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Abstract: This paper presents the concept of a quasi-ruled surface, which is a ruled surface generated
by a base curve and a ruling, both of which are defined by the quasi-frame (q-frame). This study
begins with the original curve defined by the q-frame, and then we focus on the focal curve of the
original curve, which serves as the base curve of the ruled surface. We define the focal curve by
the q-frame, so the terminology quasi-focal curve is used in this paper. This paper investigates the
formation and properties of the quasi-ruled surface (QRS) using a quasi-focal curve (QFC) as the
base curve (directrix). The ruling of the surface is expressed in terms of the q-frame associated with
the QFC. A variety of QRS types are discussed in this study, including the osculating, normal, and
rectifying types. In addition, the types of a quasi-tangent developable surface, a quasi-principal normal
surface, and a quasi-binormal ruled surface will also be discussed. The geometric properties of these
surfaces, such as the first and second fundamental quantities, Gaussian curvature, mean curvature,
second Gaussian curvature, and second mean curvature, are described. The conditions for their
developability and minimality are derived. Moreover, we provide an example that includes the study
of geometric properties and clear visualizations of these novel types of QRS.
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1. Introduction

Ruled surfaces play a crucial role in differential geometry. They are characterized by the movement
of generators, which are straight lines that produce the surface. Furthermore, a directrix (base curve) is
any curve that crosses all of the generators (rulings). Understanding this concept is crucial for grasping
the characteristics and applications of ruled surfaces in various geometric contexts.

Many researchers are interested in studying ruled surfaces according to different frames. Tuncer [1]
used a novel technique to study ruled surfaces in R3. These surfaces were defined in terms of their
rulings, base curve curvatures, shape operators, and Gauss curvatures.

In [2], the pitch, angle of pitch, and dual angle of pitch of the ruled surface in R3, corresponding to
a closed curve on the dual unit sphere, were examined. The vectors of the Frenet and Bishop frames of
the closed curve were also analyzed, resulting in a relationship between the dual angle of pitch and the
pitch angle. In [3], a fundamental method was adopted to analyze the ruled surfaces, focusing on the
most basic foliated submanifolds in R3. The structural functions of the ruled surfaces were specified.
The geometric properties and kinematical characterizations of the non-developable ruled surfaces in R3

were investigated.
In [4], the ruled surfaces in R3 were studied using the base curves with the Bishop frame.

These surfaces were characterized by their directrices, Bishop curvatures, shape operators, and Gauss
curvatures. Masal [5] developed ruled surfaces created by type-2 Bishop vectors, distinguishing
Gaussian curvature (GC) and mean curvature (MC), as well as integral invariants. The fundamental
forms, geodesic curvatures, normal curvatures, and geodesic torsions were determined.

In [6], the Darboux frame was used to define the ruled surface and study its properties, including
geodesic curvature, normal curvature, and geodesic torsion. In [7], parallel ruled surfaces with the
Darboux frame in R3 were introduced, highlighting aspects such as developability, striction points,
and distribution parameters. The Steiner rotation vector for such a kind of surface was determined,
and the pitch length and angle of the parallel ruled surfaces associated with the Darboux frame were
computed. In [8], a necessary and sufficient condition was established for a ruled surface to be the
principal normal ruled surface of a space curve using the theories of ruled invariants in R3.

In [9], the ruled surfaces created by normal and binormal vectors throughout a timelike space
curve utilizing a q-frame were explored in three-dimensional Minkowski space. The directional
evolutions of quasi-principal normal and quasi-binormal ruled surfaces were investigated, employing
their directrices. The geometric properties of the ruled surfaces were examined, including their
inextensibility, minimality, and developability. In [10], the striction curve of a non-cylindrical ruled
surface is considered to be the base curve, with its ruling represented as linear combinations of Frenet-
Serret frame (FSF) vectors from the first ruled surface.

In [11], a novel family of ruled surfaces was constructed and studied via q-frame vectors,
known as quasi-vectors. The features of these governed surfaces, such as the first and second
fundamental forms, GC and MC, were determined. Furthermore, several geometric properties such
as developability, minimality, striction curve, and distribution parameters were investigated. Senyurt
et al. [12] introduced a new type of special ruled surface, where the construction of each surface is
based on a Smarandache curve and a specified curve according to the FSF. The generator (ruling) is
selected as the unit Darboux vector. The properties of those ruled surfaces were investigated using the
first and second fundamental forms, as well as their corresponding curvatures.
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The q-frames of the rational and polynomial Bezier curves were computed algorithmically in [13].
The frame was constructed even at singular points based on the curve’s second derivative. This study
provides an important improvement to computer-aided geometric design research.

Kaymanli et al. [14] derived ruled surfaces using a quasi-principal normal, and a quasi-binormal
vectors along a spacelike curve in three-dimensional Minkowski space, leading to the formulation of
the time evolution equations based on quasi-curvatures. Pal et al. [15] introduced a new type of ruled
surfaces in R3, called ruled-like surfaces, which are generated by a base curve and a director curve. In
addition, the properties of these surfaces, such as GC, MC, and the existence of Bertrand mates, were
investigated.

Using the FSF in R3, Gaber et al. [16] investigated a family of ruled surfaces formed of circular
helices (W-curves). The second mean curvature (SMC), and the second Gaussian curvature (SGC)
formulas were obtained, the properties of the constructed ruled surfaces were described, and the
conditions for minimal, flat, II-minimal, and II-flat surfaces were determined. In addition, the
conditions for the base curves of these surfaces were classified as a geodesic curve, an asymptotic
line, and a principal line.

In this work, we introduce a specified concept of QRS, which refers to a ruled surface whose base
curve is defined by a q-frame, and the q-frame vectors of the base curve describe the ruling.

This study focuses on a directrix, which is the focal curve of the original curve. In [17], the focal
curve given by the q-frame is defined as QFC.

The structure of this work is as follows: Section 2 provides background information on the
fundamental ideas of curves and ruled surfaces in three-dimensional Euclidean space. Section 3 covers
the construction of QRS from the QFC with specific geometric features. Section 4 provides techniques
for constructing several innovative types of QRS, using a QFC as the base curve and influencing its
ruling vector. Section 5 presents and visualizes novel types of QRS. Finally, we give a conclusion.

2. Geometry of curves in R3

In this section, we present some geometric concepts on curves in R3, defining the FSF, the q-frame,
and their relationship. The construction of the QRS is based on specific concepts of the q-frame of the
original curve, the quasi-focal curve (QFC). Therefore, it is important to highlight these concepts.

2.1. Curves defined by the Frenet-Serret frame FSF in R3

Consider a unit speed curve α : I ∈ R→ R3 with an arc length parameter s. Let F = {T,N,B} be an
orthogonal FSF at the point p0 on the open curve, where T, N, and B are the unit tangent, unit principal
normal, and unit binomial vectors, respectively. The FSF has the following characteristics [18]:

• 〈T,N〉 = 〈N,B〉 = 〈T,B〉 = 0, 〈T,T〉 = 〈N,N〉 = 〈B,B〉 = 1.

• T ∧ N = B, N ∧ B = T, and B ∧ T = N.

Let κ = κ(s) and τ = τ(s) be the curvature and torsion of the open curve. Then, the Frenet equations
are given by

T′ = κ N, N′ = −κ T + τB, B′ = −τ N, ( )′ =
d
ds

( ). (2.1)
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2.2. Curves defined by q-frame in R3

The Frenet-Serret frame FSF loses effectiveness when the curvature of a curve is zero. To solve
this issue, we use an alternative frame known as a q-frame, which is related to the equations of the
Frenet-Serret frame. The q-frame offers several advantages, including the ability to be defined even
in the absence of a tangent line. Additionally, the formation of the q-frame does not require the space
curve to have a unit speed. Finally, the q-frame is easy to calculate.

Definition 1. Let s represent the arc length along the curve α : I ∈ R → R3 within the interval I.
Assume that α(s) is a unit speed curve. Assume that {Tqα,Nqα,Bqα} is the q-frame, where Tqα is the unit
quasi-tangent vector, Nqα is the unit quasi-principal normal vector, and Bqα is the unit quasi-binormal
vector. The q-frame is defined as follows [19, 20]:

Tqα = α′(s), Nqα =
Tqα ∧ u
‖Tqα ∧ u‖

, Bqα = Tqα ∧ Nqα, (2.2)

where (∧) refers to the cross product and u represents the projection vector; for convenience, we select
u = (0, 0, 1).

