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Abstract: In order to solve nonlinear equations, we introduce two new three-step with-memory
iterative methods in this paper. We have improved the order of convergence of a well-known optimal
eighth-order iterative method by extending it into two with-memory methods using one and two self-
accelerating parameters, respectively. The self-accelerating parameters that increase the convergence
order are computed using the Hermite interpolating polynomial. The newly proposed uni-parametric
and bi-parametric with-memory iterative methods (IM) improved the R-order of convergence of the
existing eighth-order method from 8 to 10 and 10.7446, respectively. Furthermore, the efficiency
index has increased from 1.6818 to 1.7783 and 1.8105, respectively. In addition, this improvement in
convergence order and efficiency index can be obtained without using any extra function evaluations.
Extensive numerical testing on a wide range of problems demonstrates that the proposed methods are
more efficient than some well-known existing methods.
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1. Introduction

In the realms of engineering and mathematical modeling, solving nonlinear equations of the form

o(s) =0

has emerged as a fundamental challenge, as finding their roots is critical to addressing a variety of
complex problems. Numerous iterative methods have been proposed to tackle this issue (see, [1,2]),
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and they play an essential role in numerical analysis due to their applicability across disciplines in
both engineering and applied sciences. Iterative methods approximate solutions with a specified level
of accuracy. Our objective is to increase the convergence order of multipoint methods without the
evaluation of additional functions while significantly improving the efficiency index and overall
performance. The literature contains plenty of one-point and multipoint without-memory methods for
solving nonlinear equations (see, [3,4]). Among the classical approaches, Newton’s without-memory
method stands out for its quadratic convergence with an efficiency index of 1.414, making it a
cornerstone in the field. Newton’s method [5] is defined by the iteration:

Sk+l:Sk_Ma k:051923”"
@' (sx)
According to [5], the efficiency index,
E = pl/)’

represents the balance between the order of convergence and the number of function evaluations per
step. Here, p denotes the order of convergence, and y denotes the number of function and derivative
evaluations performed per iteration.

Recently, significant attempts have been made by many researchers in the field of numerical
analysis to use self-accelerating parameters to extend without-memory methods to with-memory
methods. Memory-based iterative methods use current and past iterations to raise the convergence
order and the efficiency index. Wang and Tao [6] upgraded a Newton-type without-memory method
into its with-memory variant using one self-accelerating parameter and achieved an improvement in
order of convergence from 2 to 2.4142. Torkashvand [7] upgraded a two-step without-memory
method into a with-memory method using three self-accelerating parameters and achieved an
improvement in the order of convergence from 4 to 7.53. Also, Thangkhenpau et al. [8] used the
technique of self-accelerating parameters for multiple roots and upgraded a fifth-order
without-memory method into a with-memory method using one parameter and achieved the
convergence order 7.2749. In recent years, the development of with-memory iterative methods has
gained considerable interest among researchers. Notable contributors to the development of
with-memory methods include Lotfi and Assari [9], Panday et al. [10] and Mittal et al. [11].

In this article, we proposed two new three-step, uni-parametric and bi-parametric with-memory
iterative techniques by adding two self-accelerating parameters to the first and third step of an existing
optimal eighth-order without-memory iterative technique [12], and it improves the R-order of
convergence from 8 to 10 and 10.7446, respectively, and the efficiency index is also improved
by 1.6818 to 1.7783 and 1.8105, respectively, in Section 2. A complete assessment utilizing numerical
tests is offered in Section 3, which provides a comparison of the proposed methods with other
well-established methods. A thorough conclusion of the research findings is provided in Section 4.

2. Analysis of convergence for with-memory methods

This section is divided into two subsections. In the first subsection, we will use a parameter « in
the first step of the optimal eight-order method proposed by Solaiman and Hashim [12] in 2021, and
we will prove the theoretical order of the method using a theorem. Then, in the second subsection, we
will use one more parameter, 3, in the third step of [12], and we will also prove its theoretical order of
convergence using a theorem.
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2.1. The uni-parametric with-memory method and its convergence analysis

Here, we introduce the parameter « in the first step of the optimal eighth-order without-memory
method, presented in the article [12]:

Ve = s — ¢(s1)
@' (sp) + ap(sy)’
O 2(@(vi)2q(v)R (st vi)
T Ayt — 49 (q) R (s vi) + (002 (R(sk vi))?
Sk+1 = I — %, (2.1)

where g(vy), w'(t;) and R(sy, v;) are defined in [12] as:

@' ) = q(vi)
= 2¢[vi, skl — ¢’ (s1),
@' (1) = w(t)

—1
:¢MJMP+S il

Vi — I (i = Vi) (v — 1) Sk — Vi

B EPRY)
: tk) (s = %) olve, sl + ¢ (s1)
" (vi) = R(sk, Vi)

=Fﬂ@;ﬂ@—mm%¢mﬂ
Vi — Sk

_ 290'(Sk) = o[V, sl
Sk — Vi ’

Sk — Vk

and, ¢[vy, s¢] and @[, si] represents divided differences and are calculated as

o(vi) — (i)

elvi, sil =
Vi — Sk
and
_ @) — (i)
olte, se]l = ———,
t, — Si
respectively.

