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1. Introduction

In terms of cybersecurity, protecting sensitive data and utilizing secure communication techniques
are essential to preventing unauthorized access, data breaches, and cyber-attacks. Data security is a
significant challenge for cryptographers given the rapid advancement of communication technologies.
The main objective of cryptography is to develop methods that ensure secure network communication.
The name “cryptography” comes from two Greek words: “graphein,” which denotes the act of learning
or writing, and “kryptos,” which means something hidden or unrevealing. Various useful encryption
methods and procedures have been established in engaging literary works to ensure the security of data
transmission. Often, maintaining information security is thought to be the main goal of cryptography.
Major contributions to the creation of modern cryptography have been made in fields including
electrical engineering, physics, computer science, mathematics, and communication science. The
nonlinear part of block cipher cryptosystems is called an S-box. The Advanced Encryption Standard
(AES), International Data Encryption Algorithm (IDEA), and the Data Encryption Standard (DES) are
examples of cryptographic techniques that use the S-box. The S-box’s security affects the security of
the entire cryptosystem. Thus, It is well known that the S-box, a nonlinear component, is crucial to
maintaining the security of cryptographic systems. The DES was introduced in 1977 by a well-known
computer manufacturer, and further research resulted in major improvements to the cryptographic
method.

Eventually, a group of college students broke through DES’s protection. The most used encryption
scheme is the Advanced Encryption Standard (AES), created by Daemen and Rijmen in 2002. The
reliability of encryption is significantly influenced by the S-box. Using a subpar S-box when encrypting
data is similar to exploiting the security of the encryption. Consequently, it is essential to evaluate
an S-box’s robustness before using it in a cryptosystem. The severe avalanche requirement, bit
independence criteria, nonlinearity, linear approximation probability, and the probability of differential
approximation are among the methods of strength measurement used for the S-box examination. An
essential component of contemporary cryptographic approaches, symmetric key cryptography ensures
the confidentiality, integrity, and validity of digital data. S-boxes, often called substitution boxes, are
crucial elements in many symmetric key cryptography techniques since they add confusing things,
and, being nonlinear there is an increase in security. In cryptography, chaotic maps are used to create
difficult-to-predict pseudo-random sequences. Complex systems, even deterministic ones, can be
studied and modeled using chaotic maps because of their irregularity and unpredictability. Bifurcation
is used in chaos theory and dynamical systems to characterize a qualitative shift in a system’s behavior
when a parameter changes. The word “bifurcation” in S-boxes refers to cryptography, specifically the
creation and examination of cryptographic methods. An S-box is an essential part of many symmetric
key algorithms, including block ciphers. Its purpose is to create confusion by performing substitution
operations, which obscures the connection between the ciphertext and the key. When examining an
S-box’s resistance to different types of assaults, bifurcation can be linked to how minor adjustments to
the input or key impact the encryption procedure as a whole.
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2. Related work

Performance and security level of the encryption system are directly determined by the quality of
the S-box, which is the main nonlinear component in many block cipher algorithms. Consequently,
the development of the S-box with superior performance has emerged as a significant area of study
that has drawn interest from many academics. To increase the nonlinearity of the original S-boxes,
[1] employed a Josephus circle problem. A nonlinearity of 110.75 is achieved by the suggested
S-box. Ali et al. [2] proposed a new design that uses a direct product of cyclic groups and the
Galois field to produce a robust S-box. Instead of a fractional transformation, they employed a
highly nonlinear inversion map of the Galois field. [3] used Arnold’s Cat map to generate dynamic S-
boxes. The technique generated nonlinear and efficient S-boxes, however it does not ensure bijectivity
for each S-box. On average, the proposed scheme’s nonlinearity was 107. The authors in [4]
created S-boxes using a novel chaotic system. A very nonlinear S-box was created in [5] using a
newly constructed chaotic sine map. The S-box’s nonlinearity was increased by the authors using
an optimization model, however, the scheme’s average nonlinearity remained at 110.25. A novel
method for creating a sturdy S-box using a multi-layer perceptron architecture and linear fractional
transformation was presented in [6]. S-boxes created using a combination of algebraic and chaotic
processes outperform S-boxes constructed solely using algebraic operations or chaos in terms of
cryptographic performance. Furthermore, combining algebraic and chaotic models yields a better
trade-off between S-box execution and generating efficiency, and this strategy is starting to show
promise for creating S-boxes. A growing number of study disciplines have recently focused on creating
hyperchaotic maps with intricate dynamics. The authors designed a new two-dimensional exponential
chaotic system (ECS) [7]. Because the 2D-ECS cascades exponential nonlinearity with bounded
functions, it can produce a huge number of hyperchaotic maps. By using trigonometric functions
to cascade the exponential nonlinearity, three hyperchaotic maps were produced to demonstrate the
efficacy of the 2D-ECS. Using a variety of numerical measurements, the authors first constructed state-
mapping networks with varying fixed-point arithmetic precisions in order to examine the dynamic
features of the hyperchaotic maps in the digital realm. The developed hyperchaotic maps outperformed
the current chaotic maps in terms of performance indicators, according to experimental data. As
a universal system that may produce numerous 2-D chaotic maps with various exponent coefficient
settings, [8] suggested a two-dimensional (2-D) parametric polynomial chaotic system (2D-PPCS). The
2D-PPCS first initialized two parametric polynomials before subjecting them to modular chaotification.
By varying the control parameters, the 2D-PPCS was able to tailor its Lyapunov exponents to achieve
the necessary complexity and robust chaos. The resilient chaotic behavior of the 2D-PPCS was
shown via theoretical research. Two illustrated cases were presented and evaluated using numerical
experiments to confirm the 2D-PPCS’s efficacy. Additionally, a pseudorandom number generator based
on chaos was created to demonstrate the uses of the 2D-PPCS. Based on the homogenized disturbed
spatiotemporal chaotic system [9], the dynamic S-box generation method was developed. Various
techniques are also used to create S-boxes, including heuristic, genetic, and genuine random methods.
Researchers have created keyed S-boxes in response to the shortcomings of static S-boxes. Kazlauskas
et al. [10] suggested ways to produce a substantial quantity of S-boxes based on keys.

