
http://www.aimspress.com/journal/Math

AIMS Mathematics, 10(3): 5444–5455.
DOI:10.3934/math.2025251
Received: 20 January 2025
Revised: 03 March 2025
Accepted: 05 March 2025
Published: 11 March 2025

Research article

On multiple solutions for an elliptic problem involving Leray–Lions
operator, Hardy potential and indefinite weight with mixed boundary
conditions

Khaled Kefi1,* and Mohammed M. Al-Shomrani2,*

1 Center for Scientific Research and Entrepreneurship, Northern Border University, Arar 73213,
Saudi Arabia

2 Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203,
Jeddah 21589, Saudi Arabia

* Correspondence: Email: khaled kefi@yahoo.fr, malshamrani@kau.edu.sa.

Abstract: This paper concentrates on establishing the existence of multiple weak solutions for a
specific type of elliptic equations that involve a Hardy potential and have mixed boundary conditions.
The main goal of the study is to establish an existence result of at least three different weak solutions
thanks to variational techniques, Hardy inequality, and a particular theorem called the Bonanno–
Marano type three critical points theorem.

Keywords: two parameters; elliptic equations; mixed boundary conditions; p(x)-Laplacian; Hardy
term
Mathematics Subject Classification: 35J15, 35J20, 35J25

1. Introduction

Partial differential equations (PDEs) play a fundamental role in modeling various physical and
biological phenomena. In particular, elliptic equations have wide-ranging applications in fields such as
physics, engineering, and biology. The study of elliptic equations with Hardy potential has gained
significant attention due to their relevance in understanding the behavior of solutions in singular
domains and their connection to critical exponent problems.

In [3], the authors study the existence of three distinct nonzero solutions to a mixed nonlinear
differential problem involving the p-Laplacian, even in the presence of a nonhomogeneous term in the
Neumann boundary condition. Specifically, they consider the following boundary value problem:
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
−∆pw + q(x)|w|p−2w = λg(x,w) in Ω,
w = 0 on Γ1,

|∇w|p−2 ∂w
∂ν
= µh(w) on Γ2,

where Ω ⊂ RN (with N ≥ 3) is a bounded, nonempty open set with a C1-smooth boundary. The sets Γ1

and Γ2 are smooth (N − 1)-dimensional submanifolds of ∂Ω such that Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = ∂Ω,
with their intersection Γ1 ∩ Γ2 = Σ, where Σ is a smooth (N − 2)-dimensional submanifold of ∂Ω. The
function q ∈ L∞(Ω) is bounded below by a positive constant, denoted q0 := essinfΩ q > 0. The operator
∆pw is defined as div(|∇w|p−2∇w), with p > N. The function g : Ω×R→ R is a Carathéodory function,
and h : R → R is a nonnegative continuous function. The parameters λ and µ are real numbers with
λ > 0 and µ ≥ 0, and ν represents the outer unit normal to ∂Ω. Recent contributions to this type of
problem can be found in [13].

Motivated by the above problem, our paper focuses on a specific class of elliptic equations with a
Hardy potential, mixed boundary conditions, and two parameters, particularly in the case where the
exponents are variables. The equation involves a nonlinear term that exhibits power-law growth, which
introduces additional complexity and challenges in the analysis. The presence of the Hardy potential,
characterized by the term ϑ(x)

|x|s |u|
s−2u, where s is a constant that belongs in (1,N), reflects the singularity

of the domain at the origin and affects the behavior of the solutions.
To establish the existence of multiple weak solutions, variational methods and critical point

theory are employed. Variational methods involve minimizing certain functionals associated with the
equation, while critical point theory analyzes the existence of critical points of these functionals. The
Hardy inequality, which provides a fundamental estimate for functions with Hardy potential, is also
utilized in the analysis.

In this manuscript, we are concerned by existence and multiplicity for the following problem:
− div A(x,∇u) +

ϑ(x)
|x|s
|u|s−2u = λ f (x, u) in Ω,

u = 0 over Γ1,

A(x,∇u) · ν = µg(x, u) over Γ2.

