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Abstract: Water pollution significantly threatens public health and environmental sustainability,
particularly in developing nations. This study introduced an innovative fractional-order mathematical
model for analyzing water pollution dynamics, incorporating four distinct compartments to represent
the interactions between polluted water sources, susceptible water bodies, contamination processes,
and restoration mechanisms. The model used the Atangana-Baleanu fractional derivative in the Caputo
sense, offering a more precise representation of memory effects and complex pollutant transport
mechanisms. The proposed model underwent rigorous qualitative validation, ensuring the existence
and uniqueness of solutions via fixed-point theory, while stability analysis was conducted using the
Ulam-Hyers approach. The Adams-Bashforth numerical method was employed to obtain approximate
solutions, enabling a more accurate simulation of pollution dynamics. Numerical simulations further
highlighted the impact of treatment strategies in reducing contamination levels and restoring water
quality. Additionally, artificial neural networks (ANN) were integrated into the framework to enhance
predictive capabilities. The dataset used for ANN training was derived from simulated pollution levels
based on model parameters calibrated with empirical studies on water contamination dynamics. This
combined fractional-ANN methodology established a robust foundation for effective water quality
management, aiding in decision-making for pollution control policies and remediation strategies.
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1. Introduction

Water pollution poses a significant challenge to global sustainability, disproportionately affecting
developing nations. The adverse impacts on ecosystems, public health, and economic stability are
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profound, with polluted water serving as a carrier for numerous waterborne diseases such as cholera,
typhoid, diarrhea, hepatitis, and schistosomiasis [1]. In regions with limited access to clean water and
healthcare, these illnesses can escalate into severe public health crises. Additionally, chronic exposure
to contaminated water, laden with heavy metals and chemical pollutants, increases risks of cancer,
neurological disorders, and cardiovascular diseases [2, 3]. Moreover, polluted aquatic ecosystems
experience biodiversity loss, disrupting ecological balance and threatening livelihoods dependent on
fishing and agriculture [4].

Mathematical modeling is indispensable in analyzing water pollution dynamics and mitigation
strategies. Models provide insights into pollutant transport mechanisms, interaction with
environmental variables, and spatial-temporal behaviors. For example, Guo and Cheng [5]
demonstrated pollutant dispersion in Yuncheng City, China, revealing a reduction in concentration
downstream, while Issakhov et al. [6] emphasized temperature’s role in industrial chemical reactions
through numerical simulations. Similarly, integrating computational models with real-world data has
been pivotal in advancing our understanding of pollutant dynamics.

Fractional calculus has got much attention from the researchers nowadays because of their
application in real world problems. In the realm of this area, Riemann-Livilave explored some basics
for mathematical models. Caputo has done significance work and documented a derivative for
fractional order, and after that, numerous work has been added in the literature of fractional
calculus [7, 8]. After this approach, Caputo and Fabrizio further modified this definition into
non-singular kernels and named it Caputo-Fabrizio (CF) [9]. Multiple works have been documented
by applying the CF operator to the mathematical disease model and other complex models in the field
of mathematics [10–12]. In 2016, Atangana and Baleanu generalized the CF derivative into
non-singular and nonlocal kernels with a tremendous application in disease mathematical modeling,
which is considered a new window for the researchers [13]. They called this new operator
Atangana-Baleanu in the sense of Caputo (ABC) and this filled the gap of the previously mentioned
operator. Many scholars have applied this new operator to real-world linear and nonlinear
mathematical models and explored its different characteristics for the readers [14–17].

Recent advancements in fractional modeling offer improved accuracy in representing water
pollution phenomena. With its ability to model memory effects and complex interactions, fractional
calculus has been employed by Sabir et al. [18] to predict pollution behavior using the
Levenberg-Marquardt backpropagation method. Artificial intelligent and machine learning have been
a tremendous approach to mathematical problems. Recent advances in fractional calculus have
demonstrated its effectiveness in various dynamic systems, including tumor-immune surveillance
models [19], human infection modeling using real-world epidemiological data [20–23] and water
pollution management with optimal control strategies [24]. These studies highlight the potential of
fractional-order models in capturing long-term dependencies and improving predictive accuracy in
environmental systems. Inspired by this, our study employs the Atangana-Baleanu fractional
derivative to develop a robust mathematical framework for analyzing water contamination dynamics,
integrating fractional differential equations with artificial neural networks (ANNs) for enhanced
predictive modeling. Additionally, integrating ANN with fractional differential equations provides a
hybrid predictive framework, making it more adaptable than purely empirical ANN-based pollution
models. This combined approach enhances stability, long-term prediction accuracy, and
computational efficiency compared to existing techniques. The concept of dynamical analysis in a
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discrete-time SIR epidemic model was used in [25]. Ebrahimzadeh et al. [24] proposed a fractional
framework combined with optimal control, showcasing its efficacy in water quality management.
Remote sensing and machine learning techniques have further enhanced monitoring capabilities, as
demonstrated by Chen et al. [2], enabling real-time assessments of water pollution [1].