Using Taylor-series approximation, the expressions for ¢(s;) and ¢’(s;) can be written as:

(s =A (ek + czei + c3e,§ + c4ei + C5€2 + cﬁe,? + c7e,z + 0862) + 0 (eZ) , (2.2)

O(sp)=A (1 + 2cre; + 3c3ei + 4c4€,3C + 5C5€;: + 6c6e2 + 7c7e,? + 8C3€]Z + 96‘962) + O (ez) , (2.3)

where
A=),
¢ is the simple root of ¢(s),
e = sk —¢&
and ,
= g.[)(])(é':)
Jle'(€)
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for j=2,3,---.
Now, we obtain the error expressions for each sub-step of (2.1) as:

ery =(a@+c) e,% + (—a2 —2c(a+ ) + 203) e,%

+ (a3 + 50{0% + 4cg + (307 = Te3) — dacs + 304) ei + O (e,S{) , 2.4)
ery =—c3(a+cy) ez
+ (03(a2 +2¢co(a + ¢p) — 2¢3) — 2(a + cz)c4) e,5C +0 (eg) (2.5
and
oo = 2 _ 8 32 2 _ 2
1 =(a + c2) c3(crc3 — ca)ey 2((a + ¢2)(2c5¢5 + 2c5¢3(acs — 2¢4) + 2¢5¢4
+ aci + acs(—acy + cs) + c2(azc§ - 2c§ + ci + c3(—4dacy + c5))))ez +0 (e,lco) , (2.6)
where

ey =Vi—§&, e =h—§

and @ € R. We obtain the following with-memory iterative scheme by replacing @ with a
self-accelerating parameter a; in (2.1), as:

Ve = sy — @(sx)
@' (1) + arp(sp)’
O 2(@(vi)2q(V)R (st vi)
T 0 Ayt — 40 (q)) R (s vi) + (@) 2 (R(sk vi))?
Seet =t — v":,((tfk)), @.7)

where, the values of g(vi), w'(#), and R(s, v¢) are given in Eq (2.1).
The new with-memory method (NWM) mentioned in Eq (2.7) is expressed by NWM10. It is now
clear from Eq (2.6) that for
a #£ —Co,

the convergence order of (2.1) is eight. Then, we can assume

LG
2¢'(6)
to speed up the order of convergence of (2.7) from eight to ten. However, in reality, the exact values of

¢’ (¢) and ¢”(£) are not achievable in practice. Thus, we shall choose the parameter « as ;. Using the
available data from the current and previous iterations, the parameter a; can be calculated and satisfies

the condition .,

limak: —Cy = —()0 (é‘:),

koo 2¢'(6)
which means that the error expression (2.6) should have zero values for the eighth and ninth order
asymptotic convergence constants. @, can be calculated using the formula:

a=—C =

H (s0)
dp = —

2¢'(sx)’

(2.8)
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where

Hs(s) =(si) + (s = 5@l 5] + (5 = 51705t Sk fem1] + (5 = 50)°(5 = te)@l ks Sk Tt Vit ]
+ (5 = 507 (s = tem)(s = Ve )@LSks St Lot Vi1, Sk-1]
+ (5 = 507 (s = 5m1)(8 = Vie1)(S = 5510k Sk Tty Vit Sk-1 Se-1 1. (2.9)
Note: The condition
H;, (s) = ¢'(s1)
is satisfied by the Hermite interpolating polynomial H,,(s) for m = 5. So,

v = _HI(s)
205
can be expressed as
LAY
©2H,(s0)

form = 5.

Theorem 2.1. Let H,, be the Hermite polynomial of degree m, interpolating the function ¢ at
interpolation nodes sy, Sg, tr—1, Vk-1, Sk—1, Si—1 Within an interval D C R, and the derivative ¢V is
continuous in D with

H,,(sx) = o(si), H,,(sk) = ¢ (sp).

Suppose that all nodes sy, i, ti_1, Vi_1, Sk—1, Sk—1 are in the neighborhood of the root &. Then,

HY (s) = 2¢'(€)(c2 — Colr-1ver1.€r_;)

and
_ HU(s) ,
Q =— 5 ~ —C2 F C6€h—1,v€k—1,1€)_1-
2¢(sk)
After simplification, we have
2
ay + Ccr = C6Cl—1,vCk—1,€}_1- (210)

Proof. We can calculate the expression of the fifth-degree Hermite interpolating polynomial as
¢
6!

where 6 € D. Now, we get the below-mentioned equation after simplifying and differentiating Eq (2.11)
two times at the point s = sy,

@(s) — Hs(s) = (5 = 502(s = tri)(s = Ve 1)(s = sk-1)7, (2.11)

¢
6!

Next, Taylor’s expansion of ¢” and ¢” at the point s; in D about the zero & of ¢ provides:

H;’(Sk) = ‘P”(Sk) -2 (Sk = t—1)(Sk = Vi) (Sk — Sk—l)z- (2.12)

¢'(s0) = @@ (1 + 2c2e, + ez + O(e})). (2.13)
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" (s0) = ¢'(€) (262 + 6c3e + O(e})). (2.14)
Similarly,
0 9(0) = ¢ (&) (6!c6 + Tlcres + 0(e})) (2.15)
where
€s = 0— f
Putting Eqgs (2.14) and (2.15) in (2.12), we obtain
HY (s) = 2¢' (€)(c2 — Co€rotv€io1,€5-1)- (2.16)
Now, using Egs (2.13) and (2.16), we have
—Hgi(sk) —Cy + C6Cr1 vCh_1 €7
290'(Sk) 2 6€k—1,v€k-1,t€)_1-
And hence
@ ~ —C2 + C6ek—1,vek—1,tei_1
or
Q) + €2 = Co€h-1.4€k-1,€ - 2.17)
This completes the proof of Theorem 2.1. O

R-order of convergence. It can be said that a sequence generated by an iterative method (IM) {s;}
converges to s* with an R-order of convergence of at least 7 > 1 if there are constants C € (0, c0) and
6 € (0, 1) such that [13]

Is* = sill < C.675 k=0,1,---

Theorem 2.2. If the errors of approximations
e =Sk —&

obtained in an iterative root-finding method satisfy and non-negative numbers lj, 0 < j < m, s.1.

ecr ~ | [Cee sk = ktsid),

J=0

where, k({s;}) indicates the starting index that satisfies the above approximation. Then the R-order of
convergence of the iterative method, denoted with Or(IM, &), satisfies the inequality

OR(IM, f) > W*,

where w* is the unique positive solution of the equation [14, 15]
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Presently, for the new iterative scheme with memory (2.7), we can state the subsequent convergence
theorem.

