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Abstract: Estimating the mean parameters in random variables, particularly within multivariate
normal distributions, is a critical issue in statistics. Traditional methods, such as the maximum
likelihood estimator, often struggle in high-dimensional or small-sample contexts, driving interest
in shrinkage estimators that enhance accuracy by reducing variance. This study builds on the
foundational work by Stein and others examining the minimax properties of shrinkage estimators.
In this paper, we propose Bayesian estimation techniques that incorporate prior information within a
balanced loss function framework, aiming to improve upon existing methods. Our findings demonstrate
the advantages of using the balanced loss function for performance evaluation, which offers a
robust alternative to conventional quadratic loss functions. In this paper, we present the theoretical
foundations, a simulation study, and an application to real data.
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1. Introduction

Estimation of the mean parameters in random variables is a significant problem that has garnered
considerable attention from researchers in various fields, including statistics, economics, and social
sciences. Accurately estimating these parameters is crucial for effective decision-making and inference
in many applications, particularly when dealing with multivariate normal distributions (MNDs). The
complexity of these distributions requires advanced estimation techniques that can yield reliable
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results, even in challenging scenarios. The motivations for this work stem from the limitations of
traditional estimation methods, particularly the maximum likelihood estimator (MLE). While the
MLE is widely used due to its desirable properties under certain conditions, it can fall short in high-
dimensional settings or when the sample size is small. This has led to a growing interest in developing
shrinkage estimators, which can improve upon the MLE by reducing variance and enhancing the overall
estimation accuracy. Researchers have sought to create shrinkage estimators that not only outperform
the MLE but also exhibit lower risks, making them more robust in practice.

Numerous studies have contributed to the understanding of shrinkage estimators. Early foundational
work by Stein [11], followed by contributions from James and Stein [6] and Yang and Berger [12], laid
the groundwork for exploring the minimax properties of these estimators. Their research established
that shrinkage can lead to improved performance in terms of mean squared error compared with
traditional estimation methods.

A comprehensive bibliographic review reveals further advancements in the field. For instance,
Khan and Saleh [3] investigated the estimation problem of the mean in univariate normal distributions
with unknown variance, incorporating uncertain non-sample prior information. This work highlights
the potential benefits of utilizing prior knowledge in parameter estimation. Similarly, Singh [8]
addressed the challenges of estimating variances and means in k-variate normal distributions when
samples are subject to truncation or censoring on both sides for s variables (s<k). Both studies
primarily employed the quadratic loss function to compute risk functions, emphasizing the need for
more nuanced approaches.

In more recent developments, Hamdaoui et al. [5] demonstrated the minimaxity of specific
shrinkage estimators for the mean of an MNDs, focusing particularly on the risk ratios of the James-
Stein estimator (JSE) and its positive-part version compared with the MLE under the balanced loss
function (BLF). Their findings underscore the importance of using alternative loss functions to capture
the performance of estimators more accurately.

Benkhaled and Hamdaoui [1] further advanced this discussion by examining estimators that
approximate the mean of the multivariate normal distribution, particularly when the variance is
unknown. They proposed two categories of shrinkage estimators, with the first category focusing
on the minimax properties of these estimators and identifying the optimal estimator, known as the
JSE. Their second category included an estimator that exceeded the performance of the JSE, assessed
through risk functions calculated using the BLF.

Gomez-Deniz [10] investigated the application of the BLF in actuarial statistics, particularly within
the framework of credibility theory. His work highlights the advantages of the BLF in Bayesian
estimation, demonstrating its ability to balance accuracy and robustness. While his research primarily
focused on actuarial applications, the underlying principles of the BLF are widely applicable in
statistical estimation. Our study extends the application of the BLF to Bayesian estimation of the
mean in the MNDs. Unlike Gomez-Deniz’s actuarial focus, we explore how the BLF can enhance
the estimation accuracy in multivariate settings, particularly when prior information is available. The
novelty of this manuscript lies in its emphasis on the balanced loss function and the integration of prior
information within a Bayesian framework, which can significantly enhance the estimation accuracy
and robustness. By leveraging the strengths of both Bayesian and shrinkage approaches, we aim to
provide a comprehensive solution to the estimation of mean parameters in MNDs. This shift not only
broadens the applicability of the BLF but also enables more refined risk assessments by moving beyond
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the commonly used quadratic loss function.
The structure of the paper is as follows: Section 2 presents the preliminary results and theoretical

foundations that will be utilized throughout the study. In Section 3, we detail our primary findings
and the performance of the proposed estimators. Section 4 focuses on a simulation study conducted
to validate our results and assesses the practical implications of our findings. Section 4 presents an
application of the estimators on a real-world problem. Finally, we conclude the paper with a discussion
of our results and suggestions for future research directions.

2. Preliminaries

This manuscript addresses the estimation of an unknown parameter µ within the framework of the
model Z|µ ∼ Nq

(
µ, σ2Iq

)
. The prior distribution for µ is assumed to be µ ∼ Nq

(
η, ρ2Iq

)
, where the

value of σ2 is unknown and is estimated using the statistic S 2 ∼ σ2χ2
n. The hyperparameters η and ρ2

may be known or unknown.
To evaluate the performance of the introduced estimators, we employ the BLF, which can be defined

as follows: The following holds for all estimators Λ of the parameter µ

Lω(Λ, µ) = ω‖Λ − Λ0‖
2 + (1 − ω)‖Λ − µ‖2, 0 ≤ ω < 1, (2.1)

where Λ0 represents the target estimator of µ, ω corresponds to the weight assigned to the nearness
value of Λ to Λ0, and 1 −ω represents the weighting factor attributed to the accuracy of the estimation
component.