Definition 2. Consider the q-frame {Tqα,Nqα,Bqα} of the curve α(s) at a point p, alongside the
FSF {T,N,B} at the same point p on the curve. Let θ represent the Euclidean angle between the
principal normal vector N and the quasi-principal normal vector Nqα. The relation between the
directional q-frames and the FSF is provided by [19, 20] as follows:

Tqα

Nqα

Bqα

 =


1 0 0
0 cos θ sin θ
0 − sin θ cos θ




T
N
B

 . (2.3)

Definition 3. [19] The q-frame {Tqα,Nqα,Bqα}, where Tqα = T, possesses the characteristics
outlined below:

〈Tqα,Tqα〉 = 〈Nqα,Nqα〉 = 〈Bqα,Bqα〉 = 1,
〈Tqα,Nqα〉 = 〈Tqα,Bqα〉 = 〈Nqα,Bqα〉 = 0,
〈Nqα,N〉 = 〈Bqα,B〉 = cos θ , 〈Nqα,B〉 = −〈Bqα,N〉 = sin θ.

(2.4)

Definition 4. [20] The relation between the curvatures κ and τ of the curve α described by the FSF
and the curvatures κ1, κ2, and κ3 of the curve α described by the q-frame is established as follows:

κ1 = κ cos θ, κ2 = −κ sin θ, κ3 = dθ + τ. (2.5)

This paper uses quasi-curvatures, referred to κ1, κ2, and κ3, which are defined in the following
manner [13]:

κ1 =
〈
T′qα,Nqα

〉
=
− det [α′, α′′,u]
‖α′ ∧ u‖

, ( )′ =
d
ds

( ),

κ2 =
〈
T′qα,Bqα

〉
=
〈α′,u〉 〈α′, α′′〉 − 〈α′′,u〉

‖α′ ∧ u‖
,

κ3 = −
〈
B′qα,Nqα

〉
=
〈α′,u〉 det [α′, α′′,u]

‖α′ ∧ u‖2
.

(2.6)
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Lemma 1. [19] Let s represent the arc length along the curve α : I ∈ R → R3 within the interval I.
Assume that α(s) is a unit speed curve. The derivatives of the q-frame {T,Nqα,Bqα} with respect to the
arc length s satisfy the following equations:

α′

T′qα(s)
N′qα(s)
B′qα(s)

 =


0 1 0 0
0 0 κ1(s) κ2(s)
0 −κ1(s) 0 κ3(s)
0 −κ2(s) −κ3(s) 0




α

Tqα(s)
Nqα(s)
Bqα(s)

 . (2.7)

2.3. Focal curves based on the q-frame in R3

In this paper, we focus on studying focal curves by employing a q-frame, and we refer to them as
quasi-focal curves QFC.

Definition 5. [17] Let s represent the arc length along the curve α : I ∈ R→ R3 within the interval I.
Assume that α(s) is a unit speed curve. Consider {Tqα,Nqα,Bqα} be a quasi-frame for the original
curve, and assume that Fα is its unit speed QFC, which is defined by

Fα(s) = α(s) + ϕ1(s)Nqα + ϕ2(s)Bqα, (2.8)

where the smooth functions ϕ1, ϕ2 are the quasi-focal curvatures. Here, we call the curve α the
original curve.

Theorem 2. Let s represent the parameter of the arc length along the curve α : I ∈ R→ R3 within the
interval I. Assume that α(s) is a unit speed curve defined by the q-frame {Tqα,Nqα,Bqα}. Let Fα

(
sF(s)

)
be a QFC for the curve α and assume that Fα is a unit speed curve defined by the q-frame

{
TF

q ,N
F
q ,B

F
q

}
.

Let sF(s) be the QFC arc length parameter and assume that sF(s) is measured on the focal curve
Fα(sF(s)) in the direction of increasing s on the curve α. The relation between the q-frame for the QFC
Fα(s) and the q-frame for the original curve α is given by

TF
q

NF
q

BF
q

 =


0 0 1
0 ε 0
−ε 0 0




Tqα

Nqα

Bqα

 , ε = ±1. (2.9)

Proof. Taking the s-derivative of (2.8) with respect to s, we have

dFα

ds
= α′ + ϕ′1Nqα + ϕ1N′qα + ϕ′2Bqα + ϕ2B′qα. (2.10)

Substituting from (2.7) into (2.10), we have

dFα

ds
=

dFα

dsF ·
dsF

ds
= (1 − κ1ϕ1 − κ2ϕ2) Tqα +

(
ϕ′1 − κ3ϕ2

)
Nqα +

(
ϕ′2 + κ3ϕ1

)
Bqα. (2.11)

Since the QFC represents the centers of the tangential oscillating spheres, the components of Tqα and
Nqα vanish. Then,

1 − κ1ϕ1 − κ2ϕ2 = 0,
ϕ′1 − κ3ϕ2 = 0.

(2.12)
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Hence, we have
dFα

dsF ·
dsF

ds
=

(
ϕ′2 + κ3ϕ1

)
Bqα. (2.13)

Since Fα is a unit speed curve, then ‖ dFα
dsF ‖ = 1. Define TF

q = dFα
dsF as the unit quasi-tangent vector of Fα.

Then,

TF
q ·

dsF

ds
=

(
ϕ′2 + κ3ϕ1

)
Bqα. (2.14)

Taking the norm of the two sides of (2.14), then

dsF

ds
= |ϕ′2 + κ3ϕ1|.

Since sF is measured on Fα(sF(s)) in the direction of increasing s on the curve α(s), then sF is an
increasing function of s. So, dsF

ds > 0, and then dsF

ds = ϕ′2 + κ3ϕ1. Hence, we obtain the quasi-binormal
vector for the QFC:

TF
q = Bqα. (2.15)

Let NF
q be the quasi-principal normal vector to Fα, where

NF
q =

TF
q ∧ u

‖TF
q ∧ u‖

=
Bqα ∧ u
‖Bqα ∧ u‖

, u = (1, 0, 0). (2.16)

Assume that the quasi-tangent and the quasi-principal normal vectors for the curve α are defined by
the following components:

Tqα = (t1, t2, t3), Nqα = (n1, n2, n3). (2.17)

Then,
Bqα ∧ u = Tqα ∧ Nqα ∧ u = t3 Nqα. (2.18)

Substituting from (2.18) into (2.16), we have

NF
q =

t3

|t3|
Nqα. (2.19)

Hence,
NF

q = ε Nqα, ε = ±1. (2.20)

Since BF
q = TF

q ∧ NF
q , then, by using (2.15) and (2.20), we obtain the quasi-binormal vector of the

QFC as
BF

q = −εTqα.

Hence, the theorem holds. �

Remark 1. Throughout this paper, we assume ε = 1. Therefore,

TF
q = Bqα, NF

q = Nqα, BF
q = −Tqα. (2.21)
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Lemma 3. Consider a unit speed curve, α : I −→ R3 defined by the q-frame {Tqα,Nqα,Bqα} with arc
length s. Let Fα

(
sF(s)

)
be a QFC for the original curve α. Let sF(s) be the arc length parameter of the

QFC and assume that sF(s) is measured on the focal curve Fα(sF(s)) in the direction of increasing s
on the curve α. Let

{
TF

q ,N
F
q ,B

F
q

}
be the q-frame for Fα. The q-frame of the quasi-focal curve Fα is

constructed similarly to the q-frame of any curve by the following equations:

d
dsF


TF

q

NF
q

BF
q

 =


0 κF

1 κF
2

−κF
1 0 κF

3
−κF

2 −κF
3 0




TF
q

NF
q

BF
q

 . (2.22)

where κF
1 , κ

F
2 , and κF

3 are the quasi-curvatures for the quasi-focal curve Fα, and they have the following
relations with the quasi-curvatures of the original curve κ1, κ2, and κ3:

κF
1 = 〈

dTF
q

dsF ,N
F
q 〉 =

−εκ3

|ϕ′2 + κ3ϕ1|
,

κF
2 = 〈

dTF
q

dsF ,B
F
q 〉 =

εκ2

|ϕ′2 + κ3ϕ1|
,

κF
3 = −〈

dBF
q

dsF ,N
F
q 〉 =

κ1

|ϕ′2 + κ3ϕ1|
.

(2.23)

Theorem 4. [17] Consider a unit speed curve α : I −→ R3 with its QFC Fα. Then, the quasi-focal
curvatures ϕ1 and ϕ2 are given by

ϕ1 = e−
∫ κ1κ3

κ2
ds

(∫
e
∫ κ1κ3

κ2
ds κ3

κ2
ds + C

)
,

ϕ2 =
1
κ2
−
κ1

κ2
e−

∫ κ1κ3
κ2

ds
(∫

e
∫ κ1κ3

κ2
ds κ3

κ2
ds + C

)
,

(2.24)

where C is a constant of integration.