(1.1)

Here, A : Ω × RN → RN is a mapping that extends the p(x)-Laplacian operator, and Ω represents
an open bounded subset in RN with a smooth boundary ∂Ω. The vector field ν denotes the outward
normal vectors on the boundary ∂Ω.

Furthermore, there are two smooth submanifolds, Γ1 and Γ2, of dimension N − 1, which are parts
of the boundary ∂Ω. These submanifolds are distinct and do not intersect. Their union Γ1 ∪ Γ2 covers
the entire boundary, while their intersection Γ1 ∩ Γ2 forms a submanifold of dimension N − 2 within
the boundary ∂Ω, the real parameters λ and µ are respectively positive and nonnegative, ϑ(x) ∈ L∞(Ω)
with ess infx∈Ωϑ(x) > 0, ϑ0 = ess supx∈Ωϑ(x), f : Ω × R→ R is a Carathéodory function satisfying

(f) : c f f̃ (x)|u|q(x)−1 ≤ f (x, u) ≤ c̄ f f̃ (x)|u|q(x)−1,

where, c f , c̄ f are two positive constants, f̃ (x) ∈ Lα(x)(Ω), N < α(x) for all x ∈ Ω. The functions q(x)
and p(x) belongs to C(Ω) and satisfies the following:

1 < s < q− := inf
x∈Ω

q(x) ≤ sup
x∈Ω

q(x) < sup
x∈Ω

p(x) < N.
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Moreover, we assume that there exists c̄g, a positive constant such that the following hold:

(g) : 0 ≤ g(x, u) ≤ c̄gg̃(x)|u|r(x)−1, ∀(x, u) ∈ Γ2 × R,

where 1 < sup
x∈∂Ω

r(x) = r+ < p− := inf
x∈Ω

p(x), g̃(x) ∈ Lγ(x)(Γ2), γ(x) >
N − 1

p(x) − 1
for all x ∈ Ω, we denote

by p∂(x) = (N−1)p(x)
N−p(x) , if p(x) < N and p∂(x) = +∞ otherwise.

This work considers a nonlinear boundary value problem that involves a variable exponent p(x)-
Laplacian operator with singular and possibly sign-changing nonlinearities. Specifically, the function
f̃ (x) may change sign and exhibit singularities within the domain Ω, which directly influences the
nonlinearity f (x, u) due to the multiplicative factor f̃ (x). Similarly, g̃(x), which appears in the boundary
condition, may also be singular. This introduces significant challenges in both the mathematical
analysis and the solution existence theory, as singularities often complicate the proof of existence
and regularity of solutions.

The main objective of this paper is to demonstrate that for any positive λ that belongs in the interval
[Aδ, Bd] (see Theorem 3.7, for more details), there exists µ̄(λ) such that for any µ ∈ [0, µ̄(λ)], problem
(1.1), possesses at least three weak solutions.

Such problems, where both the nonlinearity and the boundary terms involve singular functions that
can change sign, have not been extensively treated in the literature, especially in the context of the p(x)-
Laplacian with mixed boundary conditions. Most classical models either assume the nonlinearities
to be continuous and sign-preserving or restrict the functions from exhibiting singularities. The
introduction of these features and singularities in both the nonlinearities and boundary terms adds a
layer of complexity that requires new techniques to establish the existence of multiple solutions.

Our manuscript is structured as follows: in the next section, we present some preliminaries and
auxiliary results, and the last section is dedicated to our main result.

2. Variational structure

In what follows, denotes by C+(Ω) :=
{
h ∈ C(Ω) : h(x) > 1 for all x ∈ Ω

}
, for any h ∈ C+(Ω), we

define the infimum and supremum of h over Ω as

h− := inf
x∈Ω

h(x), h+ := sup
x∈Ω

h(x).