The combination of chaos theory and algebraic techniques in the literature has led to innovative S-
box designs that offer enhanced security against cryptanalytic attacks while maintaining efficiency for
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encryption applications. Using the dynamic irreducible polynomial and the affine constant, a dynamic
S-box was developed in [11]. The authors in [12] created and executed a novel AES block cipher
variant that relies on an S-box cube that depends on the key. [13] developed a new computationally
effective technique that uses key-dependent permutations over finite elliptic curves to create dynamic S-
boxes. An extremely nonlinear S-box was constructed in [14] using a logistic chaotic map, symmetric
group of permutation, and projective general linear group action. A genetic method was used in [15]
to generate extremely nonlinear bijective S-boxes. S-boxes with an average nonlinearity of 110.75
were produced in [16] by putting forth a novel mixed chaotic system with favorable pseudo-random
characteristics. A new approach to building an S-box using the chaotic system and the full Latin
square was presented in [17]. A chaotic system first generates chaotic sequences that are used to create
a complete Latin square. The full Latin square is then used to create an S-box. Performance analyses
reveal that the S-box formed by the suggested method has a good performance and can withstand a
wide range of security attacks, including the linear attack and differential attack. To demonstrate the
efficacy of the S-box, this study used it to an image encryption application. [18] provided a crucial
concept for creating symmetric rotating surfaces, and a generalized hybrid trigonometric Bézier curve
is used to describe curves in engineering. The authors of [19] created a powerful S-box creation
method based on EQM that combines and merges all rings with short periods into one maximum
ring. The nonlinear confusion component was constructed in [20] using a straightforward and effective
technique. The derived confusion component has a low nonlinearity of 105.5, making it resistant to
differential and cryptographic attacks. The authors in [21] employed a watermarking-based method
with chaotic fractional transformation properties to build the S-box. While the technique is intriguing
and effective, the resulting S-box has a relatively low nonlinearity of 102.3. The quantum logistic map
[22] was utilized to generate numerous nonlinear confusion components. However, by maximizing
the parameters with the highest nonlinearity, choose just two confusion components. Although the
produced S-boxes have extremely little non-linearity, this technique [23] is quite good. Strong S-boxes
were constructed using three finite fields of order 256, an affine map, and an inversion map. The
method used is easy to use and incredibly effective for creating robust S-boxes, nonetheless, we can
only produce a certain amount of S-boxes with this arrival.
The combination of the chaotic systems has led to the development of a novel S-box generating
technique in [24]. The authors in [25] used a method of image encryption using two keys. A
linear congruential generator and a 2D logistic sine map produce the first key, whereas the Tent,
Bernoulli, and KAA maps produce the second. For image security in cloud storage, [26] proposed
a simplified picture encryption algorithm (SIEA) based on the Feistel cipher structure that utilized
key generation and permutation. To encrypt digital images, [27] proposed ARHM (AES and Rossler
hyperchaotic modelling), which combines the Rossler hyperchaotic system with AES with phantom
transformation. The key space, key sensitivity, histogram, pixel correlation, entropy, and resistance to
differential assaults are all simulated and examined using this model. It uses AES encryption speed and
chaotic system randomization. Liu et al. [28] created an image encryption technique based on a non-
degeneracy 3D chaotic map and a keyed strong S-box that can encrypt color images of all sizes. First,
they created a non-degeneracy 3D discrete hyperchaotic map (3D-DHCM), which is then used to create
a keyed strong S-box with no fixed point, reverse fixed point, or short period rings. The map is based on
the discrete logarithm problem, which is the inverse function of the modular exponentiation procedure.
Finally, the authors blurred the raw image before encryption, and then used permutation, confusion,
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and diffusion algorithms to shuffle all pixels. The authors in [29] developed a technique for improving
the security of medical photographs, and produced robust S-boxes via Mobius transformation on a
Galois field. Quantum theory has been increasingly applied to image encryption in recent years.
The DNA coding-based image encryption algorithm and quantum chaotic pap (QCMDC-IEA) has
inherent security flaws; its DNA domain encryption is susceptible to attacks, such as the presence of
an equivalent key generated by different chaos-based sequences. A proposed attack method exploits
these shortcomings to provide complete decipherment and low complexity.

