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Abstract: Assessing the urgency of emergency material demand in disaster scenarios improves 

dispatching efficacy and enhances emergency management agencies’ operational efficiency during post-

disaster relief. Taking the July 20 flood in Henan, China, as a case study, this paper assesses the urgency 

of emergency material demand in flood disaster scenarios. The objective weights and subjective weights 

of the evaluation indicators are calculated using the coefficient of variation method and the order relation 

analysis method, respectively. Then this paper combines these calculated weights on the basis of 

maximizing deviation, and the technique for order preference by similarity to an ideal solution (TOPSIS) 

method is used to judge the demand urgency of disaster sites. Finally, a cloud model is introduced to 

visualize the urgency evaluation results obtained from the single weighting method and the 

combination weighting method by generating cloud maps. The results demonstrate that the hyper-

entropy value of the cloud digital features obtained by the combination weighting is 0.0432 (the 

smallest among the methods), indicating the least uncertainty and a relatively small degree of dispersion. 

At the same time, the condensation rate of cloud droplets in the cloud map generated by the combined 

weighting method is higher, indicating that the combined weighting method has lower uncertainty 

compared with the single weighting method and is superior to the single weighting method in efficiency. 

Moreover, through sensitivity analysis, it is evident that when the weight of the most important 

evaluation indicator varies within the range of [0.1192, 0.3881], the TOPSIS method based on combined 

weighting demonstrates strong robustness. 

Keywords: flood disaster; demand urgency; combination weighting method; single weighting method; 

TOPSIS; cloud model 
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1. Introduction 

Against the background of global warming, extreme weather events occur frequently, and the 

occurrence of natural disasters and the disaster risk borne by cities also increases [1]. Flood disasters 

account for 40% of urban disasters, are the main source of urban disasters, and have become one of 

the important natural disasters affecting urban development [2]. 

From 2008 to 2022, China’s flood disasters caused 9812 deaths and direct economic losses 

of 3,165.513 billion yuan. In 2019, large-scale rainfall in six southern provinces affected 5.58 million 

people, causing total losses of 91 deaths and 23.18 billion yuan. In 2021, a rainstorm happening in 

Henan province on 20 July had a profound impact, affecting a total of 14,786,000 individuals, resulting 

in the tragic loss of 398 lives and inflicting direct economic damages estimated at 133.7 billion yuan. 

Following the 2021 Henan deluge, North China experienced another historic rainfall from 28 July 

to 2 August 2023, triggering catastrophic flooding across Beijing–Tianjin–Hebei. Flood-induced 

losses significantly impede socioeconomic development, making scientifically executed post-disaster 

rescue operations crucial for loss reduction and emergency efficiency. 

Many scholars have undertaken extensive research endeavors in the realm of flood disaster risk 

assessment, which has brought up a diverse array of methodological approaches. Among them, Wu 

et al. [3] pioneered an ontology-driven Bayesian network model, leveraging observational data to 

quantify complex interdependencies among flood-influencing factors, thereby offering an original 

example for regional risk evaluation. Building on historical disaster databases, Luu et al. [4] integrated 

multiple linear regression analysis with the technique for order preference by similarity to an ideal 

solution (TOPSIS), creating an explainable model of a comprehensive national flood risk map for 

Vietnam. Meanwhile, Cai et al. [5] proposed a hydrodynamic–GIS hybrid model to assess flood risks 

in Yifeng, Jiangxi Province, enabling precise risk mapping. In urban contexts, Chen et al. [6] employed 

the analytic hierarchy process (AHP) for weight determination, subsequently integrating TOPSIS to 

develop a comprehensive framework for assessing urban resilience in the context of rain and flood 

disasters. This model evaluated cities’ resilience levels under such hazardous scenarios. Further 

innovations include those of Su et al. [7], who employed game theory-based combination weighting 

to harmonize subjective and objective indicator weights, coupled with GIS spatial analysis for 

multidimensional flood risk assessment in Wuwei, Gansu Province. Addressing emergency logistics, 

Zhang et al. [8] introduced an intelligent scheduling model for multi-disaster scenarios, incorporating 

two-dimensional Euclid distance weighting to optimize uncertain material demand and delivery 

timelines. Based on the empirical analysis of the heavy rain disaster in Henan Province in 2021, the phased 

emergency material dispatching scheme from the rescue point to the disaster point was obtained. 

Similarly, Wang [9] enhanced TOPSIS with gray correlation analysis, combining entropy-weighted 

and AHP-derived coefficients to classify the urgency of disaster sites’ material needs, validated through 

a case study of Hubei’s 2016 flood. 

With the flood disaster in Henan Province in July 2021 as an example, the practicability of the 

established model was verified. The main contributions of this article are as follows: 

(1) Previous flood risk assessment studies have overlooked the urgency of emergency material 

demands while relying on conventional single-weighting approaches for indicator quantification. To 

address these limitations, this study proposes a novel combined weighting methodology for flood risk 

evaluation. Unlike traditional methods, this hybrid framework strategically integrates subjective and 

objective weighting techniques, thereby eliminating the over-reliance on data statistics inherent in 

purely objective methods and reducing the arbitrariness associated with subjective weight assignments. 
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(2) This study evaluated the criticality of emergency material demand across diverse disaster sites 

in the aftermath of large-scale flooding events, examining the urgency for emergency supplies amidst 

the context of a flood disaster, considering that the urgency of demand allows for a more targeted 

rescue effort in disaster-stricken areas. 

(3) Moreover, this study advances the theoretical framework of post-disaster resource 

management by establishing a robust foundation for optimizing emergency material allocation. The 

findings provide decision-makers with actionable insights to enhance distribution strategies, while 

offering emergency management agencies evidence-based tools to improve operational efficiency in 

disaster responses. These contributions hold significant implications for both scholars and practical 

emergency preparedness. 

