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1. Introduction

The history of the time-inconsistent problem can be traced back to the research of Hume [1]
and Smith [2]. However, it was not until 1955 that Strotz [3] first established a mathematical
formulation for the hyperbolic discounting Ramsey problem. Since then, extensive studies on
time-inconsistent problems have emerged due to their importance and wide-ranging applications.
Björk et al. [4–6] explored time-inconsistent stochastic control and its application in finance and
economics in both discrete and continuous time; they derived the Hamilton-Jacobi-Bellman (HJB)
equations using systematic methods and obtained verification theorems. Ekeland et al. [7,8] researched
feedback equilibrium control for time-inconsistent problems as well as time-consistent portfolio
management. Yong and collaborators [9–13] studied time-inconsistent optimal control problems within
the framework of game theory, obtaining results related to time-consistent equilibrium control by
discretizing time intervals. Lü et al. [14, 15] examined stochastic linear-quadratic time-inconsistent
control problems with both definite and indefinite cost functional. Hu et al. [16, 17] investigated
the existence and uniqueness of open-loop equilibrium control for stochastic linear-quadratic time-
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inconsistent control problems by employing a flow of forward and backward stochastic differential
equations. Ni et al. [18] researched mixed equilibrium strategies for linear-quadratic time-inconsistent
control problems.

Recently, Peng and collaborators [19,20] explored the equivalence between the equilibrium control
of deterministic linear-quadratic time-inconsistent problems, the solvability of the two-point boundary
value problems, and the Riccati-type equations in a closed-loop framework. They established the
existence and uniqueness of time-consistent equilibrium control for deterministic linear-quadratic
time-inconsistent models by discussing the solvability of Riccati-type equations. Additionally, related
studies [21, 22] have also been conducted in the context of open-loop.

It is well known that the Pontryagin-type maximum principle serves as one of the most important
tools for solving classical control problems (time-consistent control problems). Furthermore, suppose
the linear-quadratic control problem admits both closed-loop and open-loop optimal control, and that
the open-loop optimal control has a closed-loop representation. This implies that the representation
must stem from the closed-loop optimal control [23–26]. Consequently, it is natural to pose the
following questions: (1) Does an equilibrium maximum principle, similar to the Pontryagin maximum
principle, exist for time-inconsistent control problems? (2) If the linear-quadratic time-inconsistent
control problem allows for both open-loop and closed-loop equilibrium strategies, and the open-
loop equilibrium strategy has a closed-loop representation, does this mean it arises from the closed-
loop equilibrium strategy? (3) What is the connection between the open-loop equilibrium strategy,
the closed-loop equilibrium strategy for time-inconsistent problems, and the optimal solution for the
control problem?

In this paper, we primarily focus on the equilibrium maximum principle for the open-loop
equilibrium strategy in linear-quadratic time-inconsistent control problems. We explore the
equivalence among the open-loop equilibrium strategy, two-point boundary value problems, and
equilibrium Riccati equations. Additionally, we provide examples to highlight the essential difference
between the open-loop and closed-loop equilibrium strategies in time-inconsistent control problems
and the optimal control in classical control problems. Our approach is inspired by recent developments
in linear-quadratic time-inconsistent differential games and control problems [19, 21, 22].

The remainder of this paper is organized as follows: In Section 2, we formulate the mathematical
model for the linear-quadratic time-inconsistent control problem and present some necessary
assumptions and notations that will be frequently used throughout the paper. Section 3.1 is dedicated
to deriving the equilibrium maximum principle for the open-loop equilibrium strategy. In Section 3.2,
we characterize the relationships between the open-loop equilibrium strategy, two-point boundary
value problems, and the equilibrium Riccati equation. Section 4 addresses the relationships among
the open-loop equilibrium, the closed-loop equilibrium for time-inconsistent control problems, and
optimal control in classical control problems.

2. Problem setting

Let L0 > 0. The following function spaces and notations are to be used throughout this article:

C ([0, L0];R) = {χ : [0, L0]→ R | χ is continuous} ,

C1 ([0, L0];R) = {χ : [0, L0]→ R | Dχ and χ are continuous} ,

AIMS Mathematics Volume 10, Issue 3, 5480–5494.



5482

Lp ([0, L0];Rm) =
{
χ : [0, L0]→ Rm |

∫ L0

0
|χ(r)|pdr < ∞

}
,

Θ(ν) =M−1(ν, ν)B⊤(ν)P(ν), for any ν ∈ [0, L0],

ϕA(ν, µ) = exp
{∫ µ

ν

A(ι)dι
}
, for any ν, µ ∈ [0, L0],

Φ(ν, µ) = exp
{∫ µ

ν

(A(ι) − B(ι)Θ(ι)) dι
}
, for any ν, µ ∈ [0, L0],

⊤ : the transpose of a matrix or vector.

