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Abstract: B-spline collocation methods were developed to provide simpler numerical solutions
for differential problems. Over the years, various types of B-splines have been established,
including the cubic B-spline collocation method (CBSM), cubic trigonometric B-spline collocation
method (CTBSM), extended cubic B-spline collocation method (ECBSM), and cubic hybrid B-spline
collocation method (CHBSM). Among these methods, CHBSM has been shown to produce the most
accurate approximations due to the presence of a free parameter, γ , which allows for greater flexibility
in the basis functions. However, the accuracy of the CHBSM is highly dependent on the value of γ ,
which must be optimized for improved results. While traditional brute-force optimization methods
can achieve minimal errors, they often require significant computational time and effort. Therefore,
this study has proposed using particle swarm optimization (PSO) to efficiently determine the optimal
γ value for the CHBSM. The optimized CHBSM (OCHBSM) was tested on four examples of linear
two-point boundary value problems (BVPs), including a linear BVP system. For comparison, the
well-established CBSM and CTBSM were also applied to the same problems. The numerical results
were analyzed and compared with analytical solutions revealing that the OCHBSM provided the most
accurate approximations among the methods tested. Moreover, an average improvement percentage
of 99.83% was achieved across all examples, indicating that our method outperforms the compared
methods significantly.

Keywords: boundary value problem; numerical approximation; collocation method; hybrid B-spline;
particle swarm optimization
Mathematics Subject Classification: 34K10, 34K28, 65D05, 65D07

1. Introduction

Ordinary differential equations (ODEs) are often used to model many practical applications in the
fields of applied mathematics, physics, chemistry, and engineering. Generally, ODEs can be classified
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into two types: linear and non-linear ODEs. An ODE is said to be linear if the dependent variables and
all their derivatives are of degree one, respectively. In contrast with the non-linear ODE, the dependent
variables and their derivatives can be of degree greater than one and/or with any multiplication between
the variables and derivatives. The general form of the nth-order ODE can be written as

F(y(x),y′(x), . . . ,y′(x)n−1,yn(x)) = f (x), x ∈ [a,b], (1.1)

for some n ∈ N,n ≥ 2, where y is a function of x, y′(x) is the first derivative with respect to x, and
yn(x) is the nth derivative with respect to x. In this paper, a second-order linear two-point BVP will be
considered in the following form:

y′′(x)+q(x)y′(x)+ r(x)y(x) = f (x), x ∈ [a,b], (1.2)
y(a) = α1, y(b) = α2,

where α,b,α1,α2 are real numbers. Note that the boundary conditions in Eq (1.2) are called the
Dirichlet conditions where are the most common type of boundary conditions and will be considered
in this study. Moreover, Dirichlet boundary conditions ensure that the continuity of the solution will be
obtained [1]. To solve physical problems is sometimes very challenging and requires extensive effort.
Therefore, it is recommended to use numerical solutions for solving real-life application problems.
Several numerical techniques, including the variational approach [2], finite difference method (FDM)
[3–5], finite element method (FEM) [3,5], finite volume method (FVM) [3,5], and the shooting method
(LSM) [4], have been applied to the two-point BVP solutions.

The cubic B-spline interpolation method (CBI) was proposed by [5] to solve for two-point BVP
solutions. This study can be considered as a breakthrough as it gives the fundamental idea of the B-
spline collocation method. Based on the computed maximum errors, it can be concluded that this
method was more precise than the methods by [3]. Various numerical techniques based on CBI
have been extensively used since then to solve both linear and nonlinear BVPs [6–8]. The cubic
trigonometric B-spline collocation method (CTBSM) and extended cubic B-spline collocation method
(ECBSM) were investigated by [9] as solutions to linear two-point BVPs. In comparison with the
CBSM, the CTBSM produced better results when dealing with trigonometric problems. A hybrid
version of the CBSM and CTBSM schemes has been presented in [10] to address nonlinear two-point
BVPs. This research was proven to give promising results when the free parameter γ was optimized.
This is a crucial step in order to produce results with high accuracy.

In 2019, an improved method to solve singular BVPs of second order was constructed by leveraging
an extended cubic B-spline basis [11]. A variety of third-order Emden-Flower-type problems were
solved using a new cubic B-Spline approximation (NCBSA) by [12]. For the solutions of non-
linear higher-order Korteweg-de Vries equations, a new CBS approximation was provided using the
Taylor series method [13]. A novel quintic B-spline approximation was applied to solve Boussinesq
equations [14]. Septic- and nonic-order splines have also been developed and applied to surfaces as
tensor product schemes [15–17]. The convexity of the closed shapes was also discussed in [16]. Many
authors and researchers have used higher-order numerical schemes to solve ODEs and PDEs, but these
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schemes have shown computationally higher costs and inefficiency in building the solutions for a large
subsequent matrix system with unknown constants due to the rigidity they possess, as compared to the
spline approximations.

The CHBSM has been shown to be the superior method for approximating second-order linear
BVPs compared to other spline methods [10]. The main reason for this is because the CHBSM
has a free parameter, γ , which is optimized using the brute force method initially proposed in [9].
To our knowledge, the best optimization method specifically for the CHBSM has not been found.
Instead, the optimization approach by [18] for parameter λ in the ECBSM was adopted and applied
to the CHBSM. According to this approach, Newton’s method was chosen and implemented for the
minimization process. This method was proven to give promising results [6, 9, 10, 19, 20] and thus
became the reference of this study.

