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Abstract: The present study explores the application of hypergeometric functions in evaluating
fractional integrals, providing a comprehensive framework to bridge fractional calculus and special
functions. As a generalization of classical integrals, fractional integrals have gained prominence due
to their wide applicability in modeling anomalous diffusion, viscoelastic systems, and other non-local
phenomena. Hypergeometric functions, renowned for their rich analytical properties and ability to
represent solutions to differential equations, offer an elegant and versatile tool for solving fractional
integrals. In this paper, we evaluate a new class of fractional integrals, presenting results that contribute
significantly to the study of generalized hypergeometric functions, particularly 3F2(1). The results
reveal previously unexplored connections within these functions, providing new insights and extending
their applicability. Furthermore, evaluating these fractional integrals holds promise for advancing the
theoretical understanding and practical applications of fractional differential equations.
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1. Introduction

Historically, hypergeometric functions emerged during the 18th century in the work of
mathematicians such as Euler and Gauss, who developed theories around hypergeometric series and
associated integrals. These functions were first considered as generalizations of geometric series and
solutions of higher-order linear differential equations. Today, hypergeometric functions are at the
center of an entire field of research, that of special functions [1]. Moreover, it is now well known
that most special functions can be expressed in terms of hypergeometric functions, and these functions
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can be represented using either series or integrals. This dual representation makes it an excellent tool
for evaluating series and integrals or solving differential equations. Hypergeometric functions have
a wide range of applications. From our literature review, we found that these functions are utilized
to express solutions in various fields, including probability and statistics [2–4], combinatorics and
number theory [5–7], random walks [8–10], random graphs [11], quantum mechanics (see [12], p. 89,
96, 127 and [13], p. 235, 290, 333), conformal mapping [14], and fractional hypergeometric differential
equations [15, 16], among many other problems.

Hypergeometric functions usually have no explicit expression and are only represented by power
series or integrals, which makes their evaluation time-consuming. Research on hypergeometric
functions is divided into two main branches: continuous and discrete. The continuous branch
focuses on the analytical study of these functions, treating their arguments as continuous variables
(see [17–24]). In contrast, the discrete branch examines these functions by substituting their arguments
with integers or specific values. Research in the discrete branch has surged in the past decade, driven
by advancements in powerful computer algebra software and the wide range of problems that can be
solved using hypergeometric functions. This study belongs to the discrete branch and aims to provide
new results for different families of the generalized hypergeometric function 3F2(1). The literature
includes several explicit forms of 3F2(a1, a2, a3; b1; b2; 1), for particular choices of the parameters
(a1, a2, a3, b1, b2). Thus, in [25], the authors used the Gamma function to derive explicit forms for
3F2(a, b, c; 1+a−b, 1+a−c; 1) and 3F2(a, b, c; 1+a−b, a+2b−c−1; 1). Moreover, in [26], the authors
used specialized software and managed to generate, without any mathematical proof, about thirty
explicit formulas of 3F2(a1, a2, a3; b1; b2; 1), for particular choices of the parameters (a1, a2, a3, b1, b2).
Furthermore, in [27], the authors exhibited the explicit expressions of 3F2(−2n, a, 1 + d; 2a + 1, d; 2)
and 3F2(−2n−1, a, 1+d; 2a+1, d; 2) for n ∈ N. Besides, in [28], the authors succeeded in determining
the explicit expressions of the following sequences:

3F2( 1
6 ,

5
6 ,

1
2 + n; 1, 3

2 + n; 1), 3F2( 1
6 ,

5
6 ,−

1
2 − n; 1, 1

2 − n; 1),
3F2( 1

6 ,
5
6 ,

1
3 + n; 1, 4

3 + n; 1), 3F2( 1
6 ,

5
6 ,−

1
3 − n; 1, 2

3 − n; 1),
3F2( 1

6 ,
5
6 ,

2
3 + n; 1, 5

3 + n; 1), 3F2( 1
6 ,

5
6 ,−

2
3 − n; 1, 1

3 − n; 1),
3F2( 1

6 ,
5
6 ,

1
4 + n; 1, 5

4 + n; 1), 3F2( 1
6 ,

5
6 ,−

1
4 − n; 1, 3

4 + n; 1),
3F2( 1

6 ,
5
6 ,

3
4 + n; 1, 7

4 + n; 1), 3F2( 1
6 ,

5
6 ,−

1
4 − n; 1, 1

4 − n; 1),

for all n ∈ N. Finally, in [29], the authors provided the explicit forms of the sets 3F2(2x, 2x+ 1
2 , x; 1

2 , 1+
x; 1) and 3F2(2x, 2x − 1

2 , x; 3
2 , 1 + x; 1), for all x ∈ (−∞, 1

4 ).
The main objective of our study is to find explicit forms for the sets:

K(α) = 3F2(1 − α, 1, α + 1;α + 1, α + 2; 1), α ∈ ( 1
2 ,+∞),

G(α) = 3F2(1 − α, 1, 2 + α; 1 + α, 3 + α; 1), α ∈ ( 1
2 ,+∞),

H(p) = 3F2( 1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1), p ∈ N∗.
(1.1)

These sets emerge naturally from an exact evaluation of certain classes of fractional integrals, as we
show in Section 4.

2. Preliminaries

In order to understand the notation used above and throughout, we present in this section some basic
notations, definitions, and intermediate results, which will be useful to justify certain passages in the
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proofs of this manuscript. Let us now present a set of symbols and notations.

• N, Z, R, and C denote the sets of non-negative integers, integers, real numbers, and complex
numbers, respectively,

• X∗ denotes any set X \ {0},

• Z−0 denotes set −N = {. . . ,−n, . . . ,−1, 0},

• B(0, 1) = {z ∈ C | |z| < 1},

• B(0, 1) = {z ∈ C | |z| ≤ 1},

• R(z) denotes the real part of z.

■ Now we present some basic notations, definitions, and intermediate results related to the so-called
the Gauss hypergeometric function.

Definition 2.1. [30] The Euler gamma function Γ(z) is defined by

Γ(z) =
∫ ∞

0
tz−1e−t dt, ∀ z ∈ C | R(z) > 0. (2.1)

Using integration by parts, one sees that

Γ(z + 1) = zΓ(z), ∀R(z) > 0. (2.2)

The extension of the Euler gamma function to the half-plane R(z) ≤ 0 is given by

Γ(z) =
Γ(z + k)

(z)k
, (R(z) > −k; k ∈ N∗; z < Z−0 ),

where (z)k is the Pochhammer symbol defined for all z ∈ C and k ∈ N∗ by

(z)0 = 1 and (z)k = z(z + 1) · · · (z + k − 1), ∀ k ∈ N. (2.3)

Relations (2.2) and (2.3) give
Γ(k + 1) = (1)k = k!, ∀ k ∈ N. (2.4)

Definition 2.2. [30] The Gauss hypergeometric function 2F1(a, b; c; z) is defined in the unit disk as the
sum of the hypergeometric series as follows:

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, (2.5)

(a, b ∈ C; c ∈ C \ Z−0 ; z ∈ B ; R(c − b − a) > 0).

Furthermore, if 0 < R(b) < R(c) and |arg(1− z)| < π, then 2F1(a, b; c; z) is given by the following Euler
integral representation:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
xb−1(1 − x)c−b−1(1 − zx)−a dx. (2.6)
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If z = 1 with R(c − b − a) > 0, the Gauss hypergeometric function has the following property:

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

. (2.7)

A natural extension of 2F1 to 3F2 is defined by

3F2(a, b, c; d, e; z) =
+∞∑
k=0

(a)k(b)k(c)k

(d)k(e)k

zk

k!
,

∀ (z ∈ B and R(d + e − a − b − c) > 0).

In [31] Theorem 38, Rainville proves a general integral representation for p+kFq+k, but here we state
the following three special cases,

Case 1: Let p = 2, q = k = 1, and choose a = 1 − α, b = 1, c = α + 1, d = α + 1, e = α + 2, and z = 1.
Then, 3F2 is given by the following integral representation:

3F2(1 − α, 1, α + 1;α + 1, α + 2; 1) = (α + 1)
∫ 1

0
xα 2F1(1 − α, 1;α + 1; x)dx. (2.8)

Case 2: Let p = 2, q = k = 1, and choose a = 1 − α, b = 1, c = α + 2, d = α + 1, e = α + 3, and z = 1.
Then, 3F2 is given by the following integral representation:

3F2(1 − α, 1, α + 2;α + 1, α + 3; 1) = (α + 2)
∫ 1

0
xα+1

2F1(1 − α, 1;α + 1; x)dx. (2.9)

Case 3: Let p = 2, q = k = 1, and choose a = 1 − α, b = 1, c = 2α, d = α + 1, e = 2α + 1, and z = 1.
Then, 3F2 is given by the following integral representation:

3F2(1 − α, 1, 2α;α + 1, 2α + 1; 1) = 2α
∫ 1

0
x2α−1

2F1(1 − α, 1;α + 1; x)dx. (2.10)

■ The following is the definition of the Riemann-Liouville fractional integral Iα f of order α.

