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Abstract: This paper proposes a hybrid control strategy that combines aperiodic intermittent control
(APIC) and event-triggered impulsive control (ETIMC) to study the finite-time stabilization (FTS)
and finite-time convergence stabilization (FTCS) problems for nonlinear systems with partially known
states. By applying the Lyapunov control criterion, linear matrix inequality (LMI) conditions, and
dimension extension techniques, impulsive control gains based on partially known states are derived,
and sufficient conditions to achieve FTS and FTCS are provided. Within the hybrid control framework,
a close relationship between event-triggered parameters, intermittent control width, and boundary
parameters is established, effectively avoiding the occurrence of Zeno-behavior. Finally, two numerical
examples are presented to validate the effectiveness of the proposed hybrid control method.
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1. Introduction

In recent years, nonlinear systems have become a research hotspot in control theory due to
their theoretical significance and practical applications in the synchronization of networked systems,
digital signal processing, and stabilization of dynamical systems (see e.g., [1–4]). Among the many
research directions of nonlinear systems, the problems of finite-time stabilization (FTS) and finite-time
convergence stabilization (FTCS) have aroused widespread attention. FTS emphasizes that the system
state will stabilize within a bounded region that is larger than the range of the initial state in a finite
time (see e.g., [5–8]), while FTCS further emphasizes that the system state can converge to a bounded
region smaller than the initial state range within a specified time (see e.g., [9–11]).

In engineering practice, control signals are crucial for maintaining the desired state of complex
systems. Traditionally, continuous control strategies have been predominantly employed. However, as
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an innovative discontinuous control strategy, intermittent control (IC) offers significant advantages over
continuous strategies. IC divides the time between two adjacent control signals into a “control interval”
(operation) and a “rest interval” (no operation), thereby reducing redundant and unnecessary control
actions and extending the lifespan of the equipment. Depending on whether the control signal is applied
at fixed time intervals, IC can be classified into periodic intermittent control (PIC) (see e.g., [12, 13])
and aperiodic intermittent control (APIC) (see e.g., [14–19]). In [13], the Halanay inequality and
PIC were used to handle differential inequalities, thus successfully achieving the stability of highly
nonlinear stochastic coupled systems. The theoretical results not only encompassed previous findings,
but also provided theoretical support for the design and analysis in the field of nonlinear stochastic
systems. However, the fact that the control signals in PIC are predefined and unchangeable restricts
its flexibility for different applications. Therefore, a more flexible APIC is proposed, which adjusts
the starting time sequence and control width to achieve a more efficient control. In [17], the input-
to-state stability (ISS) of semi-linear systems was achieved through APIC, and the results indicated
that the width of the control interval has a positive impact on the ISS of the system. In [19], further
research on APIC led to the following conclusions: PIC and time-triggered APIC both belong to strong
control schemes and achieve system stability more quickly than event-triggered APIC. However, event-
triggered IC outperforms time-triggered IC in terms of the control number, control cost, and control
rate. From the studies reported above, it is clear that APIC is a very powerful control tool.

In addition, impulsive control (IMC) is a discontinuous control method with extensive
applications across diverse sectors including communication systems, automation, and aerospace (see
e.g., [20–24]). Its main characteristic is the use of short-duration, high-intensity control inputs at
specific discontinuous moments to regulate the system behavior. Traditional impulse sequences (IMS)
are typically preset and essentially act as a time-triggered mechanism. However, unnecessary impulsive
actions may occur during information transmission, thus resulting in a low control performance.
Recently, event-triggered impulsive control (ETIMC) has emerged as a new research approach that
combines event-triggered control (ETC) with IMC (see e.g., [25–27]). ETC is a mechanism that
triggers control actions based on changes in the system state, rather than relying on fixed time intervals.
In this way, the IMS in ETIMC is dynamically determined by an event-triggered mechanism (ETM),
which closely links IMC to the system state. In [28], three event-triggered conditions were designed
to achieve synchronization in chaotic dynamical systems. Similarly, in [29], a novel switching ETIMC
was proposed, and an appropriate Lyapunov function was constructed to achieve quasi-synchronization
in memristive neural networks with communication delays. Furthermore, in [30], a distributed ETIMC
method was developed and was used to investigate the leader-following consensus problem in multi-
agent systems. These control methods not only achieve a state consensus, but also effectively reduce
the resource consumption.