An optimization algorithm is a process or technique designed to identify the optimal solution or
set of solutions to a problem by maximizing or minimizing a specific objective function [33]. Particle
swarm optimization (PSO) is a widely adopted, straightforward, and efficient technique. It belongs
to the population-based algorithms which were inspired by population group behavior. PSO was
originally discovered by [21] when the authors observed the social behavior of a flock of birds. Since
then, PSO has been extensively used to optimize various types of problems mostly in the field of
engineering [22]. For instance, the one-dimensional nonlinear Schrödinger equation was effectively
solved using PSO with an exponential B-spline [22]. The authors then introduced the use of the
exponential modified cubic B-spline differential quadrature method (Expo-MCB-DQM) with PSO to
tackle Sine–Gordon equations [23]. The method significantly enhanced the stability and accuracy of
the solution compared to earlier methods. To find the optimal parameter value of the radial basis
functions for solving PDEs, the "PSO with Kansa’s method" based on collocation techniques was
integrated, and its performance superiority was demonstrated through numerical results [24].

As an application in geometric modeling and computer-aided design, scattered data points were
effectively fitted with ball B-spline curves using PSO [25]. The PSO algorithm has also been applied
into developable surfaces for shape optimization. A highly accurate developability GHT-Bézier surface
was visualized in [26] where the authors applied PSO to find the optimum shape control parameters
of the surface. However, there is a major lack of study on the implementation of PSO in numerical
approximations, specifically in the B-spline collocation method. This is because most research opt
to modify their basis functions [27, 28] or use the aforementioned brute force with Newton’s method,
instead of using an optimization approach. This issue has motivated us to explore PSO as a potential
optimization method for spline approximations. Therefore, the primary objective of this paper is to
incorporate the use of the PSO technique to obtain an optimized value of the free parameter, γ , in the
OCHBSM for solving linear second-order BVPs.

This paper is organized as follows: Section 2 introduces the basis functions of the cubic hybrid
B-spline approach and explains the formation of the collocation method. It also details the integration
of particle swarm optimization (PSO) with the CHBSM. Section 3 provides a few numerical examples
of linear two-point boundary value problems (BVPs) where both the proposed method and existing
approaches such as the CBSM and CTBSM were applied. The results are then analyzed and discussed
in Section 4. Finally, the conclusion of the study with suggestions for future work are presented in
Section 5.
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2. Methodology

The basis function of the cubic hybrid B-spline method is presented in this section. Subsequently,
a collocation method is formed, namely the CHBSM. A particle swarm optimization approach is
employed to optimize the free parameter in the CHBSM, which is called the OCHBSM.

2.1. Cubic hybrid B-spline

The hybrid B-spline is defined as the linear combination of the B-spline function, Bk
j(x), and the

trigonometric B-spline function, T k
j (x). The j-th hybrid B-spline basis function of k-th order is defined

in [20] as:

Hk
j (x) = γBk

j(x)+(1− γ)T k
j (x), γ ∈ R. (2.1)

It is important to point out that the value of the parameter γ in Eq (2.1) has significant importance in
the hybrid B-spline basis functions. When γ = 1, the basis function is reduced to the B-spline basis
function and when γ = 0, the basis function becomes the trigonometric B-spline basis function. The
relationship between the order, k, and degree, d, of a basis function is defined by k = d + 1 [29]. For
instance, if a B-spline function of degree d = 4, is used, the value of k will be 5, as the order is simply
the degree plus one. In our study, B-spline basis functions of degree d = 3, were used; hence, the order
k = d +1 = 4 was substituted. However, it is possible to use other values of k, as a B-spline curve can
also be defined by the control points, n. Based on [29], a B-spline curve can be constructed up to order
n+ 1 by adjusting the locality of the B-spline. Subsequently, the cubic hybrid B-spline basis can be
obtained by substituting k = 4 into Eq (2.1) resulting in

H4
j (x) = γB4

j(x)+(1− γ)T 4
j (x), γ ∈ R. (2.2)

The definitions of B4
j(x) and T 4

j (x) in [20] are as follows:

B4
j(x) =

1
6h3



(x− x j)
3, x = [x j,x j+1],

h3 +3h2(x− x j+1)+3h(x− x j+1)
2 −3(x− x j+1)

3, x = [x j+1,x j+2],

h3 +3h2(x j+3 − x)+3h(x j+3 − x)2 −3(x j+3 − x)3, x = [x j+2,x j+3],

(x j+4 − x)3, x = [x j+3,x j+4],

0, otherwise,

(2.3)
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T 4
j (x)=

1
ϕ



δ 3(x j,x), x = [x j,x j+1],

δ (x j,x)[δ (x j,x)]θ(x j+2,x)+θ(x j+3,x)δ (x j+1,x)]+θ(x j+4,x)δ 2(x j+1,x), x = [x j+1,x j+2],

δ (x j,x)θ 2(x j+3,x)+θ(x j+4,x)[δ (x j+1,x)]θ(x j+3,x)θ(x j+4,x)δ (x j+2,x)], x = [x j+2,x j+3],

θ 3(x j+4,x), x = [x j+3,x j+4],

0, otherwise,
(2.4)

where h = (b−a)
n , δ (x j,x) = sin x−x j

2 ,θ(x j,x) = sin x j−x
2 , and ϕ = sin(h

2)sin(h)sin(3h
2 ).