Moreover, let L(Ω), the space of all measurable functions from Ω into R.
Let p(x) be a function that belongs in C+(Ω); we define the variable exponent Lebesgue space

Lp(x)(Ω) (see [7], for further details) as

Lp(x)(Ω) =
{

u : Ω→ R : u ∈ L(Ω) and
∫
Ω

|u(x)|p(x) dx < ∞
}
.

For any u ∈ Lp(x)(Ω), the Luxemburg norm is defined as:

|u|p(x) := inf
{
η > 0 :

∫
Ω

∣∣∣∣∣u(x)
η

∣∣∣∣∣p(x)

dx ≤ 1
}
.
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For two functions u1 ∈ Lp(x)(Ω) and u2 ∈ Lp′(x)(Ω), where p′(x) is the conjugate exponent of p(x),
the following Hölder-type inequality holds (see [12], Theorem 2.1)∣∣∣∣∣∫

Ω

u1(x)u2(x) dx
∣∣∣∣∣ ≤ (

1
p−
+

1
p′−

)
|u1|p(x)|u2|p′(x). (2.1)

For h ∈ C+(Ω), put [τ]h := max{τh− , τh+}, [τ]h := min{τh− , τh+}, then, it is easy to show the following
(see [1], for further details).

Remark 2.1.

(1) [τ]
1
h = max

{
τ

1
h− , τ

1
h+
}
,

(2) [τ] 1
h
= min

{
τ

1
h− , τ

1
h+
}
,

(3) [τ] 1
h
= a⇐⇒ τ = [a]h,

(4) [τ]
1
h = a⇐⇒ τ = [a]h,

(5) [τ]h[α]h ≤ [τα]h ≤ [τα]h ≤ [τ]h[α]h.

In what follows, we revisit these essential propositions

Proposition 2.1. ( [7]) Let w that belongs in Lq(x)(Ω), we have the following:

[|w|q(x)]q ≤

∫
Ω

|w(x)|q(x) dx ≤ [|w|q(x)]q.

Moreover, the following result holds:

Proposition 2.2. ( [8]) Let h1(x), h2(x) ∈ C+(Ω), and assume that h2(x) ≤ h1(x) a.e. in Ω. Then, we
have

Lh1(x)(Ω) ↪→ Lh2(x)(Ω),

furthermore, there exists a positive constant ch2 > 0 such that for all u ∈ Lh1(x)(Ω), the following
inequality is satisfied:

|u|h2(x) ≤ ch2 |u|h1(x).

The Sobolev space W1,p(x)(Ω), with a variable exponent, is given by

W1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : ∇u ∈ Lp(x)(Ω)

}
.

The norm on the space W1,p(x)(Ω) is given by

∥u∥1,p(x) = |∇u|p(x).

Let W1,p(x)
0 (Ω) be the closure of C∞0 (Ω) in W1,p(x)(Ω), equipped with the equivalent norm ∥u∥1,p(x) =

|∇u|p(x). Now, let X̃ := W1,p(x)
0 (Ω), equipped with the norm

∥u∥ := |∇u|p(x) = inf
{
ξ > 0 :

∫
Ω

∣∣∣∣∣∇u
ξ

∣∣∣∣∣p(x)

dx ≤ 1
}
.
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We define the so-called modular on X̃ as a map ρp(x) from X̃ to R as

ρp(x)(u) =
∫
Ω

|∇u|p(x) dx.

Note that, this map fulfils same properties as Proposition 2.1. Specifically, we have

Proposition 2.3. For any u ∈ Lq(x)(Ω), the following conditions are satisfied.

• If |∇u|q(x) < 1 (or = 1, or > 1), then ρq(x)(u) < 1 (or = 1, or > 1), respectively.
• The inequality

[
|∇u|q(x)

]
q ≤ ρq(x)(u) ≤

[
|∇u|q(x)

]q holds.