It should be noted that a obtaining a complete system state in practical applications is often
challenging due to external disturbances and technical limitations. Therefore, the design and
implementation of control strategies based on the system state must fully take these practical difficulties
into account. To address situations where only partially states is available, in [31], the problem of
synchronization of neural networks with unmeasurable states was investigated using observers and
state-feedback control to explore two scenarios: Unmeasurable states in the drive neural network and
unmeasurable states in the response neural network. In [32], a dimensionality reduction technique was
applied to separate known and unknown states, and the exponential stability of a switching system
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with partially unmeasurable states was achieved through a state feedback control. It is worth noting
that the methodology to achieve FTS and FTCS in nonlinear systems with partially known states is still
a complex problem and is insufficiently explored.

Based on the previous discussion, this paper proposes a novel hybrid control strategy that combines
APIC and ETIMC to address the FTS and FTCS problems of nonlinear systems with partially known
states. The key contributions of this paper are outlined below:

(i) In the case of mismatched dimensions between the known and unknown states, we discuss two
scenarios. By using dimension extension techniques, the dimensions of the known and unknown states
are made equal, thereby facilitating the effective application of the results.

(ii) We design a targeted impulsive control strategy that uses information from the known states to
design impulsive control gains for the unknown states, thereby achieving state transitions at impulse
moments and ensuring that the system meets the desired performance.

(iii) Within the framework of FTS and FTCS, a close relationship is established between the event-
triggered parameters, the intermittent control width, and the boundary parameters, thus preventing the
occurrence of Zeno-behavior and ensuring the effectiveness and feasibility of the novel hybrid control
strategy.

The paper is structured as follows: Section 2 introduces some necessary prerequisites; Section 3
focuses on several key conclusions and presents some critical conditions to support the FTS and
the FTCS; Section 4 verifies the proposed conclusions using two simulation examples; and finally,
Section 5 concludes the paper by summarizing the main content.

Notations: Let R and N signify the sets of real numbers and natural numbers, respectively. Rn and
Rn×m denote the n-dimensional real space and the n × m-dimensional real space, respectively. λmax(A)
and λmin(A) represent the maximum and minimum eigenvalues of matrix A, respectively. A > 0 (or
A < 0) denotes that A is a symmetric positive definite (or negative definite) matrix. I and O denote the
identity matrix and the zero matrix of appropriate dimensions, respectively. ? denotes the symmetric
block of a symmetric matrix. PC([−τ, 0],Rn) denotes the set of right-continuous piecewise functions
φ : [−τ, 0] → Rn with the norm defined as ‖φ‖τ = sup−τ≤s≤0 ‖φ(s)‖. C(S , L) denotes the family of
continuous functions ϑ : S → L. For ϑ(t) ∈ C(S , L), D+ϑ denotes the upper right-hand Dini derivative:
D+ϑ(t) = lim

M→0+
(sup(ϑ(t+ M) − ϑ(t)))/ M.

2. Model description and preliminaries

Consider the following nonlinear time-delay system:{
ẋ(t) = Ax(t) + BF(x(t − τ)) + Cu(t), t ≥ 0,
x(s) = ψ(s), s ∈ [−τ, 0] ,

(2.1)

where x(t) ∈ Rn denotes the system state, and ẋ (t) denotes the right-hand derivative of x(t). τ is time
delay, which is constant, and ψ ∈ PC[(−τ, 0),Rn]. A and B ∈ Rn×n are system matrices. The function
F(x) = ( f1 (x1) , f2 (x2) , · · · , fn (xn))T : Rn → Rn, fi (0) = 0, and positive constant li meets

‖ fi (z)‖ ≤ li ‖z‖ ,∀z ∈ R, i = 1, 2, · · · , n.
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C ∈ Rn×r is the coefficient matrix, and u(t) is APIC, which is characterized as follows:

u(t) =

−Zx (t) , t ∈ [tk, tk + δk) ,
0, t ∈ [tk + δk, tk+1) ,

(2.2)

where Z ∈ Rr×n is the gain matrix of APIC, {tk : k ∈ N+} = {tk} is the IMS, as determined by the
ETIMC devised later, and δk represents the control width of the APIC, which satisfies the relation
0 < δk < tk+1 − tk. It is worth noting that controller (2.2) only carries out the input of the control signals
in the control interval.