We will denote the risk function of the estimator Λ under loss (2.1) as

Rω(Λ, µ) = E(Lω(Λ, µ)), (2.2)

and the Bayesian risk as

Rω,b(Λ, σ2, η, ρ2) = Eµ(Rω(Λ, µ)). (2.3)

The MLE of µ is commonly known to be Z := Λ0. The risk function of the MLE with respect to the
loss function (2.1) is equal to Rω(Z, µ) = (1 − ω)qσ2. Furthermore, the MLE is both minimax and
inadmissible when q ≥ 3. Hence, any estimator that improves upon it is also minimax.

Under the model defined above, we recall some known results of the Bayes estimator. From Lindley
and Smith [7], we assume that the posterior is considered to be Gaussian

µ|Z ∼ Nq

(
η +

ρ2

ρ2 + σ2
(Z − η) , σ2 ρ2

ρ2 + σ2 Iq

)
.

Thus, the Bayes estimator of µ is

ΛB(Z) = E(µ|Z) =

(
1 −

σ2

ρ2 + σ2

)
(Z − η) + η. (2.4)

In order to compute the expectation functions of a variable following a non central chi-square
distribution, we recall the following definition:
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Definition 2.1. Let us assume U ∼ χ2
q (λ), representing a non central chi-square distribution with q

degrees of freedom and a non centrality parameter λ. The probability density function of U is expressed
as follows:

f (z) =

+∞∑
k=0

e−
λ
2 (λ2 )k

k!
z(q/2)+k−1e−z/2

Γ( q
2 + k)2(q/2)+k

, 0 < z < +∞.

The expression on the right-hand side of this equation corresponds to the formula
+∞∑
k=0

e−
λ
2 (λ2 )k

k!
χ2

q+2k.

In light of this definition, we can infer that if U ∼ χ2
q (λ), where χ2

q+2k denotes the density of
the central χ2 distribution with q + 2k degrees of freedom. Therefore for any integrable function
φ : R+ −→ R, we have the following relationship:

E
[
φ(U)

]
= Eχ2

q(λ)
[
φ(U)

]
=

∫ +∞

0
φ(z)χ2

q (λ) dz

=

+∞∑
k=0

[∫ +∞

0
φ(z)χ2

q+2k (0) dz
]

e−
λ
2

(
λ
2

)k

k!

=

+∞∑
k=0

[∫ +∞

0
φ(z)χ2

q+2kdz
]

P
(
λ

2
; dk

)
. (2.5)

In this context, where P
(
λ
2 ; dk

)
represents the Poisson distribution with the parameter value being

equal to λ
2 , and χ2

q+2k denotes the central chi-square distribution with degrees of freedom equal to q+2k,
we can introduce the subsequent lemma.

Lemma 2.1. Let U ∼ χ2
q(λ) be a non central chi-square with q degrees of freedom and let λ be the non

centrality parameter. Then for 0 ≤ r < q
2 ,

E(U−r) = E[(χ2
q(λ))−r]

= E[(χ2
q+2K)−r]

= 2−rE

(
Γ( q

2 − r + K)

Γ( q
2 + K)

)
,

where K has a Poisson distribution with the mean λ
2 .

We would like to recall the subsequent lemmas, provided by [2, 9] and Hamdaoui et al. [4], which
will be frequently utilized in the subsequent analysis.

Lemma 2.2. Assume that Y is a real random variable following a standard normal distributionN (0, 1),
and let g : R −→ R be an indefinite integral of a Lebesgue measurable function g′, which can be
considered to be the derivative of g. Furthermore, suppose that E |g′ (Y)| < +∞. Then the following
statement holds true:

E
[
Yg (Y)

]
= E

(
g′ (Y)

)
.
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Lemma 2.3. For any real function h such that the expectation E
(
h
(
χ2

q (λ)
)
χ2

q (λ)
)

exists, we can
establish the following relationship:

E
{
h
(
χ2

q (λ)
)
χ2

q (λ)
}

= qE
{
h
(
χ2

q+2 (λ)
)}

+ 2λE
{
h
(
χ2

q+4 (λ)
)}
.

The following lemma shows a lower bound and an upper bound of the expectation of the functions
f1(u) = 1

u+α
(respectively f2(u) = 1

(u+α)2 ), where α is a strictly positive real number, relative to the
random variable χ2

n+2 (respectively, to the χ2
n+4 random variable).