Definition 2.3. [30] Let Ω = [τ, η]. The Riemann-Liouville fractional integral Iα f of order α ∈
C (R(α) > 0) is defined by

Iα f (t) =
1
Γ(α)

∫ t

τ

(t − s)α−1 f (s)ds, ∀ t > τ and R(α) > 0. (2.11)

2.1. Useful results

In this section, we establish some results which will play an important role herein. We believe that
some of these results may be new.

■ To justify the interchangeability between the integral and the sum, or to rewrite certain integrals, we
give the following two lemmas that we will refer to several times in our work.
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Lemma 2.1. Let a, b, c ∈ C, c < Z−0 , and R(c − a − b) > 0. Then, the series

∞∑
k=0

(a)k(b)k

(c)k
zk,

is normally convergent on the interval [−1, 1].

Proof of Lemma 2.1. Since a, b, c ∈ C, c < Z−0 , and R(c−a−b) > 0, the Gauss hypergeometric function

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, (2.12)

is defined for any complex number z ∈ B(0, 1). Moreover, the series (2.12) is absolutely convergent for
all z = 1. Therefore, the series

∑
uk is convergent, where uk is defined by

uk =

∣∣∣∣∣ (a)k(b)k

(c)k

∣∣∣∣∣ , ∀ k ∈ N.

Furthermore, it is clear that for all z ∈ [−1, 1], k ∈ N, we have∣∣∣∣∣ (a)k(b)k

(c)k
zk
∣∣∣∣∣ ≤ uk. (2.13)

The convergence of the series
∑

uk together with the relation (2.13) leads to the normal (therefore
uniform) convergence of the series

∑ (a)k(b)k
(c)k

zk on the interval [−1, 1]. The proof is complete. 2

Lemma 2.2. Let Ω = [τ, η] (−∞ < τ < η < ∞) be a finite interval on the real axis R, and α > 1/2.
Then, ∫ η

τ

+∞∑
k=0

(1 − α)k

(α + 1)k

(
t − τ
η − τ

)k

dt =
+∞∑
k=0

(1 − α)k

(α + 1)k

∫ η

τ

(
t − τ
η − τ

)k

dt. (2.14)

Proof of Lemma 2.2. If we take a = 1 − α, b = 1, and c = α + 1, then c < Z−0 and R(c − a − b) =
2α − 1 > 0, since α > 1/2. Then by Lemma 2.1, the series

∑ (a)k(b)k
(c)k

zk converges normally on the
interval [0, 1] ⊂ [−1, 1]. Consequently, for all α > 1/2, we have∫ 1

0

+∞∑
k=0

(1 − α)k

(α + 1)k
zk dz =

+∞∑
k=0

(1 − α)k

(α + 1)k

∫ 1

0
zk dz. (2.15)

By using the change of variable with z = t−τ
η−τ

, for relation (2.15) we have

1
(η − τ)

∫ η

τ

+∞∑
k=0

(1 − α)k

(α + 1)k

(
t − τ
η − τ

)k

dt =
+∞∑
k=0

(1 − α)k

(α + 1)k

1
(η − τ)

∫ η

τ

(
t − τ
η − τ

)k

dt. (2.16)

Thus, we have obtained (2.14). The proof is complete. 2

■We now establish some results, which we believe are new. These results give the limit of some series.

■ The following lemma gives the sum of the series S α,0 defined by the left-hand side of relation (2.17).
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Lemma 2.3. For all α > 1/2, we have

S α,0 =
+∞∑
k=0

(1 − α)k

(α + 1)k (k + α + 1)
=

1
2α
. (2.17)

Proof of Lemma 2.3. For all k ∈ N, let uk be the general term of the series S α,0 given by the
relation (2.17). If we take a = 1−α, b = 1, and c = α+1, then c < Z−0 andR(c−a−b) = 2α−1 > 0, since
α > 1/2. Then, by Lemma 2.1 the series

∑ (1−α)k
(α+1)k

is absolutely convergent, and since 0 < uk ≤
(1−α)k
(α+1)k

for
all k ∈ N, we then deduce that the series S α,0 is absolutely convergent. Thus, multiplying and dividing
the term uk by (0 − α), we obtain

S α,0 =
+∞∑
k=0

(0 − α)(1 − α)k

(0 − α)(α + 1)k (k + α + 1)

=

+∞∑
k=0

(−α)k+1

−α (α + 1)k+1

= −
1
α

 +∞∑
k=1

(−α)k

(α + 1)k


= −

1
α

 +∞∑
k=0

(−α)k

(α + 1)k
− 1


=

1
α

[1 − 2F1(−α, 1;α + 1; 1)] . (2.18)

From the property of 2F1, given by (2.7) we have

2F1(−α, 1;α + 1; 1) =
1
2
, (2.19)

and so substituting (2.19) into (2.18), we obtain (2.17). This completes the proof. 2

■ The following lemma gives the sum of the series S α,1 defined by the left-hand side of relation (2.20).

Lemma 2.4. For all α > 1/2, we have

S α,1 =
+∞∑
k=0

(1 − α)k

(α + 1)k (α + 2 + k)
=

1
α + 1

+
1

2α
−

2
2α + 1

. (2.20)

Proof of Lemma 2.4. The proof is similar to the proof of Lemma 2.3. If we take a = 1 − α, b = 1, and
c = α + 1, then c < Z−0 and R(c − a − b) = 2α − 1 > 0, since α > 1/2. We deduce that the series S α,1
is absolutely convergent. Thus, multiplying and dividing the term uk by the same quantity (k + α + 1),
we obtain

uk =
(1 − α)k (k + α + 1)

(α + 1)k (α + 1 + k) (α + 1 + k + 1)

=
(1 − α)k (1 − α + k + 2α)

(α + 1)k+2
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=
(1 − α)k+1

(α + 1)k+2
+ 2α

(1 − α)k

(α + 1)k+2
. (2.21)

Applying the identity (a)k+1 = a(1 + a)k to α + 1, we obtain the following two relations:

(α + 1)k+2 = (α + 1)(α + 2)k+1,

(α + 1)k+2 = (α + 1)(α + 2)(α + 3)k,
(2.22)

and using the above relations and the fact that (a)0 = 1, the series S α,1 can be rewritten as follows:

S α,1 =
1
α + 1

+∞∑
k=0

(1 − α)k+1

(α + 2)k+1
+

2α
(α + 1)(α + 2)

+∞∑
k=0

(1 − α)k

(α + 3)k

=
1
α + 1

+∞∑
k=1

(1 − α)k

(α + 2)k
+

2α
(α + 1)(α + 2)

+∞∑
k=0

(1 − α)k

(α + 3)k

=
1
α + 1

 +∞∑
k=0

(1 − α)k

(α + 2)k
− 1

 + 2α
(α + 1)(α + 2)

+∞∑
k=0

(1 − α)k

(α + 3)k

=
1
α + 1

[
2F1(1 − α, 1;α + 2; 1) − 1

]
+

2α
(α + 1)(α + 2) 2F1(1 − α, 1;α + 3; 1).

From the property of 2F1 given by (2.7), we have

2F1(1 − α, 1;α + 2; 1) =
α + 1

2α
, (2.23)

and

2F1(1 − α, 1;α + 3; 1) =
α + 2

2α + 1
. (2.24)

Thus, we obtain

S α,1 =
1
α + 1

[α + 1
2α
− 1

]
+

2α
(α + 1)(α + 2)

α + 2
2α + 1

=
1
α + 1

+
1

2α
−

2
(2α + 1)

. (2.25)

The proof is complete. 2

■ The following lemma gives the limit of the series S α,2 defined by the left-hand side of relation (2.26).

Lemma 2.5. For all α > 1/2, we have

S α,2 =
+∞∑
k=0

(1 − α)k

(α + 1)k (k + 2α)
=

1
2α 3F2(1 − α, 1, 2α;α + 1, 2α + 1; 1). (2.26)

Proof of Lemma 2.5. If a = 1 − α, b = 1, and c = α + 1, then c < Z−0 , and R(c − a − b) = 2α − 1 > 0,
since α > 1/2. Then, expressing the rightside of (2.10) as a series and changing the order of integration
and summation which is justified by Lemma 2.1 (due to the uniform convergence of the series) gives

2α
∫ 1

0
x2α−1

2F1(1 − α, 1;α + 1; x)dx = 2α
+∞∑
k=0

(1 − α)k(1)k

(α + 1)k

∫ 1

0

x2α−1xk

k!
dx
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= 2α
+∞∑
k=0

(1 − α)k

(α + 1)k

1
(k + 2α)

.

Thus, we obtained (2.26). The proof is complete. 2

■ The following lemma gives the sum of the series S α,3 defined by the left-hand side of relation (2.27).