The general structure of the article is as follows: In Section 2, the definitions included in this 

study are explained. In Section 3, the research methods of various scholars in the case of flood disasters 

are listed. In Section 4, a fusion of subjective and objective weighting methodologies is devised, 

aiming to achieve a comprehensive evaluation framework. It introduces the steps of determining the 

weights by the coefficient of variation method, the order relation analysis method, and a combination 

weighting method based on maximizing deviation, and elucidated the application of the TOPSIS 

method for assessing demand urgency across disaster sites. Finally, the cloud model is introduced. In 

Section 5, an evaluation framework for the urgency of emergency material demand is formulated, and 

its practical applicability is validated through a case study of the flood event on 20 July in Henan 

Province, China. To assess the combined weighting method’s efficacy, we conduct a comparative 

analysis by means of data visualization. In addition, sensitivity analysis is performed to verify the 

robustness of the TOPSIS method based on combinatorial weighting. In Section 6, the main research 

findings are systematically summarized, the methodological limitations are objectively analyzed, and 

potential improvement directions are proposed for future studies. 

2. Preliminaries 

This chapter introduces three definitions of triangular fuzzy numbers for further research. 

Definition 2.1. [10] Let a mapping on the universe map it to the closed interval [0,1], that is 

: [0,1] | [0,1]
A A

U  → → , .       (2.1) 

In this case, it is said that this mapping determines a fuzzy subset A  of U, 
A

  represents the 

membership function of A, and ( )
A

u  is called the membership degree of   to A. Fuzzy subsets 

are also called fuzzy sets. 

Definition 2.2. [11] If the membership function 

: [0,1]M U →  

of the fuzzy number M set on the universe R can be expressed as 
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, [ , ],

( ) , [ , ],

0, ( , ] [ , ),

M

x l
x l m

m l m l

x u
x x m u

m u m u

x l u




−         − −




= −       
− −

                           −  +



     (2.2) 

the fuzzy number M  is termed a triangular fuzzy number, where l m u  . Here, l  and u  denote 

the upper and lower bounds of the triangular fuzzy number M , respectively, while m  represents its 

median, with a membership degree of l . Hence, the triangular fuzzy number M  is denoted as 

( , , )M l m u= . 

Definition 2.3. [12] Let a triangular fuzzy number 

( , , )M l m u=  

have its gradient average integral ( )R M  as follows: 

1
( ) ( 4 )

6
R M l m u= + + .        (2.3) 

For the triangular fuzzy numbers 

1 1 1 1( , , )M l m u=  and 2 2 2 2( , , )M l m u= , 

the gradient average integrals are 1( )R M  and 2( )R M , respectively, and the comparison rules are as 

follows: if 

1 2( ) ( )R M R M , 

the triangular fuzzy number M1 is less than M2. 

3. Research on assessment methods for flood emergency material demand 

With the occurrence of large-scale flood disaster events, scholars attach growing significance to 

the dispatch and evaluation of emergency materials in the case of flood disasters. In Table 1, an 

overview of the diverse investigative methodologies employed by various scholars in the context of 

flood disaster research is presented. According to the findings from a comprehensive literature review, 

most scholars use a single weighting method to assign weights to evaluation indicators when 

conducting comprehensive evaluations, while a few scholars use a combination weighting method. At 

the same time, we can also find that there are few articles considering the urgency of demand in the 

evaluation of scheduling emergency materials for flood disasters. There are two drawbacks in the 

evaluation research of other scholars. First, outcomes may overlook human-determined factors, 

causing biases in the actual situations. Second, the efficiency of emergency supply dispatch remains 

suboptimal. Given the reasons mentioned above, this study provides valuable reference implications. 

The advantage of this paper lies in incorporating a combined weighting approach for allocating 

significance to evaluation indicators, while simultaneously considering the urgency of the requirement 

for emergency supplies. This strategy aimed to resolve the shortcomings mentioned above, thereby 

enhancing the overall effectiveness of the evaluation process. In addition, to enhance the precision and 
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credibility of the outcomes, we utilize both the coefficient of variation methodology and the order 

relation analysis to determine the objective and subjective weights, respectively. Furthermore, this 

paper employs the maximizing deviation technique to integrate these weights comprehensively. This 

not only avoids neglecting decision-makers’ experiential knowledge, which introduces bias, but also 

avoids the problem that mitigates subjective weighting’s arbitrariness, which distorts the evaluation 

outcomes [13]. Therefore, the method based on combination weighting is more scientific and 

reasonable for evaluating the urgency of emergency material demand under flood disasters. In future 

research, we aim to extend the application of this methodology to various additional fields. 

In Table 1, ANP stands for analytic network process; DEM stands for digital elevation models; 

GIS stands for geographic information system; VIKOR stands for VlseKriterijumska Optimizacija I 

Kompromisno Resenje; CRITIC stands for criteria importance though intercriteria correlation. 

Table 1. Research on flood assessment methods. 

Author 
Evaluation 

method 
Indicator Weighting method 

Levy et al. [14] ANP 

Flood defense, shelter in place, and evacuate; 

shelter in place and evacuate; evacuate; flood 

defense; shelter in place 

Single weighting 

Li et al. [15] 
Hesitant fuzzy 

VIKOR 

Resistance; coping capacity; recovery; adaptive 

capacity 
Single weighting 

Nivolianitou et al. 