Lemma 2.4. Let V ∼ χ2
n+2 be a central chi-square with n + 2 degrees of freedom and let W ∼ χ2

n+4 be
a central chi-square with n + 4 degrees of freedom. For any real α > 0, we have

1
n + 2 + α

≤ E

(
1

V + α

)
= Eχ2

n+2

(
1

u + α

)
≤

1
n + α

, (2.6)

and

1
(n + 4 + α)2 ≤ E

(
1

(W + α)2

)
= Eχ2

n+4

[
1

(u + α)2

]
≤

1
(n + α)2 . (2.7)

3. The main results

In this section, we introduce novel estimators for the mean parameter µ based on both the MLE
and the Bayes estimator presented in (2.4). We then investigate their minimaxity properties and
the asymptotic behavior of their risk ratios relative to the MLE when both the dimensionality of the
parameter space q and the sample size n approach infinity. Our main results are presented in two distinct
parts. First, we consider the same model as described above, assuming that the hyperparameters η and
ρ2 are known. Second, we examine the same model, but with the hyperparameter η being known and
the hyperparameter ρ2 being unknown.

3.1. Estimator Type 1

Now, let Z|µ ∼ Nq

(
µ, σ2Iq

)
and µ ∼ Nq

(
η, ρ2Iq

)
, where the value of σ2 is unknown and is estimated

by the statistic S 2 ∼ σ2χ2
n. The hyperparameters η, ρ2 are known.

Hamdaoui et al. [4] showed that the statistic S 2

S 2+n ρ2 is an asymptotically unbiased estimator of the

ratio σ2

ρ2+σ2 . If we substitute the ratio σ2

σ2+ρ2 in Formula (2.4) with the estimator S 2

S 2+nρ2 , we can introduced
a new estimator derived from the Bayes estimator, which can be expressed as

ΛDB,γ(Z, S 2) =

(
1 − γ

S 2

S 2 + nρ2

)
(Z − η) + η. (3.1)

3.1.1. Minimaxity

Proposition 3.1. Under the BLF Lω, the Bayesian risk of the estimator ΛDB,γ(Z, S 2) demonstrated
in (3.1) is

Rω,b

(
ΛDB,γ(Z, S 2); η, ρ2, σ2

)
= (1 − ω)qσ2

1 + γ2 n(n + 2)
1 − ω

(
1 +

ρ2

σ2

)
Eχ2

n+4

(
u + n

ρ2

σ2

)−2
AIMS Mathematics Volume 10, Issue 3, 5762–5784.
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− 2γn(1 − ω)qσ2

Eχ2
n+2

(
u + n

ρ2

σ2

)−1 . (3.2)

Proof. By utilizing the risk function linked to the BLF defined in (2.1), we derive the following
expression:

Rω(ΛDB,γ(Z, S 2); µ) = ωE(‖ΛDB,γ(Z, S 2) − Z‖2) + (1 − ω)E(‖ΛDB,γ(Z, S 2) − µ‖2).

By exploiting the independence between two random variables S 2 and Z, we arrive at the following
result:

E(‖ΛDB,γ(Z, S 2) − Z‖2) = E

∥∥∥∥∥∥−γ S 2

S 2 + nρ2 (Z − η)

∥∥∥∥∥∥2
= γ2E

(
S 2

S 2 + nρ2

)2

E(‖Z − η‖2),

and

E(‖ΛDB,γ(Z, S 2) − µ‖2) = E

∥∥∥∥∥∥Z − γ
S 2

S 2 + nρ2 (Z − η) − µ

∥∥∥∥∥∥2
= E(‖Z − µ‖2) + γ2E

(
S 2

S 2 + nρ2

)2

E ‖Z − η‖2

− 2γσ2E

(
S 2

S 2 + nρ2

)
E

[〈Z − µ
σ

,
Z − η
σ

〉]
.

Thus,

(Z − η)|µ ∼ Nq

(
µ − η, σ2Iq

)
⇒
‖Z − η‖2

σ2 |µ ∼ χ2
q

(
‖µ − η‖2

σ2

)
⇒ E

(
‖Z − η‖2

)
= σ2

(
q +
‖µ − η‖2

σ2

)
,

∥∥∥∥∥Z − µ
σ

∥∥∥∥∥2

∼ χ2
q ⇒ E

(∥∥∥∥∥Z − µ
σ

∥∥∥∥∥2)
= E

(
χ2

q

)
⇒

1
σ2E

(
‖Z − µ‖2

)
= Eχ2

q
(u)

⇒ E
(
‖Z − µ‖2

)
= qσ2

and

E
[〈Z − µ

σ
,

Z − η
σ

〉]
= E

[〈Z − µ
σ

,
Z − µ
σ

+
µ − η

σ

〉]
= E

[〈Z − µ
σ

,
Z − µ
σ

〉]
+ E

[〈Z − µ
σ

,
µ − η

σ

〉]
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= E

(
‖Z − µ‖2

σ2

)
+

(
µ − η

σ

)t
E

(Z − µ
σ

)
= E

(
χ2

q

)
= q

because E
(

Z−µ
σ

)
= 0.

Therefore

Rω(ΛDB,γ(Z, S 2); µ) = ωγ2E

(
S 2

S 2 + nρ2

)2 (
qσ2 + ‖µ − η‖2

)
+(1 − ω)

qσ2 + γ2E

(
S 2

S 2 + nρ2

)2

E(‖Z − η‖2) − 2γσ2E

(
S 2

S 2 + nρ2

)
q

 .
Using Lemma 2.3 we get,

E

(
S 2

S 2 + nρ2

)2

= Eχ2
n

 u

u + n ρ2

σ2


2

= n(n + 2)Eχ2
n+4

(
u + n

ρ2

σ2

)−2

and

E

(
S 2

S 2 + nρ2

)
= Eχ2

n

 u

u + n ρ2

σ2


= nEχ2

n+2

(
u + n

ρ2

σ2

)−1

.