Corollary 2.1. For all α > 1, we have

S α,3 =
+∞∑
k=0

(2 − α)k

(α + 1)k (2α + k)
=

α

(1 − α)(2α − 1)
+

[
1 − 3α

2α(1 − α)

]
3F2(1 − α, 1, 2α;α + 1, 2α + 1; 1).

(2.27)

Proof of Corollary 2.1. The proof is similar to the proof of Lemma 2.4, and so we just sketch the basic
idea. If we take a = 2 − α, b = 1, and c = α + 1, then c < Z−0 and R(c − a − b) = 2α − 2 > 0, since
α > 1. Then, by Lemma 2.1 we deduce that the series S α,3 is absolutely convergent. Thus, multiplying
and dividing the term uk by the same quantity (1 − α), we obtain

S α,3 =
+∞∑
k=0

(2 − α)k

(α + 1)k (2α + k)

=

+∞∑
k=0

(1 − α)(2 − α)k

(α + 1)k (1 − α) (2α + k)

=

+∞∑
k=0

(1 − α)k+1

(1 − α) (α + 1)k (2α + k)

=
1

1 − α

 +∞∑
k=0

(1 − α)k (k + 1 − α)
(α + 1)k (2α + k)


=

1
1 − α

 +∞∑
k=0

(1 − α)k (k + 2α + 1 − 3α)
(α + 1)k (2α + k)


=

1
1 − α

 +∞∑
k=0

(1 − α)k

(α + 1)k
+ (1 − 3α)

+∞∑
k=0

(1 − α)k

(α + 1)k (2α + k)


=

1
1 − α

 2F1(1 − α, 1;α + 1; 1) + (1 − 3α)
+∞∑
k=0

(1 − α)k

(α + 1)k (2α + k)

 .
Above we use the property of 2F1 (2.7) and the result of Lemma 2.5 to obtain (2.27). The proof is
complete. 2

■ In the following corollary, we give the calculation of 3F2(−1, 1, 4; 3, 5; 1), which we believe may be
new.

Corollary 2.1.

3F2(−1, 1, 4; 3, 5; 1) =
11
15
. (2.28)
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Proof of Corollary 2.1. Note that when α = 2, the numerical series introduced in Lemmas 2.4 and 2.5
coincide. Therefore, the right-hand terms of relations (2.20) and (2.26) are equal when α = 2. Thus,

3F2(−1, 1, 4; 3, 5; 1) = 4
(
1
3
+

1
4
−

2
5

)
=

7
3
−

8
5
=

11
15
.

(2.29)

The proof is complete. 2

3. Explicit form of two subfamilies of 3F2(1)

This section explores specific subfamilies of 3F2(1) and is structured into two subsections. The
first subsection presents the explicit forms of the subfamilies {3F2(1 − α, 1, α + 1;α + 1, α + 2; 1)} and
{3F2(1 − α, 1, α + 2;α + 1, α + 3; 1)} for all α > 1

2 , while the second subsection provides the explicit
form of the subfamily {3F2( 1

2 − p, 1, 1 + 2p; 3
2 + p, 2p + 2; 1)} for all p ∈ N∗.

3.1. Explicit form of 3F2(1 − α, 1, α + 1;α + 1, α + 2; 1)

This part aims to find the explicit form of the function K(α) =: 3F2(1 − α, 1, α + 1;α + 1, α + 2; 1)
(Theorem 3.1). To do this, we write K in the form of a series of functions (Lemma 3.1), and then we
use the result of Lemma 2.3 to prove our main result of this section, Theorem 3.1.

■ In the following lemma, we express the function K(α) as a series.

Lemma 3.1. For all α > 1/2, we have

3F2(1 − α, 1, α + 1;α + 1, α + 2; 1) = (α + 1)
+∞∑
k=0

(1 − α)k

(α + 1)k (k + α + 1)
. (3.1)

Proof of Lemma 3.1. If a = 1 − α, b = 1, and c = α + 1, then c < Z−0 and R(c − a − b) = 2α − 1 > 0,
since α > 1/2. Then, expressing the rightside of (2.8) as a series, changing the order of integration and
summation, which is justified by Lemma 2.1, and applying the steps of the proof of Lemma 2.5, we
can readily derive the proof of Lemma 3.1. 2

■ Now we state and prove our main result of this section, Theorem 3.1.

Theorem 3.1. For all α > 1/2, we have

3F2(1 − α, 1, α + 1;α + 1, α + 2; 1) =
α + 1

2α
. (3.2)

Proof of Theorem 3.1. By identifying relations (2.17) and (3.1), we obtain

3F2(1 − α, 1, α + 2;α + 1, α + 3; 1) = (α + 1)
(

1
2α

)
=
α + 1

2α
.

The proof is complete. 2
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3.2. Explicit form of 3F2(1 − α, 1, α + 2;α + 1, α + 3; 1)

This part aims to find the explicit form of the function G(α) =: 3F2(1 − α, 1, α + 2;α + 1, α + 3; 1)
(Theorem 3.2). To do this, we write G in the form of a series of functions (Lemma 3.2), then we use
the result of Lemma 2.4 to prove our main result of this section, Theorem 3.2. Our argument in this
section is similar to the previous section.
■ In the following lemma, we express the function G(α) as a series.

Lemma 3.2. For all α > 1/2, we have

3F2(1 − α, 1, α + 2;α + 1, α + 3; 1) = (α + 2)
+∞∑
k=0

(1 − α)k

(α + 1)k (k + α + 2)
. (3.3)

Proof of Lemma 3.2. If a = 1 − α, b = 1, and c = α + 1, then c < Z−0 and R(c − a − b) = 2α − 1 > 0,
since α > 1/2. Then, expressing the rightside of (2.9) as a series, changing the order of integration and
summation, which is justified by Lemma 2.1, and applying the steps of the proof of Lemma 2.5, we
can readily derive the proof of Lemma 3.2. 2

■ Now we state and prove our main result of this section, Theorem 3.2.

Theorem 3.2. For all α > 1/2, we have

3F2(1 − α, 1, α + 2;α + 1, α + 3; 1) =
1
2
+

1
α
+

1
α + 1

−
3

2α + 1
. (3.4)

Proof of Theorem 3.2. By identifying relations (2.20) and (3.3), we obtain

3F2(1 − α, 1, α + 2;α + 1, α + 3; 1) = (α + 2)
(

1
α + 1

+
1

2α
−

2
2α + 1

)
=

1
2
+

1
α
+

1
α + 1

−
3

2α + 1
.

The proof is complete. 2

3.3. Explicit form for some family of functions 3F2(1 − α, 1, 2α;α + 1, 2α + 1; 1)

This section deals with the family of functions F(α) = 3F2(1 − α, 1, 2α;α + 1, 2α + 1; 1). It is easy
to find a representation for it by a series of functions

∑+∞
k=0 fk(α) (see Lemma 2.5). However, it is not

obvious to find an explicit one unless α ∈ N∗ or a rational number of the form α = 2p+1
2 and p ∈ N∗.

Note that when α = p ∈ N∗, then
∑+∞

k=0 fk(α) is equal to
∑p−1

k=0 fk(α). Therefore, this case will be
excluded from this study. In summary, this part aims to determine the explicit form of F(α) when
α = 2p+1

2 , which coincides with 3F2( 1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1) and which we will designate
by H(p). To do this, we first calculate H(1) in Section 3.3.1 to make the calculation of H(p) easy to
follow in Section 3.3.2.

■ The main result of this section is summarized in the following theorem. The proof of this theorem is
postponed to the end of this section.
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Theorem 3.3. For all p ∈ N∗, we have

3F2( 1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1) = −(2p + 1)Kp

2a2p+1 ln(2) + 2a2p+1(Ep + Bp) +
2p∑
j=1

a jB j

 ,
where

Kp = (1 − 2p)(3 − 2p)(5 − 2p) · · · (−1 + 2p)(1 + 2p)

a2p+1 = −
22p(2p)! (3p)!
(6p + 1)! (p)!

Ep =

2p∑
k=1

1
2k

B j =

j−1∑
k=0

1
2k − 2p + 1

, j = 1, . . . , 2p

a j =
2

(−1) j (2)2p ( j)! (2p − j)! (6p − 2 j + 1)
, j = 1, . . . , 2p.

(3.5)

3.3.1. Calculation of H(p) := 3F2(1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1), for p = 1

This part aims to find the explicit form of the function H(1). To do this, we write H(1) in the form
of a numerical series. Then, we determine the limit of this series.

■ In Lemma 3.3, we give the exact value of 3F2(−
1
2
, 1, 3;

5
2
, 4; 1).