[16] 
AHP 

Physical features; organizational aspects; contextual 

features 
Single weighting 

Ou-Yang et al. [17] AHP, GIS 

Rainstorm intensity; flood frequency; disaster-

inducing environment partition; direct economic 

losses; duration of suspended transportation; costs 

of repairing water damage to engineering projects 

Single weighting 

Huang et al. [18] AHP, ArcGIS 

Flood depth; duration of flooding; ground 

elevation; slope; population density; land 

utilization; hospital distance; emergency shelter 

distance 

Single weighting 

Zhang et al. [19] AHP, ArcGIS Flood depth; population density; GDP per area Single weighting 

Wang [9] 

Entropy 

method, AHP, 

improved 

TOPSIS 

Degree of building damage; degree of road damage; 

demand gap rate; proportion of affected population; 

affected population; proportion of elderly and 

children 

Combination 

weighting 

Li et al. [20] 

CRITIC, gray 

relational 

analysis 

Population disaster; crops are affected; houses 

collapsed; loss of water-conserving flood control 

equipment; economic losses 

Single weighting 

Yuan et al. [21] AHP 

Maximum submergence depth; maximum flood 

velocity; submerged duration; DEM; slope; 

population density; GDP density; land use type 

Combination 

weighting 

Zhou et al. [22] 

Gray relational 

analysis; 

TOPSIS 

Emergency command and rescue support 

requirements; post-disaster emergency rescue 

needs; basic living security needs; public 

infrastructure support requirements 

Combination 

weighting 

Song and Sun [23] ANP 

Disaster level; personnel situation in the disaster 

area; environmental factors affected by disasters; 

material demand 

Single weighting 
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4. Discussion 

Upon the establishment of the evaluation indicator system, it is crucial to determine the weight 

of each indicator, tailored to their appropriate significance in influencing the evaluation’s outcomes, 

within the urgency evaluation model. The existing methods for determining indicator weights mainly 

include the maximizing deviation method, principal component analysis, the coefficient of variation 

method, the entropy weight method, etc. Divergent implementation mechanisms across methods 

produce varying indicator weights, introducing inherent weighting biases, which result in different 

final evaluation results for the same evaluation object. To reduce single-weight bias, this study 

implements a composite weighting approach integrating multiple determination techniques. 

Subjective weighting methods depend on the decision-makers’ experience and judgment, 

introducing inherent subjectivity and arbitrariness [24]. Meanwhile, objective weighting methods lack 

decision-makers’ involvement and broader applicability, potentially yielding indicator weights that are 

misaligned with practical realities [25]. However, the combination weighting method is beneficial to 

match the determination of important degree and the objective information of the actual indicators, it 

can take into account not only the subjective judgment of expert, but also the objective change of 

measured indicators [26]. Therefore, this paper adopted the combination weighting method, which 

combines objective weights and subjective weights to carry out the combination weighting for the 

evaluation indicator system. Employing the coefficient of variation method for objective weights 

reduces human factor biases and enhances the outcome’s objectivity. After determining the objective 

weights, experts assign the subjective weights by referring to the results of the objective weights, using 

the order relation analysis method, and then assign the subjective and objective weights according to 

the idea of maximizing deviation. Compared with single weights, combined weights can make the 

evaluation results more accurate. Finally, the TOPSIS method is used to calculate the relative closeness 

degree of the samples being evaluated, in order to assess the urgency of the demand of the disaster site. 

Following a disaster, the urgency of material requirements at the site dictates a proportionately higher 

priority level in the subsequent rescue operations; conversely, the lower the urgency level, the lower 

the priority level of rescue. 

In this section, this paper introduces the coefficient of variation method, the order relation analysis 

method, and the maximizing deviation method. At the same time, the TOPSIS method and the cloud 

model are introduced for demand urgency assessment. 

4.1. Determination of objective weights 

The coefficient of variation is used to measure the degree of variation or dispersion between two 

or more samples [27]. Indicators with higher degrees of variation receive proportionally greater 

weights. Conversely, indicators exhibiting lesser degrees of variation should receive correspondingly 

diminished weights. The calculation process is as follows: 

Step 1. Original data preprocessing. Let the initial decision matrix mnX , m  be the number of 

evaluation objects in the decision matrix, and let n  be the number of indicators of evaluation objects. 

The expression of the decision matrix is as follows: 

( )
11 1

1

n

mn ij

m mn

x x

X x

x x

 
 

= =  
 
 

,        (4.1) 
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where ijx  represents the value of the j th evaluation indicator of the i th sample. 

Due to the different units and magnitudes of each indicator, the original data of each indicator in 

the sample cannot be used for direct evaluation, so it is necessary to conduct nondimensional 

processing of the sample data. The process is as follows for the benefit indicators: 

1

11

min

max min

m

ij ij
i

ij m m

ij ij
ii

x x

x

x x

=

==

−
 =

−

.        (4.2) 

For the cost indicators, it is 

1

11

max

max min

m

ij ij
i

ij m m

ij ij
ii

x x
x

x x

=

==

−
 =

−

.        (4.3) 

Step 2. Calculate the mean value j  and standard deviation j  of the evaluation indicator of 

item j . 

1

1 m

j ij

i

x
m


=

=  ,         (4.4) 

( )
2

1

1

m

ij j

i
j

x

m



 =

 −

=
−


.        (4.5) 

where 1,2, ,j n= . 

Step 3. Calculate the coefficient of variation jCV  of the j th evaluation indicator. 

j

j

j

CV



= ,          (4.6) 

where 1,2, ,j n= . 

Step 4. The calculation formula of indicator weight jW  is as follows: 

1

j

j n

j

j

CV
W

CV
=

=


.         (4.7) 

4.2. Determination of subjective weights 

The order relation analysis method constitutes an enhanced subjective weighting technique, 

building upon the fundamental principles of the analytic hierarchy process [28], which simplifies the 

calculation of the analytic hierarchy process, and does not need to test consistency, so it has higher 

operability and intuitiveness. The steps of order relation analysis to determine the weight are as follows: 
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Step 1. The evaluation indicators ( )1 2, , , nx x x  are arranged in descending order of importance, 

( )1 2 nh h h , so as to determine the order relationship. 