Therefore,

Rω(ΛDB,γ(Z, S 2); µ) = (1 − ω)qσ2 + γ2n(n + 2)Eχ2
n+4

(
u + n

ρ2

σ2

)−2 (
qσ2 + ‖µ − η‖2

)
− 2γn(1 − ω)qσ2Eχ2

n+2

(
u + n

ρ2

σ2

)−1

.

Thus, the Bayesian risk of the estimator ΛDB,γ(Z, S 2) under the BLF Lω is

Rω,b

(
ΛDB,γ(Z, S 2); η, ρ2, σ2

)
= Eµ

(
Rω

(
ΛDB,γ(Z, S 2); µ

))
= (1 − ω)qσ2 + γ2n(n + 2)Eχ2

n+4

(
u + n

ρ2

σ2

)−2 (
qσ2 + Eµ ‖µ − η‖

2
)

− 2γn(1 − ω)qσ2Eχ2
n+2

(
u + n

ρ2

σ2

)−1

= (1 − ω)qσ2

1 + γ2 n(n + 2)
1 − ω

(1 +
ρ2

σ2 )Eχ2
n+4

(
u + n

ρ2

σ2

)−2
− 2γn(1 − ω)qσ2

Eχ2
n+2

(
u + n

ρ2

σ2

)−1 .
AIMS Mathematics Volume 10, Issue 3, 5762–5784.



5769

Theorem 3.2. Assume the estimator ΛDB,γ(Z, S 2) as defined in (3.1). If

0 ≤ γ ≤
2(1 − ω)n

n + 2
,

then under the BLF Lω given in (2.1), the estimator ΛDB,γ(Z, S 2) dominates the MLE and thus it is
minimax.

Proof. From Proposition 3.1, a sufficient condition for the estimator ΛDB,γ(Z, S 2) to dominate the MLE
is

γ2 n(n + 2)
1 − ω

(
1 +

ρ2

σ2

)
Eχ2

n+4

(
u + n

ρ2

σ2

)−2

− 2γnEχ2
n+2

(
u + n

ρ2

σ2

)−1

≤ 0, (3.3)

which is equivalent to

0 ≤ γ ≤
2(1 − ω)

(n + 2)(1 +
ρ2

σ2 )

Eχ2
n+2

(
u + n ρ2

σ2

)−1

Eχ2
n+4

(
u + n ρ2

σ2

)−2 .

Using Lemma 2.4, we have the following inequality:

Eχ2
n+2

(
u + n ρ2

σ2

)−1

Eχ2
n+4

(
u + n ρ2

σ2

)−2 ≥
n2

(
1 +

ρ2

σ2

)2

2 + n
(
1 +

ρ2

σ2

) .
Therefore, we can deduce that if

0 ≤ γ ≤
2(1 − ω)

(n + 2)(1 +
ρ2

σ2 )

n2
(
1 +

ρ2

σ2

)2

2 + n
(
1 +

ρ2

σ2

) =
2(1 − ω)n

n + 2
,

the inequality (3.3) is satisifed, and thus the estimator ΛDB,γ(Z, S 2) has a risk smaller than that of the
MLE. This last point indicates that ΛDB,γ(Z, S 2) is a minimax estimator.

3.1.2. Limit of the risk ratio for estimator Type 1

In this section, we investigate the asymptotic behavior of the risk ratio of our estimator ΛDB,γ(Z, S 2)
in response to the MLE when 0 ≤ γ ≤ 2(1−ω)n

n+2 .
If we take the real constant α (0 < α ≤ 2), our aims is to show that for any γ, such as γ =

α(1−ω)n
n+2 ,

the risk ratio Rω,b(ΛDB,γ(Z,S 2);η,ρ2,σ2)
Rω(Z,µ) tends to a value inferior to one, when n tends to infinity.

Theorem 3.3. Assume the estimator ΛDB,γ(Z, S 2) defined in 3.1. If γ =
α(1−ω)n

n+2 where 0 < α ≤ 2, then

lim
n→∞

Rω,b

(
ΛDB,γ(Z, S 2); η, ρ2, σ2

)
Rω (Z, µ)

=
1 − (2 − α)α(1 − ω) +

ρ2

σ2

1 +
ρ2

σ2

≤ 1.
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Proof. From Proposition 3.1, we have

Rω,b

(
ΛDB,γ(Z, S 2); η, ρ2, σ2

)
Rω (Z, µ)

= 1 +
α2(1 − ω)n3

(n + 2)

(
1 +

ρ2

σ2

)
Eχ2

n+4

(
u + n

ρ2

σ2

)−2

− 2
α(1 − ω)n2

n + 2
Eχ2

n+2

(
u + n

ρ2

σ2

)−1

.