2.2. Collocation method

This section explains the collocation method of the cubic hybrid B-spline. An approximate solution
of Eq (1.2) using the CHBSM can be written as:

S(x) =
n−1

∑
j=−3

C jH4
j (x)≈ f (x), x ∈ [x0,xn], (2.5)

where C j(x) are the unknown real coefficients and H4
j (x) are the cubic hybrid B-spline basis functions

presented in Eq (1.2). The term f (x) is the continuous function in the domain [x0,xn] located at the
right-hand side of the BVP. Analogous to the CBSM and CTBSM, there are three nonzero terms at
each knot, x j, namely H4

j (x), H4
j−2(x), and H4

j−1(x) due to the local support property of the B-spline
basis. The values are tabulated in Table 1.

Table 1. Values of H4
j (x),

d
dxH4

j (x), and d2

dx2 H4
j (x).

x j x j+1 x j+2 x j+3 x j+4
H4

j (x) 0 h1 h2 h1 0
d
dxH4

j (x) 0 h3 0 h4 0
d2

dx2 H4
j (x) 0 h5 h6 h5 0

The values of h j for j = 1,2,3, ...,6 are as follows:

h1 =
γ

6
+
(1− γ)sin2(h

2)

sin(h)sin(3h
2 )

, h2 =
4γ

6
+

2(1− γ)sin2(h
2)

sin(3h
2 )

, h3 =
γ

2h
+

3(1− γ)

4sin(3h
2 )

, h4 =
−γ

2h
− 3(1− γ)

4sin(3h
2 )

,

h5 =
γ

h2 +
3(1− γ)[sin(h

2)−2sin3(h
2)+ sin(3h

2 )]

8sin(h
2)sin(h)sin(3h

2 )
, h6 =

−2γ

h2 −
3(1− γ)[sin(2h)+2sin2(h

2)+ sin(h)]

4sin(h
2)sin(h)sin(3h

2 )
.

Suppose S(x) is the approximated solution for the analytical solution y(x) in Eq (1.2). We can replace
y(x) and its derivatives by substituting S(x) and its corresponding derivatives. By substituting x j and
applying the the boundary conditions into Eq (1.2), it can be rewritten as:
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S′′(x j)+q(x j)S′(x j)+ r(x j)S(x j)≈ f (x j), x ∈ [x0,xn], (2.6)
S(x0) = α1, S(xn) = α2,

for j = 0,1, ...,n−1. Thus, the approximated solution in Eq (2.5) and its derivatives with respect to x,
and the three nonzero terms at each knot x j, given in Table 1, are substituted into Eq (2.5) yielding

S(x j) =C j−3H4
j−3(x j)+C j−2H4

j−2(x j)+C j−1H4
j−1(x j)≈ f (x j), (2.7)

or S(x j) =C j−3(A1)+C j−2(A2)+C j−1(A1)≈ f (x j),

S′(x j) =C j−3
d
dx

H4
j−3(x j)+C j−2

d
dx

H4
j−2(x j)+C j−1

d
dx

H4
j−1(x j)≈ f

′
(x j), (2.8)

or S
′
(x j) =C j−3(A3)+C j−2(0)+C j−1(A3)≈ f

′
(x j),

S
′′
(x j) =C j−3

d2

dx2 H4
j−3(x j)+C j−2

d2

dx2 H4
j−2(x j)+C j−1

d2

dx2 H4
j−1(x j)≈ f

′′
(x j), (2.9)

or S
′′
(x j) =C j−3(A4)+C j−2(A5)+C j−1(A4)≈ f

′′
(x j),

where
Ai = γσi +(1− γ)ηi, for i = 1,2, ...,5 (2.10)

and
σ1 =

1
6
, σ2 =

4
6
, σ3 =

−1
2h

, σ4 =
1
h2 , σ5 =

−2
h2 ,

κ1 = sin(
h
2
), κ2 = sin(h), κ3 = sin(

3h
2
), κ4 = sin(2h),

η1 =
κ2

1
κ2κ3

, η2 =
2κ2

κ3
, η3 =

−3
4κ3

, η4 =
3(κ2

1 κ3
1 +κ3)

8κ1κ2κ3
, η5 =

−3(κ4 +2κ2
1 κ2)

4κ1κ2κ3
.

Equations (2.7)–(2.9) are then substituted into Eq (1.2) giving

[C j−3[γδ4 +(1− γ)η4]+C j−2[γδ5 +(1− γ)η5]+C j−1[γδ4 +(1− γ)η4]] (2.11)
+q(x j)[[C j−3(−γδ3− (1− γ)η3)]+C j−1r(x j)[(γδ3 +(1− γ)η4]]

+ r(x j)[[C j−3[γδ1 +(1− γ)η1]+C j−2[(γδ2 +(1− γ)η2]+C j−1[γδ1 +(1− γ)η1]].

