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Abstract: This paper is dedicated to the estimation of the probabilistic upper bounds of star
discrepancy for Hilbert’s space filling curve (HSFC) sampling. The primary concept revolves around
the stratified random sampling method, with the relaxation of the stringent requirement for a sampling
number N = md in jittered sampling. We leverage the benefits of this sampling method to achieve
superior results compared to Monte Carlo (MC) sampling. We also provide applications of the main
result, which pertain to weighted star discrepancy, L2-discrepancy, integration approximation in certain
function spaces and examples in finance.
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1. Introduction

Among various techniques for solving multivariate integration problems, such as light transport
evaluation in complex scenes, rendering applications, variance analysis [1–3] or risk management,
derivatives pricing model, and portfolio optimization [4, 5], the sample mean method has proven to
be one of the most efficient approaches. For a random variable X (which is randomly distributed in
[0, 1]d), the canonical form of multivariate integration can be expressed as

I( f ) = E( f ) =
∫

[0,1]d
f (X)dX. (1.1)

The method of sample mean can be utilized to provide an estimate for I( f ) through approximation.

Ĩ( f ,P) =
1
N

N∑
i=1

f (xi), (1.2)

where P = {x1, . . . , xN} ⊂ [0, 1]d.
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It is occasionally essential to estimate the approximation error, and the renowned Koksma-Hlawka
inequality provides the precise upper bound for approximation.∣∣∣∣∣∣∣∣

∫
[0,1]d

f (x)dx −
1
N

∑
t∈PN,d

f (t)

∣∣∣∣∣∣∣∣ ≤ D∗N (t1, t2, . . . , tN) V( f ), (1.3)

where D∗N (t1, t2, . . . , tN) is a star discrepancy of PN,d and V( f ) is the total variation of f in the sense of
Hardy and Krause.

Improving the upper bounds of star discrepancy in a bounded total variation functional space leads
to better approximation error, as indicated by (1.3).

The primary objective of star discrepancy research is to acquire a metric for the uniform distribution
of the point set, as evident from its definition. The star discrepancy of a sampling set PN,d =

{t1, t2, . . . , tN} is

D∗N (t1, t2, . . . , tN) := sup
B⊂B

∣∣∣∣∣A(B; N; PN,d)
N

− λ(B)
∣∣∣∣∣ , (1.4)

where A(B; N; PN,d) denotes the number of points from PN,d that are located in rectangle B anchored at
0, and λ(B) denotes the Lebesgue measure of B.

There are numerous constructions of so-called low discrepancy point sets, which exhibit a favorable
convergence rate for the star discrepancy bounds. For a point set P , the convergence order could reach
O((ln N)αd/N) for fixed dimension d as N → ∞, where αd ≥ 0 are constants depending on dimension d,
see [6]. These point sets have numerous applications across various domains; see [4, 5, 7, 8].

In recent years, numerous researchers have been investigating pre-asymptotic star discrepancy
bounds, which give helpful information for moderate values of sampling number N. In [9], Heinrich,
Novak, et al. have obtained the result that the inverse of star discrepancy depends linearly on the
dimension. This also implies a result of existence for the star discrepancy upper bound c ·

√
d
√

N
, where c

is an unknown constant. In the work by Aistleitner [10], techniques involving δ-covers and dyadic
chaining were employed to achieve a value of c = 10. The constant c has been improved to 2.53
in [11]. The results are obtained through a simple random sampling process (MC point set). From a
practical applications perspective, the following probability bound can be derived:

D∗N(X) ≤ 5.7

√
4.9 −

ln(1 − q)
d

√
d
√

N
, (1.5)

with probability at least q for MC point set X. This result has been improved by [11] through the
utilization of refined δ-cover bounds.

Jittered sampling is an optimization technique for simple random sampling, utilizing N = md

sampling points. For the expected star discrepancy upper bound of jittered sampling, the former’s
result [12] is actually the following if we use the normalized star discrepancy:

ED∗N(X) ≤
d

m
d
2+

1
2

·

60.9984

√
log(

4em
d

) + 180.5492

 . (1.6)

Jittered sampling is a special form of stratified sampling, and other forms of stratified sampling
require more sophisticated design; see [13].
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The main purpose of this paper is to provide a precise probabilistic upper bound for star discrepancy
in a new stratified sampling approach (HSFC sampling). This result, on the one hand, improves the
bound using an MC point set; on the other hand, it removes the condition N = md, which is the strict
dependence of sampling number N on the dimension d.

The remainder of this manuscript is structured as follows. In Section 2, we provide an overview
of some preliminary concepts. The main results of this study are outlined in Section 3. In Section 4,
we present an application of the main result. Finally, in Section 5, we conclude the paper with a brief
summary.