Upon introducing APIC (2.2) into system (2.1), one obtains the following:
ẋ(t) = (A − K)x(t) + BF(x(t − τ)), t ∈ [tk, tk + δk),
ẋ(t) = Ax(t) + BF(x(t − τ)), t ∈ [tk + δk, tk+1),
x(s) = ψ(s), s ∈ [−τ, 0],

(2.3)

where K = CZ.
Disturbances in the external environment, limitations in measurement techniques, and the

complexity of the system structure make it possible that the states of a nonlinear system may not
be completely known. In view of this, assume that system (2.3) has m known states, where 0 < m < n.
Let Ω1 = { 1, 2, . . . , m} and Ω2 = { m+1, m+2, . . . , n} denote the set of subscripts of the known
states and the set of subscripts of the unknown states, respectively. By a transition matrix J to make
y = Jx = (x 1 , x 2 , . . . , x n)

T , then system (2.3) is transformed into the following:
ẏ(t) = (Ay − Ky)y(t) + ByF(y(t − τ)), t ∈ [tk, tk + δk),
ẏ(t) = Ayy(t) + ByF(y(t − τ)), t ∈ [tk + δk, tk+1),
y(s) = ψy(s), s ∈ [−τ, 0],

(2.4)

where Ay = JAJ−1, Ky = JKJ−1, By = JBJ−1, ψy = Jψ, y = (y1, y2)T , and y1 ∈ R
m and y2 ∈ R

n−m

represent the portions that correspond to the known states and unknown states, respectively.

Remark 2.1. In recent years, hybrid control methods that combine APIC and ETIMC have been
explored in [25–30]. However, these methods presuppose that the state information of the system
is completely known. As a result, these aforementioned methods become inapplicable when only the
partial state information is available. In this paper, we integrate APIC with ETIMC to study the
FTS and FTCS of system (2.4), thereby extending the existing results. Specifically, we address two
scenarios: one where the number of known states is greater than or equal to the number of unknown
states, and the other where the number of known states is less than the number of unknown states.

Definition 2.1. [9] For the given positive constants T , %1, and %2, where 0 < %1 < %2, system (2.4) is
said to be FTS with respect to (w.r.t.) (T , %1, %2) if there exists a controller such that, given ||y(0)|| ≤ %1,
the trajectory of system (2.4) satisfies ||y(t)|| ≤ %2 for all t ∈ [0,T ]. Moreover, under the above
conditions, if there exist positive constants T ′ and % such that 0 < T ′ < T and 0 < % < %1 < %2, and
the trajectory of system (2.4) satisfies ||y(t)|| ≤ % for t ∈ [T − T ′,T ], then system (2.4) is said to be
FTCS w.r.t. (T , %1, %2, %,T

′).

Remark 2.2. According to [9, 25], FTS describes the “boundedness” of a system whose state is
stabilized in a bounded region that is larger than the initial state range for a finite period of time.
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In contrast, FTCS emphasizes that the system trajectory must remain within a smaller region than the
initial boundary for a defined period time. In other words, FTCS not only reflects the “boundedness”
of the system, but also demonstrates the “contraction” of the system.

Lemma 2.1. [33] For t ∈ (−τ,+∞) , if the continuous function y ≥ 0 meets

ẏ(t) = αy(t) + βy(t − τ), α, β > 0, t ≥ 0,

then

y(t) ≤ ‖y(0)‖ e(α+β)t.

Lemma 2.2. [34] For any real matrices G > 0 and scalar ι > 0, the following relevant inequality
holds:

ST
1S2 + ST

2S1 ≤ ιS
T
1GS1 + ι−1ST

2G
−1S2. (2.5)

Lemma 2.3. [35] For a given symmetric matrixM =

[
M11 M12

MT
12 M22

]
, whereM11 ∈ R

s×s, the following

three conditions are equivalent:

(i) M < 0,
(ii) M22 < 0,M11 −M12M

−1
22M

T
12 < 0,

(iii) M11 < 0,M22 −M
T
12M

−1
11M12 < 0.

3. Main results

Since there are partially unknown states in system (2.4), the designed ETM can only rely on the
partially known states. Based on this, the corresponding ETM design scheme is proposed:

tk+1 = min{t�k+1, t
∗
k+1},

t∗k+1 = inf{t > tk + δk : ℵk ≥ 0},
(3.1)

the forced impulse sequence (FIMS) {t�k } satisfies

t�k+1 − t�k = ∆ > 0, (3.2)

and the event-triggered function

ℵk = V1(t) − eakV1(tk + δk),

where V1(t) denotes the Lyapunov function, which depends on the known state y1. ∆ stands for the
forced impulse interval, which is usually set to a sufficiently large constant. ak > 0 represents the
parameters of the ETM.