2.1. Literature gaps

A powerful S-box meets three conditions: no fixed points, no reverse fixed points, and no short
iterating cycles. Nevertheless, the majority of S-boxes built with the previously discussed methods
either lack many short cycles or have fixed or reverse fixed points, which means they do not meet
these three requirements. These problems have a direct effect on the S-boxes’ strength, opening up
possible openings for attackers. A lot of these S-boxes also have low nonlinearity. In cryptography,
nonlinearity is one of the most significant features of S-boxes since it is vital for increasing resistance
to linear cryptanalysis [30]. However, it is important to consider the shortcomings of the popular 1D
chaotic maps, like the Tent, Henon, sine, and logistic maps. One example is the short iteration periods,
restricted chaotic range, weak randomness, and lack of ergodicity in 1D chaotic maps. The generated
sequences could be attacked because of these flaws. The security of constructed S-boxes must therefore
be guaranteed by building a multi-dimensional chaotic map.

2.2. Motivations and contribution

Our motivations are as follows:

1. Creating novel chaotic mappings for the creation of pseudo-random numbers.
2. Investigating how algebraic structures and transformations are affected by chaotic mappings.
3. Development of numerous S-boxes with robust cryptographic characteristics.

Our contributions are as follows:

1. S-box weakness analysis: The S-box structure has two flaws: short iteration cycles, which could
be a cryptography exploit, and fixed point or reverse fixed point.

2. We created a 2D enhanced quadratic map (EQM) in order to get over the drawbacks of 1D chaotic
maps, which include numerous bifurcations, narrow key space, dense periodic windows, and a
brief iteration duration.

3. Security analyses show that the robust S-box construction approach works well for cryptography.

2.3. Organization of article

This article is organized as follows: Section 3 deals with the study of chaotic maps, their analysis,
and construction of a new hybrid EQM. Section 4 consists of a construction algorithm for an S-box
using affine matrices and Galois fields. The evaluation criteria are defined and discussed in Section 5
for dynamic S-boxes. Finally, Section 6 concludes the study.
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3. Chaotic map

There are several characteristics of chaotic maps that make them very good options for encryption
systems. Chaotic maps possess space in their system parameters, are pseudorandom, ergodic, and
sensitive to initial conditions. They are divided into maps with low and large dimensions. The number
of variables and parameters in low-dimensional maps is modest. Therefore, they are straightforward
and simple to use. Because of their small chaotic range and parameter values, they are nevertheless
easily predictable. However, a high-dimensional map’s quantity of parameters and variables has a
greater range of chaotic space since their height is higher. Nevertheless, their drawbacks make them
difficult to apply in real-time due to their complexity and high processing overhead.

3.1. Logistic map

A particular kind of chaotic map, known as a logistic chaotic map, is more widely used than the
others and is mostly used in picture encryption methods. A two degree polynomial mapping includes
the logistic map. It is a famous example of a chaotic, complicated system with basic nonlinear
dynamics. Many of the characteristics of this straightforward system are common to pseudorandom
number generators (PRNGs) [3], and it can readily transition from order to chaos. Logistic map have
the advantages of simplicity and ease of use due to their low variation, however they have several
disadvantages, such as chaotic orbits and parameters and beginning values that may be used to define
them being easily predictable. The logistic chaotic map may be computed mathematically. Figure 1
shows a logistic map Lyapunov exponent, and Figure 2 shows a logistic map bifurcation.

xn+1 = λxn(1 − xn)

The number of iterations is denoted by n, while the chaotic parameter is represented by λ.

Figure 1. Lyapunov exponent diagram of a logistic map.
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Figure 2. Bifurcation diagram of a logistic map.

3.2. Lyapunov exponent

One of the fundamental ideas in chaos theory is the Lyapunov exponent, which quantifies the speed
at which neighboring paths in a dynamical system diverge or converge over time. It measures how
sensitive a system is to starting conditions, which is a sign of chaotic behavior. The Lyapunov exponent
is used to quantify how sensitive a chaotic system is to initial circumstances. Because it guarantees that
even a small alteration to an initial key or state produces a radically different sequence, this sensitivity is
desired in cryptography and adds to the system’s unpredictability and security. The Lyapunov exponent
formula is

λ = lim
n→∞

1
n

log
(
∥δxn∥

∥δx0∥

)
where: (1) the initial perturbation or difference in the input is denoted by δx0; (2) the perturbation that
occurs after n repetitions of the cryptographic function is δxn and (3) an appropriate metric, such as the
Euclidean norm, is shown by ∥ · ∥

3.3. Bifurcation

A term commonly used in the field of cryptography to describe bifurcation is taken from chaos
theory and dynamical systems. When parameters are changed, cryptographic systems or functions
exhibit behavior that can alter dramatically. This term is used to characterize such changes in behavior.

3.4. 2D-Hybrid hyper choatic map

We created a 2D-EQM with modular arithmetic based on the standard quadratic map 3.1 in order
to address its shortcomings, including its limited key space that may communicate equations, lack of
ergodicity, and poor unpredictability.

xi+1 = mod
(
aπ+xi · r

(
1 − y2

i + exp(xi) + sinh(xi)
)
, 1

)
yi+1 = mod

(
bπ+yi · r

(
1 − x2

i + exp(yi) + sinh(yi)
)
, 1

) (3.1)
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where the state variables x, y ∈ (0, 1) and the control parameter r ∈ (0, 1800] are double precision
floating point numbers in Eq 3.1, and a ∈ (1, 10], b ∈ (1, 20]. The phase diagram and bifurcation
diagrams are shown in Figure 3, Figure 4, and Figure 5. The two positive Lyapunov exponents shown
in Figure 6 demonstrate that, over a larger range of control settings, the 2D-EQM exhibits hyperchaotic
behavior and is non-degenerate.