2.4. Ruled surfaces according to Frenet frame in R3

Definition 6. [21] Let γ(s) : I ⊂ R → R3 be a unit speed curve with an arc length parameter s.
A ruled surface is a surface constructed by straight lines parametrized by γ(s) and η(s). It has the
following parametrization:

Ψ(s, v) = γ (s) + v η (s),

where γ = γ(s) : I ⊂ R → R3 is the directrix or base curve, and η(s) represents a unit vector in the
direction of the ruling of the ruled surface.

Definition 7. [22] Let γ(s) : I ⊂ R → R3 be a unit speed curve with the arc length parameter s, and
let {T,N,B} be the Frenet frame of the curve at a point q. The ruled surface Ψ(s, v) = I × R → R3

defined by
Ψ(s, v) = γ(s) + v η(s), η(s) = µ1(s)T(s) + µ2(s)N(s),

is called the generalized osculating type ruled surface, where µ1(s) and µ2(s) are smooth functions (µ2
1+

µ2
2 = 1). The following cases can be given:
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1. If µ1(s) = 0 and µ2(s) = ±1, then the surface Ψ(s, v) is a principal normal surface along the
base curve.

2. If µ2(s) = 0 and µ1(s) = ±1, then the surface Ψ(s, (v) is a tangent developable surface along the
base curve.

Definition 8. [23] Let γ(s) : I ⊂ R → R3 be a unit speed curve with the arc length parameter s with
Frenet frame {T,N,B} at a point q on the base curve. The ruled surface Ψ(s, v) : I×R→ R3 defined by

Ψ(s, v) = γ(s) + vη(s), η(s) = µ2(s)N(s) + µ3(s)B(s),

is called the generalized normal ruled surface, where µ2, µ3 are smooth functions of the arc length
parameter s, and µ2

2 + µ2
3 = 1. The following cases can be given:

1. If µ2(s) = ±1 and µ3(s) = 0, then the ruled surface Ψ(s, v) is called the principal normal surface
along the base curve γ(s).

2. If µ2(s) = 0 and µ3(s) = ±1, then the ruled surface Ψ(s, v) is called the binormal surface along
the base curve γ(s).

Definition 9. [24] Let γ(s) : I ⊂ R → R3 be a unit speed curve with the arc length parameter s, with
FSF {T,N,B} at a point q on the base cuve, and assume that κ and τ are the curvature and torsion of
the curve. The ruled surface Ψ(s, v) : I × R→ R3 is determined as

Ψ(s, v) = γ(s) + vη(s), η(s) = µ1(s)T(s) + µ3(s)B,

is called the generalized rectifying ruled surface, where µ1(s), and µ3(s) are smooth functions and
µ2

1 + µ2
3 = 1.

Lemma 5. [24] Let Ψ(s, v) be a generalized rectifying ruled surface of the base curve γ(s). Then:

1. If µ1(s) =
τ(s)√

κ2(s)+τ2(s)
and µ3(s) =

κ(s)√
κ2(s)+τ2(s)

, then the surface Ψ(s, v) is a rectifying developable

surface along the base curve γ(s).

2. If µ1(s) = 0 and µ3(s) = ±1, then the surface Ψ(s, v) is a binormal surface along the base
curve γ(s).

3. If µ1(s) = ±1 and µ3(s) = 0, then Ψ(s, v) is the tangent developable surface along γ(s).

3. Construction of the quasi-ruled surface from the quasi-focal curve in R3

In this paper, we define a quasi-ruled surface QRS as a ruled surface generated by a base curve,
which is described by the q-frame, and the ruling is defined by the q-frame of the base curve. We focus
on the QFC of the original curve as a base curve (directrix) of the constructed QRS.
The QRS has the following parametrization:

ψ(s, v) = Fα(s) + v η(s), (3.1)

where Fα is a quasi-focal curve and it serves as the base curve (directrix), and the line passing through
Fα is called the ruling of the surface ψ(s, v) at Fα. The surface ψ(s, v) has singular points at (s, v) if
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ψs∧ψv = 0. Substituting from (2.8) into (3.1), the QRS can be expressed in terms of the original curve
α(s) as

ψ(s, v) = α(s) + ϕ1Nqα + ϕ2Bqα + v η(s), (3.2)

where ϕ1 and ϕ2 are quasi-focal curvatures of α satisfying (2.12) and are given explicitly by Eq (2.24).

Definition 10. [21] Consider the QRS that is defined by (3.2). It has a unit normal vector field nψ
which is defined by

nψ =
ψs ∧ ψv

‖ψs ∧ ψv‖
. (3.3)

where ψs =
∂ψ(s,v)
∂s and ψv =

∂ψ(s,v)
∂v .

Definition 11. [21] The geodesic curvature κg, normal curvature κn, and geodesic torsion τg of the
QFC Fα on the surface ψ are defined as follows:

κg = 〈nψ ∧ TF
q , (T

F
q )′〉, κn = 〈(TF

q )′, nψ〉, τg = 〈nψ ∧
∂n
∂s
, (TF

q )′〉, ( )′ =
d
ds

( ). (3.4)

Definition 12. [21] The curve Fα lying on the surface ψ is a geodesic curve, an asymptotic line, and
a principal line if and only if κg = 0, κn = 0, and τg = 0, respectively.

Definition 13. [21] The coefficients of the first fundamental form (CFFF) are defined as follows:

g11 = 〈ψs, ψs〉, g12 = 〈ψs, ψv〉, g22 = 〈ψv, ψv〉. (3.5)

Also, the coefficients of the second fundamental form (CSFF) are defined as follows:

L11 = 〈ψss, nψ〉, L12 = 〈ψsv, nψ〉, L22 = 〈ψvv, nψ〉. (3.6)

Definition 14. [21] The Gaussian curvature GC, the mean curvature MC, and the distribution
parameter are denoted, respectively, by K, H, and λ, where they are given by

K =
L11L22 − L2

12

g11g22 − g2
12

, (3.7)

H =
g11L22 − 2g12L12 + g22L11

2(g11g22 − g2
12)

, (3.8)

λ =
det

(
F′α, η, η

′
)

‖η′‖2
, ( )′ =

d
ds

( ). (3.9)

Definition 15. [25] The second mean curvature (SMC), denoted as HII , is defined for the QRS in
three-dimensional Euclidean space R3 by

HII = H +
1
4

∆II log(|K|), (3.10)

where ∆II stands for the Laplacian function. In explicit terms, we have

HII = H +
1

2
√
| det(II)|

∑
i, j

∂

∂xi

( √
| det(II)|Li j ∂

∂x j (ln
√
|K| )

)
, (3.11)

where Li j is the inverse of Li j, and the indices i, j belong to {1, 2}. Let the parameters {x1, x2}

correspond to the coordinates {s, v}.
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Definition 16. [26] Let KII stand for the SGC of the QRS in R3. It is defined by using Brioschi’s
formula by replacing the curvature tensor L11,L12, and L22 with the metric tensor components g11, g12,
and g22, respectively:

KII = 1
(det(II))2

(∣∣∣∣∣∣∣∣∣
−1

2L11,vv + L12,sv −
1
2L22,ss

1
2L11,s L12,s −

1
2L11,v

L12,v −
1
2L22,s L11 L12

1
2L22,v L12 L22

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣
0 1

2L11,v
1
2L22,s

1
2L11,v L11 L12
1
2L22,s L12 L22

∣∣∣∣∣∣∣∣∣
)
,

(3.12)

where ( ),v = ∂
∂v , ( ),vv = ∂2

∂v2 , ( ),s = ∂
∂s , ( ),ss = ∂2

∂s2 , and ( ),sv = ∂2

∂v∂s . While the minimal surfaces are
characterized by a vanishing SGC, KII = 0, the converse is not true: A surface with KII = 0 is not
necessarily minimal.

Definition 17. [21] A developable surface in R3 has a vanishing GC (K = 0), while a minimal surface
has a vanishing MC (H = 0).

Definition 18. [27] A non-developable surface in R3 is called II-flat if the SGC, (KII = 0), and
II-minimal if the SMC, (HII = 0).

4. Methods and results

Let s represent the arc length along the curve α : I ∈ R → R3 within the interval I. Assume that
α(s) is a unit speed curve defined by the q-frame {Tqα,Nqα,Bqα}. Consider Fα

(
sF(s)

)
to be a unit speed

QFC for the original curve α, with arc length sF(s), and described by the q-frame {TF
q ,N

F
q ,B

F
q }. The

QFC Fα

(
sF(s)

)
is defined by (2.8), and the relation between the q-frame for the QFC and the q-frame

of the original curve α is obtained by (2.21). In this section, we present some novel types of QRS
constructed by the QFC as a base curve (directrix), and with the ruling that is given by the q-frame of
Fα. We define the following novel types of QRS as follows:

1. The osculating type of quasi-ruled surface whose ruling lies in the osculating plane {TF
q ,N

F
q } of

the base curve Fα.
ψ1(s, v) = Fα(s) + v(µ1TF

q + µ2NF
q ), µ2

1 + µ2
2 = 1.