Despite these advancements, existing models often face challenges in capturing water pollution’s
multifaceted and nonlinear nature. Complex interactions between pollutants, biological systems, and
environmental variables require robust frameworks integrating computational, mathematical, and
experimental approaches [4, 26]. Additionally, addressing the impacts of climate change,
urbanization, and industrialization on water systems remains an ongoing research priority.
Advancements in machine learning, coupled with fractional modeling, offer promising directions for
the future. Ultimately, the integration of advanced modeling techniques, stakeholder collaboration,
and data-driven decision-making holds the potential to revolutionize water pollution management.
Continued interdisciplinary efforts are crucial for developing adaptive, scalable, and sustainable
solutions that safeguard global water resources, public health, and ecosystems.

Model formulation

Among the various fractional derivatives available in the literature, the ABC derivative was
selected for the reconsidered model [27] used for this study due to these reasons: (i) for constant
functions, the ABC derivative yields the same result as an integer-order differential equation, ensuring
consistency with classical calculus; (ii) it allows the use of initial conditions in a format similar to
standard differential equations, making it suitable for practical applications; and (iii) its computation
involves solving an ordinary differential equation followed by applying a fractional integral to achieve
the desired fractional order.

This section delves into the analysis of the proposed model:

ABCDς
ℑ

W(ℑ) = Λ − α1W(ℑ)S (ℑ) − α2W(ℑ)Ip(ℑ) + ρα2Ip(ℑ) − µW(ℑ),
ABCDς

ℑ
S (ℑ) = α1W(ℑ)S (ℑ) + δIp(ℑ) − (θ1 + µ)S (ℑ),

ABCDς
ℑ

Ip(ℑ) = α2W(ℑ)Ip(ℑ) − ρα2Ip(ℑ) − (δ + θ2 + µ)Ip(ℑ),
ABCDς

ℑ
N(ℑ) = θ1S (ℑ) + θ2Ip(ℑ) − µN(ℑ),

W(0) = W0, S (0) = S 0, Ip(0) = Ip0,N(0) = N0.

(1.1)

The fractional model presented in (1.1) is organized into four categories: W(ℑ), which represents
the number of polluted water sources; S (ℑ), indicating water sources prone to pollution; Ip(ℑ),
representing water sources contaminated by pollutants; and N(ℑ), describing water sources restored
from insoluble pollution through treatment processes. It simplifies contaminant behavior into soluble
and insoluble categories with fixed transport rates. Seasonal fluctuations, industrial discharge
variations, and external environmental factors are not explicitly incorporated, making this framework
a foundational approach for future extensions. The parameters associated with the model are defined
in the following Table 1.
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Table 1. Parameters with details used in the model 1.1.

Notation Details
Λ Rate of water pollution
α1 Transport rate for soluble water contaminants
α2 Transport rate for insoluble water contaminants
ρ Conversion rate of insoluble pollutants into water pollution
µ Rate of removal of water pollutants
δ Rate of conversion of insoluble pollutants into solutes
θ1 Maximum capacity for treating soluble water pollutants
θ2 Maximum capacity for treating insoluble water pollutants

This work explores a fractional model of water pollution management by incorporating four
compartments by employing the ABC operator. The analysis confirms the existence results and the
uniqueness of solution with the help of fixed point approach. Furthermore, the Ulam–Hyers (UH)
concept is utilized to demonstrate the stability of the solution. Additionally, the Newton interpolation
method is applied for deriving the approximate solutions of the aforementioned model by integrating
a fractional parameter to enhance flexibility in numerical simulations across the four compartments.
This approach facilitates a continuous spectrum, representing densities within the range [0,1]. The
ABC derivative effectively models system dynamics, offering distinct advantages over classical and
other fractional derivatives. Its non-singular and nonlocal kernel enables a more precise depiction of
memory effects and long-range interactions, essential for capturing the intricacies of complex
dynamic systems. Unlike traditional derivatives, the ABC operator eliminates singularities and
locality constraints, providing a robust and realistic framework for analyzing dynamic behavior. The
application of this operator improves numerical stability and accuracy, as evidenced by the faster
convergence and enhanced stability observed in fractional-order systems simulated using the
Adams-Bashforth (AB) iterative method. By overcoming the limitations of classical approaches, the
ABC derivative has emerged as a foundational tool for modeling, analyzing, and simulating nonlinear
and dynamic systems with greater precision and reliability.

The manuscript structure is as follows: Section 2 presents a summary of key definitions and
symbols from fractional calculus. Section 3 provides a theoretical analysis of the model using fixed
point theory and evaluates UH stability under minor variations in the initial conditions. Section 4
employs the AB method, a widely recognized approach, to obtain approximate solutions for the
proposed model. Additionally, the numerical results are summarized. Additionally, we summarize the
numerical simulation results using MATLAB 16 to visualize the outcomes. Finally, Section 5
concludes the study and highlights key findings.

2. Basic results

Fractional derivatives, particularly the ABC operator, have been widely used in environmental
modeling due to their ability to capture memory effects and complex system interactions [7, 13].
Similarly, the Mittag-Leffler (ML) function is crucial in fractional differential equations, offering
solutions with non-exponential decay behavior that better represent real-world phenomena [8].