Figure 3. Bifurcation diagram of parameter r and state variable x.

Figure 4. Bifurcation diagram of parameter r and state variable y.

The Lyapunov exponent of proposed map is shown in Figure 6. The values of the
Lyapunov exponents for mapping (3.1) are 14.74813 and 18.235113 using the parameters x0 =

0.762853479752345, y0 = 0.575685981383182, a = 5, b = 12 and r = 1000.

4. Constructing an S-box with a powerful key

The construction of the affine transformation constant and matrix using 2D-EQM is described in
this section. The number of S-boxes built was then determined by using them to create a keyed strong
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Figure 5. Phase diagram of state variables x and y.

Figure 6. Lyapunov exponent for 2D-EQM ( a = 9, b = 15 ).
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S-box based on a seed S-box with high nonlinearity. Thirty irreducible polynomials in the order listed
in the table make up this collection.

4.1. Description of algorithms

Input: The initial condition
(x0, y0, r0)

in Eq (1) is the key of KEY. Output: An 8 × 8, S-box with high nonlinearity and a strong key. To
construct a keyed strong S-box, follow these steps.
Step 1: Affine transformation through the construction of matrix B.
200 iterations of Eq 3.1 with (x0, y0, r0) to eliminate the impact of the transitory process. After that,
64 iterations are needed to produce the two sequences X and Y, and Eq 4.1 yields an invertible matrix B:

B = reshape
(
mod

(⌊
(x201:264 + y201:264) · 1015

⌋
, 2

)
, 8, 8

)
(4.1)

This equation contains the elements from index 201 to 264. In the given index range, the corresponding
values of x and y are also added element-wise in the equation. The final values are multiplied by 1015

after the addition. To deal with tiny fractional portions, for example, if x and y are floats, this step
greatly scales up the values and improves their precision. For every element, this operation applies
modulo 2. Usually, this is done to change the values to binary. The rebuilt matrix will have eight rows
and eight columns since the vector must have 64 elements in total. The matrix B, an 8 × 8 binary
matrix, is the result. If |B| = 0, we can use Eq 4.2 to produce a new B by altering the control parameter
r and the state variable values (x, y) from the previous iteration:

x = x0 +
3
√

p
108 ,

y = y0 +
3
√

p
107 ,

r = r0 +
5
√

p
106 .

(4.2)

here, p is a prime number in the interval (100, 1000).
Step 2: Selecting an irreducible polynomial
After being scaled by 1015 and reduced modulo 30, the sum of x is converted into an index, which is
then increased by 1 in Eq 4.3:

i = mod
(
floor

(∑
X · 1015

)
, 30

)
+ 1 (4.3)

Step 3: An affine transformation vector C is created.
The sum of y, scaled by 1015, scaled and reduced modulo 256, is used to compute C. After being
transformed into a binary string, C is saved as c, a column vector of binary values in Eq 4.4

C = mod
(
floor

(∑
y · 1015

)
, 256

)
(4.4)

Step 4: Constructing a potential S-box Sc.
Choose an element z ∈ GF(28) generated by the irreducible polynomial. Convert z into binary form
and consider the following transformation.
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

a1

a2

a3

a4

a5

a6

a7

a8


=



b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88


·





z1

z2

z3

z4

z5

z6

z7

z8





2

+



c1

c2

c3

c4

c5

c6

c7

c8


After applying the transformation, convert[

a1, a2, a3, a4, a5, a6, a7, a8

]
to decimal form.

Algorithm 1 Keyed Strong S-Box Construction
1: Input: Initial condition (x0, y0, r0)
2: Output: An 8 × 8 S-box
3: Step 1: Affine transformation through the construction of matrix B
4: Perform 200 iterations with (x0, y0, r0) to remove transient effects
5: Perform 64 iterations to generate sequences X and Y
6: Compute binary matrix B using Equation (3.2)
7: Step 2: Selecting an irreducible polynomial
8: Scale the sum of x by 1015, reduce modulo 30, and compute index i using Eq (3.4)
9: Step 3: Creating affine transformation vector C

10: Scale the sum of y by 1015, reduce modulo 256, and compute C using Eq (3.6)
11: Step 4: Constructing potential S-box S c

12: Choose an element z ∈ GF(28) and apply the transformation
13: Convert the resulting vector to decimal form to complete S c

14: Apply removal process to obtain strong keyed S-box

4.2. Determine and eliminate an S-box’s weaknesses

Despite being widely utilized in several cryptosystems, S-box still has certain flaws that can make it
vulnerable, like short cycles and fixed point or reverse fixed points. Invalid substitution may result from
the fixed point or reverse fixed point. An attacker using an S-box can readily predict the fixed point
or reverse fixed point of a different S-box, which can be a fingerprint. Repetitive iteration from any
element cannot traverse all of the elements due to S-box’s short cycles, which could result in a strong
attack that is unusual. There are only 1108 S-boxes that can be built using 30 irreducible polynomials
in AES, thus there are not many of them. They also do not depend on the key, and the majority of
them have short cycles. The fixed point and reverse fixed-point detection are absent from the S-box in
RC4. For the block cipher SM 4.0, there is still one fixed point and eight short periodic rings even if its
S-box is built via nonlinear transformation. The elimination process was used by authors in [31] and
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can be understood by Algorithm 2 and Algorithm 3. This method achieved 99.072 percent results for
elimination.
Note: We can change the state variable values x, y of the previous iteration if there are still issues.
The final S-box will be available after all flaws have been fixed. It will be safe and robust for
use in cryptography. A sample S-box is displayed in Table 1 with x0 = 0.830136384779407, y0 =

0.207884140559460, a = 2, b = 3 and r = 59.