Step 2. Determine the importance of the adjacent indicator as follows: 

1p

p

p

D
B

D

−
= ,          (4.8) 

where 2,3, ,p n= , among them, the ratio of 1p

p

D

D

− , 
pB  is used to represent the importance value 

of indicator hp-1 and hp, Dp represents the evaluation result of the pth expert on the indicator. 

The assignment and description of Bp are shown in Table 2. 

Table 2. Assignment and description. 

Assignment of Bp Assignment specification 

1.0 Indicator hp-1 is as important as indicator hp 

1.2 Indicator hp-1 is slightly more important than indicator hp 

1.4 Indicator hp-1 is obviously more important than indicator hp 

1.6 Indicator hp-1 is strongly more important than indicator hp 

1.8 Indicator hp-1 is extremely more important than indicator hp 

Step 3. Determine the weight n  as follows: 

1

2

1
nn

n i

p i p

B

−

= =

 
= + 

 
 ,        (4.9) 

1p p pB − = .         (4.10) 

According to Eq (4.9) the weight of the n  th indicator can be determined as n  , where Bp 

represents the ratio of the importance of the 1p − th indicator to that of the p th indicator. Calculate 

the weights of 1,2, , 1n −  indicators using Eq (4.10) and represent them as 1p − . 

Step 4. Determine the final weight j . Assuming that the set j  comprises the weight 1p −  of 

the 1,2, , 1n − th indicator and the weight n of the n th indicator, we then have: 

( )1,j p n  −= .         (4.11) 

4.3. Combination weighting method based on maximizing deviation 

Drawing upon the principle of maximizing deviation, the combined weight is computed. If the 

difference between the indicator values is large, the impact on the evaluation result is large and the 

weight is large; otherwise, the weight is small [29]. The steps for combinational weighting using 

maximizing deviation are as follows: 

Step 1. Let the combined weight vector be 
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( )1 2, , ,
T

n   = , 

where 

W  = + ,         (4.12) 

  and   are linear representation coefficients of the combination weight and satisfy 0  , 0  . 

The Euclidean distance, represented by the sum of squares, more accurately reflects the positional 

relationship and degree of change of   and   in space. The linear combination of   and   

cannot effectively constrain the distribution range of variables in the geometric sense, as the sum of 

squares, so let 

2 2 1 + = . 

Step 2. Calculate the total deviation of the evaluation object 

1 1 1

n m m

j ij kj

j i k

x x
= = =

  = − .       (4.13) 

Step 3. The optimization model is solved so that the combined weight vectors can maximize the 

deviation. The optimization model is as follows: 

( )
1 1 1

2 2

max ,

. . 1,

0, 0.

n m m

j j ij kj

j i k

W x x

s t

 

 

 

= = =

  = + −

+ =

 











      (4.14) 

Step 4. Construct a Lagrange function as follows: 

( ) ( ) ( )2 2

1 1 1

, 1
n m m

j j ij kj

j i k

L W x x      
= = =

 = + − + + − ,    (4.15) 

where   is the Lagrange multiplier. 

Step 5. Find the partial derivative of ( ),L   . Then the values of   and   can be obtained 

by solving 

1 1 1

2 2

1 1 1 1 1 1

1 1 1

2 2

1 1 1 1 1 1

,

.

n m m

j ij kj

j i k

n m m n m m

j ij kj j ij kj

j i k j i k

n m m

j ij kj

j i k

n m m n m m

j ij kj j ij kj

j i k j i k

x x

x x W x x

W x x

x x W x x











= = =

= = = = = =

= = =

= = = = = =

 −

=

   − + −

 −

=

   − + −




    

   
   



   
   
   



 



 







    (4.16) 

Step 6. By bringing the values of   and   into Eq (4.12), the combined weight vector 
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( )1 2, , ,
T

n   =  

can be obtained. 

4.4. TOPSIS method to calculate the urgency of demand 

TOPSIS determines the optimal scheme by comprehensively evaluating the weighted distances 

from each candidate solution to the ideal solution and the negative ideal solutions, so as to ensure the 

comprehensive evaluation of the contribution of all attributes. The calculation steps are as follows [30]: 

Step 1. The decision matrix mnX needs to be normalized to avoid errors caused by the dimensions 

and range of fluctuation. Using global standardization, the normalized decision matrix mnY is obtained 

( )
11 1

1

n

mn ij m n

m mn

y y

Y y

y y


 
 

= =  
 
 

,       (4.17) 

where ij ijy x = , 1,2, ,i m= , 1,2, ,j n= . 

Step 2. The TOPSIS method is used to determine the normalized positive ideal solution 

( )1 2
, , , n

n
Y y y y R=   

and the normalized negative ideal solution 

( )
1 2
, , , n

n
Y y y y R=  . 

Step 3. The Euclidean distance id +
between the i th evaluation object and the optimal object, and 

the id −
between the i th evaluation object and the worst object are calculated, respectively, as 

( )
2

1

n

i ij j

j

d y y+

=

= − ,         (4.18) 

( )
2

1

n

i ij j
j

d y y−

=

= − .         (4.19) 

where 1,2, ,i m= . 