Theorem 2.3. In the iterative method (2.7), let a; be a varying parameter and calculated by Eq (2.8).
If an initial guess s is enough near to a simple zero & of ¢(s), then the R-order of convergence of the
iterative method (2.7) with memory is at least 10.

Proof. Let the iterative method generates the sequence of {s;} which converges to the root &€ of ¢(s), by
means of R-order
OR(IM, -f) > r,

We express
€r+1 NDk,re]};
and
ex ~Di_1 €. (2.18)
Next, Dy, will tends to the asymptotic error constant D, of IM by taking k — oo, then

1 ~ Dy (Dy-yrep_y)

= Dy, D}, ef . (2.19)

The resulting error expression of the with-memory scheme (2.7) can be obtained using (2.4)—(2.6) and
the varying parameter oy

ey = Vi — &~ (a + cr)ep, (2.20)
ers =t — & ~ —c3(a + cr)e} (2.21)

and
err1 = Ske1 — & ~ (@ + ) c3(cacs — ca)e. (2.22)

Here, the higher order terms in Eqgs (2.20)—(2.22) are excluded.
Now, let the R-order convergence of the iterative sequences {v;} and {#} be p and g, respectively,
then

P r — P rp
Cry ~ Dk,pek ~ Dk,p(Dk—l,rek_l)p = DkaPDk—l,rek—l (223)
and
q r — q rq
€t ™~ Dk,qek ~ Dk,q(Dk_l,rek_])q = Dk,qu_l’rek_l. (224)

Now, by Egs (2.17), (2.18) and (2.20), we obtain

2 2 roN2
ery ~ (a + cr)ey ~ (cor—ivek—1,€5_1 ) Di-1r€;_;)

V4 q 2 2 2r

~ C6Dp-1,p€4_ Di-1,4€;_ €11 Dic_y €-4

2 p+q+2r+2
~ C6Dk—1,pDk—1,qu_1’rek_1 . (225)
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Also, by Egs (2.17), (2.18) and (2.21), we obtain

4 2 roN\4

er; ~ —c3(a + cr)e; ~ —c3(Celi-1,€k-1,€5_1)(Di-1,€;_1)
p a2 N 4
~ —3¢6Dk-1,p€,_ Di-14€,_ €51 Dy €4

~ —C3C6Dk_1’pDk_1 qu lr i+f+4r+2. (226)
Again, by Eqs (2.17), (2.18) and (2.22), we have

2 8
er+1 ~ (@ + ) c3(cacs — ch)e;

2 2 8

~ c3(c203 = ca)(Colh—1v€k-1,€5_1) (Dr-1,€5_1)

B 22 2 A PSS

~ c3(ca03 — c4)cger 1v€i-1,1€-1k-1,r€k-1

8
~ C3(C2C3 _C4)C6(Dk 1pek 1) (Dk lqek 1) ek le lrek 1

2 2 29 4 8
~ ¢3(cac3 _C4)C6Dk—1pek 1Di_1 g1 €k-1 D 1rek 1
212 2 8 2p+2q+8r+4
~ c3(cac3 — ca)egDy_y Dy /Dy 1€, , (2.27)

since
r>q>p.

By equating the exponents of ¢,_; present in the set of (2.23)—(2.25), (2.24)—(2.26), and (2.19)—(2.27),
we attain the resulting system of equations:
rp=p+q+2r+2,
rg=p+q+4r+2,
r? =2p+2q+8r+4. (2.28)
The solution of the system of Eq (2.28) is specified by
p=3, g=5 and r=10.

As a result, the R-order of convergence of the with-memory iterative method (2.7) is at least 10.
This completes the proof. O

2.2. The bi-parametric with-memory method and its convergence analysis

Now, we will introduce one more parameter §, in the third step of the single parametric with-
memory method presented in the Eq (2.7), as:

Ve = S — @(sx)
@' (sp) + arp(se)’
L= - e(vi) 2(p())* R (51, vi)
T g Ayt — 40 (q)) R (s vi) + (@) 2 (R(sk vi)?
L @(ty)
Skt = T ) + Bty 2.29)

where, the values of g(vi), w'(t), and R(sy, v) are given in Eq (2.1).
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Now, the expressions for ¢(s;) and ¢’(s;) will be the same as given in the Eqs (2.2) and (2.3),
respectively. And, the error expressions for each sub-step of (2.29) will be given by:

ery =(a+ ) ei + (—cxz —2c(a+ ) + 203) e,i

+ (03 + SQ’C% + 4C§ +c2(3a% — Tc3) — dacs + 3c4) ei +0 (ei) , (2.30)

1
e =— (@ +ca) 6‘382 + ((—E - 8a/)cg - 4c‘2l - c%(a/ +6a° — 86‘3)

1
+3d%c; — 2c§ —2acy — 502(012 +4e® - 20ac; + 4C4))€2 + 0(62) (2.31)
and
1
e =(@+ ) e (B+cey)es—cy)el — E((“ + cz)(2(1 + 24a + 8B)cS + 16¢;
+263(8 + a3 + 28 + 24B) — 24¢;) + 2c3(a(3 + a3 + 16a + 283))
— (1+ 520 + 24B)c3 + 10c4) + ¢3(207(a + 4o + 3B + 16a8) — 2(8
+2a(1 + 190 + 268) — 203)c3 + ¢4 + 8(5a + f)cs — 4cs) + 2c3(’(1 + 4a)B
+4(6a + 5B)c3 + a(l + 13a + 8B8)cs — c3(ala + 10a” + 28 + 38a) + 16¢,)
- 4ac5) + cz(12a(a +4B)c3 - 8c§ + (@ (1 + 6a + 8B) + 4cy) — 2¢3(a*(1
+ 100)B + 209 + 2B)cs — 2¢5) — 4a’cs) + 4( - 2Bc} + acs + 33’ + 2c4)

T acs( = 2a + B)ea + c5))))62 +ot0(ef), (2.32)

where @, € R. We obtain the following with-memory iterative scheme by replacing g with Sy
in (2.29):

V= 5 — @(sk) ’
@' (si) + arp(s)
b = v, — o) 2(p(v))*q(v)R (st vi)
g 4q))* = 4e(vi)(q(vi))*R(sk, vid) + (V) (R(sk, vie))?
_ o(t)
Skl = I (2.33)

W)+ Brp(te)’
where, the values of g(vi), w'(#), and R(s, v) are given in Eq (2.1).