2. The normal type of quasi-ruled surface whose ruling lies in the normal plane {NF
q ,B

F
q } of the base

curve Fα.
ψ2(s, v) = Fα(s) + v(µ2NF

q + µ3BF
q ), µ2

2 + µ2
3 = 1.

3. The rectifying type of quasi-ruled surface whose ruling lies in the rectifying plane {TF
q ,B

F
q } of the

base curve Fα.
ψ3(s, v) = Fα(s) + v(µ1TF

q + µ3BF
q ), µ2

1 + µ2
3 = 1.

4. The quasi-tangent developable surface whose ruling parallels the quasi-tangent vector of Fα.

ψ4(s, v) = Fα(s) + vTF
q .
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5. The quasi-principal normal ruled surface whose ruling parallels the quasi-principal normal vector
of Fα.

ψ5(s, v) = Fα(s) + vNF
q .

6. The quasi-binormal ruled surface whose ruling parallels the quasi-binormal vector of Fα.

ψ6(s, v) = Fα(s) + vBF
q .

4.1. Construction of the osculating type of quasi-ruled surfaces

Let Fα

(
sF(s)

)
be the QFC of the original curve α. Assume that the ruling lies in the osculating

plane {TF
q ,N

F
q } of the base curve Fα. In this case, the constructed surface is called the osculating type

of quasi-ruled surface, where

η(s) = µ1TF
q + µ2NF

q , µ2
1 + µ2

2 = 1. (4.1)

Substituting from (2.21) into (4.1), then

η(s) = µ2Nqα + µ1Bqα . (4.2)

Substituting from (4.2) into (3.2), then we obtain the osculating type QRS:

ψ1(s, v) = α(s) + (ϕ1 + vµ2)Nqα + (ϕ2 + vµ1)Bqα . (4.3)

Taking the first derivative of (4.3) with respect to s, we have

ψ1,s = α′ + (ϕ′1 + vµ′2)Nqα + (ϕ1 + vµ2)N′qα + (ϕ′2 + vµ′1)Bqα + (ϕ2 + vµ1)B′qα . (4.4)

Substituting from (2.7) into (4.4), then

ψ1,s =
(
1 − κ1(ϕ1 + vµ2) − κ2(ϕ2 + vµ1)

)
Tqα +

(
ϕ′1 + vµ′2 − κ3(ϕ2 + vµ1)

)
Nqα

+
(
ϕ′2 + vµ′1 + κ3(ϕ1 + vµ2)

)
Bqα .

(4.5)

Using relation (2.12), we obtain

ψ1,s = −v
(
κ1µ2 + κ2µ1

)
Tqα + v

(
µ′2 − κ3µ1

)
Nqα +

(
v(µ′1 + κ3µ2) + ϕ′2 + κ3ϕ1

)
Bqα .

Choose

ξ1 = −(κ1µ2 + κ2µ1),
ξ2 = µ′2 − κ3µ1,

ξ3 = µ′1 + κ3µ2, µ1ξ3 + µ2ξ2 = 0,
ξ4 = ϕ′2 + κ3ϕ1.

(4.6)

Then,
ψ1,s = vξ1Tqα + vξ2Nqα + (vξ3 + ξ4)Bqα . (4.7)

Taking the first derivative of (4.3) with respect to v, we have

ψ1,v = µ2Nqα + µ1Bqα . (4.8)

By substituting from (4.7) and (4.8) into (3.5), we obtain the following lemma.
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Lemma 6. The CFFF of the osculating type of QRS are given by

g11 = v2(ξ2
1 + ξ2

2 + ξ2
3) + 2vξ3ξ4 + ξ2

4, g12 = µ1ξ4, g22 = 1. (4.9)

Lemma 7. The normal vector nψ1 to the osculating type of QRS is given by

nψ1 =
1
ε1

( (
(µ1ξ2 − µ2ξ3)v − µ2ξ4

)
Tqα − vµ1ξ1Nqα + vµ2ξ1Bqα

)
,

ε1 =

(
v2(ξ2

1 + ξ2
2 + ξ2

3) + 2vξ3ξ4 + µ2
2ξ

2
4

)1/2

.

(4.10)

Lemma 8. Consider the osculating type of QRS that is defined by (4.3). Then, the second partial
derivatives with respect to s and v are given by

ψ1,ss =
(
λ1v − κ2ξ4

)
Tqα +

(
λ2v − κ3ξ4

)
Nqα +

(
λ3v + ξ′4

)
Bqα ,

ψ1,sv = ξ1Tqα + ξ2Nqα + ξ3Bqα , ψ1,vv = 0,
(4.11)

where

λ1 = ξ′1 − κ1ξ2 − κ2ξ3,

λ2 = ξ′2 + κ1ξ1 − κ3ξ3,

λ3 = ξ′3 + κ2ξ1 + κ3ξ2.

(4.12)

Lemma 9. The CSFF of the osculating type of QRS are given as

L11 =
1
ε1

(
A1v2 + A2v + κ2µ2ξ

2
4
)
, L12 = −

µ2ξ1ξ4

ε1
, L22 = 0, (4.13)

where

A1 = λ1(µ1ξ2 − µ2ξ3) − λ2µ1ξ1 + λ3µ2ξ1,

A2 = −λ1µ2ξ4 − κ2ξ4(µ1ξ2 − µ2ξ3) + µ1κ3ξ1ξ4 + µ2ξ1ξ
′
4.

(4.14)

Lemma 10. The MC and GC for the osculating type of QRS are given directly by substituting from (4.9)
and (4.13) into (3.7) and (3.8):

H =
1

2ε3
1

(
A1v2 + A2v + µ2ξ

2
4(κ2 + 2µ1ξ1)

)
, K = −

(µ2ξ1ξ4)2

ε4
1

. (4.15)

4.2. Construction of the normal type of quasi-ruled surface

Let Fα

(
sF(s)

)
be the QFC of the original curve α. Assume that the ruling lies in the normal

plane {NF
q ,B

F
q } of the base curve Fα. In this case, the constructed surface is called the normal type

of quasi-ruled surface QRS, where

η(s) = µ2NF
q + µ3BF

q , µ2
2 + µ2

3 = 1. (4.16)

Substituting from (2.21) into (4.16), then

η(s) = µ2Nqα − µ3Tqα . (4.17)
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Substituting from (4.17) into (3.2), we obtain the normal type of QRS, which has the
following parametrization:

ψ2(s, v) = α(s) − vµ3Tqα + (ϕ1 + vµ2)Nqα + ϕ2Bqα . (4.18)

Taking the first derivative of (4.18) with respect to s, then

ψ2,s =
(
1 − κ1(ϕ1 + vµ2) − κ2ϕ2 − vµ′3

)
Tqα +

(
ϕ′1 + vµ′2 − κ3ϕ2 − vκ1µ3

)
Nqα

+
(
ϕ′2 + κ3ϕ1 + v(µ2κ3 − µ3κ2)

)
Bqα .

Using relation (2.12), we obtain

ψ2,s = −v(µ′3 + µ2κ1)Tqα + v(µ′2 − µ3κ1)Nqα +
(
ϕ′2 + κ3ϕ1 + v(µ2κ3 − µ3κ2)

)
Bqα .

Choose

ξ̃1 = −(µ′3 + µ2κ1),
ξ̃2 = µ′2 − µ3κ1, µ2ξ̃2 − µ3ξ̃1 = 0,
ξ̃3 = µ2κ3 − µ3κ2,

ξ4 = ϕ′2 + κ3ϕ1.

(4.19)

Then,
ψ2,s = vξ̃1Tqα + vξ̃2Nqα + (vξ̃3 + ξ4)Bqα . (4.20)

Taking the first derivative of (4.18) with respect to v, we have

ψ2,v = −µ3Tqα + µ2Nqα . (4.21)

By substituting from (4.20) and (4.21) into (3.5), we obtain the following lemma.

Lemma 11. The CFFF of the normal type of QRS are given as

g11 = v2(ξ̃2
1 + ξ̃2

2 + ξ̃2
3) + 2vξ̃3ξ4 + ξ2

4, g12 = 0, g22 = 1. (4.22)

Lemma 12. The normal vector nψ2 to the normal type of QRS is given by

nψ2 =
1
ε2

(
− µ2(vξ̃3 + ξ4)Tqα − µ3(vξ̃3 + ξ4)Nqα + v(µ2ξ̃1 + µ3ξ̃2)Bqα

)
,

ε2 =

(
v2(ξ̃2

1 + ξ̃2
2 + ξ̃2

3) + 2vξ̃3ξ4 + ξ2
4

)1/2

.