Proposition 2.4. ( [6]) Suppose h1, h2 ∈ L(Ω) satisfying h1 ∈ L∞(Ω) and 1 ≤ h1(x)h2(x) ≤ ∞ for
almost every x ∈ Ω. Let w ∈ Lh2(x)(Ω) be a non-zero function. In this case, we have the following
inequalities:

[|w|h1(x)h2(x)]h1 ≤ ||w|
h1(x)|h2(x) ≤ [|w|h1(x)h2(x)]h1 .

The space X̃, as defined above, is a separable Banach space and also reflexive.
The critical Sobolev exponent p∗(x) is expressed as:

p∗(x) =

 N p(x)
N−p(x) , if p(x) < N,

+∞, if p(x) ≥ N.

From Proposition 2.2, it follows that if q(x) ≤ p(x) almost everywhere in Ω, then the following
embedding holds:

W1,p(x)
0 (Ω) ↪→ W1,q(x)

0 (Ω).

In particular, we have the embedding:

X̃ ↪→ W1,p−

0 (Ω).

Furthermore, the space X̃ is continuously embedded in Lα(x)(Ω) for any α ∈ C+(Ω) such that α(x) ≤
p∗(x) almost everywhere on Ω. This leads to the following inequality:

|u|α(x) ≤ cα|∇u|p(x), (2.2)

where cα is a positive constant.

3. Existence and multiplicity

In the whole manuscript, we assume the following:
LetA : Ω×RN → R be a continuous function with a continuously differentiable derivative given by

A(x, ξ) = ∂
∂ξ
A(x, ξ). Suppose that there exists a positive constant k̄ such that the following inequality

holds for all u, v ∈ X̃:

(A) A(x, u + v) ≤ k̄ (A(x, u) + A(x, v)) , ∀x ∈ Ω.

Additionally, assume thatA satisfies the following conditions:
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(A1) A(x, 0) = 0, A(x, ξ) = A(x,−ξ) for all x ∈ Ω, ξ ∈ RN .
(A2) A is strictly convex in RN for all x ∈ Ω.
(A3) There exists a constant c1 > 0 such that

|A(x, ξ)| ⩽ c1

(
B(x) + |ξ|p(x)−1

)
for almost every (x, ξ) ∈ Ω × RN , where B(x) ∈ L

p(x)
p(x)−1 (Ω) and p(x) ∈ C+(Ω).

(A4)
c2|ξ|

p(x) ≥ A(x, ξ) · ξ ≥ p(x)A(x, ξ) ≥ |ξ|p(x),

for a.e. x ∈ Ω and all ξ ∈ RN and for some constant c2 > 0.

Define the functional Iλ from X̃ into R by Iλ,µ(u) := Φ(u) − λΨ(u), where

Φ(u) :=
∫
Ω

A(x,∇u(x))dx +
1
s

∫
Ω

ϑ(x)|u(x)|s

|x|s
dx,

Ψ(u) :=
∫
Ω

F(x, u(x))dx +
µ

λ

∫
Γ2

G(x, u)dσ,

F(x, u) =
∫ u

0
f (x, t)dt and G(x, u) =

∫ u

0
g(x, t)dt, ∀(x, u) ∈ Ω × R.

u ∈ X̃\{0} is said to be a weak solution of the problem (1.1), if I′λ,µ(u)[v] = 0, for all v ∈ X̃.
The main tool used to achieve our results is the Bonanno-Marano type three critical points theorem,

derived from the findings in [2].

Theorem 3.1. [2, Theorem 3.6] Let Y be a reflexive Banach space over R, and let F : Y → R be a
coercive functional that satisfies the following properties:

• F is continuously Gâteaux differentiable.
• F is sequentially weakly lower semi-continuous.
• Suppose that the Gâteaux derivative of F admits a continuous inverse on Y∗.

Moreover, let G : Y → R be a continuously Gâteaux differentiable functional with a compact
Gâteaux derivative.