Definition 2.1. Let U(ℑ) ∈ ς ∈ [0, 1]. The fractional derivative in the Caputo sense with the ABC
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operator is given by:

ABCDς
ℑ

(U(ℑ)) =
M(ς)
1 − ς

∫ ℑ

0
Eς
[
−ς

1 − ς
(ℑ − u)ς

] d
du

U(u) du, (2.1)

where M(ς) is a normalization function satisfying M(0) = M(1) = 1, and Eς denotes the ML function,
which is expressed as:

Eς(y) =
∞∑

k=0

yk

Γ(ςk + 1)
.

Definition 2.2. For U(ℑ) ∈ L1(0,T ), the ABC fractional integral is expressed as:

ABCIς
ℑ

U(ℑ) =
1 − ς
M(ς)

U(ℑ) +
ς

M(ς)
1
Γ(ς)

∫ ℑ

0
(ℑ − u)ς−1U(u) du, ℑ > 0. (2.2)

Lemma 2.1. The solution to the given fractional differential equation for ς ∈ (0, 1] satisfies:

ABCDς
ℑ

U(ℑ) = U(ℑ),
U(ℑ) = U0,

with the condition:

U(ℑ) = U0 +
1 − ς
M(ς)

U(ℑ) +
ς

M(ς)
1
Γ(ς)

∫ ℑ

0
(ℑ − u)ς−1U(u) du. (2.3)

3. Existence theory

This section evaluates the proposed model’s practicality within real-world scenarios. Additionally,
it provides results concerning the stability and existence of the solution to the problem under
consideration. Consequently, the problem is reformulated as follows:

ABCDς
ℑ

W(ℑ) = G1(W, S , Ip,N),
ABCDς

ℑ
S (ℑ) = G2(W, S , Ip,N),

ABCDς
ℑ

Ip(ℑ) = G3(W, S , Ip,N),
ABCDς

ℑ
N(ℑ) = G4(W, S , Ip,N).

(3.1)

Writing Eq (1.1) in the form

ABCDς
ℑ

U(ℑ) = η(ℑ,U(ℑ)),
U(0) = U0(ℑ), (3.2)

where 
U(ℑ) := (W, S , Ip,N)T ,

U0 := (W0, S 0, Ip0 ,N0)T ,

η(ℑ,U(ℑ)) := Gi(W, S , Ip,N)T , i = 1, 2, 3, 4,
(3.3)
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where (.)T denotes the transpose of the vector. The integral equation derived from system (3.2) can be
expressed as:

U(ℑ) = U0 +
1 − ς
M(ς)

Z(ℑ,U(ℑ)) +
h

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − φ)ς−1Z(φ,U(φ))dφ. (3.4)

Consider the Banach space Υ = C([0,T ],Rk)1≤k≤n, equipped with the norm ∥U∥ = supℑ∈[0,T ] |U(ℑ)|.
Additionally, let Φ = (Υ5, ∥U∥) represent a Banach space, where

∥U∥ = sup
ℑ∈[0,T ]

(
|W | + |S | + |Ip| + |T |

)
. (3.5)

The results of the existence are established using Schauder’s fixed point theorem in the following
theorem.

Theorem 3.1. Let Z ∈ Φ be a continuous function, and assume there exists a positive constant V > 0
such that.

|Z(ℑ,U(ℑ))| ≤ V(1 + |U|), ∀ℑ ∈ [0,T ], U ∈ Φ.

It follows that:

∇1 =

( (1 − ς)Γ(ς)V + VT ς

M(ς)Γ(ς)

)
< 1. (3.6)

Thus, the solution to Eq (3.4) is both unique and continuous for all ℑ ∈ [0,T ].

Proof. From Eq (3.6), the solution to the stated problem is equivalent to the solution of the integral
equation (3.4). Define the operator ℧ : Φ→ Φ as:

(℧U)(ℑ) = U0 +
1 − ς
M(ς)

Z(ℑ,U(ℑ)) +
ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − φ)ς−1Z(λ,U(λ))dλ. (3.7)

Let Bϱ = {U ∈ λ : ∥U∥ ≤ ϱ, ϱ > 0} denote a bounded, closed, and convex ball, where:

ϱ ≥
∇2

1 − ∇1
, and ∇2 = |U0| +

1 − ς
M(ς)

V +
T ς

M(ς)Γ(ς)
V. (3.8)

To complete the proof, it suffices to show that (℧(Bϱ)) ⊂ Bϱ, for all t ∈ [0,T ], as follows:

|(℧U)(ℑ)| ≤ |U0| +
1 − ς
M(ς)

|Z(ℑ,U(ℑ))| +
ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1|Z(λ,U(λ))|dλ

≤ |U0| +
1 − ς
M(ς)

V(1 + |U(ℑ)|) +
ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1V(1 + |U(ℑ)|)dλ, (3.9)

where U ∈ Bϱ. Hence, the desired result is obtained:

∥(℧U)∥ ≤ |U0| +
1 − ς
M(ς)

V(1 + ∥U(ℑ)∥) +
T ς

M(ς)Γ(ς)
V(1 + ∥U(ℑ)∥)

≤ |U0| +
1 − ς
M(ς)

V +
T ς

M(ς)Γ(ς)
V +
[1 − ς

M(ς)
V +

T ς

M(ς)Γ(ς)
V
]
ϱ
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≤ ∇2 + ∇1ϱ ≤ ϱ.