2. HSFC-based sampling and some estimations

2.1. Hilbert space filling curve-based sampling

We first introduce the Hilbert space filling curve sampling, which is abbreviated as HSFC sampling,
and we mainly adopt the definition and notations in [14, 15]. HSFC sampling is actually a kind of
stratified sampling formed by a special partition manner. The new application of HSFC sampling for
quantile estimation is considered in [16].

Let ai be the first N = bm points of the van der Corput sequence (van der Corput 1935) in base
b ≥ 2,m = 0, 1, . . . The integer i − 1 ≥ 0 is written in base b as

i − 1 =
∞∑
j=1

ai jb j−1 (2.1)

for ai j ∈ {0, . . . , b − 1}. Then, ai is defined by

ai =

∞∑
j=1

ai jb− j. (2.2)

We will go over the van der Corput sequence in more detail. For example, we consider the base
b = 2; we then describe the construction process.

Step 1. Choose a base: First, choose a base b. In this example, we use binary, i.e., base b = 2.
Step 2. List the sequence of natural numbers: Then, list the sequence of natural numbers

(1, 2, 3, ...) as the original sequence.
Step 3. Convert base representation: Convert each natural number to binary representation.

Example: The binary representation of 1 is 1; the binary representation of 2 is 10; the binary
representation of 3 is 11; the binary representation of 4 is 100; and so on ...

Step 4. Reverse numerical order: Reverses the numerical order in the b-ary representation of each
number and gets a new sequence of numbers. In order to convert it to a decimal, we need to treat the
reversed number sequence as a decimal where the decimal point is to the left of the leftmost digit. For
instance, for a decimal number 13, whose binary is 1101, we first need to reverse the number sequence
to get 1011, we see it as binary 0.1011, we need to follow the following steps to convert it to decimal.
The conversion process is as follows: The first binary digit is 1 (the first digit after the decimal point),
then it represents 2−1 or 0.5; the second binary bit is 0, which represents 2−2 or 0.25, but because it
is 0, it is not added to the sum; the third binary bit is 1, which represents 2−3 or 0.125; the fourth
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binary bit is 1, which represents 2−4 or 0.0625. Add these values together to get the decimal number:
1 ∗ 0.5 + 0 ∗ 0.25 + 1 ∗ 0.125 + 1 ∗ 0.0625 = 0.6875.

Step 5. Formation of the Van der Corput sequence: The above obtained decimal fractions in
order, that is, the formation of the Van der Corput sequence. We obtain the Van der Corput sequence
0, 0.5, 0.75, 0.25, 0.625, 0.375, 0.875, . . .

The scrambled version of a1, a2, . . . , aN is x1, x2, . . . , xN written as

xi =

∞∑
j=1

xi jb− j, (2.3)

where xi j are defined through random permutations of the ai j. These permutations depend on aik, for
k < j.More precisely, xi1 = π(ai1), xi2 = πai1(ai2) and generally for j ≥ 2,

xi j = πai1...ai j−1(ai j). (2.4)

Each random permutation is uniformly distributed over the b! permutations of {0, . . . , b − 1} and is
mutually independent of the others. Thanks to the nice property of nested uniform scrambling, the data
values in the scrambled sequence can be reordered such that

xi ∼ U(Ii), (2.5)

independently with

Ii = [
i − 1

N
,

i
N

]

for i = 1, 2, . . . ,N = bm.
Let

Ei = H(Ii) := {H(x)|x ∈ Ii},

where H is a mapping.
Then,

Xi = H(xi) ∼ U(Ei), i = 1, 2, 3, . . .N = bm

is the corresponding stratified samples. Set ri be the diameter of Ei, according to the property of HSFC
sampling, the following estimation holds:

ri ≤ 2
√

d + 3 · N−
1
d . (2.6)

The Van der Corput sequence plays a fundamental role in HSFC sampling, which is a one-
dimensional set of low-discrepancy points. It is transformed into a uniformly distributed set of points in
the interval [0, 1] by Owen scrambling and then mapped to the higher dimensions by Hilbert mapping,
i.e., to obtain the HSFC sample.

2.2. Minkowski content

We use the definition of Minkowski content in [17], which provides convenience for analyzing the
boundary characteristics of the test set B in (1.4), that is, for a set Ω ⊂ [0, 1]d,

M (∂Ω) = lim
ϵ→0

λ((∂Ω)ϵ)
2ϵ

, (2.7)
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where (∂Ω)ϵ = {x ∈ Rd|dist(x, ∂Ω) ≤ ϵ}. If M (∂Ω) exists and is finite, then ∂Ω is said to admit
(d − 1)−dimensional Minkowski content. If Ω is a convex set, then it is easy to see that ∂Ω admits
(d − 1)−dimensional Minkowski content; furthermore, M (∂Ω) ≤ 2d as the outer surface area of a
convex set in [0, 1]d is bounded by the surface area of the unit cube [0, 1]d, which is 2d.