Step 4. The relative closeness degree of the i th evaluation object is expressed as 

i
i

i i

d
C

d d

−

− +
=

+
,         (4.20) 

where 1,2, ,i m= , iC  is used to indicate the relative closeness between the evaluation target and 

the negative ideal solution. The higher the value of iC , the more urgent the demand of the i th disaster 

site for emergency materials [31]. 
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4.5. Introducing the cloud model for comparison 

The cloud model represents a mathematical framework rooted in the principles of fuzziness and 

probability theories, formulated by Li et al [32]. It can well reflect the influence of random factors on 

the decision results [33]. This model facilitates the transition between qualitative and quantitative 

domains, effectively addressing the intricacies of ambiguity and randomness inherent in complex 

decision-making scenarios [34]. Currently, it has earned widespread adoption within the realm of 

decision-making, underscoring its utility and applicability. 

In order to show the superiority of combination weighting, this paper compares the weighting results 

of the coefficient of variation method, the order relation analysis method, and maximizing deviation with 

those of the combination weighting method. The cloud map includes cloud droplets, which represent 

specific quantitative values and reflect a concrete realization of the qualitative concept [35]. Cloud model 

theory generates comparative maps for four weighting methods, with droplet condensation intensity 

analysis revealing their relative strengths and limitations. The basic concepts of the cloud model are 

as follows [36]: 

U is a quantitative domain and C is a qualitative concept. There is an element x in the domain U, 

which is a random realization of the qualitative concept C, and the membership degree 

( )  0,1x   

of x to C is a stable random value, that is, 

 : 0,1U → , x U  , ( )x x→ . 

If 

( )2,x N Ex En  

is satisfied, where 

( )2,En N Ex En , 

then the membership degree of x to C is 

( )

( )

( )

2

2
2

x Ex

En
x e

−
−


= .         (4.21) 

The digital characteristics of the cloud model are composed of the expected value Ex, entropy En, 

and hyper-entropy He, which are quantitative descriptions of qualitative concepts. The cloud model 

carries out qualitative and quantitative conversion through the cloud generator, which is divided into 

forward and reverse [37]. Forward cloud generators convert qualitative digital features into 

quantitative outputs through N cloud droplets. The inverse cloud generator functions to transform a 

designated quantity of sample data into numerical characteristics, thereby accomplishing a transition 

from quantitative analysis to qualitative insights. First, the digital characteristic parameters 

corresponding to the relative degree of closeness Cic obtained by the four types of weighting methods 

are calculated, namely the expected value Exc, entropy Enc, and hyper-entropy Hec, where 1,2, ,i m= ,

1,2,3,4c = . The specific calculation process is as follows: 

Step 1. Calculate the mean value 
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1

1 m

c ic

i

X C
m =

=  .         (4.22) 

Step 2. Calculate the variance 

( )
22

1

1

1

m

c ic c

i

S C X
m =

= −
−

 .       (4.23) 

Step 3. The digital characteristic parameters of the cloud model are 

c cEx X= ,          (4.24) 

1

1

2

m

c ic c

i

En C X
m



=

=  − ,        (4.25) 

2 2

c c cHe S En= − .         (4.26) 

Given the known values of the expected value, entropy, and hyper-entropy, the process of 

producing cloud droplets via the forward cloud generator algorithm can be outlined as follows. 

(1) According to the digital characteristics ( ), ,c c cEx En He  of the cloud model, a normal random 

number 
cEn   with the expected value cEx  and the standard deviation cHe  is generated. 

(2) Generate a normal random number x   with the expected value cEx   and the standard 

deviation cEn , where x  is a cloud drop in the discourse domain space. 

(3) Calculate the membership degree ( )
c

x  of x  as follows: 

( )

( )

( )

2

2

2

c

c

x Ex

En

c
x e

−
−



= .        (4.27) 

(3) Repeat Steps (1)–(3) until N  cloud drops are generated. 

Here, 3000N = , 1,2, ,4c = . 

4.6. Method flow chart 

The flow chart of the urgency evaluation system of demand for flood disaster emergency materials 

constructed in this paper is shown in Figure 1. 

(1) The objective weight is determined by the coefficient of variation method. 

(2) Determination of subjective weight is achieved by the order relation analysis method. 

(3) The combination weight is determined by maximizing deviation. 

(4) The TOPSIS method calculates the urgency of demand. 

(5) We take the catastrophic flood on 20 July in Zhengzhou as an example for case analysis. 

(6) We draw the cloud map of demand urgency and get the result through comparison. 
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Figure 1. Flow chart of the method. 

5. Case analysis 

5.1. Determine the evaluation system for the urgency of demand 

On the basis of the existing research, this paper comprehensively considers the characteristics of 

large-scale flood disasters and the specific characteristics of emergency materials’ distribution, and 

selects three factors, namely the environment, the materials, and the population, as the secondary 

indicators of the evaluation system for the urgency of material demand at disaster sites [38,39]. The 

damaged area, daily precipitation, material demand, material shortage, population density, and the 

death toll are the indicators of the evaluation system for the urgency of material demand. This paper 

takes the 20 July flood in Zhengzhou as an example and selects seven material demand points in 

Zhengzhou, Gongyi, Xinzheng, Dengfeng, Xinmi, Xingyang, and Zhongmu counties. The details of 

the disaster locations are presented in Table 3 for comprehensive reference; the data in Table 3 are 

come from multiple sources including news reports, disaster investigation reports, and historical 

meteorological records. 

Table 3. Basic disaster data of the disaster sites. 