We have proven that (℧Bϱ) ⊂ Bϱ.
Next, to show that the operator ℧ is continuous, let {Un} be a sequence such that Un → U in Bϱ as

n→ ∞. Then, for all ℑ ∈ [0,T ], we have:∣∣∣(℧Un)(ℑ) − (℧U)(ℑ)
∣∣∣ ≤ 1 − ς

M(ς)

∣∣∣Z(ℑ,Un(ℑ)) − Z(ℑ,U(ℑ))
∣∣∣ +

ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1

∣∣∣Z(λ,Un(λ)) − Z(λ,U(λ))
∣∣∣dλ

≤
1 − ς
M(ς)

∥Z(ℑ,Un(ℑ)) − Z(ℑ,U(ℑ))∥ +

T ς

M(ς)Γ(ς)
∥Z(λ,Un(λ)) − Z(λ,U(λ))∥.

From the continuity of the function Z, it follows that:

∥(℧Un)(ℑ) − (℧U)(ℑ)∥ → 0 as n→ ∞. (3.10)

Thus, ℧ is continuous on Bϱ.
To conclude, we establish that (℧Bϱ) is a relatively compact operator. As (℧Bϱ) ⊂ Bϱ, it follows

that the operator is uniformly bounded. Furthermore, we demonstrate that ℧ is "equi-continuous" on
Bϱ. Let U ∈ Bϱ, and take ℑ1,ℑ2 ∈ [0,T ] such that ℑ1 < ℑ2. Then, the following holds:

∥℧U(ℑ2) −℧U(ℑ1)∥ ≤
1 − ς
M(ς)

∣∣∣Z(ℑ2,U(ℑ2)) − Z(ℑ1,U(ℑ1))
∣∣∣

+
ς

M(ς)Γ(ς)

∣∣∣∣∣[ ∫ ℑ2

0
(ℑ2 − λ)ς−1 −

∫ ℑ1

0
(ℑ1 − λ)ς−1

]
Z(λ,U(λ))dλ

∣∣∣∣∣
≤

1 − ς
M(ς)

∣∣∣Z(ℑ2,U(ℑ2)) − Z(ℑ1,U(ℑ1))
∣∣∣ + ς

M(ς)
L(1 + ∥U∥)
Γ(ς + 1)

(ℑς2 − ℑ
ς
1).

It is evident that ∥℧U(ℑ2) − ℧U(ℑ1)∥ → 0 as ℑ2 → ℑ1. Using the Arzelà–Ascoli theorem, it
follows that (℧Bϱ) is relatively compact, which ensures that the operator ℧ is completely continuous.
As a result, the problem (1.1) has at least one solution.

We now turn to the uniqueness of the solution for the proposed model (1.1), which is established
under the following conditions:

0 ≤
[
1 −

1 − ς
M(ς)

ϱ −
ςT ς

M(ς)Γ(ς)
ϱ
]
. (3.11)

If additional potential solutions, such as W, S , Ip,N, are assumed to exist, it can be concluded that:

W(ℑ) −W1(ℑ) =
1 − ς
M(ς)

(
F1(ℑ,W) − F1(ℑ,W)

)
+

ς

M(ς)Γ(ς)

∫ ℑ

0

(
F1(λ,W) − F1(λ, L1)

)
dλ, (3.12)

and using norm to Eq (3.12), we have
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∥∥∥W −W1

∥∥∥ = ∥∥∥∥∥1 − ςM(ς)
(
F1(t,W) − F1(ℑ,W1)

)
+

ς

M(ς)Γ(ς)

∫ ℑ

0

(
F1(λ,W) − F1(λ,W1)

)
dλ
∥∥∥∥∥

≤
1 − ς
M(ς)

ϱ
∥∥∥W −W1

∥∥∥ + ς

M(ς)Γ(ς)
ϱ
∥∥∥W −W1

∥∥∥. (3.13)

Therefore, ∥∥∥W −W1

∥∥∥[1 − 1 − ς
M(ς)

ϱ −
ςT ς

M(ς)Γ(ς)
ϱ
]
≤ 0. (3.14)

This implies that W = W1, provided the inequality (3.11) holds. Similarly, for the other
compartments, if S = S 1, Ip = IP1 , and N = N1, the solution is guaranteed to be unique. □

We now establish the UH stability for the proposed system (1.1).

Theorem 3.2. Let Z ∈ λ be a continuous function, and suppose there exists a constantK > 0 such that∣∣∣Z(ℑ,Q) − Z(ℑ, Q̃)
∣∣∣ ≤ K ∣∣∣Q − Q̃∣∣∣, ∀ℑ ∈ [0,T ], Q ∈ λ,

where the following condition holds:

1 >
(1 − ς)Γ(ς)K +KT ς

M(ς)Γ(ς)
.