Remark 3.1. Zeno-behavior occurs when the designed trigger condition is continuously satisfied. To
prevent Zeno-behavior, a uniform positive lower bound should be set for the impulse intervals (see
e.g., [25, 36, 37]). Combining (2.2) and (3.2), it follows that 0 < δk < tk+1 − tk ≤ ∆. Let δ = inf

k∈N
{δk};

then 0 < δ < tk+1 − tk ≤ ∆, thereby excluding Zeno-behavior in the ETIMC.
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Remark 3.2. Figure 1 shows the cyclic process of hybrid control, where dashed and solid lines
represent discrete and continuous signals in the system, respectively. The ETM is used to detect
whether predefined events occur. When ℵk ≥ 0, the predefined event occurs, and the system receives
the transmission value y(t−k ). After calculation by the impulsive generator, y(t+

k ) is transmitted to the
system. At this point, the system will enter the next cycle in accordance with the revised data conditions.
When ℵk < 0, the predefined event does not occur, and no signal is transmitted to the system. Figure 2
presents the framework of hybrid control, which introduces forced impulse instants on top of traditional
impulse signal release, aiming to prevent the ETM from remaining inactive for an extended period, thus
ensuring the system meets the desired performance objectives.

Figure 1. The cyclic process of hybrid control.

Figure 2. The framework of hybrid control.

Next, we will discuss the FTS and FTCS in system (2.4) under a hybrid control in two cases based
on the quantitative relationship between the known and unknown states.

3.1. The number of known states is greater than or equal to the number of unknown states

When m ≥ n − m, let y = (y1, y2)T , where y1 = (y1
1, y

2
1)T , y1

1 = (x 1 , x 2 , · · · , x n−m)T ∈ Rn−m, y2
1 =

(x n−m+1 , x n−m+2 , · · · , x m)T ∈ R2m−n, y2 = (x m+1 , x m+2 , · · · , x n)
T ∈ Rn−m. F = (F1, F2)T , where F1 =

(F1
1 , F

2
1)T , F1

1 = ( f (x 1), f (x 2), · · · , f (x n−m))T ∈ Rn−m, F2
1 = ( f (x n−m+1), f (x n−m+2), · · · , f (x m))T ∈ R2m−n,

F2 = ( f (x m+1), f (x m+2), · · · , f (x n))
T ∈ Rn−m. Then, system (2.4) is given as follows:
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ẏ(t) =



A11 A12 A13

A21 A22 A23

A31 A32 A33

 −

K11 K12 K13

K21 K22 K23

K31 K32 K33




y1

1(t)
y2

1(t)
y2(t)

 +


B11 B12 B13

B21 B22 B23

B31 B32 B33



F1

1
F2

1
F2

 , t ∈ [tk, tk + δk),

ẏ(t) =


A11 A12 A13

A21 A22 A23

A31 A32 A33



y1

1(t)
y2

1(t)
y2(t)

 +


B11 B12 B13

B21 B22 B23

B31 B32 B33



F1

1
F2

1
F2

 , t ∈ [tk + δk, tk+1),

y(s) = ψy(s), s ∈ [−τ, 0],
(3.3)

where y1
1, y

2
1 ∈ y1, y1 is the known state, and y2 is the unknown state.

For m > n − m, as shown in Figure 3, we construct an augmentation term to make the number
of known states equal to the number of unknown states. Let ȳ = (ȳ1, ȳ2)T , ȳ1 = y1 = (y1

1, y
2
1)T , ȳ2 =

(y2, y2
1)T , F̄ = (F̄1, F̄2)T , F̄1 = F1, and F̄2 = (F2, F2

1)T . ȳ1 and ȳ2 represent the known and unknown
parts of the states, respectively, and both have the same dimension. For m = n − m, system (3.3) does
not perform a dimensional expansion and directly obtains ȳ1 = y1 , ȳ2 = y2, F̄1 = F1, and F̄2 = F2.
Hence, system (3.3) with ETIMC is updated as follows:

˙̄y(t) = (Ā − K̄)ȳ(t) + BF̄(y(t − τ)), t ∈ [tk, tk + δk),
˙̄y(t) = Āȳ(t) + BF̄(y(t − τ)), t ∈ [tk + δk, tk+1),
ȳ1(t) = G1ȳ1(t−), t = tk,