The scheme mentioned in Eq (2.33) is expressed by NWMI1. It is now clear from the Eq (2.32)
that for

a* —c
and

C4
B+ ——c,
C3

the convergence order of (2.29) is 8. Then, we can assume

(@)
2¢'(¢)

o =—C =
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and

=y ¢E) '@
€3 4p(&)  2¢'(6)
to speed up the order of convergence of (2.33) from eight to eleven. However, in reality, the exact
values of ¢'™(&), ¢’ (&), ¢” (&), and ¢'(€) are not achievable in practice. Thus, we shall choose the
parameters « as @y and S as ;. Using the available data from the current and previous iterations, the
parameters «; and §; can be calculated and satisfy the conditions

fim= =0
and |
lim B = <4 — ¢, = ¢ME ')
et 3 4" (&) 2‘P'(f),

which means that the error expression (2.32) should have zero values for the eighth, ninth, and tenth
order asymptotic convergence constants. @, can be calculated using Eq (2.8), and S, can be calculated
using the formula:

H W) HI(s0)

= - , 2.34
P TG0 " 200 239

where

H7(s) =@(t) + (s — t)@lte, vid + (s — 6)(s — videl i, Vi, si]

+ (5 = 1)(s = vi)(s = sl Ve Sk 5] + (5 = 15)(s = Vi) (s = 50> @l Vs Sk St Ti-1]

+ (s = t)(s = vi)(s = 8107 (s = Bl Vi Sk Sk Tt Vit ]

+ (s = 1)(s = Vi)(s = $1)°(s = e = Vi )@l ks Vies Sk Sko et s Vit Skt

+ (5 = 1)(s = Vi)(s = $1)°(s = e ) = Ve )(S = Sk=1)@Llks Vies Sks Sk Tt Vi1 Sk—15 Sk-11,
He(s) =p(vi) + (s = vi)elve, sl + (s = vi)(s = s)@lve, Sk, Si]

+ (5 = vi)(s = 5020V, Sk Sk et ] + (5 = vid(s = 5175 = 5o )@V Sk St it Vit ]

+ (5 = v)(s = $K°(5 = te)(S = Vic)@[Vis Sko Sk Tt Vit Ske1]

+ (s = V(s = 50)(5 = im)(s = Vie)(S = Sk 1)@V Sks Sk oty Viets St Se-1],
and the value of Hs(s) can be obtained using Eq (2.9).
Note: The condition
H, (si) = ¢'(s1)
is satisfied by the Hermite interpolating polynomial H,,(s) for m = 5,6, 7. So,
_HP @) HY(s
4H" (Vi) 2¢'(sw)

Br

can be expressed as '
_H @) HY(s)
4H'(vi)  2H; (s1)

B
form =5,6,7.
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Theorem 2.4. Let H, be the Hermite polynomial of degree m, interpolating the function ¢ at
interpolation nodes ty, Vi, Sk, Sks ti—1> Vi1, Sk—1, Sk—1 Within an interval D C R, and the derivative @™V
is continuous in D with

H,(sx) = o(sp), H,,(sk) = ¢ (sp).

Suppose that all nodes ty, Vi, Sk, Sk, ti—1, Vi—1, Sk—1, Sk—1 are in the neighborhood of the root &. Then,

HY (1) = 24¢' (€)(ca — cser1p€im1465y):
HY'(v) = 6¢'(£)(c3 — cr€5-1 v€5-1,€1_1)

and
2
HZ(s) = 29 (é)(c2 — colr-1,v€k-1,4€5_1)-
Also,
5 H(t)  HY(se)
k= -
4H (vi)  2¢'(si)
Cyq CqC7 Cg CcgC7 2 )
~——Ct (—2 -t T Ck1e-1€ g + C6) €k—1,vCk—1,1€;_1 -
C3 C3 C3 C3

After simplification, we have

Cy4C7 CgCy 2 2
(Br + c2)c3 — 4 ~ | —— — €8 + ——€_1,1€k—1,€_| + C6C3 | k=1 vCk-1,4€}_; -
(& €3
Proof. We can calculate the expression of the seventh-degree, sixth-degree, and fifth-degree Hermite
interpolating polynomial as:

_ _ 90(8)(5) _ _ N2 _ _ 2

o(s) — Hq(s) = Y (s = 1)(s = vi)(s = 51)7 (8 = L) = Vi )(S = Si-1)7, (2.35)
3 ) 3 N2 3 B 2

@(s) — Hg(s) = 7 (s = vi)(s = 51)7(s = ) = Ve )(S = Sk-1) 7, (2.36)
_ 990 ~ Y

@(s) — Hs(s) = g (5 = 81)7(8 = trm1)(s = Vi) )(S — Sk=1)7s (2.37)

where 6 € D. Now, we obtain the below-mentioned equations after simplifying and differentiating the
Eq (2.35) four times at the point

S = I,

Eq (2.36) three times at the point
S = Vi

and Eq (2.37) two times at the point
§ = Sk,

respectively,

iv ~ RO
H (1) = (1) = 245220 = o)t = i)t = sic1)” (2.38)
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(s