For any (ν, z) ∈ [0, L0] × Rn, we research the following linear control system:{
Ż(µ) = A(µ)Z(µ) + B(µ)u(µ), µ ∈ (ν, L0],
Z(ν) = z,

(2.1)

with an LQ cost functional

F(ν, z; u(·)) =
∫ L0

ν

(⟨Q(ν, µ)Z(µ),Z(µ)⟩ + ⟨M(ν, µ)u(µ), u(µ)⟩) dµ + ⟨G(ν)Z(L0),Z(L0)⟩ . (2.2)

Here, A(·), B(·), Q(·, ·), M(·, ·), G(·) are appropriate matrix-valued functions. We are making the
following hypotheses.

(S1)A ∈ L1 ([0, L0];Rn×n), B ∈ L2 ([0, L0];Rn×m).
(S2)M ∈ C ([0, L0] × [0, L0];Rm×m) is a positive definite matrix-valued functions.
(S3) Q ∈ C1 ([0, L0] × [0, L0];Rn×n) and G ∈ C1 ([0, L0];Rn×n) are symmetric matrix-valued

functions.
(S4) For 0 ≤ ν ≤ µ ≤ L0, G(ν), Q(ν, µ),Mν(ν, µ), Ġ(ν), and Qν(ν, µ) are positive semi-definite. Here,

Mν(ν, µ) = ∂M∂ν (ν, µ), Ġ(ν) = dG
dν (ν), Qν(ν, µ) = ∂Q∂ν (ν, µ).

It is obvious that for any (ν, z) ∈ [0, L0]×Rn and u(·) ∈ L2 ([0, L0];Rm), the linear control system (2.1)
admits a unique solution under (S1). Specifically, we define ϕA(ν, µ) as a matrix solution of the
differential equation d

dµZ(µ) = A(µ)Z(µ) with ϕA(ν, ν) = In×n in this paper. Further, if (S2) and
(S3) are also assumed, then the LQ cost functional (2.2) is well defined for any z ∈ Rn, µ, ν ∈ [0, L0]
and u(·) ∈ L2 ([0, L0];Rm).

Problem (I). For any initial pair (ν, z), we want to find an ū(·) ∈ L2 ([0, L0];Rm) such that the cost
functional F(ν, z; u(·)) is minimized.

Note that the coefficients Q, M, and G in the objective functional (2.2) explicitly depend on the
initial time ν. This implies that the cost functional will change over time, leading to time-inconsistency,
which makes it quite different from classical optimal control problems. We refer to Problem (I) as
linear-quadratic time-inconsistent control problem.

Let ū(·) ∈ L2 ([0, L0];Rm) be a given control, and Z̄(·) be the state trajectory corresponding to the
control ū and fixed initial pair (0, z0), i.e., Z̄(·) ≡ Zū

0,z0
(·). We then present the following definition.

Definition 2.1. [16] The control ū(·) ∈ L2 ([0, L0];Rm) is called an open-loop equilibrium strategy if

lim
ε↘0

F
(
ν, Z̄(ν); uε,ν,c(·)

)
− F(ν, Z̄(ν); ū(·))

ε
≥ 0, ∀(ν, c) ∈ [0, L0) × Rm, (2.3)
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where

uε,ν,c(µ) =

c, µ ∈ (ν, ν + ε],
ū(µ), µ ∈ [0, ν] ∪ (ν + ε, L0],

(2.4)

and c ∈ Rm is a constant vector. The corresponding control trajectory Z̄(·) and
(
Z̄(·), ū(·)

)
are called

an equilibrium strategy trajectory and equilibrium strategy pair, respectively.

3. Characterization of open-loop equilibrium strategy

3.1. Equilibrium maximum principle

We first state the following equilibrium maximum principle, which gives a set of necessary
conditions for equilibrium strategy in the sense of open-loop.

Theorem 3.1. Suppose (S1)–(S3) hold. Let
(
Z̄(·), ū(·)

)
be an open-loop equilibrium strategy pair of

Problem (I). Then, there exists a ω(·) : [0, L0]→ Rn satisfying the following integral equation:

ω(ν) = ϕ⊤A(L0, ν)G(ν)Z̄(L0) +
∫ L0

ν

ϕ⊤A(τ, ν)Q(ν, τ)Z̄(τ)dτ, (3.1)

and such that
M(ν, ν)ū(ν) + B⊤(ν)ω(ν) = 0, ν ∈ [0, L0]. (3.2)

Proof. Suppose that the Problem (I) has an open-loop equilibrium strategy pair
(
Z̄(·), ū(·)

)
, we then

define

ω̃(ν) = ϕ⊤A(L0, ν)G(ν)Z̄(L0) +
∫ L0

ν

ϕ⊤A(τ, ν)Q(ν, τ)Z̄(τ)dτ. (3.3)