ȳ2(t) = G2ȳ1(t−), t = tk,

ȳ(t0 + s) = ψ̄(s), s ∈ [−τ, 0],

(3.4)

where

Ā =

(
Ā11 Ā12

Ā21 Ā22

)
, Ā11 =

(
A11 A12

A21 A22

)
, Ā12 =

(
A13 O1

A23 O2

)
, Ā21 =

(
A31 A32

A21 A22

)
,

Ā22 =

(
A33 O1

A23 O2

)
, K̄ =

(
K̄11 K̄12

K̄21 K̄22

)
, K̄11 =

(
K11 K12

K21 K22

)
, K̄12 =

(
K13 O1

K23 O2

)
,

K̄21 =

(
K31 K32

K21 K22

)
, K̄22 =

(
K33 O1

K23 O2

)
, B̄ =

(
B̄11 B̄12

B̄21 B̄22

)
, B̄11 =

(
B11 B12

B21 B22

)
,

B̄12 =

(
B13 O1

B23 O2

)
, B̄21 =

(
B31 B32

B21 B22

)
, B̄22 =

(
B33 O1

B23 O2

)
,

G1,G2 ∈ R
m×m, O1 ∈ R

(n−m)×(2m−n), O2 ∈ R
(2m−n)×(2m−n).

Figure 3. Extend the number of unknown states.
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Remark 3.3. Unlike traditional impulsive controllers, which assume that all the system states are
known, our design relies only on the partially known states at the impulsive moments. In other words,
the impulsive jumps of the unknown states ȳ2 are adjusted based on the known states ȳ1.

Therefore, the analysis of the FTS and FTCS problems for system (2.1) is transformed into the
analysis of the FTS and FTCS for system (3.4). For system (3.4), the IMS {tk} is dynamically
determined by ETM (3.1), where V1(t) = ȳT

1 (t)P1ȳ1(t), and P1 ∈ R
m×m is a positive definite matrix.

In the following, we will show that system (3.4) is the FTS and FTCS.

Theorem 3.1. Suppose there exist m × m real matrices P1 > 0, P2 > 0, 2m × 2m real diagonal
matrices Q, M, m × m real matrices S 1, S 2, and positive constants α1, α2, β1, β2, ξ1, ξ2, T > T ′ > 0,
%2 > %1 > % > 0, and ~ > 1, satisfying the following:

(I1)
(
HĀ + ĀT H − α1H − N − NT HB̄

? −Q

)
≤ 0,

(I2)
(
HĀ + ĀT H − α2H HB̄

? −M

)
≤ 0,

(I3)


−~P1 S 1 S 2

? −P1 0
? ? −P2

 ≤ 0,

(I4) ξ1I ≤ H ≤ ξ2I,

(I5) N(0, t) ln ~ +
N(0,t)∑

i=0
ai + (α2 + β2)tN(0,t)+1 − (α2 + β2 − (α1 + β1))

N(0,t)∑
i=0

δi ≤ ln(ξ1%
2
2) − ln(ξ2%

2
1),

where H =

(
P1 + P2 −P2

−P2 P2

)
, L = diag

{
l 1 , · · · , l n , l n−m+1 , · · · , l m

}
, β1 = λmax(LQLH−1), β2 =

λmax(LMLH−1). Then, system (3.4) is FTS w.r.t (T , %1, %2) under a hybrid control. Furthermore, if
t ∈ [T − T ′,T ], and

(I6) N(0, t) ln ~ +
N(0,t)∑

i=0
ai + (α2 + β2)tN(0,t)+1 − (α2 + β2 − (α1 + β1))

N(0,t)∑
i=0

δi ≤ ln(ξ1%
2) − ln(ξ2%

2
1)

holds, then system (3.4) is FTCS w.r.t (T , %1, %2, %,T
′) under a hybrid control. Besides, N(0, t)

delegates the number of control periods on [0,T ], T , tk. The IMC gain matrices G1 and G2 are
given by G1 = P−1

1 S T
1 , G2 = P−1

1 S T
1 + P−1

2 S T
2 , and the APIC gain matrix is given by K̄ = H−1N.

Proof. For the given 0 ≤ ‖y(0)‖ ≤ %1, let y(t) = y(t, 0, ψ) be the solution of system (3.4) through (0, ψ).
Construct a Lyapunoov function as follows:

V(t) = V1(t) + V2(t) = ȳT (t)Hȳ(t), (3.5)

where V1 = ȳT
1 (t)P1ȳ1(t), V2 = ȳ2(t) − ȳ1(t))T P2(ȳ2(t) − ȳ1(t)).