Additionally, suppose the following:

(a0) infY F = F(0) = G(0) = 0,

and suppose that there exist constants d > 0 and y ∈ Y such that F(y) > d, and the following conditions
hold:

(a1)
supF(y)<d G(y)

d < G(y)
F(y) ,

(a2) For any λ ∈ Λd :=
(

F(y)
G(y) ,

d
supF(y)≤d G(y)

)
, the functional Iλ := F − λG is coercive.

Then, for every λ ∈ Λd, the functional F − λG has at least three distinct critical points in Y .
The following lemma provides the Hardy–Rellich inequality, which we recall here (see [5]).
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Lemma 3.2. Let 1 < t < N and u ∈ W1,t(Ω). Then, the following inequality holds:∫
Ω

|u(x)|t

|x|t
dx ≤

1
Ht

∫
Ω

|∇u(x)|t dx,

whereHt is defined by

Ht :=
(N − t

t

)t

.

Now, we state the following remark:

Remark 3.3. The following property holds:

K̂
([
|∇u| p̃(x)

]p
+ |∇u|sp(x)

)
≥ Φ(u) ≥

1
p+

[
|∇u|p(x)

]
p
,

where

K̂ = max
{

c2

p−
, cs

s
|ϑ|∞
sHs

}
.

Proof. By Assumption (A4), Proposition 2.3, Lemma 3.2, and Proposition 2.2, since 1 < s < N, one
has

1
p+

[
|∇u|p(x)]p ≤

1
p+

∫
Ω

|∇u|p(x) dx,

≤ Φ (u)

≤

∫
Ω

c2

p(x)
|∇u|p(x)dx +

∫
Ω

ϑ(x)
|u(x)|s

s|x|s
dx,

≤
c2

p−

∫
Ω

|∇u|p(x)dx +
|ϑ|∞

s

∫
Ω

|u(x)|s

|x|s
dx,

≤
c2

p−

∫
Ω

|∇u|p(x)dx +
|ϑ|∞
sHs

∫
Ω

|∇u|sdx.

≤
c2

p−
[
|∇u|p(x)

]p
+

cs
s

sHs
|ϑ|∞|∇u|sp(x),

≤ K̂
([
|∇u| p̃(x)

]p
+ |∇u|sp(x)

)
,

where K̂ = max
{

c2

p−
, cs

s
|ϑ|∞
sHs

}
, this ends the proof. □

It is clear from assertions (f), (Ai), (i = 1, 2, 3, 4), and Lemma 3.2 that the functional Φ : X̃ → R is
well defined, convex, and sequentially weakly lower semicontinuous, and of class C1 in X̃ with

Φ′(u)(v) =
∫
Ω

A(x,∇u) · ∇vdx +
∫
Ω

ϑ(x)|u(x)|s−2u(x)
|x|s

vdx.

Moreover, we have the following:

Proposition 3.1. Under conditions (A1)− (A5), the functional Φ′ : X̃ → X̃∗ is uniformly monotone and
has a continuous inverse in X̃∗.
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Proof. As the proof is almost identical to the proof of Proposition 3.1 in [10], we choose to omit it
here. □

Proposition 3.2. Under conditions (f) and (g), Ψ is well defined and of class C1, furthermore, for all
u ∈ X̃, Ψ′(u) is compact from X̃ into X̃∗.

Proof. We mention that, the condition γ(x) > N−1
p(x)−1 for all x ∈ Ω, assures that 1 < γ′(x)r(x) < (N−1)p(x)

N−p(x) ,

for all x ∈ ∂Ω, where γ′(x) is the conjugate exponent of γ(x), so X̃ is embedded in Lγ
′(x)r(x)(∂Ω), (

See [9], Corollary 2.2). Moreover, α′(x)q(x) < p∗(x), for all x ∈ Ω, where, α′(x) is the conjugate
exponent of α(x), one has X̃ is embedded in Lα

′(x)q(x)(Ω). In what follows, let cα′q be the continuous
embedding constant of X̃ ↪→ Lα