Algorithm 2 Elimination of Fixed and Reverse Fixed Points in S-box with Cycle Detection
Input: Initial S-box
Output: Final S-box after elimination of fixed points, reverse fixed points, and cycle corrections.
Divide the S-box into 16 smaller 4 × 4 matrices S i, j, where i, j ∈ {0, 1, 2, 3}
for each S i, j in the S-box do

Detect if there exists a fixed point Pi, j(r, c) or a reverse fixed point Pi, j(r, c), where r ∈ [0, 3], c ∈
[0, 3]

if a fixed point or reverse fixed point is found then
Apply Eq (6): Pi, j(r, c)↔ Pi, j(r, [c + 1] mod 4) (swap with right neighbor)
Apply Eq (7): Pi, j(r, c)↔ Pi, j([r + 1] mod 4, c) (swap with bottom neighbor)

end if
end for
Call: Func Cycles(S)
Output: Final S-box after removing short iterating cycles

Table 1. Sample S-box.

128 106 149 197 48 157 208 15 53 252 205 20 96 91 35 49
230 89 147 109 27 83 32 73 249 8 80 30 165 134 166 39
194 22 90 68 169 104 69 70 218 234 26 226 232 61 135 214
99 52 237 222 60 121 191 162 172 59 133 5 127 228 37 54
0 119 74 146 174 187 23 167 210 245 40 223 94 141 170 71

247 215 45 6 95 67 88 179 124 173 28 34 231 110 213 250
33 239 17 43 203 111 4 57 236 102 188 202 150 64 219 204

183 93 238 97 243 117 50 241 56 152 255 153 25 55 11 193
14 47 216 185 115 145 224 44 2 29 178 12 3 18 182 143

253 212 98 184 76 254 130 181 100 58 105 144 51 92 196 125
86 163 176 81 120 190 151 1 195 82 199 140 19 240 79 112

233 189 171 158 160 84 200 36 244 148 7 137 229 142 103 242
161 220 118 116 154 108 225 251 180 24 248 87 42 132 129 122
77 62 21 123 235 46 221 159 227 72 38 201 16 164 138 168

107 131 126 186 63 78 156 65 114 31 101 217 136 41 207 75
85 9 10 113 246 206 209 175 198 155 13 192 177 66 139 211
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Algorithm 3 Func Cycles Function to Handle Cycles in S-box
1: Input: S-box S
2: Output: Updated S-box S after cycle elimination.
3: cycles = findCycles(S) (Find all cycles in the S-box)
4: for each cycle in cycles do
5: if length of the cycle equals the length of S then
6: fprintf(’No short cycles found.)́

7: return (Exit function if no short cycles found)
8: end if
9: end for

10: fprintf(’Found d cycles: )́

11: for i = 1 to length(cycles) do
12: fprintf(’Cycle i (length d): ’, i, length(cyclesi))

13: disp(cyclesi)

14: end for
15: while length(cycles) ≥ 2 do
16: Get the last element of the first cycle: lastElem = cycles1(end)
17: Get the first element of the second cycle: firstElem = cycles2(1)
18: Find positions of these elements in S :
19: posLastElem = find(S == lastElem)

20: posFirstElem = find(S == firstElem)

21: Swap these elements:
22: S([posLastElem, posFirstElem]) = S([posFirstElem, posLastElem])

23: Recompute the cycles: cycles = findCycles(S)
24: end while
25: fprintf(’S box after removing short iterating cycles: ’)

26: disp(S)

5. S-box security analysis

This section presents the results of security assessments that were carried out on the suggested
S-boxes to ascertain their level of resistance to cryptographic assaults. The probability of linear
approximation (LAP), bit independence criteria (BIC), nonlinearity, strict avalanche criteria (SAC),
and differencing approximation (DAP) in action were the five tests used to evaluate the S-box (See
Table 2).
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Table 2. Comparison of cryptographic properties of S-boxes constructed from various
mathematical structures.