For t ∈ [tk, tk + δk), k ∈ N, one obtains the following:

V̇(t) = 2ȳT (t)H ˙̄y(t)

= ȳT (t)(H(Ā − K̄) + (Ā − K̄)T H)ȳ(t) + 2ȳT (t)HB̄F̄(y(t − τ))
≤ ȳT (t)(HĀ + ĀT H − N − NT + HB̄Q−1B̄T H)ȳ(t) + ȳT (t − τ)LQLȳ(t − τ)
≤ α1V(t) + β1V(t − τ),

(3.6)
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where β1 = λmax(LQLH−1), N = HK̄. From Lemma 2.1, one has the following:

V(t) ≤ V(tk)e(α1+β1)(t−tk), t ∈ [tk, tk + δk) . (3.7)

When t ∈ [tk + δk, tk+1), k ∈ N, the following holds:

V̇(t) = 2ȳT (t)H ˙̄y(t)
= ȳT (t)(HĀ + ĀT H)ȳ(t) + 2ȳT (t)HB̄F̄(y(t − τ))
= ȳT (t)(HĀ + ĀT H + HB̄M−1B̄T H)ȳ(t) + ȳT (t − τ)LMLȳ(t − τ)
≤ α2V(t) + β2V(t − τ),

(3.8)

where β2 = λmax(LMLH−1). From Lemma 2.1, one obtains the following:

V(t) ≤ V(tk + δk)e(α2+β2)(t−tk−δk), t ∈ [tk + δk, tk+1) . (3.9)

Moreover, when t = tk, k ∈ N+, the following holds:

V(tk) = ȳT (tk)Hȳ(tk)
= ȳT

1 (tk)P1ȳ1(tk) + (ȳ2(tk) − ȳ1(tk))T P2(ȳ2(tk) − ȳ1(tk))
= ȳT

1 (t−k )GT
1 P1G1ȳ1(t−k ) + ȳT

1 (t−k )(G2 −G1)T P2(G2 −G1)ȳ1(t−k )
≤ ~ȳ1

T (t−k )P1ȳ1(t−k )
≤ ~V(t−k ).

(3.10)

In fact, when t ∈ [0, δ0), from (3.7), one obtains the following:

V(t) ≤ V(0)e(α1+β1)t. (3.11)

Therefore,

V(δ0) ≤ V(0)e(α1+β1)δ0 . (3.12)

For t ∈ [δ0, t1), combining (3.1) and (3.12), the following holds:

V(t) ≤ V1(t) + V(t)
≤ ea0V1(δ0) + V(δ0)e(α2+β2)(t−δ0)

≤ V(0)ea0+(α2+β2)t−(α2+β2−(α1+β1))δ0 ,

(3.13)

and

V(t−1 ) ≤ V(0)ea0+(α2+β2)t1−(α2+β2−(α1+β1))δ0 . (3.14)

Next, we will claim that

V (t) ≤

 ~
kV(0)e

k−1∑
i=0

ai+(α2+β2)(tk−
k−1∑
i=0

δi)+(α1+β1)(
k−1∑
i=0

δi+t−tk)
, t ∈ [tk, tk + δk),

~kV(0)e
k∑

i=0
ai+(α2+β2)t−(α2+β2−(α1+β1))

k∑
i=0
δi
, t ∈ [tk + δk, tk+1).

(3.15)
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For t ∈ [t1, t1 + δ1), combining (3.7), (3.10), and (3.14), one has the following:

V(t) ≤ V(t1)e(α1+β1)(t−t1)

≤ ~V(t−1 )e(α1+β1)(t−t1)

≤ ~V(0)ea0+(α2+β2)(t1−δ0)+(α1+β1)(δ0+t−t1),

(3.16)

and

V(t1 + δ1) ≤ ~V(0)ea0+(α2+β2)(t1−δ0)+(α1+β1)(δ0+δ1). (3.17)

For t ∈ [t1 + δ1, t2), combining (3.9) and (3.17), yields the following:

V(t) ≤ V1(t) + V(t)
≤ ea1V1(t1 + δ1) + V(t1 + δ1)e(α2+β2)(t−t1−δ1)

≤ ~V(0)ea0+a1+(α2+β2)t−(α2+β2−(α1+β1))(δ0+δ1),

(3.18)

and

v(t−2 ) ≤ ~V(0)ea0+a1+(α2+β2)t2−(α2+β2−(α1+β1))(δ0+δ1). (3.19)

Thus, (3.15) holds for k = 1. Assume that (3.15) holds for k = l. When t ∈ [tl, tl+1), it holds that

V (t) ≤

 ~
lV(0)e

l−1∑
i=0

ai+(α2+β2)(tl−
l−1∑
i=0
δi)+(α1+β1)(

l−1∑
i=0
δi+t−tl)

, t ∈ [tl, tl + δl),

~lV(0)e
l∑

i=0
ai+(α2+β2)t−(α2+β2−(α1+β1))

l∑
i=0
δi
, t ∈ [tl + δl, tl+1).