Collecting the terms that contain C j−3, C j−2, and C j−1 from Eq (2.11) leads to
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C j−3[γδ4 +(1− γ)η4 −q(x j)(γδ3+(1− γ)η3)+ r(x j)(γδ1 +(1− γ)η1] (2.12)
+C j−2[γδ5 +(1− γ)η5 + r(x j)(γδ2 +(1− γ)η2]

+C j−1[γδ4 +(1− γ)η4 +q(x j)(γδ3 +(1− γ)η3]

+ r(x j)(γδ1 +(1− γ)η1] = f (x j),

with boundary conditions

SH(x0) =C−3[γδ1 +(1− γ)η1]+C−2[γδ2 +(1− γ)η2]+C−1[γδ1 +(1− γ)η1] = α1, (2.13)
SH(xn) =Cn−3[γδ1 +(1− γ)η1]+Cn−2[γδ2 +(1− γ)η2]+Cn−1[γδ1 +(1− γ)η1] = α2. (2.14)

Equations (2.12)–(2.14) result in a tri-diagonal matrix system of size (n+3)(n+3). This system can
be denoted as BC j = F . The matrix C is a column matrix of the coefficients C = (C0,C1, . . . ,Cn−1,Cn),
and the right-hand-side matrix is the function F = (α1, f (x0), f (x1), . . . , f (xn),α2)

T where the
coefficients of matrix B are presented as follows:

B =



Q1 Q2 Q1 0 0 . . . . . . 0
λ0(x0) µ0(x0) ρ0(x0) 0 0 . . . . . . 0

0 λ1(x1) µ1(x1) ρ1(x1) 0 . . . . . . 0
...

. . .
. . .

. . .
. . .

. . . . . . 0
...

. . .
. . .

. . .
. . .

. . . 0 0
...

. . . . . . 0 0 λn(xn) µn(xn) ρn(xn)
0 . . . . . . 0 0 Q1 Q2 Q1


where

Q1 = γδ1 +(1− γ)η1, Q2 = γδ2 +(1− γ)η2, (2.15)

λ j(x j) = [γδ4 +(1− γ)η4]−q(x j)[(γδ3+(1− γ)η3)]+ r(x j)(Q1), (2.16)
µ j(x j) = [γδ5 +(1− γ)η5]+ r(x j)(Q2), (2.17)
ρ j(x j) = [γδ4 +(1− γ)η4]−q(x j)[(γδ3+(1− γ)η3)]+ r(x j)(Q1) (2.18)

for j = 0,1, . . . ,n−1. The values of the unknown C j for j = 0,1, . . . ,n−1 can be obtained by solving
the matrix system using

C j = B−1F, (2.19)

and are substituted in Eq (1.2) to get the approximated solution of the second-order linear two-point
BVP in Eq (2.5). Note that matrix B is a square matrix where the determinant is nonzero. Hence, it is
a non-singular matrix such that the inverse of it exists.
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2.3. Optimization of γ

The accuracy level of the approximated solutions of second-order linear two-point BVPs using
the CHBSM is highly dependent on the value of the free parameter γ . This section explains the
method of determining γ with the use of swarm optimization, namely particle swarm optimization,
after establishing the collocation method in the previous section. This method is a simple and direct
method which can be applied to the splines. Figure 1 and Algorithm 1 show the flowchart and process
of the proposed OHCBSM, respectively.

Algorithm 1 Numerical approximation of the CHBSM with a PSO scheme

1: Define the basis function of the cubic hybrid B-spline, H(x), as in Eq (2.2).
2: Develop a collocation method for each problem as discussed in Section 2.
3: Solve the tridiagonal matrix and calculate the value of unknown parameter, c.
4: Get the spline function by substituting the value of the unknown parameter, c into Eq (2.5).
5: Optimize the value of the free parameter γ using the PSO algorithm.

Start with PSO
6: The objective function is the L2 norm in Eq (2.21).
7: Initialize the PSO parameters.
8: Calculate the fitness of each particle and find the best one.
9: for i ≤ swarm size do

10: Calculate the maximum and minimum velocities and positions of the particle.
11: Obtain the pbest and gbest values.
12: if newbestvalue ≤ bestvalue then
13: Update the new pbest and gbest values.
14: else
15: No update on the pbest and gbest values.
16: end if
17: The error of the new best particle after substituting in Eq (2.2) is less than 1×10−4.
18: end for
19: Calculate the fitness of each particle.
20: Return the new best particle and the position.
21: Apply the OCHBSM on the numerical examples.
22: Calculate the errors as in Eq (2.21) and Eq (2.22).
23: Construct the graphs of exact and approximated solutions.

PSO is an evolutionary computation method similar to the genetic algorithm (GA). It was proposed
by [21] in 1995. In PSO, swarms called particles can be defined as Pi ∈ [a,b] where i = 1,2,3, . . . ,D
and a,b ∈ R where D is the dimension. Each particle has its own velocity and position which are
randomly initialized at the start. Each particle has to maintain its positions pbest, known as the local
best position, and gbest, known as the global best position, among all the particles. The following
equations are used to update the position and velocity of the particle [30].

Vi(t +1) =Vi(t)+ c1 × r1(pbest−n j(b))+ c2 × r2(gbest− xi(t)) (2.20)
Xi(t +1) = Xi(t)+Vi(t +1)

AIMS Mathematics Volume 10, Issue 3, 5399–5420.
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Figure 1. Flowchart of the proposed OCHBSM scheme.