′(x)q(x)(Ω) and cγ′r, the one of X̃ ↪→ Lγ
′(x)r(x)(∂Ω). Furthermore, given

that f fulfills the requirements stated in (f), and g satisfies the conditions specified in (g), Ψ is well
defined; in fact, by using Hölder inequality (2.1) and Proposition 2.4, one has

|Ψ(u)| : = |
∫
Ω

F(x, u(x))dx +
µ

λ

∫
Γ2

G(x, u)dσ|,

|Ψ(u)| ≤
1
q−

∫
Ω

| f̃ (x)||u|q(x)dx +
µ

λr−

∫
Γ2

|g̃(x)||u|r(x)dσ,

≤
1
q−
| f̃ (x)|α(x)||u|q(x)|α′(x) +

µ

λr−
|g̃(x)|Lγ(x)(Γ2)||u|r(x)|Lγ′(x)(Γ2),

≤
1
q−
| f̃ (x)|α(x)[|u|α′(x)q(x)]q +

µ

λr−
|g̃(x)|γ(x)[|u|Lγ′(x)r(x)(Γ2)]

r.

Moreover, by (2.2), we obtain:

|Ψ(u)| ≤
1
q−
| f̃ (x)|α(x)[cα′q|∇u|p(x)]q +

µ

λr−
|g̃(x)|γ(x)[cγ′r|∇u|p(x)]r. (3.1)

Therefore, Ψ is well-defined. Moreover, Ψ is of class C1 and has as a derivative

Ψ′(u)[v] :=
∫
Ω

f (x, u)vdx +
µ

λ

∫
Γ2

g(x, u)vdσ,

and Ψ′(u) : X̃ → X̃∗ is compact (see [11] for further details). □

Now, we are ready to present our main result. For this purpose, let us denote by, D(x) := sup{D >
0 | B(x,D) ⊆ Ω}; for all x ∈ Ω, here B is a ball centered at x and of radius D. It is easy to see that there
exists x0 ∈ Ω such that B(x0,R) ⊆ Ω, where R = sup

x∈Ω
D(x).

In what remains of the paper, m denotes the value
π

N
2

N
2 Γ(

N
2 )

, with Γ being the Gamma function, and

assume that f̃ satisfies this extra assumption

f̃ (x) :=


≤ 0, x ∈ Ω \ B(x0,R),
≥ f̃0, x ∈ B(x0, R

2 ),
> 0, x ∈ B(x0,R) \ B(x0, R

2 ),
(3.2)

where f̃0 is a positive constant.
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Theorem 3.4. Assume that assumptions (f), (g), (A), (A1)− (A4) hold, furthermore, suppose that there
exist d, δ > 0, where

1
p+

[2δ
R

]
p
m

(
RN −

(R
2

)N)
= d.

Put

Aδ :=

(
2N − 1

)
K̂
((2δ

R
)s
+

[2δ
R

]p)
)

c f f̃0
q+

[
δ
]
q

,

and
Bd :=

d

(p+)
q+
p−

q− | f̃ (x)|α(x)[cα′q]q[[d] 1
p
]q
+
µ(p+)

r+
p−

λr− |g̃(x)|γ(x)[cγ′r]r[[d] 1
p
]r

,

then for any λ ∈ [Aδ, Bd ] , when µ ∈
[
0,

r−d−λ (p+)
q+

p−

q− [cα′q]q
| f̃ (x)|α(x)

[
[d]

1
p
]q

(p+)
r+
p− [cγ′r]r

|g̃(x)|γ(x)

[
[d]

1
p
]r

]
, problem (1.1) admits at least three

weak solutions.

Proof. It should be noted that Φ and Ψ satisfy the regularity assumptions stated in Theorem 3.1. We
will now demonstrate that conditions (a1) and (a2) are met. For this purpose, let

1
p+

[2δ
R

]
p
m

(
RN −

(R
2

)N)
= d,

and let w ∈ X such that

w(x) :=


0 x ∈ Ω\B

(
x0,R

)
,

2δ
R

(
R −

∣∣∣x − x0
∣∣∣) x ∈ B

(
x0,R

)
\B

(
x0, R

2

)
,

δ x ∈ B
(
x0, R

2

)
.