(4.23)

Lemma 13. Consider the normal type of QRS that is defined by (4.18). Then, the second partial
derivatives with respect to s and v are given by

ψ2,ss =
(
λ̃1v − κ2ξ4

)
Tqα +

(
λ̃2v − κ3ξ4

)
Nqα +

(
λ̃3v + ξ′4

)
Bqα ,

ψ2,sv = ξ̃1Tqα + ξ̃2Nqα + ξ̃3Bqα , ψ2,vv = 0,
(4.24)

where

λ̃1 = ξ̃′1 − κ1ξ̃2 − κ2ξ̃3,

λ̃2 = ξ̃′2 + κ1ξ̃1 − κ3ξ̃3,

λ̃3 = ξ̃′3 + κ2ξ̃1 + κ3ξ̃2.

(4.25)
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Lemma 14. The CSFF of the normal type of QRS are given as

L11 =
1
ε2

(
Ã1v2 + Ã2v + (κ2µ2 + κ3µ3)ξ2

4

)
, L12 = −

ξ4

ε2
(µ2ξ̃1 + µ3ξ̃2) , L22 = 0, (4.26)

where

Ã1 = −(λ̃1µ2 + λ̃2µ3)ξ̃3 + λ̃3(µ2ξ̃1 + µ3ξ̃2) ,
Ã2 = −(λ̃1µ2 + λ̃2µ3)ξ4 + (µ2κ2 + µ3κ3)ξ̃3ξ4 + (µ2ξ̃1 + µ3ξ̃2)ξ′4 .

(4.27)

Lemma 15. The MC and GC for the normal type of QRS are given directly by substituting from (4.22)
and (4.26) into (3.7) and (3.8).

H =
1

2ε3
2

(
Ã1v2 + Ã2v + (µ2κ2 + µ3κ3)ξ2

4

)
, K = −

ξ2
4

ε4
2

(µ2ξ̃1 + µ3ξ̃2)2. (4.28)

4.3. Construction of the rectifying type of quasi-ruled surface

Let Fα

(
sF(s)

)
be the QFC of the original curve α. Assume that the ruling lies in the rectifying

plane {TF
q ,B

F
q } of the base curve Fα. In this case, the constructed surface is called the rectifying type

of quasi-ruled surface QRS, where

η(s) = µ1TF
q + µ3BF

q , µ2
1 + µ2

3 = 1. (4.29)

Substituting from (2.21) into (4.29), then

η(s) = −µ3Tqα + µ1Bqα . (4.30)

Substituting from (4.30) into (3.2), we obtain the rectifying type of QRS with the
following parametrization:

ψ3(s, v) = α(s) − vµ3Tqα + ϕ1Nqα + (ϕ2 + vµ1)Bqα . (4.31)

Taking the first derivative of (4.31) with respect to s, then

ψ3,s =
(
1 − κ1ϕ1 − κ2ϕ2 − v(µ′3 + µ1κ2))Tqα +

(
ϕ′1 − κ3ϕ2 − v(µ3κ1 + µ1κ3)

)
Nqα

+
(
ϕ′2 + κ3ϕ1 + v(µ′1 − µ3κ2)

)
Bqα .

Using relation (2.12), we obtain

ψ3,s = −v(µ′3 + µ1κ2)Tqα − v(µ3κ1 + µ1κ3)Nqα +
(
ϕ′2 + κ3ϕ1 + v(µ′1 − µ3κ2)

)
Bqα .

Choose

ξ̂1 = −(µ′3 + µ1κ2),
ξ̂2 = −(µ3κ1 + µ1κ3),
ξ̂3 = µ′1 − µ3κ2, µ1ξ̂3 − µ3ξ̂1 = 0,
ξ4 = ϕ′2 + κ3ϕ1.

(4.32)
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Then,
ψ3,s = vξ̂1Tqα + vξ̂2Nqα + (vξ̂3 + ξ4)Bqα . (4.33)

Taking the first derivative of (4.31) with respect to v, we have

ψ3,v = −µ3Tqα + µ1Bqα . (4.34)

By substituting from (4.33) and (4.34) into (3.5), we obtain the following lemma.

Lemma 16. The CFFF of the rectifying type of QRS are given as

g11 = v2(ξ̂2
1 + ξ̂2

2 + ξ̂2
3) + 2vξ̂3ξ4 + ξ2

4, g12 = µ1ξ4, g22 = 1. (4.35)

Lemma 17. The normal vector nψ3 to the rectifying type of QRS is given by

nψ3 =
1
ε3

(
vµ1ξ̂2Tqα − (v(µ1ξ̂1 + µ3ξ̂3) + µ3ξ4)Nqα + vµ3ξ̂2Bqα

)
,

ε3 =

(
v2(ξ̂2

1 + ξ̂2
2 + ξ̂2

3) + 2vξ̂3ξ4 + µ2
3ξ

2
4

)1/2

.

(4.36)

Lemma 18. Consider the rectifying type of QRS that is defined by (4.31). Then, the second partial
derivatives with respect to s and v are given by

ψ3,ss =
(
λ̂1v − κ2ξ4

)
Tqα +

(
λ̂2v − κ3ξ4

)
Nqα +

(
λ̂3v + ξ′4

)
Bqα ,

ψ3,sv = ξ̂1Tqα + ξ̂2Nqα + ξ̂3Bqα , ψ3,vv = 0,
(4.37)

where

λ̂1 = ξ̂′1 − κ1ξ̂2 − κ2ξ̂3,

λ̂2 = ξ̂′2 + κ1ξ̂1 − κ3ξ̂3,

λ̂3 = ξ̂′3 + κ2ξ̂1 + κ3ξ̂2.

(4.38)

Lemma 19. The CSFF of the rectifying type of QRS are given as

L11 =
1
ε3

(
Â1v2 + Â2v + κ3µ3ξ

2
4

)
, L12 = −

µ3ξ̂2ξ4

ε3
, L22 = 0, (4.39)

where

Â1 = (λ̂1µ1 + λ̂3µ3)ξ̂2 − λ̂2(µ1ξ̂1 + µ3ξ̂3),
Â2 = −(µ3λ̂2 + µ1κ2ξ̂2)ξ4 + µ3ξ̂2ξ

′
4 + κ3ξ4(µ1ξ̂1 + µ3ξ̂3).

(4.40)

Lemma 20. The MC and GC for the rectifying type of QRS are given directly by substituting
from (4.35) and (4.39) into (3.7) and (3.8):

H =
1

2ε3
3

(
Â1v2 + Â2v + µ3ξ

2
4(κ3 + 2µ1ξ̂2)

)
, K = −

(µ3ξ̂2ξ4)2

ε4
3

. (4.41)
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4.4. Construction of the quasi-tangent developable surface

Let Fα

(
sF(s)

)
be the QFC of the original curve α. Assume that the ruling parallels the quasi-tangent

vector TF
q of the base curve Fα, so

η(s) = TF
q = Bqα . (4.42)

Substituting from (4.42) into (3.2), we obtain the quasi-tangent developable surface as follows:

ψ4(s, v) = α(s) + ϕ1Nqα + (ϕ2 + v)Bqα . (4.43)

Taking the first derivative of (4.43) with respect to s, we have

ψ4,s = α′ + ϕ′1Nqα + ϕ1N′qα + ϕ′2Bqα + (ϕ2 + v)B′qα . (4.44)

Substituting from (2.7) into (4.44), then

ψ4,s =
(
1 − κ1ϕ1 − κ2(ϕ2 + v)

)
Tqα +

(
ϕ′1 − κ3(ϕ2 + v)

)
Nqα +

(
ϕ′2 + κ3ϕ1

)
Bqα . (4.45)

Using relation (2.12), we obtain

ψ4,s = −vκ2Tqα − vκ3Nqα + (ϕ′2 + κ3ϕ1)Bqα .