We are given that Vi is the velocity, Xi is the particle position, pbest is the personal best particle
position, and gbest is the global best particle position. r1 and r2 are two random numbers ranging
from [0,1] where c1 and c2 are the cognitive coefficients. When selecting parameters for PSO, the
goal is to balance exploration (searching broadly) and exploitation (focusing on promising areas) by

AIMS Mathematics Volume 10, Issue 3, 5399–5420.



5408

adjusting factors such as population size, inertia weight, w, and cognitive coefficients, based on the
problem’s complexity, in order to achieve fast convergence to a near-optimal solution while avoiding
local optima.

In this study, the parameters are initialized as follows: number of particles (population size, N) =
20, weight inertial coefficient, w = 0.9, cognitive coefficient, c1 = 2, social coefficient, c2 = 2, number
of iterations = 50, lower bound = -2, and upper bound = 8. The population size chosen is small (i.e.,
20), as our problem is less complex. Generally, complex problems require a larger population size to
explore a wider search space while simpler problems may require a smaller population. The inertia
weight, w, controls the exploration of particles whether to move further across the search space or to
focus on areas near the best solution, and the given range is between 0 and 1 [31]. According to most
research, the standard inertia weight implemented in PSO is w = 0.9, which is closer to 1 to encourage
further exploration of particles in the search space [32]. Moreover, a recent work [33] showed that the
results obtained using the stated inertia weight are reliable.

For cognitive and social coefficients, they are typically set equal (e.g., c1 = c2 = 2) in many standard
implementations such as in [33,34], but tuning these values can help in fine-tuning the balance between
exploration and exploitation. Other values are also possible, but large values can lead to instability
whereas very small values might slow down convergence. Adjusting these coefficients can significantly
affect the algorithm’s performance in finding optimal solutions. Based on our test run, the errors
converge more quickly as the number of iterations increases. Hence, we simply choose a large number
of iterations where the errors will be significantly small.

The values of upper and lower boundaries are adopted from [9] which states that the boundary
values of γ must be between -2 and 8 to satisfy the B-spline properties. Eq (2.12) with boundary
conditions in Eq (2.13) and Eq (2.14) is the fitness function for x j for j = 0,1,2, . . . ,n. The values of
pbest and gbest are constantly updated for each iteration. The work by [30] discussed PSO in greater
detail. To determine the accuracy of the scheme, the maximum absolute error L

∞
and the Euclidean

norm L2 are calculated as follows:

L2 =

√√√√n−1

∑
j=1

[S(x j)− y(x j)]2, (2.21)

L
∞
= max

n−1

∑
j=1

[S(x j)− y(x j)]. (2.22)

The maximum percentage error and improvement percentage can also be calculated to further verify
the accuracy and efficiency of our proposed method using the following formulas, respectively.

Maximum Percentage Error = |Exact value - Approximated value
Exact value

| ×100%, (2.23)

Improvement Percentage = |Initial error - New error
Initial error

| ×100%. (2.24)

The numerator of the maximum percentage error in Eq (2.23) corresponds to L
∞

in Eq (2.22),
which represents the maximum difference between the approximated solution S(x j) and the analytical
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solution y(x j). Meanwhile, Eq (2.24) is used to compute the error improvement between the two
methods, where the initial error is defined as the maximum percentage error of the CBSM or CTBSM,
and the new error corresponds to the maximum percentage error of our proposed method.

3. Results and discussion

In this section, four numerical examples were studied to demonstrate the accuracy of the proposed
method. The results obtained are compared with the analytical solution of each example. Our
approach shows significant improvements over Caglar’s method [5] in both accuracy and usability.
For all examples, PSO was iterated several times to determine the optimal parameter value, γ . A value
is considered optimal when the associated errors are smaller than those from previous results. Unlike
prior methods, our approach considered the value of γ at each knot, allowing for enhanced local
control. We recorded the optimized γ values at each knot and calculated their average, which was then
used in Eq (2.2).

Example 1. [4]
Consider the following linear equation:

y′′(x)− y(x) = 2ex−1. (3.1)

The analytical solution is given by xex−1. Figure 2(a) compares the approximated and analytical
solutions using the OCHBSM with n = 10, showing that the approximated solution closely matches
the analytical one as both solutions overlapped, indicating minimal errors. Figure 2(b) shows the
errors for the approximated solutions using the CBSM, CTBSM and OCHBSM. It is evident that the
approximation error is smallest for the OCHBSM, followed by the CBSM and CBTSM. The smaller
error for the OCHBSM suggests that its approximated solution is closest to the analytical solution
compared to the other methods.
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(a) Exact solution.
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Figure 2. Exact solution and error plots of the approximated solution for Example 1 by the
OCHBSM.

Table 2 presents the absolute errors and norms upon applying the CBSM, CTBSM, CHBSM with
brute force optimization [35], and OCHBSM with PSO optimization on Example 1 where Table 3
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displays the chosen value of parameter γ using PSO in the OCHBSM at each knot. According to Table
2, the maximum absolute error L

∞
and the Euclidean norm L2 for the OCHBSM are 4.95596× 10−6

and 9.93104×10−6, respectively, which are the lowest compared to other methods. Additionally, the
results from the CBSM and CTBSM are consistent with those reported in [35]. Evidently, our proposed
method produced better approximations compared with the earlier methods.