Using Lemma 2.4, we get

Rω,b

(
ΛDB,γ(Z, S 2); η, ρ2, σ2

)
Rω (Z, µ)

≤ 1 +
α2(1 − ω)n

(n + 2)
(
1 +

ρ2

σ2

) − 2
α(1 − ω)n2

n + 2
1(

2 + n(1 +
ρ2

σ2 )
) ,

and

Rω,b

(
ΛDB,γ(Z, S 2); η, ρ2, σ2

)
Rω (Z, µ)

≥ 1 +
α2(1 − ω)n3

n + 2

(
1 +

ρ2

σ2

)
(
4 + n(1 +

ρ2

σ2 )
)2 − 2

α(1 − ω)n

(n + 2)
(
1 +

ρ2

σ2

) .
By passing to the limit, we get

lim
n→∞

Rω,b

(
ΛDB,γ(Z, S 2); η, ρ2, σ2

)
Rω (Z, µ)

≤ 1 +
α2(1 − ω)

1 +
ρ2

σ2

− 2
α(1 − ω)

1 +
ρ2

σ2

=
1 − (2 − α)α(1 − ω) +

ρ2

σ2

1 +
ρ2

σ2

,

and

lim
n→∞

Rω,b

(
ΛDB,γ(Z, S 2); η, ρ2, σ2

)
Rω (Z, µ)

≥ 1 +
α2(1 − ω)

1 +
ρ2

σ2

− 2
α(1 − ω)(

1 +
ρ2

σ2

) =
1 − (2 − α)α(1 − ω) +

ρ2

σ2

1 +
ρ2

σ2

.

Thus,

lim
n→∞

Rω,b

(
ΛDB,γ(Z, S 2); η, ρ2, σ2

)
Rω (Z, µ)

=
1 − (2 − α)α(1 − ω) +

ρ2

σ2

1 +
ρ2

σ2

≤ 1,

because 0 ≤ (2 − α)α ≤ 1 and 0 < 1 − ω ≤ 1.

3.1.3. Algorithm of estimator Type 1

The algorithm of estimator Type 1 can be summarized as follows:

AIMS Mathematics Volume 10, Issue 3, 5762–5784.
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Algorithm 1 Estimator Type 1

1: Input: Sample data Z = (Z1,Z2, . . . ,Zn). from Nq(µ, σ2Iq)
2: Known values for q, η, and ρ2.
3: Step 1: Calculate sample mean

Z̄ =
1
q

q∑
i=1

Zi

4: Step 2: Calculate a sample variance

S 2 =
1

q − 1

q∑
i=1

(Zi − Z̄)2

5: Step 3: Determine a shrinkage factor

k = 1 − γ
S 2

S 2 + nρ2

Note: This step assumes q > 2 for minimax properties.
6: Step 4: Compute estimator Type 1

ΛDB,γ(Z, S 2) = k(Z̄ − η) + η

7: Output: Return estimator Type 1

3.2. Estimator Type 2

Next, we consider the model Z|µ ∼ Nq

(
µ, σ2Iq

)
and µ ∼ Nq

(
η, ρ2Iq

)
, where the parameter σ2 is

unknown and is also estimated by the statistic S 2 ∼ σ2χ2
n, and the hyper parameter η is known and the

hyper parameter ρ2 is unknown.
Hamdaoui et al. [4] showed that the statistic q−2

n+2
S 2

‖Z−η‖2 is an asymptotically unbiased estimator of the

ratio σ2

ρ2+σ2 . Therefore, if we substitute the ratio σ2

σ2+ρ2 in Formula (2.4) with the estimator q−2
n+2

S 2

‖Z−η‖2 , we
can consider the new estimator derived from the Bayes estimator, expressed as

ΛDB,β(Z, S 2) =

(
1 − β

S 2

‖Z − η‖2

)
(Z − η) + η (3.4)

where the positive real parameter β can depend on n and q.

3.2.1. Minimaxity

Proposition 3.4. The Bayesian risk of the estimator ΛDB,β(Z, S 2) given in Eq (3.4), which has been
derived from the BLF illustrated in (2.1), can be expressed as

Rω,b

(
ΛDB,β(Z, S 2); η, ρ2, σ2

)
= (1 − ω)qσ2 +

βnσ4

ρ2 + σ2

[
β(n + 2)

q − 2
− 2(1 − ω)

]
. (3.5)
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Proof. By utilizing the risk function linked to the BLF Lω defined in (2.1), we derive the following
expression:

Rω(ΛDB,β(Z, S 2); µ) = ωE(‖ΛDB,β(Z, S 2) − Z‖2) + (1 − ω)E(‖ΛDB,β(Z, S 2) − µ‖2).

In the one hand, since the random variables Z and S 2 are independent, we can have:

E(‖ΛDB,β(Z, S 2) − Z‖2) = E

∥∥∥∥∥∥β S 2

‖Z − η‖2
(Z − η)

∥∥∥∥∥∥2
= β2E(S 2)2E

(
1

‖Z − η‖2

)
= β2σ4E

(
S 2

σ2

)2 1
ρ2 + σ2E

 1
‖Z−η‖2

ρ2+σ2

 .
As S 2 ∼ σ2χ2

n, the marginal distribution of Z is : Z ∼ Nq

(
η,

(
ρ2 + σ2

)
Iq

)
.By employing

Definition 2.1, we get

E

(
S 2

σ2

)
= n, E

(
S 2

σ2

)2

= n(n + 2)

and

E

 1
‖Z−η‖2

ρ2+σ2

 = E

(
1
χ2

q

)
=

1
q − 2

.