For any fixed ν ∈ [0, L0) and any ε ∈ (0, 1) with ν + ε ≤ L0, it follows from the definition
of the perturbation control (2.4) that the control system (2.1) with uε,ν,c have a unique solution
Zuε,ν,c ∈ C ([0, L0];Rn) given by

Zuε,ν,c(µ) = Z̄(µ) +
∫

[0,µ]
⋂

[ν,ν+ε]
ϕA(µ, τ)B(τ) (c − ū(τ)) dτ ≡ Z̄(µ) +Zε(µ) (3.4)

for all µ ∈ [0, L0]. We then have

Zε(·) −→ 0 in C ([0, L0];Rn) as ε→ 0. (3.5)

It follows from (2.2), (3.3)–(3.5) that

F
(
ν, Z̄(ν); uε,ν,c

)
− F

(
ν, Z̄(ν); ū

)
=

∫ L0

ν

〈
Q(ν, µ)

(
2Z̄(µ) +Zε(µ)

)
,Zε(µ)

〉
dµ +

∫ ν+ε

ν

⟨M(ν, µ) (c + ū(µ)) , c − ū(µ)⟩ dµ

+
〈
G(µ)

(
2Z̄(L0) +Zε(L0)

)
,Zε(L0)

〉
=

∫ ν+ε

ν

〈
B⊤(µ)

∫ L0

µ

ϕ⊤A(τ, µ)Q(ν, τ)
(
2Z̄(τ) +Zε(τ)

)
dτ, c − ū(µ)

〉
dµ
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+

∫ ν+ε

ν

⟨M(ν, µ) (c + ū(µ)) , c − ū(µ)⟩ dµ

+

∫ ν+ε

ν

〈
B⊤(µ)ϕ⊤A(L0, µ)G(ν)

(
2Z̄(L0) +Zε(L0)

)
, c − ū(µ)

〉
dµ,

which yields that

lim
ε↘0

F
(
ν, Z̄(ν); uε,ν,c

)
− F

(
ν, Z̄(ν); ū

)
ε

=

〈
2B⊤(ν)

∫ L0

ν

ϕ⊤A(τ, ν)Q(ν, τ)Z̄(τ)dτ +M(ν, ν) (c + ū(ν)) , c − ū(ν)
〉

+
〈
2B⊤(ν)ϕ⊤A(L0, ν)G(ν)Z̄(L0), c − ū(ν)

〉
,

(3.6)

where ν ∈ [0, L0].
We can have

ω̃(ν) = ϕ⊤A(L0, ν)G(ν)Z̄(L0) +
∫ L0

ν

ϕ⊤A(τ, ν)Q(ν, τ)Z̄(τ)dτ. (3.7)

Using
(
Z̄(·), ū(·)

)
as an open-loop equilibrium strategy pair, we then have

B⊤(ν)ω̃(ν) +M(ν, ν)ū(ν) = 0, ν ∈ [0, L0]. (3.8)

Combining (3.8) and (2.1), we then have ˙̄Z(ν) = A(ν)Z̄(µ) − B(ν)M−1(ν, ν)B⊤(ν)ω̃(ν),
Z̄(0) = z0.

(3.9)

Thus, the differential equation (3.9) admits a unique solution Z̄(·) given by

Z̄(ν) = ϕA(ν, 0)z0 −

∫ ν

0
ϕA(ν, τ)B(τ)M−1(τ, τ)B⊤(τ)ω(τ)dτ. (3.10)

Substituting (3.10) into (3.7), we can have (3.1). This implies that ω(·) is a solution of (3.1); we thus
complete the proof. □

3.2. The equivalent relationships of open-loop equilibrium strategy

In this subsection, we investigate the equivalence among the open-loop equilibrium strategy, two-
point boundary value problems, and equilibrium Riccati equations. We first introduce the following
two-point boundary value problems: Z̄(ν) = ϕA(ν, 0)z0 −

∫ ν
0
ϕA(ν, τ)B(τ)M−1(τ, τ)B⊤(τ)ω(τ)dτ,

ω(ν) = ϕ⊤
A

(L0, ν)G(ν)Z̄(L0) +
∫ L0

ν
ϕ⊤
A

(τ, ν)Q(ν, τ)Z̄(τ)dτ,
ν ∈ [0, L0], (3.11)

and the equilibrium Riccati equations{
Ṗ(ν) + P(ν)A(ν) +A⊤(ν)P(ν) + Q̃(ν, ν) − Θ⊤(ν)M(ν, ν)Θ(ν) = 0, ν ∈ [0, L0],
P(L0) = G(L0).

(3.12)
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Theorem 3.2. Suppose (S1)–(S3) hold. Then, the Problem (I) admits an open-loop equilibrium
strategy, if and only if, the two-point boundary value problems (3.11) admits a solution in
C ([0, L0];Rn) ×C ([0, L0];Rn) for all ν ∈ [0, L0].