H" (vi) = ¢""(v) = 6% 7,( )(Vk — )k = Ve ) = s5121)%, (2.39)
77 77 (6)(6) 2

HS (si) = ¢"(s¢) — 2T(Sk = ) (Sk = Ve 1) (Sk — Sk-1)” (2.40)

Next, Taylor’s series expansion of ¢, ¢”, ¢’”, and ¢™) at the point s; in D about the zero & of ¢
provides:

¢'(s1) = @' (1 + 2c2e0 + 3cse + O(e}))

and
@' (1) = ¢'(€) (262 + 6c3e + O(e})) (2.41)
¢ (v) = ¢ (€) (63 + 24cser, + 0(e},)). (2.42)
¢ () = ¢'(€) (244 + 120cser, + O(et)) . (2.43)
Similarly,
0 9(8) = ¢'(€) (61cs + Tlcres + O(e})). (2.44)
07(0) = ¢ (&) (T'er + 8leses + 0(e})) (2.45)
o®(0) = ¢ (&) (8!cs + 9lcoes + 0(e3)) (2.46)
where
€s = o— é:

Putting Eqs (2.43) and (2.46) in (2.38); (2.42) and (2.45) in (2.39); (2.41) and (2.44) in (2.40), we
obtained the following equations:

ng)(tk) = 24¢"(£)(ca — Cs€r1,1€k-1,€1_1)s (2.47)
Hé"(Vk) = 6¢'(&)(c3 — C7ek—1,vek—1,tei_1) (2.43)
and
HY (s1) = 29/ (€)(c2 — Colr-1rh1 i€ y)- (2.49)
Now, using Egs (2.40) and (2.47)—(2.49), we obtain
H;W)(tk) HI(s1) ¢y cac7 _Cy CsC7 o N o
4Hg’(Vk) 280,(Sk) c3 2 C% s C% k—1,v€k—1,t€}_1 6] C€k—1,vCk-1,1€)_1-
And hence
C4 CyC7 Cg CcgC7
Bi~—-c (—2 -—+ _zek—l,vek—l,tei_l + Cﬁ) Cl1.0€k-1,€}_1
C3 (,‘3 C3 C3
or
C4 C4C7 CgC7
Bi——+c~ (— —Cg+ _ek—l,vek—l,te]%_l + C6C3) ek—l,vek—l,tei_l- (2.50)
C3 C3 C3

The above Eq (2.50) can also be written as

(B + c2)ez — ¢y ~ (c_ —cg + o Gkl 1i€h + C6C3) Ck—1,vCk—1,€%_1- (2.51)
3 3
This completes the proof of Theorem 2.4. O
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Presently, for the new iterative scheme with memory (2.33), we can state the subsequent
convergence theorem.

Theorem 2.5. In the iterative method (2.33), let By be the varying parameter calculated by Eq (2.34).
If an initial guess s, is enough near to a simple zero & of ¢(s), then the R-order of convergence of the
iterative method (2.33) with memory is at least 10.7446.

Proof. Let the iterative method generates the sequence of {s;} which converges to the root € of ¢(s), by
means of R-order
Or(IM,&) = T,

we express
ex+1 ~ Dy e
and
ex ~ Di_1,ep_4. (2.52)
Next, Dy, will tends to the asymptotic error constant D, of IM by taking k — oo, then
st ~ Dir(Dyoy e ) = Dk,rD;i_],re;r:_l- (2.53)

The resulting error expression of the with-memory scheme (2.33) can be obtained using (2.30)—(2.32)
and the varying parameter S,

ey =i —E~(a+c)e;, (2.54)
ey =t —€E~—(a+c) C3ei (2.55)

and
el = i1 —E~ (@+ ) 3 ((B+ ) ez —cy) el (2.56)

Here, the higher-order terms in Eqs (2.54)—(2.56) are excluded.
Now, let the R-order convergence of the iterative sequences {v;} and {#} be p and g, respectively,
then

p r — p rp
Cky ™~ Dk,pek ~ Dk,p(Dk—l,rek_l)p = Dk’PDk—l,rek—l (257)
and
q r — q rq
Cir ™~ Dk,qek ~ Dk,q(Dk—l,rek_l)q = Dk,qu_Lrek_l. (258)

Now, by Egs (2.17), (2.52), and (2.54), we obtain

2
ery ~ (@ + ) e
2 2
~ C6ek—l,vek—l,tek_l(Dk—l,relrc_l)
2 2 2
~ Ce(Dk—1,pe£_1)(Dk—1,q€Z_1)ek_le_1,reki1

2 p+q+2r+2
~ C6Dk—1,PDk—1,qu—1,rek_1 . (259)
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Also, by Egs (2.17), (2.52), and (2.55), we obtain

4

e ~ — (@ + ) cze)
2 4
~ =€3C6€k-1,v€k-1,€5_1 (Di-1,r€;_1)

4

~ _C3C6(Dk lpek 1)(Dk lqek 1)ek le lrekrl

4 pHq+4r+2
~ —C3C6Dk_1’pDk_1,qu_1 rek 1 . (260)