Thus

E(‖ΛDB,β(Z, S 2) − Z‖2) =
n(n + 2)β2

q − 2
σ4

ρ2 + σ2 . (3.6)

On the other hand, we have

E(‖ΛDB,β(Z, S 2) − µ‖2) = E

∥∥∥∥∥∥Z − β
S 2

‖Z − η‖2
(Z − η) − µ

∥∥∥∥∥∥2
= E ‖Z − µ‖2 + β2E(S 2)2E

(
1

‖Z − η‖2

)
− 2βσ2E

(
S 2

σ2

)
E

〈Z − µ
σ

,
1

‖Z−η‖2

σ2

Z − η
σ

〉 . (3.7)

Let W =
(
W1,W2, ...,Wq

)t
=

Z−µ
σ

. It is clear that W |µ ∼ Nq

(
0, Iq

)
, and thus

E

〈Z − µ
σ

,
1

‖Z−η‖2

σ2

(Z − η
σ

)〉 = E

〈W,
1∥∥∥W +
µ−η

σ

∥∥∥2

(
W +

µ − η

σ

)〉
=

q∑
i=1

E

Wi

 1∑q
j=1

(
W j +

µ j−η j

σ

)2

(
Wi +

µi − ηi

σ

)
 .
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From Stein’s Lemma 2.2, we have

q∑
i=1

E

Wi

 1∑q
j=1

(
W j +

µ j−η j

σ

)2

(
Wi +

µi − ηi

σ

)


=

q∑
i=1

E


∂

∂Wi


1

q∑
j=1

(
W j +

µ j−η j

σ

)2

(
Wi +

µi − ηi

σ

)


=

q∑
i=1

E

 ∂

∂Wi

 Wi +
µi−ηi
σ(

W1 +
µ1−η1
σ

)2
+ . . . +

(
Wi +

µi−ηi
σ

)2
+ . . . +

(
Wq +

µq−ηq

σ

)2




=

q∑
i=1

E


∑q

j=1

(
W j +

µ j−η j

σ

)2
− 2

(
Wi +

µi−ηi
σ

) (
Wi +

µi−ηi
σ

)
(∑q

j=1

(
W j +

µ j−η j

σ

)2
)2


=

q∑
i=1

E


∥∥∥W +

µ−η

σ

∥∥∥2
− 2

(
Wi +

µi−ηi
σ

)2(∥∥∥W +
µ−η

σ

∥∥∥2
)2


= E


q∑

i=1

 1∥∥∥W +
µ−η

σ

∥∥∥2 −
2
(
Wi +

µi−ηi
σ

)2(∥∥∥W +
µ−η

σ

∥∥∥2
)2




= E

 q∥∥∥W +
µ−η

σ

∥∥∥2 −
2
∑q

i=1

(
Wi +

µi−ηi
σ

)2(∥∥∥W +
µ−η

σ

∥∥∥2
)2


= (q − 2)E

 1∥∥∥W +
µ−η

σ

∥∥∥2


= (q − 2)

σ2

ρ2 + σ2E

 1
‖Z−η‖2

ρ2+σ2


=

σ2

ρ2 + σ2 . (3.8)

This is in line with Formulas (3.6)–(3.8) and the fact that

E ‖Z − µ‖2 = σ2E
(
χ2

q

)
= qσ2, E

(
S 2

)2
= n(n + 2)σ4

and

E

(
1

‖Z − η‖2

)
= (ρ2 + σ2)E

(
ρ2 + σ2

χ2
q

)
=
ρ2 + σ2

q − 2
.
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Theorem 3.5. Relative to the BLF Lω given in (2.1), a sufficient condition for the estimator ΛDB,β(Z, S 2)
defined in (3.4) to be minimax is

0 ≤ β ≤
2(1 − ω)(q − 2)

n + 2
.

Proof. On the basis of Proposition 3.4, we can readily determine that a sufficient condition for the
estimator ΛDB,β(Z, S 2) to be minimax is,[

β(n + 2)
q − 2

− 2(1 − ω)
]
≤ 0,

which is equivalent to

0 ≤ β ≤
2(1 − ω)(q − 2)

n + 2
.

If we used the convexity of the risk function Rω,b
(
ΛDB,β(Z, S 2); η, ρ2, σ2

)
with respect to β, it

becomes apparent that the optimal value of β that minimizes the function is β̂ =
(1−ω)(q−2)

n+2 . By
substituting the value of βwith β̂ in Eq (3.4), we then derive the best estimator in the class of estimators
Λβ, which is defined as

ΛDB,̂β(Z, S
2) =

(
1 −

(1 − ω) (q − 2)
n + 2

S 2

‖Z − η‖2

)
(Z − η) + η. (3.9)

Furthermore, its risk function related to the BLF is given by

Rω,b

(
ΛDB,̂β(Z, S

2)
)

= (1 − ω)qσ2 − (1 − ω)2 q − 2
n + 2

nσ4

ρ2 + σ2 (3.10)

≤ Rω(Z, µ).

We can then deduce that the estimator ΛDB,̂β(Z, S
2) dominates the MLE; thus, it is minimax.