Proof. We assert that the necessary condition is satisfied according to Theorem 3.1. Next, we
will establish sufficiency. Let the two-point boundary problem (3.11) have a solution (Z̄, ω) ∈
C ([0, L0];Rn)×C ([0, L0];Rn). By introducing the control function ū as defined in (3.2), we claim that ū
serves as an equilibrium strategy. Following a similar derivation process as in (3.6), it follows (3.7) that

lim
ε↘0

F
(
ν, Z̄(ν); uε,ν,c

)
− F

(
ν, Z̄(ν); ū

)
ε

=
〈
M(ν, ν)

(
c +M−1(ν, ν)B⊤(ν)ω(ν)

)
, c +M−1(ν, ν)B⊤(ν)ω(ν)

〉
for all ν ∈ [0, L0].

It follows from the assumption (S2) and the above equation that

lim
ε↘0

F
(
ν, Z̄(ν); uε,ν,c

)
− F

(
ν, Z̄(ν); ū

)
ε

≥ 0 for all ν ∈ [0, L0].

Consequently, ū is an open-loop equilibrium strategy of the linear-quadratic time-inconsistent control
problems. □

Theorem 3.3. Let (S1)–(S4) hold. Then, P(·) ∈ C ([0, L0];Rn×n) is a solution of the equilibrium
Riccati equations (3.12), if and only if, the two-point boundary value problems (3.11) admits a solution(
Z̄(·), ω(·)

)
∈ C ([0, L0];Rn) ×C ([0, L0];Rn) be given by{

Z̄(ν) = Φ(ν, 0)z0,

ω(ν) = P(ν)Z̄(ν),
ν ∈ [0, L0]. (3.13)

Proof. Let P be a solution of the equilibrium Riccati equations (3.12); then we can define{
Z̃(ν) = Φ(ν, 0)z0,

ω̃(ν) = P(ν)Z̃(ν),
ν ∈ [0, L0].

It is clear that Z̃ and ω̃ are continuous and differentiable. Taking the first order derivative on Z̃ and ω̃,
we then have  ˙̃

Z(ν) = A(ν)Z̃(ν) − B(ν)M−1(ν, ν)B⊤(ν)ω̃(ν), ν ∈ [0, L0],
Z̃(0) = z0,

(3.14)

and  ˙̃ω(ν) = Ṗ(ν)Z̃(ν) + P(ν) ˙̃
Z(ν), ν ∈ [0, L0],

ω̃(L0) = G(L0)Z̃(L0).
(3.15)

Observer that

˙̃ω(ν) =Ṗ(ν)Z̃(ν) + P(ν) ˙̃
Z(ν)

= −
[
P(ν)A(ν) +AT (ν)P(ν) + Q̃(ν, ν) − P(ν)B(ν)M−1(ν, ν)B⊤(ν)P(ν)

]
Z̃(ν)

+ P(ν)
[
A(ν) − B(ν)M−1(ν, ν)B⊤(ν)P(ν)

]
Z̃(ν)

= −A⊤(ν)P(ν)Z̃(ν) − Q(ν, ν)Z̃(ν).
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Result in

ω̃(ν) =ϕ⊤A(L0, ν)G(L0)Z̃(L0) +
∫ L0

ν

ϕ⊤A(τ, ν)Q̃(τ, τ)Z̃(τ)dτ

=ϕ⊤A(L0, ν)G(L0)Z̃(L0) −
∫ L0

ν

ϕ⊤A(τ, ν)ϕ⊤A(L0, τ)Ġ(τ)Φ(L0, τ)Z̃(τ)dτ

+

∫ L0

ν

ϕ⊤A(τ, ν)
[
Q(τ, τ) −

∫ L0

τ

ϕ⊤A(µ, τ)Qν(τ, µ)Φ(µ, τ)dµ
]
Z̃(τ)dτ

=ϕ⊤A(L0, ν)
[
G(L0) −

∫ L0

ν

Ġ(τ)dτ
]
Z̃(L0)

+

∫ L0

ν

ϕ⊤A(τ, ν)Q(τ, τ)Z̃(τ)dτ −
∫ L0

ν

∫ L0

τ

ϕ⊤A(τ, t)ϕ⊤A(µ, τ)Qν(τ, µ)Φ(µ, τ)Z̃(τ)dµdτ.

(3.16)

Because ∫ L0

ν

ϕ⊤A(τ, ν)Q(τ, τ)Z̃(τ)dτ −
∫ L0

ν

∫ L0

τ

ϕ⊤A(τ, ν)ϕ⊤A(µ, τ)Qν(τ, µ)Φ(µ, τ)Z̃(τ)dµdτ

=

∫ L0

ν

ϕ⊤A(τ, ν)Q(τ, τ)Z̃(τ)dτ −
∫ L0

ν

∫ L0

τ

ϕ⊤A(µ, ν)Qν(τ, µ)Z̃(µ)dµdτ

=

∫ L0

ν

ϕ⊤A(µ, ν)Q(µ, µ)Z̃(µ)dµ −
∫ L0

ν

ϕ⊤A(µ, ν)
∫ µ

ν

Qν(τ, µ)dτZ̃(µ)dµ

=

∫ L0

ν

ϕ⊤A(µ, ν)
[
Q(µ, µ) −

∫ µ

ν

Qν(τ, µ)dτ
]
Z̃(µ)dµ

=

∫ L0

ν

ϕ⊤A(µ, ν)Q(ν, µ)Z̃(µ)dµ.