Again, by Eqs (2.17), (2.51), (2.52) and (2.56), we have

2 8
el ~ (@t ) 3 ((B+cy)ez—ca)eg

2 (cye csC
) 4C7 8C7
~ 3 (CGek—l,vek—l,tek_l) (_c —cg+ o Gk lh 1€y + C6C3) ei-1vei-1.:€t_(Di-1,€f_ )"
3 3

c4C cgC
2 [ C4C7 8¢7 2 3 36 8 8¢
~C3Ce | —— Oyt ——eC10@h-14€4 1 T+ C6C3 | €1 k1€t Dior G
€3 €3
c4C cgC
2 [ CaC7 8C7
~ C3Cg _c3 —Cg+ _c3 €k—1,vCk- ltek 1+ ¢c6C3 | (Dy- 1p€k 1) (Dy- 1q€k 1) ek 1Dk 1r€k 1
c4C csC
2 [ CaC7 8C7 3 3 3¢ 6 18
G| T T e Gk 1€ + e | Dy e\ Disy et €Dy el
c4C csC
2 [ ¢4C7 87 3 3 8 3p+3q+8r+6
~ C3Cq C_ —cg + C—ek 1,v€k— ”ek 1 T C6C3 Dk—l,pDk—l qu 1851 , (2.61)
3 3

since r > g > p.
By equating the exponents of e;_; present in the set of relations (2.57)—(2.59), (2.58)—(2.60),
and (2.53)—(2.61), we attain the resulting system of equations:

rp=p+q+2r+2,
rq=p+q+4r+2,
P =3p+3q+8r+6. (2.62)
The solution of the system of Eq (2.62) is specified by
p=29148, q=49148 and r = 10.7446.

As aresult, the R-order of convergence of the with-memory iterative method (2.33) is at least 10.7446.
This completes the proof. O

3. Numerical discussion

This section examines the convergence behaviors of the newly proposed with-memory methods
NWMI10 and NWMI11 introduced in (2.7) and (2.33), respectively. Our goal is to evaluate the
effectiveness of the recently proposed iterative methods by applying them to a variety of nonlinear
problems. The nonlinear test functions, along with their initial guesses and roots for our numerical
analysis, are described below:
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Example 1. ¢,(s) = 50 + 45° — 155% + 2, 5o = 1.2, &€ = 1.24903.
Example 2. ¢>(s) = (cos 5)> —sins + s, 5o = —0.9, & ~ —1.09775.
Example 3. ¢3(s) = ¢ — 3 +sins — 1, 5o = —1.1, &£ ~ —1.24861.
Example 4. ¢4(s) = sin(s®> + 52 + 1) + s> = 5, 5o = 2.3, & ~ 2.30388.
Example 5. ¢s(s) = e =Pttt s — 7, 50 = 1.3, & = 1.35666.
Example 6. ¢g(s) = s' —4s* +s—1, 59 = 1.5, £ ~ 1.57494.
Example 7. ¢;(s) = esreosstl 2 4 o4 ] 59 = —1.2, &~ —1.07875.
Example 8. ¢5(s) = ¢* +sins —coss— 1, 5o = 0.4, & ~ 0.54177.

We will compare our newly proposed methods NWM10 (2.7) and NWM11 (2.33) to various well-
established methods published in the literature, including SH6 (3.1), SH8 (3.2), HS10 (3.3), CJ10 (3.4),
WZ10 (3.5), and CCJT10 (3.6), which are discussed below:

In 2016, Solaiman and Hashim (SH6) [16] developed a sixth-order iterative method, which is
defined as:

Ve = 5p o(si)
@ (1)
_ @(vy) 2 (e(v)* @' (1) Qs i)
Sk+1 = Vi — - (3.1)

00 4@ =40 (¢ (V) OCsi, vid) + (1)) (Qlsi Vi)

where,

3()0(Sk) — ()
Sk — Vi

= 20" (i) = @' (1) | = ¢"" ().

2
Q(Sk’vk) = Sp — Vi (

In 2020, Solaiman and Hashim (SHS8) [12] developed an optimal eighth-order iterative method,
which is defined as:

Ve = 5y ©(sk)
@ (s1)’
Do P 2(0())*¢’ R s, Vi)
CTTT 0 M) = 4@ (D) R (st Vi) + (i) (R, vi)?
_ ., e@)
Sk+1 = Ik —90’(lk)’ 3.2)

where, the approximate values of ¢’(vy), ¢’ () and R(s, v¢) are given in Eq (2.1).
In 2017, Husayni and Subaihi (HS10) [17] developed a tenth-order iterative method, which is
defined as:

V= 5 — @(s)
@[Gy, si]’
£ = v — ( e(s)e(Gyr) )( 1 B 1 )
o) — () J\elGr, sk,] - @[Gr,vil)’
(%)
t s Ropresm
S+l = lk "0( k) W(fk) ( 2¢[vi,sk]-¢lGk, k]) (33)

- 2¢[vk, skl — @[Gi, skl - 2¢[vi, skl — @[Gi, si]”
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where
Gy = sp + ¢(s¢)°
and
¢ (fk - W)
o(tx) .

In 2016, Choubey and Jaiswal (CJ10) [18] developed a bi-parametric with-memory iterative method
with a tenth order of convergence, which is defined as:

Iy =

Ve = s — o(si)
@' (s1) — To(sy)’
b= v ( o) (@(se) + yeve) )
(¢ (sx) = 2t.9p(s0))(p(s0) + (¥ = 2)p(vi)) )
Skel = e — (p(tk) 3.4)

Oltr, Vil + @ltes Vi skl — Vi) + @l Vies ks Sl Bk — Vi)t — si)”

where T, y € R, and T is calculated as
_H(s0)
2¢(s0)
In 2013, Wang and Zhang (WZ10) [19] developed a tenth-order family of three-step with-memory
iterative schemes using one self-accelerating parameter, which is defined as:

_ o(si)
@' (s1) — tep(si)”
o = vy — ( @(vi) ),
2051 il = @' (s1) + trp(vi)

Seet = e = [G(sp) + H(t)] (

Vi = Sk

(a +w)p(t)
2we[vi, il + (@ — w)(@'(se) + Lo(t)) )