Choose

ξ4 = ϕ′2 + κ3ϕ1, where ϕ′2 =

(
1 − κ1ϕ1

κ2

)′
. (4.46)

Then, we have
ψ4,s = −vκ2Tqα − vκ3Nqα + ξ4Bqα . (4.47)

Taking the first partial derivative of (4.43) with respect to v, we have

ψ4,v = Bqα . (4.48)

Lemma 21. The CFFF for the quasi-tangent developable surface are given by

g11 = ξ2
4 + v2(κ2

2 + κ2
3), g12 = ξ4, g22 = 1. (4.49)

Lemma 22. The normal vector nψ4 to the quasi-tangent developable surface is given by

nψ4 =
−κ3Tqα + κ2 Nqα√

κ2
2 + κ2

3

. (4.50)

Lemma 23. The CSFF of the quasi-tangent developable surface are given as

L11 =
v√

κ2
2 + κ2

3

(
κ′2κ3 − κ2κ

′
3 − κ1(κ2

2 + κ2
3)
)
, L12 = 0, L22 = 0. (4.51)

Proof. Taking the second partial derivatives of (4.47) and (4.48) with respect to s and v, we obtain

ψ4,ss = −
(
ξ4κ2 + v(κ′2 − κ1κ3)

)
Tqα −

(
ξ4κ3 + v(κ′3 + κ1κ2)

)
Nqα +

(
ξ′4 − v(κ2

2 + κ2
3)
)

Bqα ,

ψ4,sv = −κ2Tqα − κ3Nqα , ψ4,vv = 0.
(4.52)

Taking the inner product of (4.50) and (4.52) and substituting into (3.6), the lemma holds. �
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Lemma 24. The MC and GC for the quasi-tangent developable surface are given directly by
substituting from (4.49) and (4.51) into (3.7) and (3.8).

H =
κ′2κ3 − κ2κ

′
3 − κ1(κ2

2 + κ2
3)

2v(κ2
2 + κ2

3)3/2
, K = 0. (4.53)

4.5. Construction of the quasi-principal normal ruled surface

Let Fα

(
sF(s)

)
be the QFC of the original curve α. Consider the case where the ruling parallels the

quasi-principal normal vector NF
q of the base curve Fα. Then,

η(s) = NF
q . (4.54)

Substituting from (2.21) into (4.54), then

η(s) = Nqα . (4.55)

Substituting from (4.55) into (3.2), we obtain the quasi-principal normal ruled surface, which is
given by

ψ5(s, v) = α(s) + (ϕ1 + v)Nqα + ϕ2Bqα . (4.56)

Taking the first derivative of (4.56) with respect to s and using (2.7), then

ψ5,s = (1 − κ1(ϕ1 + v) − κ2ϕ2)Tqα + (ϕ′1 − κ3ϕ2)Nqα + (ϕ′2 + κ3ϕ1 + vκ3)Bqα . (4.57)

Using relation (2.12), we obtain

ψ5,s = −vκ1Tqα + (vκ3 + ξ4)Bqα , ξ4 = ϕ′2 + κ3ϕ1. (4.58)

Taking the first derivative of (4.56) with respect to v, we have

ψ5,v = Nqα . (4.59)

By substituting from (4.58) and (4.59) into (3.5), we obtain the following lemma.

Lemma 25. The CFFF of the quasi-principal normal ruled surface are given by

g11 = (κ2
1 + κ2

3)v2 + 2vκ3ξ4 + ξ2
4, g12 = 0, g22 = 1. (4.60)

Lemma 26. The normal vector nψ5 to the quasi-principal normal ruled surface is given by

nψ5 =
−(vκ3 + ξ4)Tqα − vκ1Bqα√
v2(κ2

1 + κ2
3) + 2vκ3ξ4 + ξ2

4

. (4.61)

Lemma 27. Consider the quasi-principal normal ruled surface that is defined by (4.56). Then, the
second partial derivatives with respect to s and v are given by

ψ5,ss =
(
− v(κ′1 + κ2κ3) − κ2ξ4

)
Tqα −

(
v(κ2

1 + κ2
3) + κ3ξ4

)
Nqα +

(
v(κ′3 − κ1κ2) + ξ′4

)
Bqα ,

ψ5,sv = −κ1Tqα + κ3Bqα , ψ5,vv = 0.
(4.62)
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Lemma 28. The CSFF of the quasi-principal normal ruled surface are given as

L11 =
1√

v2(κ2
1 + κ2

3) + 2vκ3ξ4 + ξ2
4

(
v2(κ′1κ3 − κ1κ

′
3 + κ2(κ2

1 + κ2
3)) + v(ξ4(κ′1 + 2κ2κ3) − κ1ξ

′
4) + κ2ξ

2
4

)
,

L12 =
κ1ξ4√

v2(κ2
1 + κ2

3) + 2vκ3ξ4 + ξ2
4

, L22 = 0.

(4.63)

Lemma 29. The MC and GC for the quasi-principal normal ruled surface are given directly by
substituting from (4.60) and (4.63) into (3.7) and (3.8).

H =
v2(κ′1κ3 − κ1κ

′
3 + κ2(κ2

1 + κ2
3)) + v(ξ4(κ′1 + 2κ2κ3) − κ1ξ

′
4) + κ2ξ

2
4

2(v2(κ2
1 + κ2

3) + 2vκ3ξ4 + ξ2
4)3/2

,

K =
−(κ1ξ4)2

(v2(κ2
1 + κ2

3) + 2vκ3ξ4 + ξ2
4)2
.

(4.64)

4.6. Construction of the quasi-binormal ruled surface

Let Fα

(
sF(s)

)
be the QFC of the original curve α. Consider the case where the ruling parallels the

quasi-binormal vector BF
q of the base curve Fα. Then,

η(s) = BF
q . (4.65)

Substituting from (2.21) into (4.65), then

η(s) = −Tqα . (4.66)

Substituting from (4.66) into (3.2), we obtain the quasi-binormal ruled surface as

ψ6(s, v) = α(s) − vTqα + ϕ1Nqα + ϕ2Bqα . (4.67)

Taking the first derivative of (4.67) with respect to s and using (2.7), then

ψ6,s = (1 − κ1ϕ1 − κ2ϕ2)Tqα + (ϕ′1 − κ3ϕ2 − vκ1)Nqα + (ϕ′2 + κ3ϕ1 − vκ2)Bqα . (4.68)

Using relation (2.12), we obtain

ψ6,s = −vκ1Nqα + (ξ4 − vκ2)Bqα , ξ4 = ϕ′2 + κ3ϕ1. (4.69)

Taking the first derivative of (4.67) with respect to v, we have

ψ6,v = −Tqα . (4.70)

By substituting from (4.69) and (4.70) into (3.5), we obtain the following lemma.

Lemma 30. The CFFF of the quasi-binormal ruled surface are given by

g11 = (κ2
1 + κ2

2)v2 − 2vκ2ξ4 + ξ2
4, g12 = 0, g22 = 1. (4.71)
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Lemma 31. The normal vector nψ6 to the quasi-binormal ruled surface is given by

nψ6 = −
(ξ4 − vκ2)Nqα + vκ1Bqα√
v2(κ2

1 + κ2
2) + 2vκ2ξ4 + ξ2

4

. (4.72)

Lemma 32. Consider the quasi-binormal ruled surface that is defined by (4.67). Then, the second
partial derivatives with respect to s and v are given by

ψ6,ss =
(
v(κ2

1 + κ2
2) − κ2ξ4

)
Tqα −

(
v(κ′1 − κ2κ3) + κ3ξ4

)
Nqα +

(
ξ′4 − v(κ′2 + κ1κ3)

)
Bqα ,

ψ6,sv = −κ1Nqα − κ2Bqα , ψ6,vv = 0,
(4.73)

Lemma 33. The CSFF of the quasi-binormal ruled surface are given as

L11 =
1√

v2(κ2
1 + κ2

2) + 2vκ2ξ4 + ξ2
4

(
v2(κ1κ

′
2 − κ

′
1κ2 + κ3(κ2

1 + κ2
2)) + v(ξ4(κ′1 − 2κ2κ3) − κ1ξ

′
4) + κ3ξ

2
4

)
,

L12 =
κ1ξ4√

v2(κ2
1 + κ2

2) + 2vκ2ξ4 + ξ2
4

, L22 = 0.

(4.74)

Lemma 34. The MC and GC for the quasi-binormal ruled surface are given directly by substituting
from (4.71) and (4.74) into (3.7) and (3.8).

H =
v2(κ1κ

′
2 − κ

′
1κ2 + κ3(κ2

1 + κ2
2)) + v(ξ4(κ′1 − 2κ2κ3) − κ1ξ

′
4) + κ3ξ

2
4

2(v2(κ2
1 + κ2

2) + 2vκ2ξ4 + ξ2
4)3/2

,

K =
−(κ1ξ4)2

(v2(κ2
1 + κ2

2) + 2vκ2ξ4 + ξ2
4)2
.