Invoking this into (3.16), we obtain that

ω̃(ν) = ϕ⊤A(L0, ν)G(ν)Z̃(L0) +
∫ L0

ν

ϕ⊤A(µ, ν)Q(ν, µ)Z̃(µ)dµ. (3.17)

By combining (3.14) and (3.17), we demonstrate that
(
Z̃, ω̃

)
is a solution to the two-point boundary

value problem (3.11). This concludes the proof of necessity.
On the other hand, if

(
Z̄, ω

)
is a solution of the two-point boundary value problems (3.11) and(

Z̄, ω
)

is given by (3.13). We can have

ω(t) =
(
ϕ⊤A(T, ν)G(ν)Φ(L0, 0) +

∫ L0

ν

ϕ⊤A(τ, ν)Q(ν, τ)Φ(τ, 0)dτ
)

z0, ν ∈ [0, L0]. (3.18)

Since
ω(ν) = P(ν)Φ(ν, 0)z0, ν ∈ [0, L0]. (3.19)

It follows (3.18) and (3.19) that

P(ν) = ϕ⊤A(L0, ν)G(ν)Φ(L0, ν) +
∫ L0

ν

ϕ⊤A(τ, ν)Q(ν, τ)Φ(τ, ν)dτ, ν ∈ [0, L0]. (3.20)

AIMS Mathematics Volume 10, Issue 3, 5480–5494.



5487

This implies that P is continuous and differential. Therefore, taking the first-order derivative on both
sides of ω(ν) = P(ν)Z̄(ν), we can obtain that

ω̇(ν) = Ṗ(ν)Z̄(ν) + P(ν) ˙̄Z(ν), ν ∈ [0, L0]. (3.21)

Therefore, it is clear thatP satisfies the equilibrium Riccati equations (3.12) based on (3.11) and (3.21).
Thus, we complete the proof. □

4. Relationships between open-loop equilibrium strategy, closed-loop equilibrium strategy and
optimal control

4.1. Relationship between open-loop equilibrium strategy and closed-loop equilibrium strategy

The closed-loop representation of an open-loop optimal control can be derived from a closed-loop
control for classical linear-quadratic control problems. We will now establish a similar result for linear-
quadratic time-inconsistent control problems. For convenience, we introduce the following notations:

b(ν) = B⊤(ν)Ω(ν), ν ∈ [0, L0], (4.1)

where

Ω(ν) =
∫ L0

ν

(
ϕ⊤A(µ, ν) − Φ⊤(µ, ν)

)
Q(ν, µ)Φ(µ, ν)Z̄(ν)dµ

−

∫ L0

ν

Φ⊤(µ, ν)Θ⊤(µ)M(ν, µ)Θ(µ)Φ(µ, ν)Z̄(ν)dµ

+
(
ϕ⊤A(L0, ν) − Φ⊤(L0, ν)

)
G(ν)Φ(L0, ν)Z̄(ν), ν ∈ [0, L0].

(4.2)

We now present the following lemma.

Lemma 4.1. [19] Let (S1)–(S4) hold. Then, the following equilibrium Riccati equations
Ṗ(ν) + P(ν)A(ν) +A⊤(ν)P(ν) + Q(ν, ν) − Θ⊤(ν)M(ν, ν)Θ(ν)
−

∫ L0

ν
Φ⊤(µ, ν)Θ⊤(µ)Mν(ν, µ)Θ(µ)Φ(µ, ν)dµ

−
∫ L0

ν
Φ⊤(µ, ν)Qν(ν, µ)Φ(µ, ν)dµ − Φ⊤(L0, ν)Ġ(ν)Φ(L0, ν) = 0, ν ∈ [0, L0],

P(L0) = G(L0)

(4.3)

admits a unique symmetric positive semi-definite solution P ∈ C ([0, L0];Rn×n).

Proposition 4.1. Let (S1)–(S4) hold. Then, the closed-loop representation of an open-loop equilibrium
strategy must be the outcome from a closed-loop equilibrium strategy if and only if

Ω(ν) = 0, a.e. ν ∈ [0, L0].

Proof. Since (S1)–(S4) hold, we know that there is a solution P to the equilibrium Riccati
equation (4.3) as shown in [19]. Therefore, we can define the following function:

ū(ν, z) = −Θ(ν)z, ∀(ν, z) ∈ [0, L0] × Rn. (4.4)
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Clearly, ū(·, ·) of (4.4) is a unique closed-loop equilibrium control of linear-quadratic time-inconsistent
control problems by [19]. Let (0, z0) be fixed; we make the notations as below:{

ū(ν) = −Θ(ν)Z̄(ν), ν ∈ [0, L0],
Z̄(ν) = Φ(ν, 0)z0, t ∈ [0, L0].