Region 
Damage area 

(km2) 

Daily precipitation 

(mm) 

Material 

demand 

(10,000 pieces) 

Material shortage 

Population density 

(10,000 people per 

km2) 

Death toll 

(number) 

Zhengzhou 1010.3 552.5 56 Extremely serious 0.2013 75 

Gongyi 1041 478.9 44 Extremely serious 0.0754 64 

Xinzheng 873 196 22 Serious 0.09 2 

Dengfeng 1220 192.8 26 Serious 0.0598 12 

Xinmi 1001 254.9 28 Very serious 0.0808 46 

Xingyang 908 432.2 52 Extremely serious 0.0804 58 

Zhongmu 1416 280.3 18 Relatively serious 0.0496 0 
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A diagram of the framework of the evaluation system is illustrated in Figure 2. The secondary 

indicators include three factors: the environmental factor, which comprises the damage area and daily 

precipitation; the material factor, which includes material damage and material shortage; and the 

population factor, which consists of population density and the death toll. Further details are provided 

in Figure 2. 

Evaluation index system of demand 

urgency at disaster sites

Environmental 

factor

Population 

factor
Material factor

D
am

age area

D
aily precipitation

M
aterial d

em
an

d

M
aterial sho

rtage

P
op

ulatio
n d

en
sity

D
eath to

ll

 

Figure 2. Urgency evaluation system of material demand at disaster sites. 

5.2. Transform fuzzy indicator 

The existence of seemingly inaccurate information, which is well processed by fuzzy logic, is a 

very common occurrence in the social sciences, and thus in decision making processes [40]. In Table 3, 

the degree of material shortage is a fuzzy indicator. Before calculation, it is necessary to convert the 

fuzzy indicator into triangular fuzzy numbers [41], as shown in Table 4. 

Table 4. Transformation of fuzzy language and triangular fuzzy number. 

Fuzzy language Triangular fuzzy number 

Extremely serious (0,0,0.1) 

Very serious (0,0.1,0.3) 

Relatively serious (0.1,0.3,0.5) 

Serious (0.3,0.5,0.7) 

Relatively good (0.5,0.7,0.9) 

Good (0.7,0.9,1) 

Very good (0.9,1,1) 

According to Table 4, the fuzzy indicators are converted into triangular fuzzy numbers, and the 

resulting triangular fuzzy decision matrix is as follows: 
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( )

( )

( )

( )

( )

( )

( )

1010.3 552.5 56 0,0,0.1 0.2013 75

1041 478.9 56 0,0,0.1 0.0754 64

875 196 22 0.3,0.5,0.7 0.09 2

1220 192.8 26 0.3,0.5,0.7 0.0598 12

1001 254.9 28 0,0.1,0.3 0.0808 46

908 432.2 52 0,0,0.1 0.0804 58

1416 280.3 18 0.1,0.3,0.5 0.0496 0

R







= 




.









 
 
 



 

Now, we normalize the matrix. Among the evaluation indexes, the material shortage is the cost 

indicator, and the rest are the benefit indicators. Meanwhile, the gradient average integral of triangular 

fuzzy numbers is calculated according to the literature [12], and the normalized matrix after conversion 

is as follows: 

0.2529 1 1 1 1 1

0.3094 0.7954 1 1 0.1701 0.8533

0 0.0089 0.1053 1 0.2663 0.0267

.0.639 0 0.2105 0 0.0672 0.16

0.2357 0.1726 0.2632 0.7931 0.2057 0.6133

0.0645 0.6656 0.8947 1 0.203 0.7733

1 0.2433 0 0.4138 0 0

R

 
 
 
 
 

 =  
 
 
 
 
 

 

The objective weights of the evaluation indicators were obtained by the coefficient of variation 

method as follows: 

( )0.0503,0.1202,0.1305,0.3003,0.1569,0.2418W = . 

5.3. Determine the weight of the evaluation indicators 

Each evaluation indicators’ objective weight was determined utilizing the coefficient of variation 

approach, while the subjective weight was ascertained through the implementation of the order relation 

analysis method. Finally, the comprehensive weight of maximizing deviation was utilized to derive the 

final weight. The weights obtained by each weighting method are presented in Table 5. 

Table 5. Weighting obtained by each weighting method. 

Weighting method 
Damage 

area 

Daily 

precipitation 

Material 

demand 

Material 

shortage 

Population 

density 
Death toll 

Coefficient of variation ( )jW  0.0503 0.1202 0.1305 0.3003 0.1569 0.2418 

Order relation analysis ( )j  0.3053 0.1908 0.1908 0.1363 0.1136 0.0631 

Combination weighting ( )j  0.2010 0.1465 0.1501 0.2142 0.1258 0.1623 
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5.4. Determine the relative degree of closeness 

Applying the combined weights through TOPSIS generates the relative degrees of closeness for 

flood-affected regions, as detailed in Table 6. 

Table 6. Relative degree of closeness of each region. 

Region Relative degree closeness Ci1 

Zhengzhou 0.7290 

Gongyi 0.6382 

Xinzheng 0.0983 

Dengfeng 0.2670 

Xinmi 0.4261 

Xingyang 0.5716 

Zhongmu 0.3914 

The urgency of the disaster points’ demand, from high to low, are ranked as 

Zhengzhou>Gongyi>Xingyang>Xinmi>Zhongmu>Dengfeng>Xinzheng. That is, among the seven 

major disaster sites of the rainstorm on 20 July in Zhengzhou, the urgency of material demand in 

Zhengzhou was the highest, and that of Xinzheng County was the lowest. The reason for this result is 

that Zhengzhou has a relatively low terrain. When a large amount of rainwater quickly accumulates in 

a short time, the water accumulation in low-lying areas will be more serious and will become difficult 

to drain quickly. At the same time, the number of affected people in Zhengzhou is relatively large. 

However, Xinzheng County has a relatively high terrain, a small population density, and is located far 

from rivers with good drainage facilities. This could explain why it has a low material demand. 