(4.75)

Remark 2. For the previous types of QRS, we obtained L22 = 0. So, the SMC and SGC for these types
of QRS are given by

HII = H +
1

2L12

(
2
∂

∂s

(
∂

∂v
ln

√
|K|

)
−
∂

∂v

(
L11

L12

∂

∂v
ln

√
|K|

))
,

KII =
−1

2(L12)3

(
L12

(
2L12,sv − L11,vv

)
+ L12,v

(
L11,v − 2L12,s

))
.

(4.76)

5. Examples of novel types of quasi-ruled surfaces

Ruled surfaces can be created in different ways, depending on the type of base curve, ruling, or
modification to the base curve frame. Methods like using the Frenet frame, Bishop frame, and q-frame
can be used. The choice of the process depends on the practical application.

5.1. A mathematical analysis of the features of novel types of quasi-ruled surfaces

Example 1. Consider a unit speed curve α(s) given as the original curve with the
following parametrization:

α =

2
3

(cos s − 1),
2
3

sin s,

√
5

3
s
 , (5.1)
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where s represents the arc length along the curve α with FSF given by

T =

−2
3

sin s,
2
3

cos s,

√
5

3

 , N = (− cos s,− sin s, 0) , B =

 √5
3

sin s,
−
√

5
3

cos s,
2
3

 . (5.2)

The curvature and torsion κ, τ are given by

κ =
2
3
, τ =

√
5

3
.

The q-frame of the original curve α is given by

Tqα = (
−2
3

sin s,
2
3

cos s,

√
5

3
), Nqα = (cos s, sin s, 0), Bqα = (

−
√

5
3

sin s,

√
5

3
cos s,

−2
3

), (5.3)

with quasi-curvatures κ1, κ2, κ3 given by

κ1 =
−2
3
, κ2 = 0, κ3 =

√
5

3
.

Using (2.12), then ϕ1 = −3
2 , ϕ2 = 0, and the QFC associated with the original curve is given by

Fα =

−1
6

(4 + 5 cos s),−
5
6

sin s,

√
5

3
s
 , (5.4)

Using (2.21), the q-frame of the QFC Fα is given by

TF
q = (

−
√

5
3

sin s,

√
5

3
cos s,

−2
3

), NF
q = (cos s, sin s, 0), BF

q = (
2
3

sin s,
−2
3

cos s,
−
√

5
3

). (5.5)

Using (2.23), the quasi-curvatures for the QFC are given as

κF
1 =
−2
3
, κF

2 = 0 , κF
3 =

−4

3
√

5
.

Now, we can construct new types of QRS as follows:

1. The osculating type of QRS:
The osculating type of QRS has the following parametrization:

ψ1(s, v) =
1
6

(
−
√

10v sin s − (3
√

2v + 5) cos s − 4,
√

10v cos s − (3
√

2v + 5) sin s, 2(
√

5s −
√

2v)
)
,

for η(s) = 1
√

2
(TF

q −NF
q ), µ1 = −µ2 = 1

√
2
. This surface is illustrated with Figure 1(a). The normal

vector to the surface is

nψ1 =

(
2
√

5
(√

2v + 3
)

sin s + 6
√

2v cos s, 6
√

2v sin s − 2
√

5
(√

2v + 3
)

cos s,−14
√

2v − 15
)

3
√

56v2 + 60
√

2v + 45
.
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Lemma 35. The CFFF and CSFF for the osculating type of QRS are given, respectively, by

g11 =
7
9

v2 +
5

3
√

2
v +

5
4
, g12 = −

√
5

2
√

2
, g22 = 1,

L11 =
2v

(
14v + 15

√
2
)

9
√

56v2 + 60
√

2v + 45
, L12 =

√
10√

56v2 + 60
√

2v + 45
, L22 = 0.

Lemma 36. The MC, GC, SMC, and SGC for the osculating type of QRS are given by

H =
4
(
28v2 + 30

√
2v + 45

)
(
56v2 + 60

√
2v + 45

)3/2 , K = −
720(

56v2 + 60
√

2v + 45
)2 .

HII =

8
(
5488v4 + 11760

√
2v3 + 25844v2 + 14190

√
2v + 5085

)
45

(
56v2 + 60

√
2v + 45

)3/2 ,

KII =
28v

(
784v3 + 1680

√
2v2 + 2430v + 675

√
2
)

+ 8100

45
(
56v2 + 60

√
2v + 45

)3/2 .

Lemma 37. The geodesic curvature κg, normal curvature κn, and geodesic torsion τg of the QFC
Fα on the surface ψ1 are given, respectively, according to Eq (3.4), as follows:

κg =
−5

(
2
√

2v + 3
)

3
√

56v2 + 60
√

2v + 45
, κn =

−2
√

10v

3
√

56v2 + 60
√

2v + 45
, τg =

−2
√

5v
(
28v + 15

√
2
)

9
(
56v2 + 60

√
2v + 45

) .
2. The normal type of quasi-ruled surfaces:

The normal type of quasi-ruled surface has the following parametrization:

ψ2(s, v) =
1
6

(√
2v(3 cos s − 2 sin s) − 5 cos s − 4,

√
2v(3 sin s + 2 cos s) − 5 sin s,

√
5
(
2s +

√
2v

))
,

for η(s) = 1
√

2
(NF

q − BF
q ), µ2 = −µ3 = 1

√
2
. This surface is illustrated with Figure 1(b).

The normal vector to the surface is

nψ2 =

√
5
(
−(4v + 6

√
2) sin s +

(
6v − 9

√
2
)

cos s, (6v − 9
√

2) sin s + (4v + 6
√

2) cos s, 6
√

5
( 5
√

2
− 13v

3 )
)

6
√

26v2 − 30
√

2v + 45
.

Lemma 38. The CFFF and CSFF for the normal type of QRS are given, respectively, by

g11 =
1

36

(
26v2 − 30

√
2v + 45

)
, g12 = 0, g22 = 1,

L11 = −
1

18

√
65v2 − 75

√
2v +

225
2
, L12 =

2
√

5√
26v2 − 30

√
2v + 45

, L22 = 0.
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Lemma 39. The MC, GC, SMC, and SGC for the normal type of QRS are given by

H = −

√
10

2
√

26v2 − 30
√

2v + 45
, K = −

720(
26v2 − 30

√
2v + 45

)2 ,

HII = −
13

(
26v2 − 30

√
2v + 45

)
+ 180

36
√

10
√

26v2 − 30
√

2v + 45
, KII = −

13
√

10
720

√
26v2 − 30

√
2v + 45,

Lemma 40. The geodesic curvature κg, normal curvature κn, and geodesic torsion τg of the QFC
Fα on the surface ψ2 are given, respectively, according to Eq (3.4) as follows:

κg =
5
(
3
√

2 − 2v
)

6
√

26v2 − 30
√

2v + 45
, κn =

5
(
3
√

2 − 2v
)

6
√

26v2 − 30
√

2v + 45
, τg =

20
√

2v+

78v2 − 90
√

2v + 135
−

5
18
.

3. The rectifying type of quasi-ruled surfaces:
The rectifying type of quasi-ruled surface has the following parametrization:

ψ3(s, v) =
1
6

(
−
√

2
(√

5 + 2
)

v sin s − 5 cos s − 4,
√

2
(√

5 + 2
)

v cos s − 5 sin s, 2
√

5s +
√

2
(√

5 − 2
)

v
)
,

for η(s) = 1
√

2
(TF

q − BF
q ), µ1 = −µ3 = 1

√
2
. This surface is illustrated with Figure 1(c).

The normal vector to the surface is

nψ3 =

(
−2v sin s − 9

√
10 cos s, 2v cos s − 9

√
10 sin s,−2

(
4
√

5 + 9
)

v
)

3
√

8
(
4
√

5 + 9
)

v2 + 90
.

Lemma 41. The CFFF and CSFF for the rectifying type QRS are given, respectively, by

g11 =
1

18

(
4
√

5 + 9
)

v2 +
5
4
, g12 = −

√
5

2
√

2
, g22 = 1,

L11 =
−2

(√
5 + 2

)
v2 − 45

√
5

18
√

4
(
4
√

5 + 9
)

v2 + 45
, L12 =

2
√

5 + 5√
8
(
4
√

5 + 9
)

v2 + 90
, L22 = 0.