(4.5)

It follows from (4.5) that Z̄ ∈ C ([0, L0];Rn) given by (3.3).
Let

uε,ν,c(µ, z) =

c, µ ∈ (ν + ε],
ū(µ, z), µ ∈ [0, ν] ∪ (ν + ε, L0],

(4.6)

withZε1(·) satisfy the equations Żε1(µ) = A(µ)Zε1(µ) + B(µ)uε,ν,c
(
µ,Zε1(µ)

)
, µ ∈ (0, L0],

Zε1(0) = z0.
(4.7)

This implies that

Zε1(µ) =


Φ(µ, 0)z0 = Z̄(µ), µ ∈ [0, ν],
ϕA(µ, ν)Z̄(ν) +

∫ µ
ν
ϕA(µ, ι)B(ι)cdι, µ ∈ (ν, ν + ε],

Φ(µ, ν + ε)Zε1(ν + ε), µ ∈ (ν + ε, L0].

(4.8)

Next, let

uε,ν,c(µ) =

c, µ ∈ (ν, ν + ε],
ū(µ), µ ∈ [0, ν] ∪ (ν + ε, L0],

(4.9)

withZε2(µ) solving the following equations:{
Żε2(µ) = A(µ)Zε2(µ) + B(µ)uε,ν,c(µ), µ ∈ (0, L0],
Zε2(0) = z0.

(4.10)

Thus,

Zε2(µ) =


Φ(µ, 0)z0 = Z̄(µ), µ ∈ [0, ν],
ϕA(µ, ν)Z̄(ν) +

∫ µ
ν
ϕA(µ, ι)B(ι)cdι = Zε1(µ), µ ∈ (ν, ν + ε]

ϕA(µ, ν + ε)Zε2(ν + ε) +
∫ µ
ν+ε
ϕA(µ, ι)B(ι)ū(ι)dι, µ ∈ (ν + ε, L0].

(4.11)

Let
Yε1(µ) = Zε1(µ) − Z̄(µ), 0 ≤ ν ≤ µ ≤ L0. (4.12)

Result in

Yε1(µ) =


0, µ ∈ [0, ν],∫ µ
ν
ϕA(µ, ι)B(ι) (c − ū(ι)) dι, µ ∈ (ν, ν + ε]

Φ(µ, ν + ε)
(
Zε1(ν + ε) − Z̄(ν + ε)

)
, µ ∈ (ν + ε, L0].

(4.13)

Here,

Zε1(ν + ε) − Z̄(ν + ε) =
∫ ν+ε

ν

ϕA(µ, ν + ε)B(ι)
(
v + Θ(ι)Z̄(ι)

)
dι. (4.14)
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This yields that

lim
ε→0

Zε1(ν + ε) − Z̄(ν + ε)
ε

= B(ν)
(
c + Θ(ν)Z̄(ν)

)
, a.e. ν ∈ [0, L0]. (4.15)

Let

Yε2(µ) = Zε2(µ) − Z̄(µ), 0 ≤ ν ≤ µ ≤ L0. (4.16)

This deduces

Yε2(µ) =


0, µ ∈ [0, ν],∫ µ
ν
ϕA(µ, ι)B(ι) (c − ū(ι)) dι, µ ∈ (ν, ν + ε]

ϕA(µ, ν + ε)
(
Zε2(ν + ε) − Z̄(ν + ε)

)
, µ ∈ (ν + ε, L0].

(4.17)

Thus,

Zε2(µ) −Zε1(µ) =Yε2(µ) − Yε1(µ)

=


0, µ ∈ [0, ν],∫ µ
ν
ϕA(µ, ι)B(ι) (c − ū(ι)) dι, µ ∈ (ν, ν + ε],

(ϕA(µ, ν + ε) − Φ(µ, ν + ε))
(
Zε1(ν + ε) − Z̄(ν + ε)

)
, µ ∈ (ν + ε, L0].