Mathematical Structure S-boxes Nonlinearity SAC BIC Nonlinearity BIC SAC LAP DAP
Hyper Chaotic map Proposed 112 0.5066 112 0.5027 0.0625 0.0156

Optimization [1] 110.5 0.5100 103 0.4998 - 0.0391
Cyclic groups [2] 112 0.5034 112 0.5066 0.0625 0.0156

Chaos [5] 110.25 0.5027 102.71 0.4936 0.1250 0.0469
ECC [13] 107.75 0.5010 103.93 0.5038 0.1250 0.0391

Hyper Chaotic map [24] 112 0.5017 111.64 0.5006 0.0156 0.0703
Hyper Chaotic map [26] 103.75 0.501 103 - 0.141 0.039

GF(28) [29] 112 0.4988 112 0.5008 0.0625 0.0156
Hyper Chaotic map [31] 110.75 0.4976 110.07 0.5034 0.0859 0.0234
Hyper Chaotic map [32] 107.25 0.4981 104.42 0.5008 - -
Hyper chaotic map [33] 112 0.4971 112 0.4997 0.0625 0.0156

Optimization [34] 112.0 0.5031 112.00 0.51120 0.092610 0.0291800
Chaos [35] 112.00 0.5061 111.28 0.5016 0.0703 1.5625

GF(28) [36] 112 0.5032 112 0.5059 0.0625 0.0156
GF(28) AES 112 0.5040 112 0.5046 0.0625 0.0156
GF(28) [37] 112 0.4980 112 0.5017 0.0625 0.0156

transfer-function [38] 105.4039 0.5024 105.3571 0.5063 0.1171 0.0390
Lu-Chen [39] 105.75 0.4939 103.43 0.5032 0.1171 0.0390

random selection [40] 102.75 0.4978 103.35 0.5007 0.1328 0.0468
Block Ciphers [41] 106 0.5051 98 - 0.148 0.039
Block cipher [42] 107.00 0.4970 - 0.5070 0.0148 0.0470

chaotic system [43] 105.88 0.5084 103.18 0.5087 0.1288 0.0391
SEC [44] 112 0.5010 112 0.5000 0.0625 0.0156

Chaos [45] 109 0.5 - - - -
GF(28) [46] 112 0.5002 112 0.5054 0.0625 0.0156

5.1. Nonlinearity (NL)

Our goal is to have the nonlinearity value as high as feasible because it directly affects password
security. By increasing nonlinearity, nonlinear attacks can be resisted. Our top S-boxes in Table 1
achieve the ideal nonlinearity value for 8-bit S-boxes, which is 112. In Figure 7, the nonlinearity for
1000 S-boxes is shown. Nonlinearity persists in the 109–112 range even after removing all fixed points,
reverse fixed points, and short-period rings. Our function gives an average nonlinearity of 111.51051.
There are 466 finest S-boxes with nonlinearity 112 out of the 1000 S-boxes produced by the function,
and there are 778 S-boxes with nonlinearity greater than 111 overall. These findings are astounding
and far superior to the current techniques without any weaknesses [31] and the nonlinearity of 1950
S-boxes is higher than the mean score of [31]. The scores of the other current methods that are flawless
are significantly lower. The schemes [2, 4, 15, 29, 36] contain short cycles, fixed, and reverse fixed
points, and its S-boxes of nonlinearity fall between 105 and 112. Figure 7 show that our proposed
S-box has nonlinearity values in between 111.5 to 112.
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Figure 7. Nonlinearity distribution.

5.2. Strict Avalvanche Criteria (SAC)

A property of substitution boxes (S-boxes) called strict avalanche criteria (SAC) is used to assess
the cryptographic strength of S-boxes in symmetric key algorithms. Using SAC quantifies the output
such that a small change in the input results in significant changes in the production, such as how much
an S-box’s output bits change when a single bit in its input is changed. When each of the S-box’s input
bits is reversed, each output bit should change with a probability of 0.5. By doing this, it is ensured that
the S-box does not favor any certain output value. At least (k/2) output bits should ideally change if k
input bits are altered. This feature makes sure that a slight change in the input results in a significant
change in the output. If the function f (x) ⊕ f (x ⊕ a) is balanced for each vector of hamming weight
1, then the boolean function f satisfies the SAC. Figure 8 shows the average values of the dependence
matrices. We calculated for 1000 S-boxes to assess the strict avalanche requirements of S-boxes. The
sample S-box average score was 0.5050, which is good when compared to sample S-boxes [1, 6, 31].
Our average score of SAC is 0.5050 for 1000 dynamic S-boxes. Our scores are better than compared
to some other papers [4, 27, 35]. Figure 8 shows the score of strict avalanche criteria (SAC) of our
proposed S-box.
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Figure 8. SAC score distribution.

5.3. Bit of Independence Criteria(BIC)

Let fa and fb be the S-box’s two-bit outputs. When

fa ⊕ fb (a , b, 1 ≤ a, b ≤ n)

an S-box that meets the rigorous avalanche conditions and is extremely nonlinear is said to satisfy
the bit independence criterion (BIC). The term bit independence criterion describes a collection of
characteristics that define the statistical independence of an S-box’s input and output bits. The criteria
that outline the conditions that must be fulfilled by the S-box in order to ensure that its output bits are
statistically independent of its input bits. For an S-box’s bit outputs fi and f j (1 < i, j ≤ n, i , j), if
fi ⊕ f j is extremely nonlinear and meets the rigorous avalanche criterion, the S-box satisfies the BIC.
The ideal BIC-SAC value is 0.5, and the assault resistance is increased by greater BIC nonlinearity
values. The BIC The sample S-boxes in Figure 9 have a nonlinearity of 112, which is equivalent to
the score of AES and sample S-boxes in [2, 4, 31, 35, 36]. The average BIC nonlinearity scores in
[31] are 109.67 and 111.34 [35]. Thus, our average score is 111.49. The BIC nonlinearity scores of
our suggested strategy are higher than [31, 35]. The BIC SAC scores of our sample S-boxes and 1000
randomly generated S-boxes are displayed in Figure 10. For the sample S-boxes, the mean scores are
0.5025.
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Figure 9. Bit independence nonlinearity scores.