Lemma 42. The MC, GC, SMC, and SGC for the rectifying type of QRS are given by

H =
360 − 8

(√
5 + 2

)
v2

2
(
4
(
4
√

5 + 9
)

v2 + 45
)3/2 , K = −

180
(
4
√

5 + 9
)

(
4
(
4
√

5 + 9
)

v2 + 45
)2 ,

HII =
180 − 4

(√
5 + 2

)
v2(

4
(
4
√

5 + 9
)

v2 + 45
)3/2 +

−32
(
161
√

5 + 360
)

v4 + 360
(
143
√

5 + 320
)

v2 − 40500
(√

5 + 2
)

45
√

1
4v2

5 −36
√

5+81

(
4
(
4
√

5 + 9
)

v2 + 45
)2 ,

KII = −
4
(
4
(
17
√

5 + 38
)

v4 + 45
(
19
√

5 + 42
)

v2 − 2025
)

45
(
4
(
4
√

5 + 9
)

v2 + 45
)3/2 .
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Lemma 43. The geodesic curvature κg, normal curvature κn, and geodesic torsion τg of the QFC
Fα on the surface ψ3 are given, respectively, according to Eq (3.4) as follows:

κg =
−

(
2
√

5 + 5
) √

2v

3
√

4
(
4
√

5 + 9
)

v2 + 45
, κn =

5√
4
(
4
√

5 + 9
)

v2 + 45
, τg =

5
√

2
(
4
√

5 + 9
)

v

3
(
4
(
4
√

5 + 9
)

v2 + 45
) .

(a) η(s) = 1
√

2
(TF

q − NF
q ) (b) η(s) = 1

√
2
(NF

q − BF
q ) (c) η(s) = 1

√
2
(TF

q − BF
q )

Figure 1. Visualization of the osculating type, normal type, and rectifying type of QRS. The
green curve represents the original curve, and the blue curve represents the quasi-focal curve
for s ∈ [0, 6π] and v ∈ [0, 5].

4. The quasi-tangent developable surface
The quasi-tangent developable surface has the following parametrization:

ψ4(s, v) =
1
6

(
−2
√

5v sin s − 5 cos s − 4, 2
√

5v cos s − 5 sin s, 2(
√

5s − 2v)
)
,

for η(s) = TF
q . This surface is illustrated with Figure 2(a). The normal vector to the surface is

nψ4 =
1
3

(2 sin s,−2 cos s,−
√

5).

Lemma 44. The CFFF and CSFF for the quasi-tangent developable surface are given,
respectively, by

g11 =
1
36

(20 v2 + 45), g12 = −

√
5

2
, g22 = 1,

L11 =
2
√

5
9

v, L12 = 0, L22 = 0.

Lemma 45. The MC and GC for the quasi-tangent developable surface are given by

H =
1
√

5 v
, K = 0.
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Furthermore, the SMC and SGC are undefined.

Lemma 46. The geodesic curvature κg, normal curvature κn, and geodesic torsion τg of the QFC
Fα on the surface ψ4 are given, respectively, according to Eq (3.4) as follows:

κg = −

√
5

3
, κn = 0, τg = 0.

Hence, the QFC Fα, which is the base curve of the quasi-tangent developable surface ψ4, is both
an asymptotic line and a principal line at any point (s, v) on the surface.

5. The quasi-principal normal ruled surface:
The quasi-principal normal ruled surface has the following parametrization:

ψ5(s, v) =
1
6

(
(6v − 5) cos(s) − 4, (6v − 5) sin(s), 2

√
5s

)
,

for η(s) = NF
q . This surface is illustrated with Figure 2(b). The normal vector to the surface is

nψ5 =

√
5

√
12v(3v − 5) + 45

(
−2 sin s, 2 cos s,

5 − 6v
√

5

)
.

Lemma 47. The CFFF and CSFF for the quasi-principal normal ruled surface are given,
respectively, by

g11 =
1

12
(12v2 − 20v + 15), g12 = 0, g22 = 1,

L11 = 0, L12 =
2
√

5
√

12v(3v − 5) + 45
, L22 = 0.

Lemma 48. The MC, GC, SMC, and SGC for the quasi-principal normal ruled surface are
given by

H = 0, K = −
80

(4v(3v − 5) + 15)2 , HII = 0, KII = 0.

Hence, the quasi-principal normal ruled surface is minimal, II flat, and II minimal.

Lemma 49. The geodesic curvature κg, normal curvature κn, and geodesic torsion τg of the QFC
Fα on the surface ψ5 are given, respectively, according to Eq (3.4) as follows:

κg =
15 − 10v

3
√

12v(3v − 5) + 45
, κn = 0, τg = 0.

Hence, the QFC Fα, which is the base curve of the quasi-principal normal ruled surface ψ5, is
both an asymptotic line and a principal line at any point (s, v) on the surface.

6. The quasi-binormal ruled surface:
The quasi-binormal ruled surface has the following parametrization:

ψ6(s, v) =
1
6

(
4v sin s − 5 cos s − 4,−4v cos s − 5 sin s, 2

√
5(s − v)

)
,
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for η(s) = BF
q . This surface is illustrated with Figure 2(c). The normal vector to the surface is

nψ6 =

√
5

3
√

16v2 + 45

(
9 cos s − 4v sin s, 4v cos s + 9 sin s,−

8v
√

5

)
.

Lemma 50. The CFFF and CSFF for the quasi-binormal ruled surface are given, respectively, by

g11 =
1

36
(16v2 + 45), g12 = 0, g22 = 1,

L11 =

√
5

18

√
16v2 + 45, L12 =

2
√

5
√

16v2 + 45
, L22 = 0.

Lemma 51. The MC, GC, SMC, and SGC for the quasi-binormal ruled surface are given by

H =

√
5

√
16v2 + 45

, K = −
720(

16v2 + 45
)2 , HII =

32v2 + 135

9
√

5
√

16v2 + 45
, KII =

√
16v2 + 45

9
√

5
.

Lemma 52. The geodesic curvature κg, normal curvature κn, and geodesic torsion τg of the QFC
Fα on the surface ψ6 are given, respectively, according to Eq (3.4) as follows:

κg = 0, κn = −
5

√
16v2 + 45

, τg = −
40v

48v2 + 135
.

Hence, the QFC Fα, which is the base curve of the quasi-binormal ruled surface ψ6, is a geodesic
curve at any point (s, v) on the surface.

(d) η(s) = TF
q (e) η(s) = NF

q (f) η(s) = BF
q

Figure 2. Visualization of the quasi-tangent, quasi-principal normal, and quasi-binormal
ruled surfaces. The green curve represents the original curve, and the blue curve represents
the quasi-focal curve for s ∈ [0, 6π], and v ∈ [0, 5].
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5.2. Visualization of quasi-ruled surfaces

Effective visual aids are crucial for understanding complex geometric constructs. This section
provides detailed visualizations of the constructed QRS to enhance comprehension. These
visualizations are created using Mathematica 13, a powerful tool for generating high-quality graphics
in differential geometry.

6. Conclusions

This research presents a comprehensive study of quasi-ruled surfaces based on quasi-focal curves
in 3-dimensional Euclidean space. The definitions of q-frame, quasi-focal curves, and quasi-ruled
surfaces and their detailed analysis provide a new perspective on the construction of these surfaces in
differential geometry.

In this work, we have introduced and defined several novel types of QRS based on the QFC as
the base curve and utilized the q-frame of the QFC to describ the rulings. These novel types of
QRS include:

• Osculating type of quasi-ruled surface: This type of QRS has the ruling lies in the osculating
plane of the base curve QFC.

• Normal type of quasi-ruled surface: This type of QRS has a ruling that lies in the normal plane of
the base curve QFC.

• Rectifying type of quasi-ruled surface: This type of QRS has a ruling that lies in the rectifying
plane of the base curve QFC.

• Quasi-tangent developable surfaces: This type of QRS has a ruling that parallels the quasi-tangent
vector of the QFC.

• Quasi-principal normal ruled surfaces: This type of QRS has a ruling that parallels the quasi-
principal normal vector of the QFC.

• Quasi-binormal ruled surfaces: This type of QRS has a ruling that parallels the quasi-binormal
vector of the QFC.

Some geometric properties are specified and analyzed for these types of QRS, including curvatures
MC, GC, SMC, and SGC. These geometric properties contribute to the theoretical understanding of
these surfaces. These novel types of quasi-ruled surfaces provide a rich framework for studying the
geometric properties of surfaces constructed from the quasi-focal curves. Each type of QRS has unique
characteristics based on the orientation of the ruling and the base curve. This classification allows
for a deeper understanding of the intrinsic and extrinsic properties of these surfaces, which can be
further explored in various applications, such as differential geometry, computer-aided design, and
geometric modeling.
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Abbreviations

The abbreviations used in this manuscript are illustrated by
CFFF Coefficients of the first fundamental form
CSFF Coefficients of the second fundamental form
CEFSF Equations of Frenet-Serret frame
FSF Frenet-Serret frame
GC Gaussian curvature
MC Mean curvature
QFC(s) Quasi-focal curve(s)
q-frame Quasi-frame
QRS Quasi-ruled surface(s)
SMC Second mean curvature
SGC Second Gaussian curvature
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