Let Q and Q̃ represent the solutions of Eq (3.2). Then, we have:

ABCDς
ℑ
Q̃(ℑ) = Z(ℑ, Q̃(ℑ)), Q̃(0) = Q0 + ε ≥ 0. (3.15)

where 
Q̃ = (W̃, S̃ , Ĩp, Ñ)T ,

Q0 + ε = (W0 + ε, S 0 + ε, IP0 + ε,N0 + ε,

Z(ℑ, Q̃(t)) = Fi(W̃, S̃ , Ĩp, Ñ)T , i = 1, 2, 3, 4.
(3.16)

Then,

∥Q − Q̃∥ ≤

[
1 −

(1 − ς)Γ(ς)K +KT ς

M(ς)Γ(ς)

]−1

|ε|. (3.17)

Proof. The solutions to the given problem (3.2) and Eq (3.15) correspond to the integral Eq (3.4):

Q̃(ℑ) = Q0 + ε +
1 − ς
M(ς)

Z(ℑ, Q̃(ℑ)) +
ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1Z(λ, Q̃(λ)) dλ, (3.18)

for all ℑ ∈ [0,T ]. From this, we obtain:

|Q − Q̃| ≤ |ε| +
1 − ς
M(ς)

∣∣∣Z(ℑ,Q(ℑ)) − Z(ℑ, Q̃(ℑ))
∣∣∣

+
ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1

∣∣∣Z(λ,Q(λ)) − Z(λ, Q̃(λ))
∣∣∣ dλ
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≤ |ε| +
1 − ς
M(ς)

K
∣∣∣Q(ℑ) − Q̃(ℑ)

∣∣∣ + ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1K

∣∣∣Q(λ) − Q̃(λ)
∣∣∣ dλ

≤ |ε| +
[1 − ς

M(ς)
+

T ς

M(ς)Γ(ς)

]
K∥Q − Q̃∥.

Hence, we deduce:

∥Q − Q̃∥ ≤ |ε| +
[ (1 − ς)Γ(ς) + T ς

M(ς)Γ(ς)

]
K∥Q − Q̃∥.

Thus:

∥Q − Q̃∥ ≤

[
1 −

(1 − ς)Γ(ς)K +KT ς

M(ς)Γ(ς)

]−1

|ε|.

This completes the proof of the theorem.
□

4. Numerical approach

This section highlights a computational method designed to solve the stated problem, where the
time derivative is modeled as a fractional derivative with the generalized ML kernel. The simulation
employs an interpolation polynomial to estimate the fractional-order integral. To achieve this, the
renowned AB approach is applied [28].

By incorporating the initial conditions and using the operator ABCIς0, the numerical scheme for the
given problem is constructed as follows:

W −W0 =
ABCIς0G1(W,ℑ),

S − S 0 = ABCIς0G2(S ,ℑ),
Ip − Ip0 = ABCIς0G3(Ip,ℑ),
N − N0 = ABCIς0G4(N,ℑ),

(4.1)

which gives

W(ℑ) −W0 =
1 − ς
M(ς)

G1(W(ℑ),ℑ) +
ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1G1(W(λ), λ)dλ,

S (ℑ) − S 0 =
1 − ς
M(ς)

G2(S (ℑ),ℑ) +
ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1G2(S (λ), λ)dλ,

Ip(ℑ) − Ip0 =
1 − ς
M(ς)

G3(Ip(ℑ),ℑ) +
ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1G3(Ip(λ), λ)dλ,

N(ℑ) − N0 =
1 − ς
M(ς)

G4(N(ℑ),ℑ) +
ς

M(ς)Γ(ς)

∫ ℑ

0
(ℑ − λ)ς−1G4(N(λ), λ)dλ.

An iterative scheme is developed by substituting ℑ = ℑι+1 for ν = 0, 1, 2, . . . into the specified
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system:

W(ℑν+1) −W(0) = 1−ς
M(ς)G1(W(ℑν), tν) +

ς
M(ς)Γ(ς)

∑ν
i=0

∫ ℑi+1

ℑi
(ℑν+1 − λ)ς−1G1(L(λ), λ)dλ,

S (ℑν+1) − S (0) =
1−ς
M(ς)G2(S (ℑν),ℑν) +

ς
M(ς)Γ(ς)

∑ν
i=0

∫ ℑi+1

ℑi
(ℑν+1 − λ)ς−1G2(S (λ), λ)dλ,

Ip(ℑν+1) − Ip(0) =
1−ς
M(ς)G3(Ip(ℑν),ℑν) +

ς
M(ς)Γ(ς)

∑ν
i=0

∫ ℑi+1

ℑi
(ℑν+1 − λ)ς−1G3(Ip(λ), λ)dλ,

N(ℑν+1) − N(0) =
1−ς
M(ς)G4(N(ℑν),ℑν) +

ς
M(ς)Γ(ς)

∑ν
i=0

∫ ℑi+1

ℑi
(ℑν+1 − λ)ς−1G4(N(λ), λ)dλ.