(3.5)

where
_ o) _ ()

k — 5 tk - 5
o(si) o(st)
and L € R. Also, t, is calculated as

a=V,— S, W=1I— S

A
2¢(s1)
In 2018, Choubey et al. (CCJT10) [20] proposed a tenth-order with-memory iterative method using
two self-accelerating parameters, which is defined as:

t, =

Ve = Sg — @(sp) ’
@' (1) — vrp(se)
fo = v — ( (Vi) ’
=@’ (s1) + 2((e(vi) — (1)) (Vi — s1))

o(vi) — (i) N o(t) — p(vi) N (t) — w(si)
Vi — Sk ty — Vi Ie — Sk

Skl =l — QO(Ik)(— + At — st — Vk))’ (3.6)
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where ¥, A € R and are calculated as

Y = H (s)

“T 20 (s0)

and H//I( )
Vi

A = =2 —

The comparative outcomes of every strategy are summarized in Tables 1-8. The absolute
differences (|s; — s¢_1|) between the last two iterations and the absolute residual error (|¢(s;)|) of up to

three iterations for each function are shown in these tables, along with the COC for the proposed
methods in comparison to some well-known existing methods. The COC [21] is found using the
following equation:
coc - losle(s)letsnl

logle(si-1)/¢(sk-2)]

All numerical computations were performed using the programming software Mathematica 12.2.
To begin the initial iterations for our newly proposed with-memory methods NWM10 and NWMI 1,
we set the parameter values as

ap = 0.01
and
Bo = 0.00001.

Table 1. Comparison results of the with- and without-memory methods after three iterations

for ¢ (s).
Method |(s1 — s0)| |(s2 — 51 |(s3 — s2)I lp1(s3) CcoC
SH6 0.04903 5.4760 x 107° 7.6713 x 1073 4.9394 x 10717 6.0000
SHS 0.04903 5.4670 x 1078 1.6829 x 1075 1.1557 x 10743 8.0000
HS10 div. div. div. div. div.
CJ10 0.04904 1.2344 x 1073 6.6291 x 10746 1.0292 x 10746 10.0000
WZ10 0.04903 5.5393 x 107° 7.1079 x 107% 7.1557 x 107476 10.0000
CCJT10 0.04903 1.1312x 107° 5.5989 x 10736 3.9938 x 10747 10.0000
NWMI10 0.04903 8.5737 x 1078 1.5694 x 10797 5.6911 x 10763 10.0000
NWMI11 0.04903 8.5738 x 1078 4.3360 x 1077 7.5373 x 107786 10.7430

Table 2. Comparison results of the with- and without-memory methods after three iterations

for ¢, (s).

Method |(s1 = s0)l (52 = s1)I |(s3 = $2)l l2(s3)l COC
SH6 0.19775 1.1574 x 1078 2.0722 x 107! 9.2574 x 107308 6.0000
SHS 0.19775 7.4544 x 10~ 2.8192 x 107% 1.5995 x 107689 8.0000
HS10 0.19775 2.3574 x 10710 6.4022 x 107101 1.3974 x 1071006 10.0000
CJ10 0.19775 7.8166 x 107! 1.6451 x 107197 9.0133 x 10°1072 10.0000
WZ10 0.19775 3.3270 x 107! 2.2829 x 107108 4.4311 x 1071080 10.0000
CCJT10 0.19775 2.6059 x 10~° 1.0304 x 10788 2.7635 x 107882 10.0000
NWMI10 0.19775 43937 x 10711 1.2093 x 10719 4.1537 x 107193 10.0000
NWMI11 0.19775 43933 x 1071 2.8779 x 10711° 1.7784 x 1071278 10.7430
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Table 3. Comparison results of the with- and without-memory methods after three iterations

for ¢3(s).

Method (51 = o)l (s2 = s1)l |(s3 = s2)| l3(s3)l COC
SH6 0.14860 41118 x 107 1.1010 x 1073 1.7692 x 107198 6.0000
SHS8 0.14861 1.2389 x 1078 3.0525 x 1079 1.8075 x 10737 8.0000
HS10 0.14861 1.0345 x 107 2.6888 x 1079 3.7848 x 10761 10.0000
CJ10 0.14862 6.4305 x 107° 3.4403 x 107 2.8696 x 10736 10.0000
WZ10 0.14861 3.8388 x 107° 4.8325x 107° 2.1019 x 1074 10.0000
CCIT10 0.14861 6.7601 x 1077 5.2500 x 107% 1.8179 x 10763 10.0000
NWMI10 0.14861 2.0994 x 1078 47148 x 1077° 6.7060 x 10778 10.0000
NWMI11 0.14861 2.0993 x 1078 1.1393 x 10786 1.5623 x 107932 10.7390

Table 4. Comparison results of the with- and without-memory methods after three iterations

for @4(s).

Method |Cs1 = s0)l (52 = s1)l (53 = s2)I la(s3)l COC
SH6 0.00388 0.8385x 10713 5.8561 x 107! 6.2869 x 107417 6.0000
SHS 0.00388 1.5938 x 1071° 1.4716 x 107'% 1.8763 x 107978 8.0000
HS10 0.00388 1.6421 x 10713 5.0425 x 107133 3.7588 x 1071328 10.0000
CJ10 0.00388 6.4472 x 1071 4.4549 x 107136 0.1833 x 10713% 10.0000
WZ10 0.00388 9.4199 x 10716 7.5075 x 107143 1.1651 x 1071412 10.0000
CCJT10 0.00388 5.8641 x 10713 3.4760 x 10711 6.6135 x 107136 10.0000
NWMI10 0.00388 1.6069 x 1071° 2.2318 x 10710 0.1434 x 1071488 10.0000
NWMI11 0.00188 2.2997 x 1016 3.1977 x 107163 2.6116 x 1071738 10.7350