(4.18)

Next, we have

F
(
ν, Z̄(ν); uε,ν,c(·)

)
=

∫ ν+ε

ν

(〈
Q(ν, µ)Zε2(µ),Zε2(µ)

〉
+ ⟨M(ν, µ)c, c⟩

)
dµ

+

∫ L0

ν+ε

(〈
Q(ν, µ)Zε2(µ),Zε2(µ)

〉
+ ⟨M(ν, µ)ū(µ), ū(µ)⟩

)
dµ

+
〈
G(ν)Zε2(L0),Zε2(L0)

〉
=F

(
ν, Z̄(ν); uε,ν,c(·, ·)

)
+ F̃(ε),

(4.19)

where

F̃(ε) =
∫ L0

ν+ε

(〈
Q(ν, µ)

(
Zε2(µ) +Zε1(µ)

)
,Zε2(µ) −Zε1(µ)

〉)
dµ

+

∫ L0

ν+ε

(〈
M(ν, µ)

(
ū(µ) − Θ(µ)Zε1(µ)

)
, ū(µ) + Θ(µ)Zε1(µ)

〉)
dµ

+
〈
G(ν)

(
Zε2(L0) +Zε1(L0)

)
,Zε2(L0) −Zε1(L0)

〉
.
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Consequently,

lim
ε→0

F̃(ε)
ε
=2

∫ L0

ν

〈
Q(ν, µ)Z̄(µ), (ϕA(µ, ν) − Φ(µ, ν))B(ν)

(
c + Θ(ν)Z̄(ν)

)〉
+ 2

∫ L0

ν

〈
M(ν, µ)Θ(µ)Z̄(µ),Θ(µ)Φ(µ, ν)B(ν)

(
c + Θ(ν)Z̄(ν)

)〉
dν

+ 2
〈
G(ν)Z̄(L0), (ϕA(L0, ν) − Φ(L0, ν))B(ν)

(
c + Θ(ν)Z̄(ν)

)〉
=2

〈∫ L0

ν

((
ϕ⊤A(µ, ν) − Φ⊤(µ, ν)

)
Q(ν, µ)Φ(µ, ν)Z̄(µ)

)
dµ,B(ν)

(
c + Θ(ν)Z̄(ν)

)〉
−2

〈∫ L0

ν

(
Φ⊤(µ, ν)Θ⊤(µ)M(ν, µ)Θ(µ)Φ(µ, ν)Z̄(ν)

)
dµ,B(ν)

(
c + Θ(ν)Z̄(ν)

)〉
+ 2

〈(
ϕ⊤A(L0, ν) − Φ⊤(L0, ν)

)
G(ν)Φ(L0, ν)Z̄(ν),B(ν)

(
c + Θ(ν)Z̄(ν)

)〉
=

〈
2b(ν), c + Θ(ν)Z̄(ν)

〉
.

(4.20)

In summary, we have

lim
ε→0

F
(
ν, Z̄(ν); uε,ν,c(·)

)
− F

(
ν, Z̄(ν); ū(·)

)
ε

= lim
ε→0

F
(
ν, Z̄(ν); uε,ν,c1 (·)

)
− F

(
t, Z̄(ν); ū(·)

)
ε

+
F̃(ε)
ε


=

〈
M(ν, ν)

(
c + Θ(ν)Z̄(ν)

)
, c + Θ(ν)Z̄(ν)

〉
+

〈
2b(ν), c + Θ(ν)Z̄(ν)

〉
=

〈
M(ν, ν)

(
c + Θ(ν)Z̄(ν) +M−1(ν, ν)b(ν)

)
, c + Θ(ν)Z̄(ν) +M−1(ν, ν)b(ν)

〉
−

〈
M−1(ν, ν)b(ν), b(ν)

〉
≥ −

〈
M−1(ν, ν)b(ν), b(ν)

〉
, a.e. ν ∈ [0, L0].

(4.21)

This implies that the ū(·) is an open-loop equilibrium strategy if and only if b(ν) = 0. We thus complete
the proof that ū(·) is an open-loop equilibrium strategy if and only if Ω(ν) = 0 almost every ν ∈ [0, L0]
by (S1). □

Remark 4.1. Note that above (4.2), Ω(ν) = 0 is not true for almost every ν ∈ [0, L0] in general, which
implies that the closed-loop structure associated with an open-loop equilibrium strategy fails to be
valid in almost all cases.

We now provide an example to illustrate that, in general, a closed-loop representation of an open-
loop equilibrium strategy does not emerge from a closed-loop equilibrium strategy. This highlights the
fundamental difference between time-inconsistent control problems and classical control problems.
Example 4.1. In Problem (I), let A = B = 1, Q = 0,M(ν, µ) = µ2 + ν + 1

2 , G(ν) = 1
3ν

3 + 2ν2 + ν + 5
24

and L0 =
1
2 . Then,

Qν(ν, µ) = 0, Mν(ν, µ) = 1, Ġ(ν) = ν2 + 4ν + 1, for any ν, µ ∈ [0, L0].
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Let P(ν) =M(ν, ν); then the equilibrium Riccati equation (4.3) yields that Ṗ(ν) + P(ν) − Ġ(ν) −
∫ L0

ν
Mν(ν, µ)dµ = 0, 0 ≤ ν ≤ µ ≤ 1

2 ,

P( 1
2 ) = G( 1

2 ).
(4.22)

Solving the above ordinary differential equation, we then have

P(ν) = ν2 + ν +
1
2

for all ν ∈ [0, L0].
Next, plugA,B,Q,M, and G into (3.12), we then have

P̃(ν) = e
1
2−ν

(
1
3
ν3 + 2ν2 + ν +

5
24

)
. (4.23)

Obviously,
P̃(ν) , P(ν)

for all ν ∈ [0, 1
2 ].