2.3. δ-covers

To discretize the star discrepancy, we use the definition of δ-covers as in [18].

Definition 2.1. For any δ ∈ (0, 1], a finite set Γ of points in [0, 1)d is called a δ-cover of [0, 1)d if for
every y ∈ [0, 1)d, there exist x, z ∈ Γ ∪ {0} such that x ≤ y ≤ z and λ([0, z]) − λ([0, x]) ≤ δ. The number
N(d, δ) denotes the smallest cardinality of a δ-cover of [0, 1)d.

From [19], combining with Stirling’s formula, the following estimation for N(d, δ) holds, that is,
for any d ≥ 1 and δ ∈ (0, 1],

N(d, δ) ≤ 2d ·
ed

√
2πd
· (δ−1 + 1)d. (2.8)

Furthermore, the following lemma provides convenience for estimating the star discrepancy with
δ-covers.

Lemma 2.1. [18] Let P = {p1, p2, . . . , pN} ⊂ [0, 1]d and Γ be δ-covers, then,

D∗N(P) ≤ DΓ(P) + δ, (2.9)

where

DΓ(P) := max
x∈Γ
|λ([0, x]) −

∑N
n=1 I[0,x] (pn)

N
|. (2.10)

2.4. Bernstein inequality

At the end of this section, we will restate the Bernstein inequality, which will be used in the
estimation of star discrepancy bounds.

Lemma 2.2. [20] Let Z1, . . . ,ZN be independent random variables with expected values E(Z j) = µ j

and variances σ2
j for j = 1, . . . ,N. Assume |Z j − µ j| ≤ C (C is a constant) for each j and set Σ2 :=∑N

j=1 σ
2
j , then for any λ ≥ 0,

P

∣∣∣∣ N∑
j=1

[Z j − µ j]
∣∣∣∣ ≥ λ ≤ 2 exp

− λ2

2Σ2 + 2
3Cλ

 .
3. Probabilistic star discrepancy bound for HSFC-based sampling

Theorem 3.1. For integer number b ≥ 1, m ≥ 1 and N = bm, then for the well-defined d-dimensional
stratified samples Xi ∼ U(Ei), i = 1, 2, . . . ,N = bm in Section 2, we have

D∗N (X1, X2, . . . , XN) ≤
6d

3
4

N
1
2+

1
2d

·
√

d ln(N + 1) + c(d, q) +
2c(d, q)

3N
(3.1)
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with probability at least q, where

c(d, q) = ln
(2e)d

√
2πd · (1 − q)

.

Proof. Let A be a subset of Ei, then according to Xi ∼ U(Ei), 1 ≤ i ≤ N, it follows that

P(Xi ∈ A) =
λ(A)
λ(Ei)

= Nλ(A). (3.2)

Now, for an arbitrary d-dimensional rectangle R = [0, x] ∈ [0, 1]d with diameter κ, when x runs
through the unit cube [0, 1)d, we can assign two points y, z such that y ≤ x ≤ z and λ([0, z])−λ([0, y]) ≤
1
N . Let R0 = [0, y] and R1 = [0, z], then we have

R0 ⊆ R ⊂ R1,

and
λ(R1) − λ(R0) ≤

1
N
. (3.3)

We know that the diameter of R0 is less than κ; we set it to κ0. The diameter of R1 is more than κ;
we set it to κ1. This forms a bracketing cover for the set R, and from (2.8) and (3.3), we can give the
upper bound for the bracketing cover pair (R0,R1), which has a cardinality at most 2d−1 ed

√
2πd

(N + 1)d.
Besides, from Lemma 2.1, we obtain

D∗N(Y1,Y2, . . . ,YN; R) ≤ max
i=0,1

D∗N(Y1,Y2, . . . ,YN; Ri) +
1
N
. (3.4)

For an anchored box R in [0, 1]d, it is easy to check that R is representable as a disjoint union of E′i s
entirely contained in R and the union of l pieces, which are the intersections of some E′js and R, i.e.,

R =
⋃
i∈I

Ei ∪
⋃
j∈J

(E j ∩ ∂R), (3.5)

where I and J denote the index-sets.
By the definition of Minkowski content, for any σ > 2, there exists ϵ0 such that λ((∂R)ϵ) ≤

σϵM (∂R) whenever ϵ ≤ ϵ0.
From (2.6), the diameter for each Ei is at most 2

√
d + 3 · N−

1
d , we can assume N > (2

√
d+3
ϵ0

)d, then,
2
√

d + 3 · N−
1
d := ϵ < ϵ0 and

⋃
j∈J(E j ∩ ∂R) ⊆ (∂R)ϵ , therefore,

|J| ≤
λ((∂R)ϵ)
λ(Ei)

≤
σϵM (∂R)

N−1 = 2
√

d + 3σM (∂R)N1− 1
d .