Lemma 3.3.
3F2(−

1
2
, 1, 3;

5
2
, 4; 1) =

33
35
−

6
35

ln(2). (3.6)

Proof of Lemma 3.3. For p = 1 (i.e., α = 3
2 ), after simplifications, relation (2.26) gives

−3
+∞∑
k=0

1
(2k − 1)(2k + 1)(2k + 3)(k + 3)

=
1
3 3F2(−

1
2
, 1, 3;

5
2
, 4; 1), (3.7)

that is, 3F2(−
1
2
, 1, 3;

5
2
, 4; 1) = −9S , where

S =
+∞∑
k=0

1
(2k − 1)(2k + 1)(2k + 3)(k + 3)

. (3.8)

△ The decomposition into partial fractions of the general term uk, of the series S =
∑

uk, gives

uk =
1

(2k − 1)(2k + 1)(2k + 3)(k + 3)

=
1

28(2k − 1)
−

1
10(2k + 1)

+
1

12(2k + 3)
−

1
105(k + 3)

.
(3.9)

△ Let n be a fixed positive integer. Then, (S n)n≥0 and (Tn)n≥1 are sequences defined by

S n =

n∑
k=0

1
(2k − 1)(2k + 1)(2k + 3)(k + 3)

Tn =

n∑
k=1

1
2k − 1

.

(3.10)
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△We will simplify the partial sum S n in order to find its limit when n tends to infinity. To do this, we
will express the partial sums,

Un =

n∑
k=0

1
2k − 1

; Vn =

n∑
k=0

1
2k + 1

; Wn =

n∑
k=0

1
2k + 3

,

as a function of Tn. It is easy to check the following equalities:

Un = −1 + Tn

Vn = Tn +
1

2n + 1
Wn = −1 + Tn +

1
2n + 1

+
1

2n + 3
.

(3.11)

△We then deduce S n as a function of Tn:

S n =
Un

28
−

Vn

10
+

Wn

12
−

1
105

n∑
k=0

1
k + 3

= −
5

42
+ An + Bn,

(3.12)

where

An =
2

105
Tn −

1
105

n∑
k=0

1
k + 3

Bn = −
1

60(2n + 1)
+

1
12(2n + 3)

.

(3.13)

△ Furthermore, we have

n∑
k=0

1
k + 3

= 2
n∑

k=0

1
2(k + 3)

= 2
n+3∑
k=3

1
2k

= 2

−1
2
−

1
4
+

n∑
k=1

1
2k
+

1
2(n + 1)

+
1

2(n + 2)
+

1
2(n + 3)


= 2

−3
4
+

n∑
k=1

1
2k
+

1
2(n + 1)

+
1

2(n + 2)
+

1
2(n + 3)


= 2

−3
4
+

n∑
k=1

1
2k
+Cn

 ,

(3.14)

where

Cn =
1

2(n + 1)
+

1
2(n + 2)

+
1

2(n + 3)
.
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Consequently,

An =
2

105
Tn −

2
105

−3
4
+

n∑
k=1

1
2k
+Cn


=

2
105

 n∑
k=1

1
2k − 1

−

n∑
k=1

1
2k
+

3
4
−Cn


=

2
105

 n∑
k=1

(−1)k+1

k
+

3
4
−Cn


=

2
105

(
Dn +

3
4
−Cn

)
,

(3.15)

where

Dn =

n∑
k=1

(−1)k+1

k
.

△ Based on relations (3.12) and (3.15), we obtain

S n = −
5
42
+

2
105

(
Dn +

3
4
−Cn

)
+ Bn

= −
11
105
+

2
105

(Dn −Cn) + Bn.

(3.16)

△ Furthermore, we know that for all real numbers x , −1 such that |x| ≤ 1, we have

lim
n→+∞

n∑
k=0

(−1)k+1

k
xk = ln(1 + x). (3.17)

Consequently,
lim

n→+∞
Dn = ln(2). (3.18)

△Moreover, it is easy to verify that
lim

n→+∞
Bn = 0,

lim
n→+∞

Cn = 0.
(3.19)

△ Finally, we have

lim
n→+∞

S n = −
11

105
+

2
105

ln(2). (3.20)

△ By grouping relations (3.7) and (3.20), we deduce that

3F2(−
1
2
, 1, 3;

5
2
, 4; 1) = −9

(
−

11
105
+

2
105

ln(2)
)

=
33
35
−

6
35

ln(2).
(3.21)

The proof is complete. 2
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3.3.2. Calculation of 3F2( 1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1), for all p ∈ N∗

This section explores specific subfamilies of 3F2(1) and is structured into two subsections. The first
subsection presents the explicit forms of the subfamilies F(1) and F(2), while the second subsection
provides the explicit form of the subfamily F(3). This part aims to find the explicit form of the function
H(p), p ∈ N∗. To do this, we will follow the same approach as that used in Section 3.3.1 to calculate
H(1).

■ In Lemma 3.5, we give the explicit expression of
(1 − α)k

1 + α
when α = 2p+1

2 .

Lemma 3.4. For all p ∈ N∗, k ∈ N, we have

(1 − 2p+1
2 )k

(1 + 2p+1
2 )k

=
(1 − 2p)(1 − 2p + 1)) · · · (−1 + 2p)(1 + 2p)

(2k + 1 − 2p)(2k + 3 − 2p) · · · (2k − 1 + 2p)(2k + 1 + 2p)
. (3.22)

Proof of Lemma 3.5. If α = 2p+1
2 , then we have

(1 − α)k = (1
2 − p)(3

2 − p)( 5
2 − p) · · · (k − 3

2 − p)(k − 1
2 − p),

(α + 1)k = ( 3
2 + p)(5

2 + p) · · · (k − 1
2 + p)(k + 1

2 + p).
(3.23)

■ Note that when k ≥ 2p+ 2, there are j = k − 2p− 1 terms in common between (1− α)k and (α+ 1)k.
Indeed, we observe the first number in common if k − 1

2 − p = 3
2 + p, that is k = 2p + 2. Therefore,

if k = 2p + 3, then there are two terms in common, and so on. Thus, if k ≥ 2p + 2, then (1 − α)k and
(1 + α)k are written as follows:

(1 − α)k = ( 1
2 − p) · · · (1

2 − p + 2p)(3
2 + p) · · · (k − 1

2 − p),
(α + 1)k = ( 3

2 + p)( 5
2 + p) · · · (k − p − 1

2 )(k − p + 1
2 ) · · · (k + 1

2 + p).
(3.24)

Therefore, their quotient can be simplified as follows:

(1 − α)k

(α + 1)k
=

( 1
2 − p)( 1

2 + 1 − p) · · · ( 1
2 + 2p − p)

(k − p + 1
2 )(k − p + 1 + 1

2 ) · · · (k − p + 2p + 1
2 )

=
( 1

2 − (p − 0))( 1
2 − (p − 1)) · · · ( 1

2 − (p − 2p))

(k + 1
2 − (p − 0))(k + 1

2 − (p − 1)) · · · (k + 1
2 − (p − 2p))

=
22p+1(1 − 2(p − 0))(1 − 2(p − 1)) · · · (1 − 2(p − 2p))

22p+1(2k + 1 − 2(p − 0))(2k + 1 − 2(p − 1)) · · · (2k + 1 − 2(p − 2p))

=
(1 − 2p)(1 − 2p + 2)) · · · (−1 + 2p)(1 + 2p)

(2k + 1 − 2p)(2k + 3 − 2p) · · · (2k − 1 + 2p)(2k + 1 + 2p)

=
(1 − 2p)(3 − 2p)) · · · (−1 + 2p)(1 + 2p)

(2k + 1 − 2p)(2k + 3 − 2p) · · · (2k − 1 + 2p)(2k + 1 + 2p)
.

(3.25)

■When k ≤ 2p + 1, we will show that the quotient (1−α)k
(α+1)k

can be reduced to the form given by the last
line of relation (3.25).

△When k = 0, we have
(1 − α)0

(α + 1)0
=

1
1

=
(1 − 2p)(3 − 2p) · · · (−1 + 2p)(1 + 2p)
(1 − 2p)(3 − 2p)) · · · (−1 + 2p)(1 + 2p)

=
(1 − 2p)(3 − 2p) · · · (−1 + 2p)(1 + 2p)

(2 × 0 + 1 − 2p)(2 × 0 + 3 − 2p)) · · · (2 × 0 − 1 + 2p)(2 × 0 + 1 + 2p)
.

(3.26)
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△When k = 1, we have

(1 − α)1

(α + 1)1
=

1 − 2p
(3 + 2p)

=
(1 − 2p)

[
(3 − 2p) · · · (−1 + 2p)(1 + 2p)

][
(3 − 2p) · · · (−1 + 2p)(1 + 2p)

]
(3 + 2p)

=
(1 − 2p)(3 − 2p) · · · (−1 + 2p)(1 + 2p)

(2 × 1 + 1 − 2p)(2 × 1 + 3 − 2p) · · · (2 × 1 − 1 + 2p)(2 × 1 + 1 + 2p)
.