3.2.2. Limit of the risk ratio for estimator Type 2

In this section, we examine the asymptotic behavior of the risk ratio of the estimator ΛDB,̂β(Z, S
2)

relative to the MLE as the parameter q approaches infinity while the parameter n remains fixed,
and when both parameters q and n simultaneously tend to infinity. Consequently, we infer that the
estimator ΛDB,̂β(Z, S

2) exhibits a stable minimax property even in the scenario where the dimension of
the parameter space q tends to infinity while the sample size n remains fixed, as well as when both the
dimension of the parameter space q and the sample size n simultaneously tend to infinity.

Theorem 3.6.

1. lim
q→∞

Rω,b

(
ΛDB,̂β(Z, S

2)
)

Rω(Z, µ)
=

(n + 2)ρ2 + (2 + nω)σ2

(n + 2)(ρ2 + σ2)
≤ 1,

2. lim
n,q→∞

Rω,b

(
ΛDB,̂β(Z, S

2)
)

Rω(Z, µ)
=
ρ2 + ωσ2

ρ2 + σ2 ≤ 1.

AIMS Mathematics Volume 10, Issue 3, 5762–5784.



5775

Proof. From Formula (3.10), we have

Rω,b

(
ΛDB,̂β(Z, S

2)
)

Rω(Z, µ)
=

1
(1 − ω)qσ2

[
(1 − ω)qσ2 − (1 − ω)2 q − 2

n + 2
nσ4

ρ2 + σ2

]
= 1 −

[
(1 − ω)

q − 2
q

n
n + 2

σ2

ρ2 + σ2

]
.

We can then easily deduce that

1. lim
q→∞

Rω,b

(
ΛDB,̂β(Z, S

2)
)

Rω(Z, µ)
=

(n + 2)ρ2 + (2 + nω)σ2

(n + 2)(ρ2 + σ2)
≤ 1,

2. lim
n,q→∞

Rω,b

(
ΛDB,̂β(Z, S

2)
)

Rω(Z, µ)
=
ρ2 + ωσ2

ρ2 + σ2 ≤ 1.

3.2.3. Algorithm of estimator Type 2

The algorithm of estimator Type 2 can be summarized as follows:

Algorithm 2 Estimator Type 2

1: Input: Sample data Z = (Z1,Z2, . . . ,Zn). from Nq(µ, σ2Iq), where q, η are known.
2: Step 1: Calculate sample mean and sample variance

Z̄ =
1
q

q∑
i=1

Zi and S 2 =
1

q − 1

q∑
i=1

(Zi − Z̄)2

3: Step 2: Determine shrinkage factor

k = 1 − β
S 2

‖Z − η‖2

Note: This step assumes q > 2 for minimax properties.
4: Step 3: Compute estimator Type 2

ΛDB,β(Z, S 2) = k(Z̄ − η) + η

5: Output: Return estimator Type 2
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4. Simulation

The aim of this simulation was to prove the effectiveness of this study by comparing the estimators
ΛDB,̂γ(Z, S 2) ,

(̂
γ =

(1−ω)n
n+2

)
, and ΛDB,̂β(Z, S

2) with the MLE Z.

First, we apply the risk ratio of the estimator ΛDB,̂γ(Z, S 2) to the MLE Z, Rω(ΛDB,̂γ(Z,S 2);η,ρ2,σ2)
Rω(Z,µ) as a

function of ρ2

σ2 for various values of n and ω.

We see that in Figure 1, the risk ratio is less than 1, i.e., the shrinkage estimator ΛDB,̂γ(Z, S 2)
dominates the natural estimator Z. We also see that if ω increases, the improvement decreases, and
become negligible whenever ω is near to one. Rasing the value of n gives a small improvement.

(a) (b)

(c)

Figure 1. Graph of the risk ratio Rω,b(ΛDB,̂γ(Z,S 2);η,ρ2,σ2)
Rω(Z,µ)) as a function of x =

ρ2

σ2 for n = 5, 10, 30;
and ω = 0.1, 0.4, 0.7.
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The same applies for the estimator ΛDB,̂β(Z, S
2), except that here, the risk ratio depends on n, ω, and

the dimension of the parameter space q. As shown in Figures 2–4 the shrinkage estimator ΛDB,̂β(Z, S
2)

is better than the natural estimator Z. We also see the same for the estimator ΛDB,̂γ(Z, S 2). Furthermore,
we note that the influence of the parameter q on the improvement is the same as that of the parameter n.

(a) (b)

(c)

Figure 2. Graph of the risk ratio
Rω,b

(
ΛDB,̂β(Z,S 2);η,ρ2,σ2

)
Rω(Z,µ)) as a function of x =

ρ2

σ2 for n = 5;
q = 3, 7, 10; and ω = 0.1, 0.4, 0.7.
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(a) (b)

(c)

Figure 3. Graph of the risk ratio
Rω,b

(
ΛDB,̂β(Z,S 2);η,ρ2,σ2

)
Rω(Z,µ) as a function of x =

ρ2

σ2 for n = 10;
q = 3, 7, 10; and ω = 0.1, 0.4, 0.7.
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(a) (b)

(c)

Figure 4. Graph of the risk ratio
Rω,b

(
ΛDB,̂β(Z,S 2);η,ρ2,σ2

)
Rω(Z,µ)) as a function of x =

ρ2

σ2 for n = 30;
q = 3, 7, 10; and ω = 0.1, 0.4, 0.7.