Table 2. The absolute errors and norms for Example 1.

x CBSM [4] CTBSM CHBSM [35]
(γ =−0.70786)

OCHBSM
(γ =−0.67923)

0.1 8.20393×10−5 1.98907×10−4 6.86513×10−7 2.66012×10−6

0.2 1.50958×10−4 3.67729×10−4 2.48477×10−6 3.72270×10−6

0.3 2.05606×10−4 5.03258×10−4 5.09038×10−6 3.43324×10−6

0.4 2.44454×10−4 6.01275×10−4 8.12575×10−6 2.09225×10−6

0.5 2.65555×10−4 6.56420×10−4 1.11229×10−5 6.99347×10−8

0.6 2.66489×10−4 6.62037×10−4 1.35035×10−5 2.17657×10−6

0.7 2.44305×10−4 6.09998×10−4 1.45553×10−5 4.08326×10−6

0.8 1.95449×10−4 4.90498×10−4 1.34050×10−5 4.95596×10−6

0.9 1.15684×10−4 2.91808×10−4 8.98678×10−6 3.94327×10−6

L
∞

2.66490×10−4 6.62037×10−4 1.45553×10−5 4.95596×10−6

L2 6.19963×10−4 1.53512×10−3 2.96136×10−5 9.93104×10−6

Table 3. The value of parameter γ chosen using PSO at each knot for Example 1.

x γ

0.1 −7.02400×10−1

0.2 −6.97440×10−1

0.3 −6.92450×10−1

0.4 −6.84440×10−1

0.5 −6.80410×10−1

0.6 −6.74430×10−1

0.7 −6.63360×10−1

0.8 −6.59420×10−1

0.9 −6.58700×10−1

Avg −6.79230×10−1

Example 2. [36]
Consider the following linear equation with a trigonometric function:

y′′(x)−π
2y(x) =−2π

2 sinπx. (3.2)

The analytical solution is given by sinπx. Figure 3(a) illustrates the analytical solution and
approximated solution for the OCHBSM with n = 10. Again, both solutions overlap each other,
indicating a good agreement between the approximated and the analytical solutions. The comparison
of the errors between the proposed method, CBSM, and CTBSM is shown in Figure 3(b). As observed
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in the figure, the OCHBSM has the smallest approximation error, followed by the CTBSM and
CBSM. While the CTBSM performs slightly better than the CBSM for equation problems involving
trigonometric functions, the performance of the OCHBSM exceeded both earlier methods in giving the
best approximation to the analytical solution.
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(a) Exact solution.
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(b) Error plots.

Figure 3. Exact solution and error plots of the approximated solution for Example 2 by the
OCHBSM.

Table 4 presents the absolute errors and norms upon applying the CBSM, CTBSM, and proposed
OCHBSM on Example 2 and Table 5 displays the value of parameter γ chosen using PSO in the
OCHBSM at each knot. According to Table 4, the maximum absolute error L

∞
and the Euclidean

norm L2 for the OCHBSM are 3.95268×10−7 and 8.83843×10−7, respectively. Both errors are the
smallest compared to the other methods. Besides that, the results of the CBSM and CTBSM agree with
those found in [19, 37].

Table 4. The absolute errors and norms for Example 2.

x CBSM [19] CTBSM [37] OCHBSM
(γ = 4.05816)

0.1 1.26968×10−3 9.56780×10−4 1.22144×10−7

0.2 2.41508×10−3 1.82199×10−3 2.32330×10−7

0.3 3.32407×10−3 2.50488×10−3 3.19776×10−7

0.4 3.90768×10−3 2.94467×10−3 3.75920×10−7

0.5 4.10877×10−3 3.09620×10−3 3.95268×10−7

0.6 3.90768×10−3 2.94467×10−3 3.75922×10−7

0.7 3.32407×10−3 2.50488×10−3 3.19778×10−7

0.8 2.41508×10−3 1.81990×10−3 2.32332×10−7

0.9 1.26968×10−3 9.56780×10−4 1.22144×10−7

L
∞

4.10877×10−3 3.09620×10−3 3.95268×10−7

L2 9.18750×10−3 6.92332×10−3 8.83843×10−7
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Table 5. The value of parameter γ chosen using PSO at each knot for Example 2.

x γ

0.1 4.05831
0.2 4.05635
0.3 4.05680
0.4 4.05848
0.5 4.05771
0.6 4.06115
0.7 4.06204
0.8 4.05477
0.9 4.05780
Avg 4.05816

Example 3. [18]
Consider another linear equation:

y′′(x)− y(x) = 0. (3.3)

The analytical solution is given by sinhx. Again, from Figure 4(a) and Figure 4(b), it was observed
that our presented method is more precise than the earlier methods, the CBSM and CTBSM.
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(a) Exact solution.
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Figure 4. Exact solution and error plots of the approximated solution for Example 3 by the
OCHBSM.