5.5. Comparison of the methods 

To ascertain the validity and rationale of the combined weighting approach in evaluating the 

urgency of flood disaster emergency material requirements, this paper employs a solitary weighting 

methodology to assign weights, subsequently deriving the urgency of the demand for each affected 

region. These results are then juxtaposed against the outcomes yielded by the combined weighting 

technique for a comprehensive analysis. In this paper, three weighting methods, namely the coefficient 

of variation method, the order relation analysis method and maximizing deviation, are used for single 

weighting. As stated above, the weight of the six indicators obtained by the coefficient of variation 

method is Wj, and the weight of the six indicators obtained by the order relation analysis method is 

j . Suppose that the weight of six indicators is 
j  , calculated by using the maximizing deviation 

method. The corresponding relative degrees of closeness 2iC  – 4iC  are calculated by the weights 

obtained by the three methods. The outcomes of the computations are displayed in Table 7 for review 

and analysis 

( )0.1304,0.1842,0.1928,0.1558,0.1632,0.1736 = . 
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5.5.1 Line chart comparison 

The relative degrees of proximity obtained by the four weighting methods in Table 7 are drawn 

as a line chart, and the changes in the line are observed. In Figure 3, the horizontal coordinate is the 

region, and the vertical coordinate is the relative degree of closeness. 

Table 7. Comparison of the evaluation results. 

Region Ci1 Ci2 Ci3 Ci4 

Zhengzhou 0.7290 0.8535 0.6718 0.7764 

Gongyi 0.6382 0.6880 0.6004 0.6440 

Xinzheng 0.0983 0.1071 0.0962 0.1118 

Dengfeng 0.2670 0.1680 0.3168 0.2311 

Xinmi 0.4261 0.4887 0.3541 0.3997 

Xingyang 0.5716 0.6537 0.5164 0.5867 

Zhongmu 0.3914 0.2826 0.4462 0.3306 

 

Figure 3. Method comparison chart. 

In Figure 3, the trend of the line graphs obtained by the combined weighting method and the 

maximizing deviation method are relatively similar, while the trend of the line graphs obtained by the 

coefficient of variation method and the order relation analysis method are different. However, the 

variation trend of the four lines is roughly the same, which verifies the rationality of the method. From 

the perspective of the methods’ characteristics, the line graph obtained by the combined weighting 

method is located between the objective weighting method and the subjective weighting method, 

representing a balance of the advantages of both sides and better performance. The combined 

weighting method’s integrated characteristics ensure higher credibility. 

5.5.2. Comparison of cloud maps 

Given the relative degree of closeness Cic obtained by four types of weighting methods, we 

calculate the corresponding clouds’ digital characteristic parameters, namely, Enc and Hec, where 
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1,2, ,i m= ; 1,2, ,4c = . 

The outcomes of the computations are displayed in Table 8 for review and analysis. 

By observing the data of the cloud model’s digital characteristics, it is found that the hyper-

entropy obtained by the combined weighting method is 0.0432, and the result is the smallest, which 

means that the uncertainty of the result is the least [42]. According to the cloud model’s digital 

characteristics obtained by calculation, we draw the cloud map of the urgency of demand obtained by 

the four weighting methods. The higher the degree of cloud drop condensation in the cloud model’s 

visualization diagram, the more ideal the qualitative concept expressed; that is, the better the effect of 

evaluating the urgency of the demand. 

Table 8. Comparison of the clouds’ digital characteristics. 

Weighting method Exc Enc Hec 

Combination weighting 0.4459 0.2152 0.0432 

Coefficient of variation 0.4631 0.2978 0.0872 

Order relation analysis 0.4288 0.1860 0.0542 

Maximizing deviation 0.4401 0.2460 0.0603 

Figures 4–7 are the generated cloud maps, where the horizontal coordinate represents the value 

of cloud drops, and the vertical coordinate represents the membership degree μ(x)c of element x in the 

discourse domain U. Each point in the figure is a cloud drop generated by the forward cloud generator 

process. 

 

Figure 4. The cloud map obtained by 1iC . 
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Figure 5. The cloud map obtained by 2iC . 

 

Figure 6. The cloud map obtained by 3iC . 

 

Figure 7. The cloud map obtained by 4iC . 
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Through observation, it can be seen that among the cloud maps obtained by the four types of 

weighting methods, the cloud map corresponding to the combined weighting method has the highest 

degree of cloud drop condensation and the smallest cloud thickness, indicating that the results obtained 

by this method are the most acceptable, and the evaluation result regarding the urgency of demand is 

the best. Therefore, by observing the data in Table 8 and Figures 4–7, it can be concluded that the 

combined weighting method can effectively evaluate the urgency of material demand at the demand 

points for emergency materials to maximize the distribution of materials for emergency rescue within 

a limited time. 

5.5.3. Sensitivity analysis 

To verify the reliability of the combined weighting method in evaluation, this study conducted a 

sensitivity analysis by increasing and decreasing the weight of the most critical indicator by 2%. After 30 

experimental trials, we observed whether the ranking results of the evaluated objects changed under 

repeated weight adjustments. 

Through expert discussions and numerical studies, the “material shortage” indicator was 

identified as the most critical factor, with an original weight of 0.2142 in the combined weighting 

system. During weight adjustments, the remaining indicators’ weights were proportionally normalized 

to maintain a total sum of 1. The initial ranking derived from the original combined weights was 

Zhengzhou>Gongyi>Xingyang>Xinmi>Zhongmu>Dengfeng>Xinzheng; 

that is, 

Region 1>Region 2>Region 7>Region 6>Region 4>Region 3>Region 5. 

To investigate the impact of weight variations in the material shortage indicator on the 

evaluation’s outcomes, we systematically adjusted its weight by increasing and decreasing it by 2%. 

These adjusted weights were then incorporated into the TOPSIS method for computational analysis. 