(3.27)

△More generally, when k is an integer such that 0 ≤ k ≤ 2p + 1, we have

(1 − α)k

(α + 1)k
=

(1 − 2p)(3 − 2p) · · · (2k − 3 − 2p)(2k − 1 − 2p)
(3 + 2p)(5 + 2p) · · · (2k − 1 + 2p)(2k + 1 + 2p)

=
(1 − 2p)(3 − 2p) · · · (2k − 1 − 2p)

[
(2k + 1 − 2p) · · · (1 + 2p)

][
(2k + 1 − 2p) · · · (1 + 2p)

]
(3 + 2p)(5 + 2p) · · · (2k + 1 + 2p)

=
(1 − 2p)(3 − 2p) · · · (−1 + 2p)(1 + 2p)

(2k + 1 − 2p) · · · (1 + 2p)(3 + 2p)(5 + 2p) · · · (2k + 1 + 2p)
.

(3.28)

Thus, we have shown that (1−α)k
(α+1)k

is written in the form (3.22) for all k ∈ N. The proof is complete. 2

Remark 3.1. For α = 2p+1
2 , we deduce from Lemma 3.5 that

(1 − α)k

(α + 1)k(k + 2p + 1)
= Kpuk, (3.29)

where
Kp = (1 − 2p)(3 − 2p) · · · (−1 + 2p)(1 + 2p)

uk =
1

(2k + 1 − 2p)(2k + 3 − 2p) · · · (2k + 1 + 2p)(k + 2p + 1)
.

(3.30)

■ From the above remark, the decomposition into partial fractions of uk gives

uk =
a0

2k + 1 − 2p
+

a1

2k + 3 − 2p
+ · · · +

a2p

2k + 1 + 2p
+

a2p+1

k + 2p + 1
=

a0

2k + 1 − 2(p − 0)
+

a1

2k + 1 − 2(p − 1)
+ · · · +

a2p

2k + 1 − 2(p − 2p)
+

a2p+1

k + 2p + 1

=

2p∑
i=0

ai

2k + 1 − 2(p − i)
+

a2p+1

k + 2p + 1
.

(3.31)

For all i = 0, . . . , 2p, to find ai, simply multiply uk by (2k + 1 − 2(p − i)), Then, evaluate the resulting
expression at k = 2(p−i)−1

2 . For now, let us calculate only the first three coefficients a0, a1, and a2.

△ For a0, we evaluate the resulting expression at k = 2p−1
2 (i.e., 2k = 2p − 1), so we obtain

1
a0
= (2p − 1 + 1 − 2(p − 1)) · · · (2p − 1 + 1 − 2(p − 2p)

1
2

(2p − 1 + 4p + 2)

= (2 × 1)(2 × 2) · · · (2 × 2p)1
2 (6p + 1),

= 22p (2p)!
1
2

(6p + 1)

=
1
2

(−1)0 (0!) 22p (2p − 0)! (6p − 2 × 0 + 1).

(3.32)
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Consequently,

a0 =
2

(−1)0 (0!) 22p (2p − 0)! (6p − 2 × 0 + 1)
. (3.33)

△ For a1, we evaluate the resulting expression at k = 2p−3
2 (i.e., 2k = 2p − 3), so we obtain

1
a1
= (2p − 3 + 1 − 2(p − 0)) · · · (2p − 3 + 1 − 2(p − 2p))

1
2

(2p − 3 + 4p + 2)

= (−2)(2 × 1)(2 × 3) · · · (2 × (2p − 1))
1
2

(6p − 1)

= (−1)1 21 22p−1 (2p − 1)!
1
2

(6p − 1)

=
1
2

(−1)1 (1!) (2)2p (2p − 1)! (6p − 2 × 1 + 1).

(3.34)

Consequently,

a1 =
2

(−1)1 (1!) (2)2p (2p − 1)! (6p − 2 × 1 + 1)
. (3.35)

△ For a2, we evaluate the resulting expression at k = 2p−5
2 (i.e., 2k = 2p − 5), so we obtain

1
a2
= (2p − 5 + 1 − 2(p − 0)) · · · (2p − 5 + 1 − 2(p − 2p))

1
2

(2p − 5 + 4p + 2)

= (−22)(−21)(2 × 1)(2 × 3) · · · (2 × (2p − 2))
1
2

(6p − 3)

= (−1)2 22 (2!) 22p−2 (2p − 2)!
1
2

(6p − 3)

=
1
2

(−1)2 (2!) (2)2p (2p − 2)! (6p − 2 × 2 + 1).

(3.36)

Consequently,

a2 =
2

(−1)2 (2)2p (2p − 2)! (6p − 2 × 2 + 1)
. (3.37)

■ The calculation of the first three coefficients a0, a1, a2 allowed us to guess the general expression of
ai for all i = 0, . . . , 2p, which is stated in the following Lemma 3.5.

Lemma 3.5. Let p ∈ N∗. Then, for all i = 0, . . . , 2p, we have

ai =
2

(−1)i (2)2p (i)! (2p − i)! (6p − 2i + 1)
. (3.38)

Proof of Lemma 3.5. We will confirm this expression by a direct calculation of ai. To do this, we
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evaluate the resulting expression at k = 2p−(2i+1)
2 (i.e., 2k = 2p − (2i + 1)), so we obtain

1
ai
=

(
2p − (2i + 1) + 1 − 2(p − 0)

)(
2p − (2i + 1) + 1 − 2(p − 1)

)
· · ·

· · ·
(
2p − (2i + 1) + 1 − 2(p − (i − 1))

)(
2p − (2i + 1) + 1 − 2(p − (i + 1))

)
· · ·

· · ·
(
2p − (2i + 1) + 1 − 2(p − 2p)

)1
2

(
2p − (2i + 1) + 4p + 2

)
= (−2(i − 0))(−2(i − 1)) · · · (−2(i − (i − 1)))(2 × 1)(2 × 2) · · ·

· · · (2(2p − i))
1
2

(6p − 2i + 1)

=
1
2

(−2)i (i)! 22p−i (2p − i)! (6p − 2i + 1)

=
1
2

(−1)i (2)i (i)! 22p−i (2p − i)! (6p − 2i + 1)

=
1
2

(−1)i (2)2p (i)! (2p − i)! (6p − 2i + 1).

(3.39)

Thus, we find the expression of ai stated in relation (3.38). The proof is then complete. 2

■ All that remains is to determine the expression of a2p+1. This will be the subject of Lemma 3.6.

Lemma 3.6. The last coefficient of the decomposition into partial fractions (3.31) is given by

a2p+1 = −
22p (2p)! (3p)!
(6p + 1)! (p)!

. (3.40)

Proof of Lemma 3.6. To find a2p+1, multiply uk by (k + 2p+ 1). Then, evaluate the resulting expression
at k = −2p − 1 (i.e., 2k = −4p − 2). We then obtain

1
a2p+1

= (−4p − 2 − 2p + 1)(−4p − 2 − 2p + 3) · · · (−4p − 2 + 2p − 1)(−4p − 2 + 2p + 1)

= (−6p − 1)(−6p + 1)(−6p + 3) · · · (−2p − 3)(−2p − 1)

=
(−6p − 1)(−6p)(−6p + 1)(−6p + 2)(−6p + 3) · · · (−2p − 3)(−2p − 2)(−2p − 1)

(−6p)(−6p + 2) · · · (−2p − 4)(−2p − 2)

=
(−1)2p+1(6p + 1)(6p)(6p − 1)(6p − 2)(6p − 3) · · · (2p + 3)(2p + 2)(2p + 1)

(−1)2p(6p)(6p − 2) · · · (2p + 4)(2p + 2)

= −
(2p + 1)(2p + 2) · · · (6p + 1)

2(p + 1)2(p + 2) · · · 2(3p)

= −

[
1 × 2 × · · · × 2p

]
(2p + 1)(2p + 2) · · · (6p + 1)

[
1 × 2 × · · · × p

][
1 × 2 × · · · × 2p

]
23p−(p+1)+1 [

1 × 2 × · · · × p
]
(p + 1)(p + 2) · · · (3p)

= −
(6p + 1)! (p)!
22p (2p)! (3p)!

.

(3.41)
The proof is complete. 2

■ The following remark shows the validation of formulas (3.38) and (3.40) when p = 1.

Remark 3.2. For p = 1, we will check the concordance of the coefficients a0, . . . , a3 given by
relations (3.40) and (3.38) with those presented in relation (3.9). When p = 1, relations (3.38)
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and (3.40) give

a0 =
2

(−1)0 (2)2 (0)! (2)! (7)
=

1
28

a1 =
2

(−1)1 (2)2 (1)! (1)! (5)
= −

1
10

a2 =
2

(−1)2 (2)2 (2)! (0)! (3)
=

1
12

a3 = −
22 (2)! (3)!

(7)! (1)!
= −

1
105
.

(3.42)

Thus, we find the same coefficients of the decomposition into partial fractions of uk given by (3.9).

■ Lemma 3.7 presents a relation between the coefficient a2p+1 and the coefficients (ai)0≤i≤2p.

Lemma 3.7. For all p ∈ N∗, we have
2p∑
i=0

ai = −2a2p+1. (3.43)

Proof of Lemma 3.7. We have shown in relation (3.31) that, for all k > 0, the term uk is written as a
partial fraction (3.31), where (ai)0≤i≤2p and a2p+1 are given by (3.38) and (3.40).