Figure 10. Bit independence SAC scores.

5.4. Linear Approximation probability (LAP)

The probability of linear approximation is the likelihood that, given a given number of input-output
pairs, the inputs of an S-box will approach its outputs linearly. Due to its increased vulnerability to
linear attacks, a weaker S-box would have a greater linear approximation probability. Conversely,
a smaller linear approximation probability suggests a stronger S-box. The S-box shows improved
resistance to linear attacks as a result. The linear approximation probability can be determined using
the formula below. Linear Approximation probability (LAP) of dynamically generated 1000 S-boxes
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is displayed in Figure 11.

LPS = max
α,β,0
|{u ∈ GF(2m) | α · S (u) = β · S (v)}| −

2m−1

2m

assuming that the input and output masks are represented by u and v, respectively.

Figure 11. Linear approximation probability (LAP).

5.5. Differential approximation probability (DAP)

When considering a given number of rounds, the probability that a given input difference will result
in a given output difference is estimated by the differential approximation probability for an S-box. The
chance of a specific differential characteristic happening within the S-box is quantified. To calculate
the differential approximation probability, a comprehensive search over all possible input and output
differences across a predetermined number of rounds is often carried out. The occurrences of each
difference are counted, and the total is then calculated. The ratio of input/output pairs examined to
the number of occurrences of the desired difference is used to compute the likelihood. The S-box’s
resistance to differential cryptanalysis increases with decreasing differential approximation probability.
A decreased likelihood suggests the lack of strong differentials displayed by the S-box makes, it is more
difficult for an attacker to exploit the cipher’s differential features. The attacker uses unique qualities to
their advantage and cracks the cipher. Differential Approximation probability(DAP) of 1000 S-boxes
can be observed in Figure 12.

DP(∆u,∆v) =
|{u ∈ GF(2m) | S (u) ⊕ S (u ⊕ ∆u) = ∆v}|

2m

The differential between the input and output are denoted by ∆u and ∆v, respectively.
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Figure 12. Differential approximation probability (DAP).

6. Conclusions

EQM was used to suggest a keyed strong S-box construction technique. In certain S-boxes,
exploitable vulnerabilities related to fixed point, reverse fixed point, and short cycles were first
revealed. In order to create a keyed S-box without any weaknesses, an EQM with ergodicity was
suggested; this significantly increased the average cycle length and randomness when compared to the
quadratic map. After EQM was used to develop a keyed strong S-box construction algorithm, all of
the short periodic rings were combined into a maximized ring, and the fixed point or reverse fixed
point was removed using a swapping technique. The efficacy and viability of the suggested S-box
construction algorithm were confirmed by experimental data.
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Appendix

Table A1. Sample 1.

131 181 101 92 232 154 196 29 189 238 139 57 145 155 237 91
239 140 78 108 203 22 109 63 157 193 241 126 18 177 148 160
75 251 178 3 146 69 74 161 245 235 47 255 23 66 249 34

102 202 141 243 122 7 82 229 107 83 39 72 168 169 96 59
191 247 110 6 46 121 220 40 246 137 0 199 221 213 187 129
64 10 50 186 125 123 62 174 19 226 120 180 207 112 182 79
99 170 103 219 73 15 84 49 77 228 252 61 106 133 135 42
70 43 204 206 195 89 51 162 24 116 212 44 217 8 134 222
93 197 211 94 20 223 183 231 32 190 60 254 163 172 26 25

236 52 38 55 143 208 201 152 27 130 9 167 179 218 244 158
166 35 2 188 150 159 117 136 124 250 115 185 118 85 30 48
227 53 98 144 119 147 111 233 242 114 33 86 175 132 192 176
81 234 142 80 215 200 205 253 105 198 71 4 184 90 113 13
1 37 230 104 95 214 156 16 128 28 12 164 31 224 67 225

68 209 65 88 36 5 127 138 240 216 87 151 21 248 76 153
11 14 149 45 194 17 54 173 97 210 165 56 171 100 41 58

Table A2. Sample 2.

14 247 30 96 23 103 68 202 4 56 8 92 222 191 83 158
153 85 16 167 42 93 238 98 63 215 198 239 10 112 17 55
162 62 164 64 208 232 227 229 175 89 13 217 203 165 145 54
111 144 32 246 91 90 197 143 230 71 60 242 219 37 226 99
113 194 1 94 193 157 69 223 70 166 59 46 40 210 244 81
204 3 149 77 163 0 31 114 116 58 20 38 201 173 225 174
104 48 79 109 88 50 65 249 184 152 138 44 172 180 5 2
19 235 72 26 236 66 178 41 253 241 25 127 231 190 47 155

139 132 240 101 218 53 176 134 185 205 142 187 148 170 73 168
122 228 18 51 117 220 15 125 121 188 214 146 108 254 156 179
33 147 255 154 76 140 43 123 177 110 206 181 35 207 237 233

130 52 97 221 67 150 119 250 159 141 161 82 120 211 39 107
80 128 78 186 86 21 124 129 61 24 131 7 245 248 29 6

189 102 34 74 135 251 84 234 196 126 192 75 137 252 209 160
195 224 183 12 49 57 171 27 87 100 106 45 212 28 199 133
151 213 182 169 9 118 136 95 216 36 105 115 22 11 243 200
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Table A3. Sample 3.