For each adjustment direction (increase/decrease), 30 independent computational iterations were 

performed to generate distinct regional ranking results. Ultimately, these ranking outcomes were 

visualized as radar charts (Figures 8 and 9), where 0S  denotes the result obtained from the original 

data, S   denotes the   th experimental iteration ( 1,2, ,30 =  ). This methodology enables a 

comprehensive geometric representation of the ranking’s stability across experimental configurations. 

As shown in Figure 8, during the 30 incremental weight adjustment experiments for the material 

shortage indicator, the comprehensive evaluation rankings derived from the TOPSIS method remained 

stable, with the consistent order 

Region 1>Region 2>Region 7>Region 6>Region 4>Region 3>Region 5. 
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Figure 8. Incremental experimental radar chart. 

Figure 9 reveals that in the 30 decremental weight adjustment experiments, a positional swap 

between Regions 4 and 5 occurred at the 30th iteration, while the other regions maintained their 

original relative rankings. 

 

Figure 9. Diminishing experimental radar chart. 

The reasons for rank reversal may be the following: 

(1) Decreasing an indicator’s weight diminishes its contribution to both the positive and negative 

ideal solutions, altering the distance relationships between the evaluated objects and these reference 

points. 

(2) Weight reduction weakens the indicator’s decision-making impact. If the indicator originally 

played a critical role in determining specific rankings, its diminished importance may significantly 
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alter the comprehensive scores, triggering positional changes. 

In summary, when the weight is decreased, the ranking order of the evaluated objects remains 

stable throughout the first 29 experiments; when the weight is increased, the ranking order remains 

consistent across all 30 experiments. This demonstrates that the TOPSIS method, based on combined 

weighting, exhibits strong robustness when the weight value of material shortage varies within the 

range of [0.1192, 0.3881]. 

6. Conclusions 

Within the realm of urban governance and emergency preparedness, the assessment of demand 

urgency amidst natural disasters holds significant importance. Drawing upon existing research, this 

paper establishes an evaluation indicator system for assessing the urgency of demand at disaster sites 

which refers to the criteria of environment, resources, and population demographics within the context 

of flood disasters. The fuzzy data were processed by triangular fuzzy numbers, and the fuzzy indicators 

were transformed into triangular fuzzy numbers. The objective weights were established through the 

coefficient of variation method, and experts referred to these results and applied the order relation 

analysis approach to establish the subjective weights. Finally, the TOPSIS method was used to 

calculate the relative degree of closeness, and the weight of each indicator was based on the 

comprehensive weight obtained from the principle of maximum deviation, which is helpful to evaluate 

the urgency of disaster sites’ demand. To ascertain the accuracy of the weight assignment approach, 

these three single weighting methods were used to calculate the relative degree of closeness of each 

disaster-affected area. A line chart was drawn according to the relative closeness between the single 

weighting methods and the combination weighting method, and the results were compared. 

Subsequently, based on proximity indices, the digital attributes of the cloud model were derived. 

Utilizing the forward cloud generator, a cloud map was constructed, thereby visually representing the 

outcomes. 

By observing the line chart, it can be found that the combination weighting method balances the 

advantages of the objective weighting method and the subjective weighting method, and the variation 

trend of the obtained line chart is relatively reliable. By comparing the cloud model’s digital 

characteristics and cloud maps obtained by the combined weighting method and the single weighting 

method, it can be found that the hyper-entropy of the cloud model’s digital characteristics obtained by 

the combined weighting method is the smallest, which is 0.0432, indicating that the uncertainty of the 

results is the least and the degree of dispersion is also relatively small. At the same time, the cloud map 

obtained by the combined weighting method has the highest degree of cloud drop condensation and 

the smallest cloud thickness, indicating that it can reflect the actual situation of emergency material 

demand against the background of a flood disaster more truly. In addition, in the sensitivity analysis, 

when the weight of the most important evaluation indicator (material shortage) remained within the 

critical threshold of [0.1192, 0.3881], the TOPSIS method based on combination weighting had strong 

robustness. 

Therefore, the method of combination weighting can assess the urgency of the demand of disaster 

sites more accurately, providing a reference for regional flood risk assessment and disaster prevention 

as well. In the event of such flood disasters, emergency supplies can be distributed in a targeted manner 

by calculating the degree of urgency of demand to resolve the immediate needs of people in affected 

areas and avoid more casualties. 

This paper evaluates the urgency of emergency material demand in the case of flood disasters. 

However, there are still many deficiencies in this study and further in-depth research is needed. 
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(1) In terms of the types of emergency materials, the material demand studied in this paper 

basically summed the amount of all materials; the difference in the demand for different types of 

emergency materials at the disaster site was not considered (e.g., basic living supplies, medical supplies, 

hygiene and cleaning materials, energy and lighting resources, among others). Future studies should 

prioritize detailed investigations to refine supply-demand data, employing predictive methods for 

estimations of specific material types. 

(2) In this paper, material shortage is a fuzzy index with some subjectivity, which may lead to 

deviations in the results. In follow-up studies, material shortage can be replaced with more measurable 

indicators, or experts can be invited to evaluate and verify it to ensure the rationality and scientific 

nature of the indicators. 

(3) This paper only evaluates the urgency of demand for emergency materials. The planning of 

emergency material distribution routes and more effective material distribution methods can be carried 

out later. For example, incorporating the urgency of demand into the emergency logistics route 

optimization model, while prioritizing the demand of disaster-affected areas, a target model can be 

constructed, and optimization algorithms can be employed to simulate and solve the model. Algorithm 

selection requires enhancements addressing the limitations of robustness, interpretability, and 

computational efficiency. The optimized model should then be compared with other models through a 

comparative analysis to fully demonstrate the efficiency and superiority of the selected algorithm. 
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