By reducing all the partial fractions to the same denominator and identifying the numerators, we
then obtain 2p + 2 equations with unknowns a0, . . ., a2p, a2p+1. It is easy to see that the equation
that relates the coefficients of the monomial k2p+1 is written in the following form

∑2p
i=0 k(2k)2pai +

(2k)2p+1a2p+1 = 0, or in the equivalent form

2p∑
i=0

ai = −2a2p+1. (3.44)

The proof is complete. 2

■ In the following Lemma 3.8, we establish a supporting result that arises from the calculations
performed in the previous results of this section. This result provides an explicit form of a finite
sum.

Lemma 3.8. For all p ∈ N∗, we have

2p∑
i=0

(−1)i

(2)2p (i)! (2p − i)!(6p − 2i + 1)
=

22p (2p)! (3p)!
(6p + 1)! (p)!

. (3.45)

Proof of Lemma 3.8. Based on formula (3.43), we have

2p∑
i=0

ai = −2a2p+1. (3.46)

By replacing in the previous equality the coefficients (ai)0≤i≤2p+1 by their expressions presented in
relations (3.38) and (3.40), we directly obtain relation (3.45). The proof is complete. 2

■ In the following section, we will prove that the series
∑

uk converges and we calculate its sum, where
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uk is defined by (3.30).

Convergence of the series
∑

uk

Let n be a fixed positive integer, and (S n)n≥0 and (Tn)n≥1 be the sequences defined by

S n =

n∑
k=0

uk,

Tn =

n∑
k=0

1
2k − 2p + 1

.

(3.47)

■We will write S n as a function of Tn, prove that the sequence S n converges, and determine its limit.

△ For all j = 1, . . . , 2p, we have
n∑

k=0

1
2k − 2(p − j) + 1

=

n∑
k=0

1
2(k + j) − 2p + 1

=

n+ j∑
k= j

1
2k − 2p + 1

=

n∑
k=0

1
2k − 2p + 1

+

n+ j∑
k=n+1

1
2k − 2p + 1

−

j−1∑
k=0

1
2k − 2p + 1

= Tn + A j,n − B j,

(3.48)

where

A j,n =

n+ j∑
k=n+1

1
2k − 2p + 1

,

B j =

j−1∑
k=0

1
2k − 2p + 1

.

(3.49)

Note that for j = 0, we also have
n∑

k=0

1
2k − 2(p − 0) + 1

=

n∑
k=0

1
2k − 2p + 1

= Tn + A0,n − B0,

(3.50)

where
A0,n = B0 = 0. (3.51)

△ Furthermore, we also have
n∑

k=0

1
k + 2p + 1

= 2
n∑

k=0

1
2(k + 2p + 1)

= 2
n+2p+1∑
k=2p+1

1
2k

= 2
n∑

k=1

1
2k
+ 2

n+2p+1∑
k=n+1

1
2k
− 2

2p∑
k=1

1
2k

= 2
n∑

k=1

1
2k
+ 2Dn − 2Ep,

(3.52)
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where

Dn =

n+2p+1∑
k=n+1

1
2k
,

Ep =

2p∑
k=1

1
2k
.

(3.53)

△Moreover, we have

Tn =

n∑
k=0

1
2k − 2p + 1

=

p−1∑
k=0

1
2k − 2p + 1

+

n+p∑
k=p

1
2k − 2p + 1

=

p−1∑
k=0

1
2k − 2p + 1

+

n∑
k=0

1
2k + 1

= Bp +

n∑
k=0

1
2k + 1

,

(3.54)

where

Bp =

p−1∑
k=0

1
2k − 2p + 1

. (3.55)

■ After writing S n as a function of Tn, we will inject the expression of Tn given by (3.54) into S n to
prove that S n converges and deduce its limit.

△ Using relations (3.48), (3.54) (3.52), and (3.43), the partial sum S n equals

S n =

2p∑
j=0

a j

n∑
k=0

1
2k − 2(p − j) + 1

+ a2p+1

n∑
k=0

1
k + 2p + 1

=

2p∑
j=0

a j(Tn + A j,n − B j) + a2p+1

2 n∑
k=1

1
2k
+ 2Dn − 2Ep


= Tn

2p∑
j=0

a j + 2a2p+1

n∑
k=1

1
2k
+

2p∑
j=1

a j(A j,n − B j) + 2a2p+1

(
Dn − Ep

)
= −2a2p+1Tn + 2a2p+1

n∑
k=1

1
2k
+

2p∑
j=1

a jA j,n −

2p∑
j=1

a jB j + 2a2p+1Dn − 2a2p+1Ep

= −2a2p+1

n∑
k=0

1
2k + 1

− 2a2p+1Bp + 2a2p+1

n∑
k=1

1
2k
+

2p∑
j=1

a jA j,n −

2p∑
j=1

a jB j + 2a2p+1Dn − 2a2p+1Ep

= −2a2p+1

 n∑
k=0

1
2k + 1

−

n∑
k=1

1
2k

 − 2a2p+1Ep −

2p∑
j=1

a jB j − 2a2p+1Bp +

2p∑
j=1

a jA j,n + 2a2p+1Dn

= −2a2p+1

n∑
k=1

(−1)k+1

k
− 2a2p+1Ep −

2p∑
j=1

a jB j − 2a2p+1Bp +

2p∑
j=1

a jA j,n + 2a2p+1Dn.

(3.56)
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△ Since

lim
n→+∞

n∑
k=1

(−1)k+1

k
= ln(2)

lim
n→+∞

A j,n = 0, ∀ j = 1, . . . , 2p

lim
n→+∞

Dn = 0,

(3.57)

we deduce that S n converges, and that its limit verifies

lim
n→+∞

S n = −2a2p+1 ln(2) − 2a2p+1(Ep + Bp) −
2p∑
j=1

a jB j. (3.58)

■ The following Lemma 3.9 gives the sum of the series
∑

uk.

Lemma 3.9. For all p ∈ N∗, we have

+∞∑
k=0

( 1
2 − p)k

(1
2 + p)k(k + 2p + 1)

= −Kp

2a2p+1 ln(2) + 2a2p+1(Ep + Bp) +
2p∑
j=1

a jB j

 , (3.59)

where Kp, a2p+1, Ep, B j, and a j are defined in (3.5).

Proof of Lemma 3.9. By grouping relations (3.29), (3.47), and (3.58), we obtain

+∞∑
k=0

( 1
2 − p)k

( 1
2 + p)k(k + 2p + 1)

= Kp lim
n→+∞

S n

= −Kp

2a2p+1 ln(2) + 2a2p+1(Ep + Bp) +
2p∑
j=1

a jB j

 . (3.60)

The proof is complete. 2

■ The following remark gives the validation of formula (3.59) when p = 1.

Remark 3.3. For p = 1, we will check the concordance of the limit given by relation (3.20) with that
presented in relation (3.58). When p = 1, we easily obtain E1 =

3
4 , B1 = −1, and B2 = 0. Moreover,

the values of (ai)0≤i≤3 are given in (3.42). Thus, relation (3.58) gives

lim
n→+∞

S n = −2(−
1

105
) ln(2) − 2(−

1
105

)(
3
4
− 1) − [−

1
10

(−1) +
1

12
(0)]

=
2

105
ln(2) +

1
105

(
3
2
− 2) −

1
10

=
2

105
ln(2) −

1
210
−

21
210

=
2

105
ln(2) −

22
210

=
2

105
ln(2) −

11
105
.

(3.61)

Thus, we find the same limit as that found in relation (3.20).
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■ With the intermediate results from Section 3.3 now found, we can prove Theorem 3.3 stated at the
beginning of this section.

Proof of Theorem 3.3. Based on relation (2.26) and taking α = 2p+1
2 , we obtain

+∞∑
k=0

( 1
2 − p)k

(1
2 + p)k(k + 2p + 1)

=
3F2(1 − α, 1, 2α;α + 1, 2α + 1; 1)

2α

=
3F2( 1

2 − p, 1, 1 + 2p; 3
2 + p, 2p + 2; 1)

2p + 1
.

(3.62)

By identifying the right-hand sides of relations (3.59) and (3.62), we obtain

−Kp

2a2p+1 ln(2) + 2a2p+1(Ep + Bp) +
2p∑
j=1

a jB j

 = 3F2( 1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1)
2p + 1

,

that is,

−(2p + 1)Kp

2a2p+1 ln(2) + 2a2p+1(Ep + Bp) +
2p∑
j=1

a jB j

 = 3F2( 1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1).

The proof is complete. 2

■We now state and prove the following two results of Theorem 3.3 corresponding to the special cases
p = 2 and p = 3.

△ For p = 2, Theorem 3.3 yields the first new special result.

Corollary 3.1.