Table 5. Comparison results of the with- and without-memory methods after three iterations

for ¢s(s).
Method [(s1 = s0)I [(s2 = s1)I [(s3 — 82)| s (s3)] cocC
SH6 0.05665 1.4425 x 1077 4.1391 x 107~ 3.5304 x 10724 6.0000
SHS 0.05665 9.1131 x 10710 5.2988 x 10772 1.0583 x 10798 8.0000
HS10 0.05665 4.9575 x 1072 2.4135 x 10732 7.4443 x 1073% 10.0000
CJ10 0.05665 3.9801 x 108 1.7264 x 10774 7.1328 x 107737 10.0000
WZ10 0.05665 6.9055 x 10~° 1.2500 x 10~8 2.5734 x 107808 10.0000
CCIJT10 0.05665 7.0088 x 10~° 1.7572 x 1078! 5.1691 x 107807 10.0000
NWMI10 0.05665 9.9658 x 1010 2.4061 x 107%0 1.9718 x 1078 10.0000
NWM11 0.05665 9.9659 x 1010 9.3351 x 107%° 1.7551 x 1071051 10.7150
AIMS Mathematics Volume 10, Issue 3, 5421-5443.
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Table 6. Comparison results of the with- and without-memory methods after three iterations

for ().

Method |(s1 — so)l [(s2 — s1)I |(s3 — s2)I lps(s3)l COoC
SH6 0.07491 2.8459 x 107 5.5745 x 10726 1.4266 x 107148 6.0000
SHS8 0.07494 2.6904 x 1077 1.2077 x 107 9.0275 x 1073% 8.0000
HS10 11.61089 1.2106 8.3766 x 1072 2.6580 x 10716 10.3150
CJ10 0.07513 1.8605 x 10~* 7.4813 x 1073 3.7413 x 1073%7 10.0000
WZ10 0.07484 9.8996 x 1073 4.0035 x 107%7 2.1170 x 1073%° 10.0000
CCJT10 0.07495 1.0136 x 107 2.7132 x 107¥ 2.3084 x 10! 10.0000
NWMI10 0.07494 6.8053 x 1077 3.1990 x 10~° 7.6445 x 107381 10.0000
NWMI11 0.07494 6.8053 x 1077 7.0208 x 107 2.0005 x 107! 10.8340

Table 7. Comparison results of the with- and without-memory methods after three iterations

for ¢7(s).

Method |(s1 = o)l |(s2 = s1) |(s3 — 52)| l7(s3)l COC
SH6 0.12125 2.9952 x 107° 4.8045 x 1073 7.0299 x 1072% 6.0000
SHS8 0.12125 7.7131 x 107° 4.7932 x 1077 9.1585 x 107332 8.0000
HS10 0.12125 1.3062 x 107 1.4202 x 1074 3.3274 x 107477 10.0000
CJ10 0.12125 5.3825x 1078 4.7085 x 10774 1.6972 x 1077% 10.0000
WZ10 0.12125 9.5115x 1078 9.1359 x 10773 1.8214 x 1077% 10.0000
CCJT10 0.12125 1.6076 x 1078 5.6170 x 1078 1.0041 x 10772 10.0010
NWMI10 0.12125 8.4570 x 10~° 3.5933 x 107% 1.1373 x 10784 10.0000
NWMI1 0.12125 8.4571 x 107° 1.6632 x 107! 1.3380 x 10797 10.7490

Table 8. Comparison results of the with- and without-memory methods after three iterations

for ¢g(s).

Method |(s1 — s0)l [(s2 — s1)I |(s3 — s2)I s (s3)] CoC
SH6 0.14177 6.8830 x 1077 7.3009 x 107%° 2.9384 x 10723 6.0000
SHS8 0.14177 6.3516 x 10~° 9.7114 x 1078 8.1960 x 107338 8.0000
HS10 0.14177 2.9779 x 1077 2.7815x 10770 1.4059 x 107700 10.0000
CJ10 0.14177 4.5598 x 1077 1.1993 x 107% 6.0622 x 107660 10.0000
WwWZ10 0.14177 1.0462 x 1077 2.8607 x 1077 3.1584 x 1077 10.0000
CCJT10 0.14177 8.8001 x 1078 5.1277 x 10773 2.1772 x 1077% 9.9995
NWMI10 0.14177 6.2949 x 10~° 1.9362 x 10783 7.2933 x 107828 10.0000
NWMI11 0.14177 6.2947 x 107° 1.8530 x 107 1.6124 x 1079 10.7380

Comparing the newly proposed with-memory methods NWM10 and NWMI1 1 to the other existing
methods, the numerical results in Tables 1-8 and Figure 1 demonstrate that they are highly competitive
and have fast convergence towards the roots with minimal absolute residual error and a minimum error
value in consecutive iterations. Additionally, the numerical results demonstrate that the computational
order of convergence in the test functions is consistent with the theoretical convergence order of the
newly proposed methods.
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Figure 1. Comparison of the methods after the first three iterations based on the error in
successive iterations, |s; — Sg_1l.
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4. Conclusions

This article presents three-step with-memory iterative techniques that use single and double self-
accelerating parameters to solve nonlinear equations. The main objective is to improve the optimal
eighth-order method’s convergence order without involving more calculations. In order to do this,
the eighth-order technique incorporates self-acceleration parameters and their estimates. The Hermite
interpolating polynomial is used to get the estimations of these self-accelerating parameters. When
parameters are included, the with-memory methods NWM10 and NWM11’s R-order of convergence
rise from 8 to 10 and 10.7446, respectively. The findings demonstrate that compared to other existing
methods, the proposed NWM10 and NWM11 techniques have smaller asymptotic constant values and
faster convergence. Additionally, the newly introduced techniques perform exceptionally well overall
and have a fast rate of convergence, making them a viable substitute for solving nonlinear equations.

The presented techniques can be used by the interested researchers to improve efficiency for single
or multivariate functions by extending well-known higher optimal order without-memory iterative
methods to with-memory algorithms along with single or multi self-accelerating parameters.
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