, L)
versus A in Figure 5 (c) shows that as the wave number L increases, the onset of the instability gain
occurs at higher values of the normalized power A.

(a) 3D (b) 2D plot of G(A, L) versus L

(c) 2D plot of G(A, L) versus A

Figure 5. Graphs of MI gain spectrum G(A, L) in Eq (4.11) for a2 = 0.7, a4 = −2, a6 =

0.9, c1 = −4.125, d1 = 0.7, l1 = 0.9, m1 = −0.4, e1 = −0.8, f1 = 0.6, g1 = 0.8, σ1 =

0.6, γ1 = 1, and θ1 = 1

Figure 6 (a) and (b) present the MI gain spectrum G(A, 1.5) derived in Eq (4.11) versus the
normalized power A and G(0.5, L) versus the perturbation wave number L, respectively, for
f1 = {0.5, 1, 1.5}. Figure 6 (c) and (d) present the MI gain spectrum G(A, 1.5) derived in Eq (4.11)
versus the normalized power A and G(0.5, L) versus the perturbation wave number L, respectively, for
e1 = {−0.5, 0.5, 1.5}. Figure 6 (e) and (f) present the MI gain spectrum G(A, 1.5) derived in Eq (4.11)
versus the normalized power A and G(0.5, L) versus the perturbation wave number L, respectively, for
g1 = {0.5, 1, 1.5}.
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(a) G(A, 1.5) for various values of f1 (b) G(0.5, L) for various values of f1 (c) G(A, 1.5) for various values of e1

(d) G(0.5, L) for various values of e1 (e) G(A, 1.5) for various values of g1 (f) G(0.5, L) for various values of g1

Figure 6. 2D plots of G(A, L) in Eq (4.11):
(a),(b) for f1 = {0.5, 1, 1.5}, a2 = 0.7, a4 = −2, a6 = 0.9, c1 = −4.125, d1 = 0.7, l1 =

0.9, m1 = −0.4, e1 = −0.8, g1 = 0.8, σ1 = 0.6, γ1 = 1, and θ1 = 1.
(c),(d) for e1 = {−0.5, 0.5, 1.5}, a2 = 0.7, a4 = −2, a6 = 0.9, c1 = −4.125, d1 = 0.7, l1 =

0.9, m1 = −0.4, f1 = 0.6, g1 = 0.8, σ1 = 0.6, γ1 = 1, and θ1 = 1.
(e),(f) for g1 = {0.5, 1, 1.5}, a2 = 0.7, a4 = −2, a6 = 0.9, c1 = −4.125, d1 = 0.7, l1 =

0.9, m1 = −0.4, e1 = −0.8, f1 = 0.6, σ1 = 0.6, γ1 = 1, and θ1 = 1
.

Figure 7 (a) and (b) present the MI gain spectrum G(A, 1.5) derived in Eq (4.11) versus the
normalized power A and G(0.5, L) versus the perturbation wave number L, respectively, for
l1 = {0.6, 0.8, 1}. Figure 7 (c) and (d) present the MI gain spectrum G(A, 1.5) derived in Eq (4.11)
versus the normalized power A and G(0.5, L) versus the perturbation wave number L, respectively, for
a2 = {0.6, 1, 1.5}. Figure 7 (e) and (f) present the MI gain spectrum G(A, 1.5) derived in Eq (4.11)
versus the normalized power A and G(0.5, L) versus the perturbation wave number L, respectively, for
a6 = {0.6, 1, 1.5}.

For constant value of wave number L, Figure 6 (a), (c), (e) and Figure 7 (a), (c), (e), show that at a
certain value of the normalized power A, any increase in the values of the coefficients f1, e1, g1, l1, a2,

and a6 causes an increase in the gain. Figure 6 (b), (d), (f) and Figure 7 (b) show that when the values
of the coefficients f1, e1, g1, and l1 increase, the maximum of the gain spectrum has higher value and
occurs at higher value of the perturbation wave number L. Meanwhile, for a constant value of the
normalized power A in Figure7 (d) and (f), if the values of the coefficients a2 and a6 increase, the
maximum of the gain spectrum has the same value and occurs at slightly lower perturbation wave
number L.
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(a) G(A, 1.5) for various values of l1 (b) G(0.5, L) for various values of l1 (c) G(A, 1.5) for various values of a2

(d) G(0.5, L) for various values of a2 (e) G(A, 1.5) for various values of a6 (f) G(0.5, L) for various values of a6

Figure 7. 2D plots of G(A, L) in Eq (4.11):
(a),(b) for l1 = {0.6, 0.8, 1}, a2 = 0.7, a4 = −2, a6 = 0.9, c1 = −4.125, d1 = 0.7, m1 =