Without loss of generality, we can set σ = 3, combining with the fact M (∂R) ≤ 2d; it follows

|J| ≤ 12d
√

d + 3 · N1− 1
d . (3.6)

The same argument (3.6) holds for test sets R0 and R1.
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For R0 or R1, set

D∗N(X1, X2, . . . , XN; R′) = max
i=0,1

D∗N(X1, X2, . . . , XN; Ri). (3.7)

R′ is also a test rectangle, which can be broken up into two parts:

R′ =
⋃
k∈K

Ek ∪
⋃
l∈L

(El ∩ R′), (3.8)

and the cardinality of R
′

⊂ [0, 1)d is at most 2d−1 ed
√

2πd
(N + 1)d according to the δ-cover estimation.

Let
T =

⋃
l∈L

(El ∩ R′), |L| = |{1, 2, . . . , l}|. (3.9)

If we define new random variables χ j, 1 ≤ j ≤ l as follows:

χl =

1, Xl ∈ El ∩ R′,

0, otherwise,
(3.10)

then, from the above discussions, we have

N · D∗N
(
X1, X2, . . . , XN; R′

)
= N · D∗N (X1, X2, . . . , XN; T ) = |

|L|∑
l=1

χl − N(
|L|∑
l=1

λ(El ∩ R′))|. (3.11)

Since
P(χl = 1) =

λ(El ∩ R′)
λ(El)

= N · λ(El ∩ R′), (3.12)

hence,
E(χl) = N · λ(El ∩ R′). (3.13)

Thus, from (3.11) and (3.13), we obtain

N · D∗N
(
X1, X2, . . . , XN; R′

)
= |

|L|∑
l=1

(χl − E(χl))|. (3.14)

Let σ2
l = E(χl − E(χl))2 and Σ2 = (

∑|L|
l=1 σ

2
l )

1
2 , then we have

Σ2 ≤ |L| ≤ 12d
√

d + 3 · N1− 1
d . (3.15)

Therefore, from Lemma 2.2, for every R′, we have

P

∣∣∣∣ |L|∑
l=1

(χl − E(χl))
∣∣∣∣ > λ ≤ 2 · exp(−

λ2

24d
√

d + 3 · N1− 1
d + 2λ

3

). (3.16)

Let

B =
⋃
R′

∣∣∣∣ |L|∑
l=1

(χl − E(χl))| > λ

 . (3.17)
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Then, using covering numbers, we have

P(B) ≤ (2e)d ·
1
√

2πd
· (N + 1)d · exp(−

λ2

24d
√

d + 3 · N1− 1
d + 2λ

3

). (3.18)

Let A(d, q,N) = d ln(2e) + d ln(N + 1) − ln(2πd)
2 − ln(1 − q), and we choose

λ =

√
24d
√

d + 3 · A(d, q,N) +
A2(d, q,N)

9N1− 1
d

· N
1
2−

1
2d +

A(d, q,N)
3

. (3.19)

Put it into (3.18), we have
P(B) ≤ 1 − q. (3.20)

Combining the above and (3.14), we obtain

D∗N
(
X1, X2, . . . , XN; R′

)
≤

√
24d
√

d + 3 · A(d, q,N) + A2(d,q,N)

9N1− 1
d

N
1
2+

1
2d

+
A(d, q,N)

3N
(3.21)

with probability at least q.
Thus, obviously, we have

max
i=0,1

D∗N(X1, X2, . . . , XN; Ri) ≤

√
24d
√

d + 3 · A(d, q,N) + A2(d,q,N)

9N1− 1
d

N
1
2+

1
2d

+
A(d, q,N)

3N

≤

√
24d
√

d + 3 · A(d, q,N)

N
1
2+

1
2d

+
2A(d, q,N)

3N

(3.22)

with probability at least q.

A(d, q,N) = ln
(2e)d

√
2πd · (1 − q)

+ d ln(N + 1) = c(d, q) + d ln(N + 1), (3.23)

where

c(d, q) = ln
(2e)d

√
2πd · (1 − q)

. (3.24)

The proof is complete. □

Remark 3.1. The convergence order of the probabilistic star discrepancy bound for HSFC stratified
samples, as given by Theorem 3.1, is O(N−

1
2−

1
2d · (ln N)

1
2 ). This can be compared with the asymptotic

bounds using a crude Monte Carlo point set, which are O(N−
1
2 ). A comparison with the convergence

order of the results in [11, 21] is also possible.
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4. Applications

4.1. Uniform integration approximation for functions in weighted function space

Many high-dimensional problems that arise in practical applications have low effective
dimensions [22]; that is, they have different weights for different component function values.
Therefore, the problem is abstracted as seeking uniform integral approximation errors in weighted
Sobolev spaces.