3F2(−
3
2
, 1, 5;

7
2
, 6; 1) =

4045
6006

+
10

1001
ln(2). (3.63)

Proof of corollary 3.1. Let p = 2. Then, from Theorem 3.3, we easily compute the following quantities:

K2 = 45, E2 =
25
24
, B1 = −

1
3
, B2 = −

4
3
, B3 = −

1
3
, B4 = 0, a1 = −

1
528
,

a2 =
1

288
, a3 = −

1
336
, a4 =

1
960
, a5 = −

1
45045

,

4∑
j=1

a jB j = −
25

8316
.

Thus, to derive relation (3.63), we simply substitute the values above into Theorem 3.3. The proof is
complete. 2

△ Also, for p = 3, Theorem 3.3 yields the second new special result.

Corollary 3.2.

3F2(−
5
2
, 1, 7;

9
2
, 8; 1) =

221158
415701

−
70

138567
ln(2). (3.64)

Proof of Corollary 3.2. The proof follows similar lines of argument to that of Corollary 3.1. Let p = 3.
Then, from Theorem 3.3, we easily compute the following quantities:
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B1 = −
1
5
, B2 = −

8
15
, B3 = −

23
15
, B4 = −

8
15
, B5 = −

3
15
, B6 = 0,

a1 = −
1

65280
, a2 =

1
23040

, a3 = −
1

14976
, a4 =

1
16896

, a5 = −
1

34560
,

a6 =
1

161280
, a7 = −

1
43648605

, K3 = −1575, E3 =
49
40
,

6∑
j=1

a jB j =
371

6563700
.

(3.65)

Thus, to derive relation (3.64), we simply substitute the values above into Theorem 3.3. The proof is
complete. 2

4. Explicit evaluation of certain classes of fractional integrals

This section is devoted to giving our new evaluation of a certain class of fractional integrals whose
values are written in terms of hypergeometric functions 3F2 which we obtained in the previous sections.

Theorem 4.1. For all τ ≤ s ≤ t ≤ η, and α > 1/2, the following integral representations for the Gauss
hypergeometric function hold true.
(1)

Iα1 (t) :=
∫ t

τ

(t − s)α−1(η − s)α−1 ds

=

[
(η − τ)α−1(t − τ)α

α

]
2F1(1 − α, 1;α + 1; g(t)), (4.1)

where g(t) :=
t − τ
η − τ

.

(2) ∫ η

τ

Iα1 (t)dt =
[
(η − τ)2α

α(α + 1)

]
3F2(1 − α, 1, α + 1;α + 1, α + 2; 1) (4.2)

=
(η − τ)2α

2α2 . (4.3)

Proof of Theorem 4.1.
(1) Let s = τ + x(t − τ). By changing the integration variable from s to x, the integral Iα1 (t) becomes

Iα1 (t) = (t − τ)
∫ 1

0
((t − τ) − x(t − τ))α−1 ((η − τ) − x(t − τ))α−1 dx

= (t − τ)(t − τ)α−1
∫ 1

0
(1 − x)α−1

(
(η − τ) −

(η − τ)(t − τ)
(η − τ)

x
)α−1

dx

= (η − τ)α−1(t − τ)α
∫ 1

0
(1 − x)α−1

(
1 −

(t − τ)
(η − τ)

x
)α−1

dx.

Above, we have the Euler integral representation of 2F1(a, b; c; z) with a = 1 − α, b = 1, c = α + 1,
and z = g(t) = t−τ

η−τ
. Thus,

Iα1 (t) =
(η − τ)α−1(t − τ)α

α
2F1(1 − α, 1;α + 1; g(t)).
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This completes the proof of (4.1).

(2) Now we are in a position to evaluate the integral (4.2), so denoting the left-hand side of (4.2) by λ1,
we have

λ1 :=
(η − τ)α−1

α

∫ η

τ

(t − τ)α2F1(1 − α, 1;α + 1; g(t))dt. (4.4)

Now, expressing 2F1 as a series and changing the order of integration and summation, which is justified
by Lemma 2.2, we have

λ1 :=
[
(η − τ)α−1

α

] ∞∑
k=0

(1 − α)k

(α + 1)k

∫ η

τ

(t − τ)α
(

t − τ
η − τ

)k

dt

=

[
(η − τ)α−1

α

] ∞∑
k=0

(1 − α)k

(α + 1)k

(
1
η − τ

)k ∫ η

τ

(t − τ)k+α dt

=

[
(η − τ)2α

α

] ∞∑
k=0

(1 − α)k

(α + 1)k

1
(k + α + 1)

.

Now, by Lemma 3.1, we obtain (4.2), that is

λ1 :=
[
(η − τ)2α

α(α + 1)

]
3F2(1 − α, 1, α + 1;α + 1, α + 2; 1),

and Theorem 3.1 gives (4.3). This completes the proof. 2

Theorem 4.2. For all τ ≤ s ≤ t ≤ η and α > 1/2, the following integral representations for the Gauss
hypergeometric function hold true.
(1)

Iα2 (t) :=
∫ t

τ

(t − τ)(t − s)α−1(η − s)α−1 ds

=

[
(η − τ)α−1(t − τ)α+1

α

]
2F1(1 − α, 1;α + 1; g(t)), (4.5)

where g(t) := t−τ
η−τ
.

(2) ∫ η

τ

Iα2 (t)dt =
[
(η − τ)2α+1

α(α + 2)

]
3F2(1 − α, 1, α + 2;α + 1, α + 3; 1) (4.6)

=
(η − τ)2α+1

α

[
1
α + 1

+
1

2α
−

2
2α + 1

]
. (4.7)

Proof of Theorem 4.2.
(1) The proof is similar to the proof of Theorem 4.1, and so we just sketch the basic idea. In exactly
the same manner, the integral Iα2 (t) can be obtained.
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(2) Now denoting the left-hand side of (4.6) by λ2, we have

λ2 :=
(η − τ)α−1

α

∫ η

τ

(t − τ)α+1
2F1(1 − α, 1;α + 1; g(t))dt. (4.8)

Now, expressing 2F1 as a series and changing the order of integration and summation, which is justified
by Lemma 2.2, we have

λ2 :=
[
(η − τ)α−1

α

] ∞∑
k=0

(1 − α)k

(α + 1)k

∫ η

τ

(t − τ)α+1
(

t − τ
η − τ

)k

dt

=

[
(η − τ)α−1

α

] ∞∑
k=0

(1 − α)k

(α + 1)k

(
1
η − τ

)k ∫ η

τ

(t − τ)k+α+1 dt

=

[
(η − τ)2α+1

α

] ∞∑
k=0

(1 − α)k

(α + 1)k

1
(k + α + 2)

.

Now, by Lemma 3.2, we obtain (4.6), that is

λ2 :=
[
(η − τ)2α+1

α(α + 2)

]
3F2(1 − α, 1, α + 2;α + 1, α + 3; 1),

and Theorem 3.2 gives (4.7). This completes the proof. 2

Theorem 4.3. For all τ ≤ s ≤ t ≤ η, and α > 1/2, the following integral representations for the Gauss
hypergeometric function hold true.
(1)

Iα3 (t) :=
∫ t

τ

(t − τ)α−1(t − s)α−1(η − s)α−1 ds

=

[
(η − τ)α−1(t − τ)2α−1

α

]
2F1(1 − α, 1, α + 1; g(t)), (4.9)

where g(t) := t−τ
η−τ

.
(2) ∫ η

τ

Iα3 (t)dt =
[
(η − τ)3α−1

2α2

]
3F2(1 − α, 1, 2α;α + 1, 2α + 1; 1). (4.10)

Proof of Theorem 4.3.
(1) The proof is similar to the proof of Theorem 4.1, and so we just sketch the basic idea. In exactly
the same manner, the integral Iα3 (t) can be obtained.
(2) Now, denoting the left-hand side of (4.10) by λ3, we have

λ3 :=
(η − τ)α−1

α

∫ η

τ

(t − τ)2α−1
2F1(1 − α, 1;α + 1; g(t))dt. (4.11)

By expressing 2F1 as a series and change the order of integration and summation, which is justified by
justified by Lemma 2.2, we have

λ3 =

[
(η − τ)α−1

α

] ∞∑
k=0

(1 − α)k

(α + 1)k

(
1
η − τ

)k ∫ η

τ

(t − τ)k+2α−1 dt
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=

[
(η − τ)3α−1

α

] ∞∑
k=0

(1 − α)k

(α + 1)k

1
(k + 2α)

. (4.12)

Thus, the result of Lemma 2.5 gives (4.10). This completes the proof. 2

Remark 4.1. Note that when α = 2, the results of Theorems 4.2 and 4.3 coincide. Therefore, the right-
hand terms of relations (4.6) and (4.10) are equal when α = 2, which can be justified by Lemma 2.1.
Thus, ∫ η

τ

I2
2(t)dt =

∫ η

τ

I2
3(t)dt =

11(η − τ)5

120
. (4.13)

■ For the choices α = 2p+1
2 and p ∈ N∗, we have the following new explicit evaluation of a certain class

of integrals as a special case from our Theorem 4.3.