Table 6 lists the absolute errors and norms upon applying the CBSM, CTBSM, and OCHBSM on
Example 3 and Table 7 reports the values of the parameter γ involved. From Table 6, the maximum
absolute error L

∞
and the Euclidean norm L2 are found to be 1.23029× 10−6 and 2.78941× 10−6,

respectively, which are the lowest among the methods evaluated. The results tabulated for the CBSM
and CTBSM match with those reported in [5, 37].
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Table 6. The absolute errors and norms for Example 3.

x CBSM [5] CTBSM [37] OCHBSM
(γ =−3.33250×10−1)

0.1 1.29420×10−5 5.26942×10−5 3.05327×10−7

0.2 2.51763×10−5 1.02508×10−4 5.94097×10−7

0.3 3.59800×10−5 1.46497×10−4 8.49359×10−7

0.4 4.45988×10−5 1.81591×10−4 1.05338×10−6

0.5 5.02311×10−5 2.04526×10−4 1.18721×10−6

0.6 5.20111×10−5 2.11777×10−4 1.23029×10−6

0.7 4.89906×10−5 1.99482×10−4 1.15996×10−6

0.8 4.01204×10−5 1.63366×10−4 9.50989×10−7

0.9 2.42288×10−5 9.86598×10−5 5.75017×10−7

L
∞

5.20111×10−5 2.11777×10−4 1.23029×10−6

L2 1.17941×10−4 4.80226×10−4 2.78941×10−6

Table 7. The value of parameter γ chosen using PSO at each knot for Example 3.

x γ

0.1 −3.29060×10−1

0.2 −3.26410×10−1

0.3 −3.21360×10−1

0.4 −3.25480×10−1

0.5 −3.25650×10−1

0.6 −3.29480×10−1

0.7 −3.07630×10−1

0.8 −3.31130×10−1

0.9 −4.03020×10−1

Avg −3.33250×10−1

Example 4. [38]
To further test the efficacy of the proposed method, we will consider a linear system as follows:

u′′(x)+ xu(x)+ xv(x) = 2
v′′(x)+2xv(x)+2xu(x) =−2

(3.4)

The analytical solution is given by x2 − x for u(x) and x− x2 for v(x). Figure 5(a) and Figure 5(b)
illustrate the approximated analytical solutions for u(x) and v(x), respectively. The close overlap of
these results indicates good approximations, as corroborated by Table 8.
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Figure 5. Plot of exact solutions for u(x) and v(x) in Example 4 using the OCHBSM.

Table 8. The absolute errors and norms for u(x) in Example 4.

x CBSM [38] CTBSM [39] OCHBSM
(γ = 9.38154×10−5)

0.1 −1.48492×10−15 3.35626×10−4 2.35536×10−7

0.2 −1.33227×10−15 5.98839×10−4 8.46607×10−8

0.3 −1.22125×10−15 7.86848×10−4 8.72577×10−8

0.4 −9.99201×10−16 8.99654×10−4 7.59788×10−8

0.5 −6.38378×10−16 9.37255×10−4 6.05528×10−8

0.6 −6.10623×10−16 8.99654×10−4 1.87472×10−8

0.7 −3.33067×10−16 7.86848×10−4 3.34422×10−8

0.8 −5.55112×10−17 5.98839×10−4 8.10685×10−9

0.9 1.11022×10−16 3.35626×10−5 1.83466×10−8

L
∞

−1.48492×10−15 9.37255×10−4 2.35536×10−7

L2 1.17941×10−15 2.16286×10−3 2.02910×10−7

The numerical results are tabulated in Table 8. From the table, the results for the CBSM and
CTBSM are consistent with those presented in [38, 39]. On the other hand, the parameter values γ at
each knot for u(x) are listed in Table 9. The average of these optimized values was calculated to be
9.38154× 10−5. It is important to highlight that the solutions for u(x) and v(x) are negatives of each
other. Therefore, to derive the approximation for v(x), it is adequate to apply a negative sign to u(x).
For simplicity, the same value of γ is used to approximate the solutions of v(x), resulting in results
similar to u(x) except for the number signs. For this reason, the results of v(x) were not tabulated.

The maximum absolute error, L
∞
, for the functions u(x) and v(x) is recorded in Table 10 for n = 10

and n = 21. It should be noted that the maximum absolute errors for both u(x) and v(x) are the same,
as u(x) is the negative of v(x), leading to identical error values. At n = 21, the results obtained using
the CBSM method align with those reported in [38]. The CBSM provides the best results due to
the absence of trigonometric functions in the problem; in cases involving trigonometric functions, the
OCHBSM method would produce the smallest maximum absolute error. For n = 10, the parameter γ

is 9.38154×10−5 as indicated in Table 9, while for n = 21, γ is 1.65796×10−4 upon applying PSO.
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Table 9. The value of parameter γ chosen using PSO at each knot for u(x) of Example 4.

x γ

0.1 8.08347×10−4

0.2 1.41375×10−4

0.3 1.10895×10−4

0.4 −8.44533×10−5

0.5 6.46065×10−5

0.6 2.08382×10−5

0.7 −4.25014×10−5

0.8 −1.35375×10−5

0.9 −5.46638×10−5

Avg 9.38154×10−5

Table 10. The maximum absolute error, L∞, for u(x) and v(x) at different values of n in
Example 4.

n CBSM CTBSM OCHBSM
10 1.61676×10−15 9.37255×10−4 8.79290×10−8

21 1.52073×10−13 1.15141×10−4 9.63323×10−6

For comparative analysis, the computational time and maximum percentage error alongside the
improvement percentage for each method are computed and summarized in Tables 11 and 12,
respectively. It is important to note that two different software platforms, MATLAB R2024a and
Mathematica 14.0, were employed in this study. For the OCHBSM, the B-spline collocation method
was implemented in Mathematica 14.0 while the PSO algorithm was executed in MATLAB R2024a.
Therefore, the computational times reported may not be entirely accurate, as they were calculated
separately in each software and subsequently combined. Additionally, each iteration of PSO for each
spline may vary due to the initialization of random numbers, r1 and r2, within the range [0,1]. To
mitigate this variability, the PSO algorithm was run three times for each spline, and the average
computational time was recorded.