−0.4, e1 = −0.8, f1 = 0.6, g1 = 0.8, σ1 = 0.6, γ1 = 1, and θ1 = 1.
(c),(d) for a2 = {0.6, 1, 1.5}, a4 = −2, a6 = 0.9, c1 = −4.125, d1 = 0.7, l1 = 0.9, m1 =

−0.4, e1 = −0.8, f1 = 0.6, g1 = 0.8, σ1 = 0.6, γ1 = 1, and θ1 = 1.
(e),(f)for a6 = {0.6, 1, 1.5}, a2 = 0.7, a4 = −2, c1 = −4.125, d1 = 0.7, l1 = 0.9, m1 =

−0.4, e1 = −0.8, f1 = 0.6, g1 = 0.8, σ1 = 0.6, γ1 = 1, and θ1 = 1.

6. Conclusions

The novelty of this work includes several achievements: First, the application of the MSSE
technique for the first time to solve the coupled system of Eqs (1.1) and Eq (1.2). This coupled system
of highly dispersive (sixth-order with all even and odd orders present) perturbed nonlinear
Schrödinger equations represent the propagation of forward and backward light waves in FBGs with
Kerr and parabolic nonlocal combo nonlinearity laws. The study of FBGs is vital due to their
extensive utilization in optical communication systems and sensors. The MSSE technique has many
advantages such as low computational cost, high consistency, and simple calculations. One observed
limitation of the MSSE technique in this research is its inability to generate dark solitons. This
encourages the search of other techniques capable of generating dark solitons. Second, the derivation
of various types of solutions, using Mathematica software, such as bright gap solitons and singular
gap solitons, which were previously obtained in [41], as well as hyperbolic, exponential, singular
periodic, and rational solutions, which are novel solutions that were not previously obtained in the
literature. The dynamics of a sample of the obtained analytic solutions are illustrated with 2D and 3D
graphs for parameter values that satisfy the limiting conditions. The obtained solutions are verified by
direct substitution in the system under study. During this research, the ϕ6 method was investigated for
the coupled system under study. The ϕ6 did not yield any solutions, consistent with [41], which states
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that this coupled system has no Jacobi elliptic solutions. Third, the derivation of the MI analysis for
the governing system by the linear stability technique and obtaining the analytical expression for the
MI gain spectrum for the first time in the literature. The FBG system studied in this work combines
nonlocal nonlinearity with a periodic grating structure, leading to a unique MI gain spectrum. The
derived spectrum shows bandgap-like features due to the grating, as well as modifications due to the
nonlocal nonlinearity. The inclusion of Kerr nonlinearity and parabolic nonlocal terms in the FBG
system lead to a richer MI gain spectrum compared to simpler systems, with multiple peaks or
suppression regions depending on the parameter values. The inclusion of sixth-order dispersion in this
work represents a significant extension of previous studies. Higher-order dispersion terms can
introduce additional instability bands or modify the existing ones, leading to a more complex MI gain
spectrum. The derived MI gain spectrum in this work has additional features due to the
grating-induced dispersion and the nonlocal nonlinearity. This asymmetry would highlight the unique
role of the grating in modifying the MI dynamics. The inclusion of sixth-order dispersion and
parabolic nonlocal nonlinearity in the FBG system further distinguishes it from conventional fibers,
where lower-order dispersion and local nonlinearity dominate. The MI gain spectrum derived in this
work provides critical insights into the behavior of nonlinear waves in FBGs and has significant
physical and practical implications for optical communication systems. MI can lead to the
exponential growth of perturbations in the optical signal, causing signal degradation or amplification
depending on the system parameters. The derived MI gain spectrum helps identify the conditions
under which MI occurs, such as specific power levels, dispersion coefficients, and nonlinearity
parameters. This knowledge is crucial for designing FBG-based systems to either mitigate
MI-induced signal degradation or exploit it for signal amplification in controlled scenarios. MI is
often associated with the breakup of continuous waves into solitons or pulse trains. The MI gain
spectrum provides a quantitative measure of the instability regions, which can be used to predict the
formation of solitons and their stability. This is particularly important in FBGs, where solitons are
used to counteract chromatic dispersion and maintain signal integrity over long distances. Fourth,
visual illustrations of the modulation instability gain spectrum for the system under study is presented
in this work for the first time. The modulation instability analysis enhances the understanding of
optical pulse behavior in FBG systems with nonlinear refractive indices within turbulent nonlinear
Schrödinger equations (NLSEs). Dispersion management, in conjunction with modulation techniques
and the NLSEs, shapes, evolves, and stabilizes these pulses, thereby enhancing their practical
applications in optical communications and signal processing [53–55].
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