To approximate the functions G1(W(λ), λ), G2(S (λ), λ), G3(Ip(λ), λ), and G4(N(λ), λ), a two-step
interpolation polynomial is employed. The integral in the above equation is evaluated over the interval
[ℑκ,ℑκ+1]. We then obtain:

G1(W(λ), λ) � G1(W(ℑκ),ℑκ)
∆

(ℑ − ℑκ−1) + G1(W(ℑκ−1),ℑκ−1)
∆

(ℑ − ℑκ),
G2(S (λ), λ) � G2(S (ℑκ),ℑκ)

∆
(ℑ − ℑκ−1) + G2(S (ℑκ−1),ℑκ−1)

∆
(ℑ − ℑκ),

G3(Ip(λ), λ) � G3(Ip(ℑκ),ℑκ)
∆

(ℑ − ℑκ−1) + G3(Ip(ℑκ−1),ℑκ−1)
∆

(ℑ − ℑκ),
G4(N(λ), λ) � G4(N(ℑκ),ℑκ)

∆
(ℑ − ℑκ−1) + G4(N(ℑκ−1),ℑκ−1)

∆
(ℑ − ℑκ),

(4.2)

which gives

W(ℑι+1) = W(0) +
1 − ς
M(ς)

G1(W(ℑν),ℑν) +
ς

M(ς)Γ(ς)

ν∑
i=0

(G1(W(ℑκ),ℑκ)
∆

Iκ−1,ς +
G1(L(ℑκ−1),ℑκ−1)

∆
Iκ,ς
)
,

S (ℑι+1) = S (0) +
1 − ς
M(ς)

G2(S (ℑν),ℑν) +
ς

M(ς)Γ(ς)

ν∑
i=0

(G2(S (ℑκ),ℑκ)
∆

Iκ−1,ς +
G2(S (ℑκ−1),ℑκ−1)

∆
Iκ,ς
)
,

Ip(ℑι+1) = Ip(0) +
1 − ς
M(ς)

G3(Ip(ℑν),ℑν) +
ς

M(ς)Γ(ς)

ν∑
i=0

(G3(Ip(ℑκ),ℑκ)
∆

Iκ−1,ς +
G3(Ip(ℑκ−1),ℑκ−1)

∆
Iκ,ς
)
,

T (ℑι+1) = N(0) +
1 − ς
M(ς)

G4(N(ℑν),ℑν) +
ς

M(ς)Γ(ς)

ν∑
i=0

(G4(N(ℑκ),ℑκ)
∆

Iκ−1,ς +
G4(N(ℑκ−1),ℑκ−1)

∆
Iκ,ς
)
,

(4.3)

where

Iκ−1,ς =

∫ ℑκ+1

ℑκ

(ℑ − ℑκ−1)(ℑι+1 − ℑ)ς−1dℑ, Iκ,ς =
∫ ℑκ+1

ℑκ

(ℑ − ℑι)(ℑι+1 − ℑ)ς−1dℑ.

The integrals Iκ−1,ς and Iκ,ς are computed as shown below:

Iκ−1,ς = −
1
ς

[
(ℑκ+1 − ℑκ−1)(ℑι+1 − ℑκ+1)ς − (ℑκ − ℑκ−1)(ℑι+1 − ℑκ)ς

]
−

1
ς(ς − 1)

[
(ℑι+1 − ℑκ+1)ς+1 − (ℑι+1 − ℑς)ς+1

]
,

and

Iκ,ς = −
1
ς

[
(ℑκ+1 − ℑi)(ℑι+1 − ℑκ+1)ς

]
−

1
κ(κ − 1)

[
(ℑι+1 − ℑκ+1)ς+1 − (ℑι+1 − ℑκ)ς+1

]
,
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where ℑς = i∆. From this, we find:

Iκ−1,ς = −
∆ς+1

ς(ς + 1)

[
(ι + 1 − κ)ς(ι − κ + 2 + ς) − (ι − κ)ς(ι − κ + 2 + 2ς)

]
, (4.4)

and

Iκ,ς =
∆ς+1

ς(ς + 1)

[
(ι + 1 − κ)ς+1 − (ι − κ)ς(ι − κ + 1 + ς)

]
. (4.5)

By inserting Eqs (4.4) and (4.5) into Eq (4.3), the following is derived:

W(ℑι+1) = L(ℑ0) +
(1 − ς)
M(ς)

[
G1(W(ℑι),ℑι)

]
+
ς

M(ς)

ν∑
i=0

(G1(W(ℑι),ℑι)
Γ(ς + 2)

×∆ς
[
(ι + 1 − κ)ς(ι − κ + 2 + ς) − (ι − κ)ς(ι − κ + 2 + 2ς)

]
−

G1(W(ℑν−1),ℑν−1)
Γ(ς + 2)

∆ς[(ι + 1 − κ)ς+1 − (ι − κ)ς(ι − κ + 1 + ς)]
)
, (4.6)

S (ℑι+1) = S (ℑ0) +
(1 − ς)
M(ς)

[
G2(S (ℑι),ℑι)

]
+
ς

M(ς)

ν∑
i=0

(G2(S (ℑι),ℑι)
Γ(ς + 2)

×∆ς
[
(ι + 1 − κ)ς(ι − κ + 2 + ς) − (ι − κ)ς(ι − κ + 2 + 2ς)

]
−

G2(S (ℑν−1),ℑν−1)
Γ(ς + 2)