Theorem 4.4. For all τ ≤ s ≤ t ≤ η and p ∈ N∗, the following integral holds true.
(1) ∫ η

τ

I
2p+1

2
3 (t)dt =

2(η − τ)
6p+1

2

(2p + 1)2

 3F2( 1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1) (4.14)

= −Kp

2(η − τ)
6p+1

2

(2p + 1)


2a2p+1 ln(2) + 2a2p+1(Ep + Bp) +

2p∑
j=1

a jB j

 , (4.15)

where I
2p+1

2
3 is defined in (4.9) with α = 2p+1

2 , and Kp, a2p+1, Ep, B j, and a j are defined in (3.5).

Proof of Theorem 4.4. By letting α = 2p+1
2 and p ∈ N∗ in the integral (4.10), we obtain (4.14) and (4.15)

is obtained by replacing the explicit evaluation of the fucntion 3F2(1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1)
given by Theorem 3.3. The proof is complete. 2

■ The following result presents the integrals of Iα3 (t) for some α when α = 3/2, α = 5/2, and α = 7/2.

Corollary 4.1. For all τ ≤ s ≤ t ≤ η, the following integrals hold true.
(1) ∫ η

τ

I3/2
3 (t)dt =

2(η − τ)
7
2

32

 (33
35
−

6
35

ln(2)
)
, (4.16)

where I3/2
3 is defined in (4.9) with α = 3/2.

(2) ∫ η

τ

I5/2
3 (t)dt =

2(η − τ)
13
2

52

 (4045
6006

+
10

1001
ln(2)

)
, (4.17)

where I5/2
3 is defined in (4.9) with α = 5/2.

(3) ∫ η

τ

I7/2
3 (t)dt =

2(η − τ)
19
2

72

 (221158
415701

−
70

138567
ln(2)

)
, (4.18)

where I7/2
3 is defined in (4.9) with α = 7/2.
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Proof of corollary 4.1.
(1) Let p = 1. Then, from Theorem 4.4 (4.14), we obtain∫ η

τ

I3/2
3 (t)dt =

2(η − τ)
7
2

32

 3F2(−
1
2
, 1, 3;

5
2
, 4; 1). (4.19)

From Lemma 3.3, we have

3F2(−
1
2
, 1, 3;

5
2
, 4; 1) =

33
35
−

6
35

ln(2), (4.20)

and so substituting (4.20) into (4.19), we obtain (4.31). This completes the proof of (4.31).
(2) Similarly, let p = 2. Then, from Theorem 4.4 (4.14), we obtain∫ η

τ

I5/2
3 (t)dt =

2(η − τ)
13
2

52

 3F2(−
3
2
, 1, 5;

7
2
, 6; 1). (4.21)

From Corollary 3.1, we have

3F2(−
3
2
, 1, 5;

7
2
, 6; 1) =

4045
6006

+
10

1001
ln(2), (4.22)

and so substituting (4.22) into (4.21), we obtain (4.32). This completes the proof of (4.32).
(3) Also, if we let p = 2, then from Theorem 4.4 (4.14), we obtain∫ η

τ

I7/2
3 (t)dt =

2(η − τ)
19
2

72

 3F2(−
5
2
, 1, 7;

9
2
, 8; 1). (4.23)

From Corollary 3.2, we have

3F2(−
5
2
, 1, 7;

9
2
, 8; 1) =

221158
415701

−
70

138567
ln(2), (4.24)

and so substituting (4.24) into (4.23), we obtain (4.33). This completes the proof. 2

Theorem 4.5. For all τ ≤ s ≤ t ≤ η and α > 1, the following integral representations for the Gauss
hypergeometric functions hold true.
(1)

Iα4 (t) :=
∫ t

τ

(t − τ)α−1(t − s)α−1(η − s)α−2 ds

=

[
(η − τ)α−2(t − τ)2α−1

α

]
2F1(2 − α, 1;α + 1; g(t)), (4.25)

where g(t) := t−τ
η−τ

.
(2) ∫ η

τ

Iα4 (t)dt =
(η − τ)3α−2

(1 − α)(2α − 1)
+

[
(1 − 3α)(η − τ)3α−2

2α2(1 − α)

]
3F2(1 − α, 1, 2α;α + 1, 2α + 1; 1). (4.26)
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Proof of Theorem 4.5.
(1) The proof follows similar lines of argument to that of the above theorems and so we just sketch the
basic idea. In exactly the same manner, we have

Iα4 (t) = (η − τ)α−2(t − τ)2α−1
∫ 1

0
(1 − x)α−1

(
1 −

(t − τ)
(η − τ)

x
)α−2

dx.

Above, we have the Euler integral representation of 2F1(a, b; c; z) with a = 2−α, b = 1, c = α+ 1, and
z = g(t) = t−τ

η−τ
, thus

Iα4 (t) =
(η − τ)α−2(t − τ)2α−1

α
2F1(2 − α, 1;α + 1; g(t)). (4.27)

This completes the proof of (4.25).
(2) Now denoting the left-hand side of (4.26) by λ4, we have

λ4 :=
(η − τ)α−2

α

∫ η

τ

(t − τ)2α−1
2F1(2 − α, 1;α + 1; g(t))dt, (4.28)

and by expressing 2F1 as a series and change the order of integration and summation, which is justified
by justified by Lemma 2.2, we have

λ4 =

[
(η − τ)α−2

α

] ∞∑
k=0

(2 − α)k

(α + 1)k

(
1
η − τ

)k ∫ η

τ

(t − τ)k+2α−1 dt

=

[
(η − τ)3α−2

α

] ∞∑
k=0

(2 − α)k

(α + 1)k

1
(k + 2α)

. (4.29)

Thus, the result of Lemma 2.1 gives (4.26). This completes the proof. 2

■ For the choices α = 2p+1
2 and p ∈ N∗, we have also the following new explicit evaluation of a certain

class of Integrals as special case from our Theorem 4.5.

Theorem 4.6. For all τ ≤ s ≤ t ≤ η and p ∈ N∗, the following integral holds true.

∫ η
τ

I
2p+1

2
4 (t)dt =

(η − τ)
6p−1

2

p(1 − 2p)
+

 (6p + 1)(η − τ)
6p−1

2

(2p − 1)(2p + 1)2

 3F2( 1
2 − p, 1, 1 + 2p; 3

2 + p, 2p + 2; 1)

=
(η − τ)

6p−1
2

p(1 − 2p)
−

Kp(6p + 1)(η − τ)
6p−1

2

(2p − 1)(2p + 1)

 (2a2p+1 ln(2) + 2a2p+1(Ep + Bp) +
∑2p

j=1 a jB j

)
,

(4.30)

where I
2p+1

2
4 is defined in (4.25) with α = 2p+1

2 , and Kp, a2p+1, Ep, B j, and a j are defined in (3.5)

Proof of Theorem 4.6. The proof is similar to the proof of Theorem 4.4, so we omit the proof for
brevity. 2

■ The following result presents the values of Iα4 for some α that are when α = 3/2, α = 5/2, and
α = 7/2.
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Corollary 4.2. For all τ ≤ s ≤ t ≤ η, the following integrals hold true.
(1) ∫ η

τ

I3/2
4 (t)dt = −(η − τ)

5
2 +

7(η − τ)
5
2

9

(
33
35
−

6
35

ln(2)
)
, (4.31)

where I3/2
3 is defined in (4.25) with α = 3/2.

(2) ∫ η

τ

I5/2
4 (t)dt = −

(η − τ)
11
2

6
+

12(η − τ)
11
2

75

(
4045
6006

+
10

1001
ln(2)

)
, (4.32)

where I5/2
3 is defined in (4.25) with α = 5/2.

(3) ∫ η

τ

I7/2
4 (t)dt = −

(η − τ)
17
2

15
+

19(η − τ)
17
2

245

(
221158
415701

−
70

138567
ln(2)

)
, (4.33)

where I7/2
3 is defined in (4.25) with α = 7/2.

Proof of Corollary 4.2. The proof is similar to the proof of Theorem 4.1, so we omit the proof for
brevity. 2

5. Conclusions and future work

In this study, we expressed four families of fractional integrals, denoted as F α1 = {I
α
1 (α), Iα2 (α) ; α >

1
2 }, F

α
2 = {I

α
3 (α), ; α > 1

2 } and F α3 = {I
α
4 (α) ; α > 1}, using the class of hypergeometric functions

3F2(1). The series representation of the hypergeometric functions allowed us to derive explicit forms

for the integrals of the family F α1 for all α > 1
2 , as well as for the integrals of the subfamily F

2p+1
2

2 and

F

2p+1
2

3 for all p ∈ N∗.
For the integrals of the family F α2 and F α3 , we have only calculated the explicit forms of those of

the subfamily F
2p+1

2
2 and F

2p+1
2

3 . However, by examining other subfamilies of F α2 and F α3 , we could
derive more interesting formulas relating fractional integrals to the family of functions 3F2(1).
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