Let Fd,1 be a Sobolev space; for functions f ∈ Fd,1, f is differentiable for each variable and has a
finite L1-module for its first order differential. For d > 1, the norm in Fd,1 is defined as

∥ f ∥Fd,1 = ∥D
1⃗ f ∥L1([0,1]d) =

∫
[0,1]d
|D1⃗ f (x)|dx,

where 1⃗ = [1, 1, . . . , 1] and D1⃗ = ∂d/∂x1 . . . ∂xd.
Then for weighted Sobolev space Fd,1,γ, its norm is

∥ f ∥Fd,1,γ =
∑
u⊆Id

γu,d

∫
[0,1]|u|
|
∂|u|

∂xu
f (xu, 1)|dxu. (4.1)

Considering the problem of function approximation in Fd,1,γ space, the sample mean method can
still be used, that is,

I( f ) =
∫

[0,1]d
f (x)dx,

and sample mean function

Ĩ( f ,P) =
1
N

N∑
i=1

f (xi).

Consider the worst-case error

EN( f ) =

∣∣∣∣∣∣∣∣
∫

[0,1]d
f (x)dx −

1
N

∑
t∈PN,d

f (t)

∣∣∣∣∣∣∣∣ ,
then form Hlawka and Zaremba’s identity [23], we have

e(EN( f )) = sup
f∈Fd,1,γ,∥ f ∥Fd,1,γ≤1

|I( f ) − Ĩ( f ,P)| = D∗N,γ(t1, t2, . . . , tN).

For uniform integration approximation in weighted Sobolev spaces, we have the following theorem.

Theorem 4.1. Let f ∈ Fd,1,γ be functions in Sobolev space. Let integer b ≥ 1, m ≥ 1, and N =
bm. Let b, λ, λ0, c be some integers, λ0 be constants such that bλ2 ≤ e2λ2

holds for all λ ≥ λ0,c =
max{2, b, λ0,

1
log2(2−ϵ) }, then for d-dimensional HSFC samples Xi ∼ U(Ei), i = 1, 2, . . . ,N = bm, we have

sup
f∈Fd,1,γ,∥ f ∥Fd,1,γ≤1

|

∫
[0,1]d

f (x)dx −
1
N

N∑
j=1

f (X j)|

≤ max
∅,u⊆Id

γu,d[
6|u|

3
4

N
1
2+

1
2|u|

·
√
|u| ln(N + 1) + c(|u|, ϵ) +

2c(|u|, ϵ)
3N

]

(4.2)
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with probability at least ϵ, where

c(|u|, ϵ) = ln
(2e)|u|

√
2π|u| · (1 − ϵ)

.

Proof. In Theorem 3.1, we choose probability q = ϵ = 1 − (bλ2e−2λ2
)d, which holds for some positive

constant b and for all λ ≥ max{1, b, λ0}, where λ0 is constant such that bλ2 ≤ e2λ2
holds for all λ ≥ λ0,

and we choose
λ = c max{1,

√
(ln d)/(ln 2)},

and c = max{2, b, λ0}.
Let

c(|u|, ϵ) = ln
(2e)|u|

√
2π|u| · (1 − ϵ)

.

For a given number of sampling points N and dimension d, we consider the following set:

Ad := {PN,d ⊂ [0, 1]d : DN(PN,d(u)) ≤[
6|u|

3
4

N
1
2+

1
2|u|

·
√
|u| ln(N + 1) + c(|u|, ϵ) +

2c(|u|, ϵ)
3N

],

∀u ⊆ Id, u , ∅},

where PN,d(u) := {X1(u), . . . , XN(u)}. Besides, for u ⊆ Id, u , ∅, we define

Au,d := {PN,d ⊂ [0, 1)d : DN(PN,d(u)) ≤ [
6|u|

3
4

N
1
2+

1
2|u|

·
√
|u| ln(N + 1) + c(|u|, ϵ) +

2c(|u|, ϵ)
3N

]}.

Then we have

Ad =
⋂
∅,u⊆Id

Au,d.