∆ς[(ι + 1 − κ)ς+1 − (ι − κ)ς(ι − κ + 1 + ς)]
)
, (4.7)

Ip(ℑι+1) = Ip(ℑ0) +
(1 − ς)
M(ς)

[
G3(Ip(ℑι),ℑι)

]
+
ς

M(ς)

ν∑
i=0

(G3(Ip(ℑι),ℑι)
Γ(ς + 2)

×∆ς
[
(ι + 1 − κ)ς(ι − κ + 2 + ς) − (ι − κ)ς(ι − κ + 2 + 2ς)

]
−

G3(Ip(ℑν−1),ℑν−1)
Γ(ς + 2)

∆ς[(ι + 1 − κ)ς+1 − (ι − κ)ς(ι − κ + 1 + ς)]
)
, (4.8)

N(ℑι+1) = T (ℑ0) +
(1 − ς)
M(ς)

[
G4(N(ℑι),ℑι)

]
+
ς

M(ς)

ν∑
i=0

(G4(N(ℑι),ℑι)
Γ(ς + 2)

×∆ς
[
(ι + 1 − κ)ς(ι − κ + 2 + ς) − (ι − κ)ς(ι − κ + 2 + 2ς)

]
−

G4(N(ℑν−1),ℑν−1)
Γ(ς + 2)

∆ς[(ι + 1 − κ)ς+1 − (ι − κ)ς(ι − κ + 1 + ς)]
)
. (4.9)

4.1. Analysis and discussion of model simulation outcomes

This section presents graphical numerical simulations to validate the outcomes at various
fractional-order levels. The results are compared with the data provided in Table 2 and the model’s
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initial conditions 1.1. Figure 1a illustrates the temporal dynamics of polluted water sources under
different fractional orders. The simulations reveal an initial increase in pollution levels, followed by
stabilization, where higher fractional orders better capture the long-term memory effects of
contamination. Figure 1b represents the water sources susceptible to pollution, showing how exposure
to contaminants increases over time before reaching a steady state. Figure 1c depicts the number of
water sources actively contaminated by pollutants, demonstrating a rise in contamination before
equilibrium is reached due to pollutant transport and accumulation. Finally, Figure 1d highlights the
restoration of water sources through treatment interventions, with fractional models capturing a more
gradual recovery process than integer-order models. These findings emphasize the significance of
fractional calculus in accurately modeling water pollution dynamics and evaluating the effectiveness
of remediation strategies.

Table 2. Parameters and their numerical values in model 1.1.

Notation Value Source Notation Value Source
W 5 S 4 Ip 1
N 0 Λ 0.8 ρ 0.25
α1 0.18 α2 0.02 δ 0.30
µ 0.40 θ1 0.20 θ2 0.50

(a) (b)

(c) (d)

Figure 1. The numerical simulation graphs represent all compartments of the considered
model.
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The parameters used in the simulations were calibrated based on empirical values reported in
previous studies on water contamination dynamics [27]. The transport rates (α1, α2) represent the
movement of soluble and insoluble pollutants and were selected based on observed pollutant
dispersion patterns. The treatment capacities (θ1, θ2) were assumed to ensure the model practical
pollutant removal processes. The pollutant removal rate µ and conversion rate ρ were assumed
according to environmental studies on degradation rates and contamination persistence. While this
study primarily focuses on theoretical validation, future work will incorporate real-time water quality
datasets for further empirical verification. We simulate the outcomes of the foregoing algorithms for
the different categories using Matlab and the parameter values from Table 2 as shown in Figures 1–4.

The impact of varying fractional orders on pollution dynamics is primarily attributed to the memory
effects inherent in fractional operators. Higher fractional orders enhance memory retention, causing
pollution to persist longer and stabilizing more gradually. Unlike classical integer-order derivatives,
the ABC fractional derivative models long-range interactions and historical dependence. In contrast,
lower fractional orders reduce the memory effect, making the system behave more similarly to an
integer-order model, leading to faster stabilization of pollution levels. These observations highlight the
importance of fractional calculus in capturing realistic pollutant dispersion behaviors.

4.2. ANN implementation

ANNs play a pivotal role in advancing the analysis of water pollution dynamics, particularly when
integrated with fractional differential models. This study uses ANNs to process data derived from the
ABC fractional framework, enabling robust predictive analysis of pollution trends. The dataset is
partitioned into 70% for training, 15% for testing, and 15% for validation, with each subset
corresponding to different fractional-order scenarios. The ANN architecture consists of a multilayer
perceptron (MLP) model featuring an input layer representing fractional-order pollution parameters, a
hidden layer with 10 neurons, and an output layer predicting future water quality states. The network
is trained using the Levenberg-Marquardt backpropagation algorithm, minimizing the mean squared
error (MSE) to optimize predictive accuracy. Through an iterative learning process spanning 1000
epochs, the ANN achieves an exceptionally low MSE of 1.6669 × 10−11, demonstrating strong
alignment with simulation data, as indicated by a regression R-value close to 1. The ANN effectively
models complex contamination dynamics and mitigation outcomes by capturing intricate patterns in
pollutant transport rates, treatment capacities, and environmental variables. Moreover, its adaptability
to varying fractional orders underscores its scalability and effectiveness as a data-driven water quality
management and decision-making tool. The ANN framework is employed separately from the
numerical AB method, focusing solely on analyzing the simulation outputs and forecasting pollution
behavior. The AB method is utilized to approximate the fractional-order differential equations
governing pollution dynamics numerically. At the same time, the ANN framework is independently
applied to analyze simulation outputs and improve predictive accuracy, as illustrated in Figure 2a.
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(a) (b) (c)

(d) (e)

Figure 2. The statistical dynamics of the analyzed model comprise (a) a comparison, (b)
the mean squared error, (c) regression analysis, (d) an error histogram, and (e) the ANN’s
training performance fit.