105 125 24 0 109 103 228 236 84 163 104 12 233 234 247 139
239 162 22 112 27 208 191 160 13 72 179 166 20 205 81 165
159 198 58 223 248 135 193 146 227 25 38 45 251 184 232 42
111 201 241 177 242 73 120 224 64 114 218 240 185 209 183 142
207 32 128 213 152 249 65 203 95 138 43 5 202 52 87 10
28 61 19 26 74 99 144 140 169 204 196 47 235 63 214 231

197 219 222 119 118 172 82 40 221 23 53 245 98 35 55 89
34 167 238 123 76 171 136 220 36 149 217 101 145 129 187 117

200 122 216 31 253 11 173 107 254 96 97 206 181 93 77 106
79 194 69 155 255 126 243 147 66 116 71 15 137 68 141 39
1 59 91 237 246 67 188 29 211 49 54 57 51 75 16 44

174 158 6 86 199 60 244 83 151 192 124 14 175 56 46 8
3 186 190 94 178 115 180 100 130 229 150 154 210 250 170 90

156 108 62 113 30 7 226 92 50 80 131 132 182 127 17 161
215 153 230 37 189 102 48 157 78 110 164 4 33 2 121 148
21 176 70 168 41 212 9 252 85 225 134 18 143 88 195 133

Table A4. Sample 4.

171 212 113 1 133 144 176 67 9 61 99 75 155 140 80 190
134 29 159 169 243 214 64 225 203 78 207 95 152 197 45 91
158 6 216 73 96 151 56 187 94 210 191 15 195 28 228 170
199 156 154 53 120 250 3 248 52 157 104 2 109 185 84 223
90 21 150 146 88 123 16 220 253 167 93 119 41 180 18 24
69 48 206 160 227 193 232 201 186 124 81 40 51 100 50 192
59 130 33 166 14 72 26 11 114 217 247 13 153 231 238 241
31 34 224 240 135 47 183 226 55 182 142 149 179 188 194 58
36 118 234 127 246 251 117 139 102 46 239 105 208 101 172 128

222 242 200 49 213 112 39 107 85 70 137 218 44 145 10 79
136 42 83 77 68 74 57 8 115 237 76 20 198 97 71 54
163 106 138 219 196 7 0 63 202 125 66 249 5 233 122 30
236 86 143 121 23 175 165 215 38 103 131 174 168 161 209 89
110 92 132 255 244 252 82 37 211 141 60 204 177 62 32 205
65 162 108 12 17 126 4 230 43 229 235 111 184 87 189 19

245 254 164 178 22 221 25 27 147 129 148 116 35 173 181 98
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Table A5. Sample 5.

6 137 69 85 190 62 75 11 123 98 155 113 170 226 239 108
198 1 0 107 232 192 60 50 125 143 183 188 205 174 157 71
118 23 130 132 166 194 103 252 221 89 120 91 212 144 223 105
119 220 140 254 230 46 136 117 80 54 187 116 227 55 81 168
197 146 150 128 44 217 251 100 104 67 15 66 122 78 28 45
30 195 246 124 191 57 163 84 176 93 25 36 240 202 167 65

152 173 83 225 147 24 19 14 76 182 216 96 106 16 51 121
43 229 13 193 4 162 222 109 184 165 153 39 206 34 97 87

244 2 224 158 141 129 138 82 26 88 247 180 47 99 148 61
64 133 79 243 20 49 145 42 7 72 102 200 196 9 110 86

139 90 203 92 31 189 63 209 94 149 151 238 48 219 56 228
201 156 255 161 37 38 112 3 70 207 18 178 53 164 77 248
131 135 231 8 32 27 208 172 250 218 33 126 235 74 210 101
215 241 237 236 159 58 35 73 142 52 211 204 242 134 115 22
245 68 199 21 234 114 41 5 17 185 175 95 214 186 213 127
177 179 111 169 40 12 253 154 249 59 233 160 171 181 10 29

Table A6. Comparison of cryptographic properties of sample S-boxes.

S-boxes Nonlinearity SAC BIC Nonlinearity BIC SAC LAP DAP
A1 112 0.5034 112 0.4986 0.0625 0.0156
A2 112 0.5042 112 0.5008 0.0625 0.0156
A3 112 0.4980 112 0.4995 0.0625 0.0156
A4 112 0.4978 112 0.4990 0.0625 0.0156
A5 112 0.5037 112 0.4983 0.0625 0.0156

AES 112 0.5040 112 0.5046 0.0625 0.0156

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 3, 5671–5695.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Literature gaps
	Motivations and contribution
	Organization of article

	Chaotic map
	Logistic map
	Lyapunov exponent
	Bifurcation
	2D-Hybrid hyper choatic map 

	Constructing an S-box with a powerful key
	Description of algorithms
	Determine and eliminate an S-box's weaknesses

	S-box security analysis
	Nonlinearity (NL)
	Strict Avalvanche Criteria (SAC)
	Bit of Independence Criteria(BIC)
	Linear Approximation probability (LAP)
	Differential approximation probability (DAP)

	Conclusions