Hence,
P(Ad) = P(

⋂
∅,u⊆Id

Au,d) = 1 − P(
⋃
∅,u⊆Id

Ac
u,d)

≥ 1 −
∑
∅,u⊆Id

P(Ac
u,d) > 1 −

∑
∅,u⊆Id

(bλ2e−2λ2
)|u|

= 1 −
d∑

u=1

(
d
u

)
(bλ2e−2λ2

)u = 2 − (1 + bλ2e−2λ2
)d.

According to λ = c max{1,
√

ln d
ln 2 } and c = max{2, b, λ0}, for all d ≥ 2 and x = c2

ln 2 > 5, we have
x2 ≤ 2x ≤ dx and ln d ≤ dx−1. Thus, if x2 ln d ≤ d2x−1, then

c3 ln d

(ln 2)d
2c2
ln 2

≤
ln 2
cd
.
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Based on this inequality, we obtain a formula that holds for all d ≥ 2,

P(Ad) > 2 − (1 + bλ2e−2λ2
)d ≥ 2 − (1 +

c3 ln d

(ln 2)d
2c2
ln 2

)d

≥ 2 − (1 +
ln 2
cd

)d > 2 − e
ln 2

c = 2 − 21/c ≥ ϵ.

Thus, for every ∅ , u ⊆ Id, we obtain

DN,γ (t1, t2, . . . tN) ≤ max
∅,u⊆Id

γu,d[
6|u|

3
4

N
1
2+

1
2|u|

·
√
|u| ln(N + 1) + c(|u|, ϵ) +

2c(|u|, ϵ)
3N

]

with probability at least ϵ.
The proof is completed. □

4.2. Integral approximation on Borel convex subsets

The classical Koksma-Hlawka inequality does not apply to functions with simple discontinuities,
and thus a generalized Koksma-Hlawka-type inequality is proposed, which applies to a piecewise
smooth function f · 1Ω, where f is smooth and Ω is a Borel convex subset of [0, 1]d, see [24]. An
approximation error in the space of piecewise smooth functions will be given below using a star-
discrepancy bound for stratified sampling. First, there is the following lemma:

Lemma 4.1. [24] Let f be a piecewise smooth function defined on [0, 1]d and Ω be a Borel convex
subset of [0, 1]d. Then for the set of samples x1, x2, . . . , xN in [0, 1]d, there are

|

∑N
n=1( f · 1Ω)(xn)

N
−

∫
Ω

f (x)dx| ≤ DΩN(x1, x2, . . . , xN) · V( f ), (4.3)

where

DΩN(x1, x2, . . . , xN) = 2d sup
A⊆[0,1]d

|

∑N
n=1 1Ω∩A(xn)

N
− λd(Ω ∩ A)|, (4.4)

and

V( f ) =
∑

u⊂{1,2,...,d}

2d−|u|
∫

[0,1]d
|
∂|u|

∂xu
f (x)|dx. (4.5)

The symbol ∂
|u|

∂xn
f (x) is the partial derivative of f with respect to the component x indexed at u, and the

upper bound is taken over all axis-parallel rectangles A.

Theorem 4.2. For integers b ≥ 1, m ≥ 1, and N = bm, let f be a piecewise smooth function defined
on [0, 1]d and Ω be a Borel convex subset of [0, 1]d. Then for a sample of Hilbert space-filling curves
Xi ∼ U(Ei), i = 1, 2, . . . ,N = bm in [0, 1]d, there are

P
(
|

∑N
n=1( f · 1Ω)(Xn)

N
−

∫
Ω

f (x)dx| ≤ 2dD∗N(X, q) · V( f )
)
> q, (4.6)

where D∗N(X, q) denotes the upper bound of D∗N(X) with probability at least q.
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Example 1. Comparison of integral approximation errors for HSFC sampling on simplex
For ϵ > 0, let Σ be a simplex, namely,

Σ = {(x1, x2, . . . , xd) ∈ [0, 1]d : x1 ≥ . . . ≥ xd ≥ ϵ, 1 − x1 − . . . − xd ≥ ϵ}.

Define
f (x1, x2, . . . , xd) =

1
x1x2 . . . xd

(1 − x1 − x2 − . . . − xd).

Easy to show that ∑
|α|≤d

∫
Σ

|(
∂

∂x
)α f (x)|dx ≤ ϵ−d.

According to Theorem 4.2, for HSFC samples Xi, i = 1, 2, . . . ,N, and all the convex subsets Ω0

contained in Σ, we have

P
(
|

∑N
n=1( f · 1Ω0)(Xn)

N
−

∫
Ω0

f (x)dx| ≤ ϵ−d · 2d · D∗N(X, q)
)
> q, (4.7)

where D∗N(X, q) the upper bound of D∗N(X) holds with probability at least q.
From (1.5), for MC point set X, we have

ED∗N(X) ≤ 12.62 ·

√
d
√

N
.