For methods other than the OCHBSM, all computations were performed exclusively in Mathematica
software. As shown in Table 11, it is expected that the computational time for the OCHBSM is
higher than that of CBSM and CTBSM, due to the inclusion of two basis functions and an additional
optimization method. Thus, the computational work for the OCHBSM is approximately double, as
both the CBSM and CTBSM must be computed prior to the OCHBSM. Although the execution time
for the OCHBSM is slightly higher than the other two methods, the difference in computational time
is minimal, typically on the order of a few seconds. That said, one can anticipate that as problem
complexity increases, the computational time for the OCHBSM will also rise, but this is justified by
the improved accuracy it offers.

From Table 12, the OCHBSM exhibits the lowest maximum percentage error and a significantly
higher improvement percentage compared to the CBSM and CTBSM across all examples, except for
Example 4. This discrepancy is likely due to the absence of trigonometric functions in the equation
for Example 4. It needs to be highlighted that the percentage improved in the table was calculated

AIMS Mathematics Volume 10, Issue 3, 5399–5420.



5416

based on the difference between the maximum percentage error of the CBSM or CTBSM, and the
new error, which corresponds to the maximum percentage error of our proposed method, as shown in
Eq (2.24). The exact value is determined by using the L∞ norm as given in Eq (2.22) to obtain the
knot value where the error is the biggest. Hence, it is possible that the knot chosen in computing the
exact value differs for each method, which can be seen in Example 4. In this example, the L∞ norm
was attained at knot x = 0.1 for the CBSM and OCHBSM while the knot value x = 0.5 was recorded
for the CTBSM. These values are then substituted into the analytical and approximated solutions to
get the corresponding values. On average, an improvement percentage of 99.828352% ≈ 99.83%
was achieved, indicating that our method outperforms the compared methods significantly though the
differences of improvement between the CBSM and CTBSM are quite small. Therefore, these results
support the claim of the accuracy and efficiency of the proposed method.

Table 11. Computational time using the CBSM, CTBSM, and OCHBSM for Example 1–
Example 4.

Computational Time (seconds, s)
Method/Example 1 2 3 4

CBSM 1.264 1.984 2.078 0.579
CTBSM 0.765 0.531 1.062 1.141

OCHBSM 7.165 6.979 7.803 4.666

Table 12. Maximum percentage error and improvement percentage of the CBSM, CTBSM,
and OCHBSM for Example 1–Example 4.

Example Method Approx. value Exact value Max % error % Improved

1
CBSM 0.65479153 0.65498460 0.02984024 99.48887480

CTBSM 0.65449410 0.65498460 0.07488695 99.79611930
OCHBSM 0.65498400 0.65498460 0.00015252 -

2
CBSM 0.02714658 0.02741213 0.96874986 99.97890500

CTBSM 0.02675571 0.02741213 0.06564200 99.70322350
OCHBSM 0.02741208 0.02741213 0.00019481 -

3
CBSM 0.52104330 0.52109531 0.00998119 99.97067110

CTBSM 0.52088353 0.52109531 0.04064084 99.99279690
OCHBSM 0.52109529 0.52109531 0.00000293 -

4
CBSM -0.09000000 -0.09000000 0.00000000 0.00000000

CTBSM -0.25093700 -0.25000000 0.37480000 99.93033350
OCHBSM -0.09000024 -0.09000000 0.00026111 -

Avg 99.82835153

4. Conclusions

In conclusion, this study demonstrated the effectiveness of particle swarm optimization (PSO)
to optimize the free parameter, γ , in the cubic hybrid B-spline collocation method (CHBSM). The
numerical results showed that the OCHBSM outperformed traditional B-spline methods, including
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the CBSM and CTBSM, in approximating second-order linear BVPs. This superior performance is
attributed to the flexibility provided by the free parameter in the OCHBSM. However, the CBSM
was able to solve linear systems of BVPs in Example 4 more accurately than the CTBSM and our
proposed method. This is probably due to the lack of trigonometric functions in the particular example.
According to [18], the CTBSM can offer better approximations than the CBSM for problems involving
trigonometric functions due to the existence of trigonometric basis functions. Since the OCHBSM is a
linear combination of trigonometric B-spline basis functions, it is expected that the OCHBSM would
also provide improved solutions for problems involving trigonometric functions. A limitation of this
study is the use of a fixed set of initialized parameters for the PSO. Consequently, the results may
vary for different sets of initial parameters, potentially leading to different values of γ and, possibly,
improved results. Additionally, the proposed method was applied only to linear second-order BVPs.
Therefore, future work may focus on extending the PSO approach to more complex problems such
as non-linear PDEs or to other spline methods with multiple free parameters or a significantly large
number of nodes. On top of that, factors such as the order of the non-linear problems, the type of
boundary conditions, and the selection of PSO parameters are important considerations for future
improvements. Further exploration of alternative optimization techniques, such as whale optimization,
could also enhance the performance of the OCHBSM.
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