Secondly, we plot the risk difference ΥRω = Rω,b
(
ΛDB,̂γ(Z, S 2); η, ρ2, σ2

)
− Rω (Z, µ) and Υ

′

Rω
=

Rω,b

(
ΛDB,̂β(Z, S

2); η, ρ2, σ2
)
− Rω (Z, µ) of the estimators ΛDB,̂γ(Z, S 2) and ΛDB,̂β(Z, S

2) to the MLE Z
as a function of x = σ2 and y = ρ2 for n = 7, q = 15, and various values of ω (ω = 0.1, 0.3, 0.6, 0.9).
In Figures 5 and 6, we see that the risk differences ΥRω and Υ

′

Rω
are entirely negative. This indicates

that the estimators ΛDB,̂γ(Z, S 2) and ΛDB,̂β(Z, S
2) dominate the maximum likelihood estimator Z.
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(a) (b)

(c) (d)

Figure 5. Plots of the risk difference ΥRω for various sets of ω, n = 7, and q = 15.
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(a) (b)

(c) (d)

Figure 6. Plots of ths risk difference Υ
′

Rω
for various sets of ω, n = 7, and q = 15.

5. Application

As in the simulation section, we demonstrate the effectiveness of the new estimators by comparing
the estimators ΛDB,̂γ(Z, S 2) (where γ̂ =

(1−ω)n
n+2 ) and ΛDB,̂β(Z, S

2) with the MLE Z on a real dataset.
The dataset that we will use is the Batting dataset from the Lahman package in the R program,
which contains baseball statistics. Our focus is on evaluating the effectiveness of the new estimators
in estimating batting averages. We create a scenario where we sample only a limited number of
observations from a group of players.

We then compare how accurately the MLE and the proposed estimators predict the actual values.
For this comparison, we analyze the risk ratio of each estimator to the MLE using the BLF in (2.1) as
the loss function. Table 1 shows that for various values of size, dimension, and ω, both new estimators
achieve a ratio that is less than one. This means that the estimations derived from estimator Type 1 and
estimator Type 2 are more efficient than the MLE and reduce the variance through shrinkage.
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Table 1. The risk ratio of each estimator to the MLE using the BLF in (2.1) as the loss
function with different values of ω and n.

Estimator Type 1 n=10 n=30 n=100
ω = 0.1 0.6760075 0.8234310 0.9208014
ω = 0.4 0.7840050 0.8822873 0.9472009
ω = 0.9 0.8920025 0.9411437 0.9736005

Estimator Type 2 n=10, q=3 n=30, q=3 n=100, q=3
ω = 0.1 0.9920534 0.9987638 0.9998857
ω = 0.4 0.9947023 0.9991759 0.9999238
ω = 0.9 0.9973511 0.9995879 0.9999619

Estimator Type 2 n=10, q=20 n=30, q=20 n=100, q=20
ω = 0.1 0.8420707 0.9757862 0.9979490
ω = 0.4 0.8947138 0.9838575 0.9986327
ω = 0.9 0.9473569 0.9919287 0.9993163

6. Conclusions, limitations, and future research

In this research article, we conducted a thorough investigation into the estimation of the mean of a
multivariate normal distribution from a Bayesian perspective using the BLF. Our primary objective was
to assess the performance of the proposed estimator in comparison with the conventional MLE through
a comprehensive simulation study. To begin with, we focused on establishing the minimaxity property
of the modified Bayes estimator and analyzing the behavior of the risk ratios between this estimator
and the MLE. Specifically, we examined the scenario where both the sample size n and the dimension
of the parameter space p tend to infinity. By investigating the asymptotic behavior of these risk ratios,
we gained valuable insights into the relative efficiency of the modified Bayes estimator and the MLE
in settings with large samples. This analysis provided a deeper understanding of the estimator’s
performance and its robustness under different scaling conditions. Furthermore, we explored the
domination of a class of estimators that encompassed the empirical modified Bayes estimator over the
MLE. Through rigorous mathematical proofs and empirical evidence, we demonstrated the superiority
of this class of estimators over the MLE. This dominance result further supported the efficacy
and advantages of the proposed Bayesian approach within the context of estimating the mean of a
multivariate normal distribution.

Overall, our research shed light on the Bayesian estimation of the mean under the BLF framework
and showcased the performance of the proposed modified Bayes estimator. The extensive simulation
study, the application, and theoretical analysis provided valuable insights into the estimator’s behavior
and its superiority over the traditional MLE. These findings contribute to the existing literature on
Bayesian estimation and offer practical implications for data analysis in scenarios where accurate
estimation of the mean is of paramount importance. The inconvenience of our constructed estimators
can be deduced from Figures 1–4: We see that if the values of the variance σ2 of the variable
Z|µ ∼ Nq

(
µ, σ2Iq

)
, exceed 1/4 of the variance ρ2 of the prior distribution µ ∼ Nq

(
η, ρ2Iq

)
, the

improvement of the our proposed estimators to the MLE becomes negligible, and this shows the poor
performance of the suggested estimators. This limitation requires further investigation, which we will
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address in future work.
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