For jittered sampling set Y with condition N = md, we have, which is proved in [12],

ED∗N(Y) ≤
d

m
d
2+

1
2

·

60.9984

√
log(

4em
d

) + 180.5492

 . (4.8)

For HSFC sampling set Z, we have

ED∗N (Z) ≤
6d

3
4

N
1
2+

1
2d

·
√

d ln(N + 1) + c(d) +
2c(d)
3N
, (4.9)

where

c(d) = ln
(2e)d

√
2πd
.

Set

EN( f , X) = E
(
|

∑N
n=1( f · 1Ω0)(Xn)

N
−

∫
Ω0

f (x)dx|
)
,

we compare this quantity for different sampling sets (HSFC sampling point set, jittered sampling set,
MC point set), choose parameter ϵ = 1

2 in the simplex, and then we have

EN( f , X) ≤ 12.62 ·

√
d
√

md
,

EN( f ,Y) ≤
d

m
d
2+

1
2

·

60.9984

√
log(

4em
d

) + 180.5492

 , (4.10)

EN( f ,Z) ≤
6d

3
4

m
d
2+

1
2

·

√
d ln(md + 1) + ln

(2e)d

√
2πd
+

2 ln (2e)d
√

2πd

3md . (4.11)
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Remark 4.1. From the numerical examples above, which are Tables 1–3, and Figures 1–3, it can be
seen that HSFC sampling as well as jittered sampling exhibit better integral approximation than MC
sampling when the sample size is sufficiently large, and HSFC sampling does not need to have large
samples to obtain results superior to jittered sampling and MC sampling; the advantages of using
HSFC sampling are demonstrated here.

Table 1. Approximation errors in d = 3.

m EN( f , X) EN( f ,Y) EN( f ,Z)
10 0.69123 8.8839 0.67714
50 0.061825 0.38357 0.034105
100 0.021858 0.098587 0.0091831
500 0.0019551 0.0041715 0.00042217
1000 0.00069123 0.0010655 0.00011093

Table 2. Approximation errors in d = 4.

m EN( f , X) EN( f ,Y) EN( f ,Z)
50 0.010096 0.071444 0.0079025
100 0.002524 0.012999 0.0015069
500 0.000101 0.000246 3.1047e-05
8000 3.9437e-07 2.6086e-07 3.6183e-08
10000 2.524e-07 1.5018e-07 2.0959e-08

Table 3. Approximation errors in d = 5.

m EN( f , X) EN( f ,Y) EN( f ,Z)
100 0.00028219 0.0016103 0.00022148
300 1.8103e-05 6.2191e-05 9.0803e-06
500 5.048e-06 1.3673e-05 2.0435e-06
8000 4.9297e-09 3.6245e-09 5.9609e-10
10000 2.8219e-09 1.8666e-09 3.0885e-10
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Figure 1. Comparison of different sampling set in d = 2.
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Figure 2. Comparison of different sampling set in d = 3.
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Figure 3. Comparison of different sampling set in d = 4.

Example 2. Comparison in the field of finance
For the option pricing problem, the price of an option can be expressed as the following expectation

(Black-Scholes model):
C = e−rT · E[max(S T − K, 0)],

where S T denotes the geometric Brownian motion model, which is used to model the stochastic
evolution of the underlying asset price. Its mathematical expression is

S T = S 0 · exp
(
(r − 0.5σ2)T + σ

√
T · Z

)
,

where S 0 is the initial price of the underlying asset, r is the risk-free interest rate, σ is the volatility of
the underlying asset, T is the time to maturity of the option, Z is a standard normal random variable,
and K is the strike price of the option.

Indeed, if C denotes a multiple integral, then the sample mean method can be employed to give the
approximation,

Cappro = e−rT ·
1
N

N∑
i=1

max(S (i)
T − K, 0),

where for samples P = {P1, P2, . . . , PN} in [0, 1]d,

S (i)
T = S 0 · exp

(
(r − 0.5σ2)T + σ

√
T · Φ−1(Pi)

)
,

Φ−1(x) denotes the inverse cumulative distribution function (ICDF).
Then for different samples X,Y,Z, we are able to give the approximation error. Choose S 0 =

100,K = 100, r = 0.05, σ = 0.2,T = 1, d = 5. We give a comparison of the approximation errors
under the three sampling sets; see Figure 4.
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Figure 4. Comparison of approximation for different sampling sets.