4.2. Relationship between open-loop equilibrium strategy and optimal control

Before presenting the relationship between the open-loop equilibrium strategy of time-inconsistent
control problems and the optimal control of classical control problems, we will first introduce a lemma
related to optimal control problems.

In cost functional (2.2), let ν ∈ [0, L0] be fixed or

Q(ν, µ) = Q(µ, µ), M(ν, µ) =M(µ, µ), G(ν) = G, for any ν, µ ∈ [0, L0],

then Problem (I) is reduced to a classical control problem. We introduce the following result for the
optimal control problem.

Lemma 4.2. [26] Suppose (S1)–(S4) hold and ν ∈ [0, L0] is fixed. Then, the classical optimal control
problem is uniquely solvable at each µ ∈ [ν, L0], if and only if, the following Riccati equation

Pµ(µ; ν) + P(µ; ν)A(µ) +A⊤(µ)P(µ; ν) + Q(ν, µ)
−P(µ; ν)B(µ)M−1(ν, µ)B⊤(µ)P(µ; ν) = 0,
P(L0; ν) = G(ν)

(4.24)

is uniquely solvable on [ν, L0].

Example 4.2. In Problem (I), let A = B = 1, Q = 0, G(ν) = L2
0 + ν, andM(ν, µ) = (µ2+ν)2

2(µ2+µ+ν) for any
0 ≤ ν < µ ≤ L0. Then,

Qν(ν, µ) = 0, Ġ(ν) = 1, for any ν, µ ∈ [0, L0].

On the one hand, if the initial pair (ν, z) ∈ [0, L0] × Rn is fixed, then Problem (I) is an optimal control
problem; we thus have the following Riccati equation:

Pµ(µ; ν) + P(µ; ν)A(µ) +A⊤(µ)P(µ; ν) + Q(ν, µ)
−P(µ; ν)B(µ)M−1(ν, µ)B⊤(µ)P(µ; ν) = 0, µ ∈ [ν, L0),
P(L0; ν) = G(ν).

(4.25)
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PlugA, B, Q, G, Qν, Ġ, andM into (4.25), we have Pµ(µ; ν) + 2P(µ; ν) − P(µ; ν)2(µ2+µ+ν)
(µ2+ν)2 P(µ; ν) = 0, µ ∈ [ν, L0),

P(L0; ν) = L2
0 + ν.

(4.26)

Solving the above Eq (4.26), we then have

P(µ; ν) = µ2 + ν (4.27)

for any µ ∈ [ν, L0).
On the other hand, for any ν ∈ [0, L0], substitute A, B, Q, G, Qν, Ġ and M into the equilibrium

Riccati equation (3.12), then we can obtain that
Ṗ(ν) + 2P(ν) − P(ν) 2(ν2+ν+ν)

(ν2+ν)2 P(ν)

−exp {L0 − ν} · exp
{∫ L0

ν

(
1 − 2(ι2+2ι)

(ι2+ι)2 P(ι)
)

dι
}
= 0, ν ∈ [0, L0),

P(L0) = L2
0 + L0.

(4.28)

In (4.27), let µ = ν, we have
P(ν) = ν2 + ν. (4.29)

Plug P(ν) into the main equation of (4.28); we have the left-hand of the main equation of (4.28) is
equivalent to

1 −
(1 + ν)2

(1 + L0)2 , (4.30)

which implies that 1− (1+ν)2

(1+L0)2 , 0 for any ν ∈ [0, L0). Thus, P(ν) = ν2 + ν is not a solution of Eq (4.28).
The example above demonstrates that there is no essential connection between the open-loop

equilibrium strategy and optimal control. This suggests that the existence of an equilibrium strategy
for time-inconsistent control problems does not derive the existence of optimal control for classical
control problems, and vice versa.

5. Conclusions

Under the open-loop framework, we derive the equilibrium maximum principle for time-
inconsistent linear-quadratic control problems. By appropriately introducing the two-point boundary
value problems and the equilibrium HJB equations associated for time-inconsistent linear-quadratic
control problems, we establish the equivalence among the existence of open-loop equilibrium controls,
the solvability of the two-point boundary value problems, and the solvability of the equilibrium
HJB equations. Finally, two examples demonstrate the essential differences between the open-loop
equilibrium of time-inconsistent problems and both the closed-loop equilibrium and the optimal
control in classical settings: (1) The closed-loop representation of the open-loop equilibrium in time-
inconsistent problems cannot yield a closed-loop equilibrium, which fundamentally diverges from
classical results. (2) The existence of an open-loop equilibrium does not guarantee the existence of
an optimal control in classical frameworks.
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