Figure 3. ANN-based regression was dynamically implemented to model the system’s
behavior being analyzed.
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As demonstrated in Figure 4a, the ANN approach is applied separately from the AB method, which
is used for numerically approximating the fractional-order differential equations. At epoch 877, the
analyzed model achieves a mean squared error of 1.6414e−12, as illustrated in Figure 4b. The training
progression is displayed in Figure 6c. The error histogram, highlighting the best result of 1.58e − 07,
is provided in Figure 4e. Additionally, Figure 4e showcases the optimal fit for testing and training
datasets, along with the corresponding errors. The regression analysis for the model, covering all
datasets—training, testing, and combined—is depicted in Figure 5. The results confirm that the model
is effectively trained, with data points aligning closely along the regression line, resulting in an R value
approximately equal to 1.

(a) (b) (c)

(d) (e)

Figure 4. The statistical dynamics of the analyzed model comprise (a) a comparison, (b)
the mean squared error, (c) regression analysis, (d) an error histogram, and (e) the ANN’s
training performance fit.

As demonstrated in Figure 6a, the ANN approach is applied separately from the AB method, which
is used for numerically approximating the fractional-order differential equations. At epoch 413, the
analyzed model achieves a mean squared error of 5.0769e−13, as illustrated in Figure 6b. The training
progression is displayed in Figure 6c, while the error histogram, highlighting the best result of −6.2e−
08, is presented in Figure 6d. Figure 6e provides the optimal fit for training and testing datasets and
their associated errors. The regression analysis for the model, encompassing all testing and training
datasets, is shown in Figure 7. The results confirm that the model has been accurately trained, with
data points aligning clearly along the regression line, yielding an R value close to 1.
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Figure 5. ANN-based regression was dynamically implemented to model the system’s
behavior being analyzed.

(a) (b) (c)

(d) (e)

Figure 6. The statistical dynamics of the analyzed model comprise (a) a comparison, (b)
the mean squared error, (c) regression analysis, (d) an error histogram, and (e) the ANN’s
training performance fit.
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Figure 7. ANN-based regression was dynamically implemented to model the system’s
behavior being analyzed.

(a) (b) (c)

(d) (e)

Figure 8. The statistical dynamics of the analyzed model comprise (a) a comparison, (b)
the mean squared error, (c) regression analysis, (d) an error histogram, and (e) the ANN’s
training performance fit.
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As depicted in Figure 8a, the ANN approach is implemented independently, while the AB method
is used for the numerical approximation of fractional-order differential equations. At epoch 216, the
model’s performance achieves a mean squared error of 2.5092e − 13, as presented in Figure 8b. The
training progression is illustrated in Figure 8c, while the error histogram, yielding the best result of
−1.2e − 07, is shown in Figure 8d. Figure 8e displays the optimal fit for training and testing datasets
and their respective errors. Regression results for the complete dataset and training and testing subsets
are shown in Figure 9. The results confirm the model’s accurate training, with data points aligning
closely along the regression line, resulting in an R value approximately equal to 1.

Figure 9. ANN-based regression was dynamically implemented to model the system’s
behavior being analyzed.

5. Conclusions

This study provides a comprehensive investigation into water quality management through a
four-compartment fractional model incorporating the generalized ABC fractional operator. The
compartmental dynamics are analyzed across different fractional orders, demonstrating the flexibility
of varying the derivative order in modeling pollutant transport. The existence and uniqueness of
solutions are established using the fixed-point approach, while UH stability methods confirm the
model’s stability. Additionally, approximate solutions are derived using the AB technique, ensuring
computational efficiency. The study examines the effects of fractional orders and iterative intervals
under diverse initial conditions, providing graphical comparisons against the integer-order case. The
results indicate that lower fractional orders exhibit more stable behavior, whereas higher fractional
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orders amplify pollutant transport dynamics, leading to prolonged contamination effects. Stability
remains consistent at lower fractional orders but gradually diminishes as fractional order increases.
Furthermore, integrating ANNs enables efficient dataset partitioning, facilitating training, testing, and
validation while allowing for a comprehensive analysis of dataset characteristics and pollution trends.
Compared to traditional integer-order models, the ABC fractional derivative provides a more accurate
representation of memory effects in pollutant transport, making it highly effective for long-term
contamination modeling. These findings emphasize the importance of fractional modeling in
capturing persistent pollution dynamics, demonstrating its potential for enhancing real-world water
quality management strategies.
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