Then, by utilizing Remark 3.3, we have

1
p+

[2δ
R

]
p
m

(
RN −

(R
2

)N)
< Φ(w)

≤ m
(
RN −

(R
2

)N)
K̂
((2δ

R
)s
+

[2δ
R

]p)
)
.

Thus, we have d < Φ(w). Furthermore, by using assumption (f) and (3.2), it follows that

Ψ(w) ≥
∫
Ω

c f

q(x)
f̃ (x)|w|q(x)dx ≥

∫
B(x0, R2 )

c f

q(x)
f̃ (x)|w|q(x)dx ≥

mc f f̃0

q+
(R
2
)N[
δ
]
q,

which yields to
Ψ(w)
Φ(w)

≥

c f f̃0
q+

[
δ
]
q(

2N − 1
)
K̂
((2δ

R
)s
+

[2δ
R

]p)
) .
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Now, for each u ∈ Φ−1(] −∞, d]), one has

1
p+

[
|∇u|p(x)

]
p ≤ d. (3.3)

Therefore, by (4) in Remark 2.1, one has

|∇u|p(x) ≤
[
p+Φ(u)

] 1
p
<

[
p+d

] 1
p
.

Moreover, by inequality (3.1), we obtain:

|Ψ(u)| ≤
1
q−
| f̃ (x)|α(x)[cα′q|∇u|p(x)]q +

µ

λr−
|g̃(x)|γ(x)[cγ′r|∇u|p(x)]r,

which gives

sup
Φ(u)<d

Ψ(u) ≤
1
q−
| f̃ (x)|α(x)

[
cα′q

[
p+d

] 1
p
]q
+
µ

λr−
|g̃(x)|γ(x)

[
cγ′r

[
p+d

] 1
p
]r
.

≤
(p+)

q+

p−

q−
| f̃ (x)|α(x)[cα′q]q[[d] 1

p
]q
+
µ(p+)

r+
p−

λr−
|g̃(x)|γ(x)[cγ′r]r[[d] 1

p
]r
.

By

µ <
r−d − λ (p+)

q+

p−

q−

[
cα′q

]q
| f̃ (x)|α(x)

[
[d]

1
p
]q

(p+)
r+
p−

[
cγ′r

]r
|g̃(x)|γ(x)

[
[d]

1
p
]r ,

we obtain:

1
d

sup
Φ(u)<d

Ψ(u) ≤
1
d

 (p+)
q+

p−

q−
| f̃ (x)|α(x)[cα′q]q[[d] 1

p
]q
+
µ(p+)

r+
p−

λr−
|g̃(x)|γ(x)[cγ′r]r[[d] 1

p
]r


<

1
λ
.

We now proceed to establish that the energy functional Iλ,µ is coercive for all λ > 0. By applying
inequality (3.1) once more, we obtain:

|Ψ(u)| ≤
1
q−
| f̃ (x)|α(x)[cα′q|∇u|p(x)]q +

µ

λr−
|g̃(x)|γ(x)[cγ′r|∇u|p(x)]r.

For |∇u|p(x) > 1, we obtain:

Φ(u) − λΨ(u) ≥
1
p+
|∇u|p

−

p(x) −
λ

q−
| f̃ (x)|α(x)[cα′q|∇u|p(x)]q −

µ

r−
|g̃(x)|γ(x)[cγ′r|∇u|p(x)]r.

Using the fact that p− > q+ and p− > r+ := sup
x∈∂Ω

r(x), we obtain the conclusion. Last, considering

the fact that

Λ̄d := (Aδ, Bd) ⊆
(
Φ (w)
Ψ (w)

,
d

supΦ(u)<d Ψ(u)

)
,

according to Theorem 3.1, Φ − λΨ admits at least three critical points in X̃, which represent weak
solutions of problem (1.1) for any λ ∈ Λ̄d. □
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