4.3. Mean square error estimation for integral approximation in special function spaces

We mainly consider the function spaceH1(K) defined in [25].
Let

H1 := H (1,1,...,1)([0, 1]d)

be the Sobolev spaces on [0, 1]d, ∀ f ∈ H1, we have

∂d

∂x
f (x) ∈ H([0, 1]d),

where ∂x = ∂x1∂x2 . . . , ∂xd, H([0, 1]d) denotes the Hilbert space. Then for f , g ∈ H1, we define the
following inner product for the Hilbert spaceH([0, 1]d):

⟨ f , g⟩H1 =

∫
[0,1]d

∂d f
∂x

(t)
∂dg
∂x

(t)dt. (4.12)

Further, we set ∥ f ∥H1 = ⟨ f , f ⟩1/2
H1 be the norm induced by the inner product defined in (4.12). Next,

we define a reproducing kernel inH1, given by

K(x, y) =
∫

[0,1]d
1(x,1](t)1(y,1](t)dt, (4.13)

where x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd), (x, 1] =
∏d

i=1(xi, 1], (y, 1] =
∏d

i=1(yi, 1], and 1A denotes
the characteristic function on set A. H1(K) denotes the Sobolev spaceH1 equipped with a reproducing
kernel function K(x, y) defined in (4.13). Correspondingly, in (4.12), we define ⟨ f , g⟩H1 = ⟨ f , g⟩H1(K).
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It is easy to check that for the kernel function defined in (4.13), the reproducing property is satisfied,
that is,

⟨ f ,K(·, y)⟩H1(K) =

∫
[0,1]d

∂d f
∂x

(t)
∂dK(x, y)
∂x

(t)dt = f (y).

Then, the main tools are the L2-discrepancy, we first give the definition of Lp-discrepancy, where
we can choose p = 2.

Lp-discrepancy: For a sampling set PN,d = {t1, t2, . . . , tN}, Lp-discrepancy is defined by

LP(DN , PN,d) =
( ∫

[0,1]d
|z1z2 . . . zd −

1
N

N∑
i=1

1[0,z)(ti)|pdz
)1/p
,

where 1 ≤ p < ∞, 1A denotes the characteristic function on set A. In [26], authors gave the following
approximation for different sampling sets.

Theorem 4.3. [26] For d-dimension samples X1, X2, X3, . . . , XN are uniformly distributed in an
isometric grid partition {Q1,Q2, . . . ,QN} of the unit cube [0, 1]d, integers d,m ≥ 2 and N ∈ N such
that N = md, then we have

E
[∣∣∣∣ 1

N

N∑
n=1

f (Xn) −
∫

[0,1]d
f (x)dx

∣∣∣∣2] ≤ d

N1+ 1
d

· ∥ f ∥H1(K), (4.14)

where f is a function in Sobolev spaceH1(K).

Theorem 4.4. [26] For the HSFC-based sampling, d-dimensional samples X′1, X
′
2, X

′
3, . . . , X

′
N

uniformly distributed in E1, E2, E3, . . . , EN , we have

E
[∣∣∣∣ 1

N

N∑
n=1

f (X′n) −
∫

[0,1]d
f (x)dx

∣∣∣∣2] ≤ 2d
√

d + 3

N1+ 1
d

· ∥ f ∥H1(K), (4.15)

where f is a function in Sobolev spaceH1(K).

Theorem 4.5. [26] Let x1, x2, . . . , xN be points from MC samples in [0, 1]d, then we have

E
[∣∣∣∣ 1

N

N∑
n=1

f (xn) −
∫

[0,1]d
f (z)dz

∣∣∣∣2] ≤ d
3
2

N
· ∥ f ∥H1(K), (4.16)

where f is a function inH1(K).

By comparing the mean square error of the three different sampling methods, we find that HSFC
sampling and jittered sampling are superior to Monte Carlo sampling, and if the same sampling points
are selected, the upper bound of jittered sampling is slightly better than HSFC sampling, but still the
same order of convergence, whereas HSFC sampling has the advantage that it does not require jittered
sampling of N = md number of samples.
Example 3. Choose

f (x) =
1
πd

d∏
i=1

sin(πxi), (4.17)
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according to the definition, we have

∥ f ∥H1(K) =
1

2
d
2

.

We then could achieve the following comparison; see Figure 5 for d = 3.
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Figure 5. Comparison of Mean square errors for different sampling set.

5. Conclusions

The above analysis reveals that the convergence of the star discrepancy bound for HSFC-based
sampling is O(N−

1
2−

1
2d · (ln N)

1
2 ), which aligns with the rate achieved using jittered sampling sets and

surpasses the rate obtained using the classical MC method. The stringent requirement for the sampling
number N = md in the jittered case is eliminated, thereby enhancing the applicability of this new
stratified sampling method in higher dimensions. While our current findings are conservative, a more
favorable convergence rate of the upper bound leads to improved integration approximation. However,
a direct comparison of random star discrepancy sizes under different stratified sampling models remains
unresolved.
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