(3.20)

Then, we will show that (3.15) holds for k = l + 1. From (3.20), we have the following:

v(t−l+1) ≤ ~lV(0)e
l∑

i=0
ai+(α2+β2)tl+1−(α2+β2−(α1+β1))

l∑
i=0
δi
. (3.21)

Therefore, when t ∈ [tl+1, tl+1 + δl+1), we derive

V(t) ≤ V(tl+1)e(α1+β1)(t−tl+1)

≤ ~v(t−l+1)e(α1+β1)(t−tl+1)

≤ ~l+1V(0)e
l∑

i=0
ai+(α2+β2)(tl+1−

l∑
i=0
δi)+(α1+β1)(

l∑
i=0
δi+t−tl+1)

,

(3.22)

and

V(tl+1 + δl+1) ≤ ~l+1V(0)e
l∑

i=0
ai+(α2+β2)(tl+1−

l∑
i=0
δi)+(α1+β1)

l+1∑
i=0
δi
. (3.23)

For t ∈ [tl+1 + δl+1, tl+2), combining (3.9) and (3.23), one obtains the following:

V(t) ≤ V1(t) + V(t)
≤ eal+1V1(tl+1 + δl+1) + V(tl+1 + δl+1)e(α2+β2)(t−tl+1−δl+1)

≤ ~l+1V(0)e
l+1∑
i=0

ai+(α2+β2)t−(α2+β2−(α1+β1))
l+1∑
i=0
δi
.

(3.24)
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This is, (3.15) is satisfied for k = l + 1. Therefore, (3.15) holds for all k ∈ N(0, t). It holds that

V(t) ≤ V(0)e
N(0,t) ln ~+

N(0,t)∑
i=0

ai+(α2+β2)tN(0,t)+1−(α2+β2−(α1+β1))
N(0,t)∑
i=0

δi
, ∀t ∈ [0,T ]. (3.25)

By (I4) and (I5), we can easily obtain the following:

ξ1 ‖ȳ(t)‖2 ≤ V(t) ≤ ξ2 ‖ȳ(0)‖2 e
N(0,t) ln ~+

N(0,t)∑
i=0

ai+(α2+β2)tN(0,t)+1−(α2+β2−(α1+β1))
N(0,t)∑
i=0

δi

≤ ξ1%
2
2,

(3.26)

which signifies ‖y(t)‖ ≤ %2; thus, ‖y(t)‖ ≤ %2 holds on [0,T ]. Therefore, system (3.4) is FTS, meaning
that system (2.1) can achieve FTS under a hybrid control. When t ∈ [T − T ′,T ], if (I5) is satisfied,
then from (3.25), we have the following:

ξ1 ‖ȳ(t)‖2 ≤ V(t) ≤ ξ2 ‖ȳ(0)‖2 e
N(0,t) ln ~+

N(0,t)∑
i=0

ai+(α2+β2)tN(0,t)+1−(α2+β2−(α1+β1))
N(0,t)∑

i=0
δi

≤ ξ1%
2,

(3.27)

which shows that ‖y(t)‖ ≤ %, for all t ∈ [T − T ′,T ]. Therefore, system (3.4) is the FTCS, that is,
system (2.1) can achieve FTCS under a hybrid control. �

3.2. The number of known states is less than the number of unknown states

When m < n − m, let y = (y1, y2)T , where y1 = (x 1 , x 2 , · · · , x m)T ∈ Rm, y2 = (y1
2, y

2
2)T ,

y1
2 = (x m+1 , x m+2 , · · · , x 2m)T ∈ Rm, y2

2 = (x 2m+1 , x 2m+2 , · · · , x n)
T ∈ Rn−2m. F = (F1, F2)T , where

F1 = ( f (x 1), f (x 2), · · · , f (x m))T ∈ Rm, F2 = (F1
2 , F

2
2)T , F1

2 = ( f (x m+1), f (x m+2), · · · , f (x 2m))T ∈ Rm,
F2

2 = ( f (x 2m+1), f (x 2m+2), · · · , f (x n))
T ∈ Rn−2m. Then, system (2.4) is given as follows:

ẏ(t) =



A11 A12 A13

A21 A22 A23

A31 A32 A33

 −

K11 K12 K13

K21 K22 K23

K31 K32 K33




y1

y1
2

y2
2

 +


B11 B12 B13

B21 B22 B23

B31 B32 B33



F1

F1
2

F2
2

 , t ∈ [tk, tk + δk),

ẏ(t) =


A11 A12 A13

A21 A22 A23

A31 A32 A33



y1

y1
2

y2
2

 +


B11 B12 B13

B21 B22 B23

B31 B32 B33



F1

F1
2

F2
2

 , t ∈ [tk + δk, tk+1),

y(s) = ψy(s), s ∈ [−τ, 0],
(3.28)

where y1 is the known state, y1
2, y

2
2 ∈ y2, and y2 is the unknown state. For m < n − m, as shown in

Figure 4, we construct an augmentation term to make the number of known states equal to the number
of unknown states. Expending the dimension of y1 with x m , it leads to ỹ1 = (y1, ŷ)T , F̃1 = (F1, F̂)T ,
where ŷ = (x m , x m , · · · , x m)T ∈ Rn−2m, and F̂ = ( f (x m), f (x m), · · · , f (x m))T ∈ Rn−2m. Let ỹ = (ỹ1, ỹ2)T ,
ỹ1 = (y1, ŷ)T , ỹ2 = y2, F̃ = (F̃1, F̃2)T , F̃1 = (F1, F̂)T , and F̃2 = F2. ỹ1 and ỹ2 denote the known and
unknown parts of the states, respectively, with the same dimension. System (3.28) with ETIMC is
updated as follows: 

˙̃y(t) = (Ã − K̃)ỹ(t) + BF̃(y(t − τ)), t ∈ [tk, tk + δk),
˙̃y(t) = Ãỹ(t) + BF̃(y(t − τ)), t ∈ [tk + δk, tk+1),
ỹ1(t) = G1ỹ1(t−), t = tk,

ỹ2(t) = G2ỹ1(t−), t = tk,

ỹ(t0 + s) = ψ̃(s), s ∈ [−τ, 0],

(3.29)
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where

Ã =

(
Ã11 Ã12

Ã21 Ã22

)
, Ã11 =

(
A11 O1

Â1 O2

)
, Ã12 =

(
A12 A13

Â2 Â3

)
, Ã21 =

(
A21 O1

A31 O2

)
,

Ã22 =

(
A22 A23

A32 A33

)
, K̃ =

(
K̃11 K̃12

K̃21 K̃22

)
, K̃11 =

(
K11 O1

K̂1 O2

)
, K̃12 =

(
K12 K13

K̂2 K̂3

)
,

K̃21 =

(
K21 O1

K31 O2

)
, K̃22 =

(
K22 K23

K32 K33

)
, B̃ =

(
B̃11 B̃12

B̃21 B̃22

)
, B̃11 =

(
B11 O1

B̂1 O2

)
,

B̃12 =

(
B12 B13

B̂2 B̂3

)
, B̃21 =

(
B21 O1

B31 O2

)
, B̃22 =

(
B22 B23

B32 B33

)
,

Â1 =


am,1 · · · am,m
... · · ·

...

am,1 · · · am,m

 , Â2 =


am,m+1 · · · am,2m
... · · ·

...

am,m+1 · · · am,2m

 , Â3 =


am,2m+1 · · · am,n

... · · ·
...

am,2m+1 · · · am,n

 ,
K̂1 =


km,1 · · · km,m
... · · ·

...

km,1 · · · km,m

 , K̂2 =


km,m+1 · · · km,2m
... · · ·

...

km,m+1 · · · km,2m

 , K̂3 =


km,2m+1 · · · km,n
... · · ·

...

km,2m+1 · · · km,n

 ,
B̂1 =


bm,1 · · · bm,m
... · · ·

...

bm,1 · · · bm,m

 , B̂2 =


bm,m+1 · · · bm,2m
... · · ·

...

bm,m+1 · · · bm,2m

 , B̂3 =


bm,2m+1 · · · bm,n

... · · ·
...

bm,2m+1 · · · bm,n

 ,
G1,G2 ∈ R

(n−m)×(n−m), O1 ∈ R
m×(n−2m), O2 ∈ R

(n−2m)×(n−2m).

Figure 4. Extend the number of known states.
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Therefore, the analysis of the FTS and FTCS problems for system (2.1) is transformed into the
analysis of the FTS and FTCS for system (3.29). For system (3.29), the IMS {tk} is dynamically
determined by ETM (3.1). For ETM (3.1), take V1(t) = ỹT

1 (t)P1ỹ1(t), and P1 ∈ R
(n−m)×(n−m) is a positive

definite matrix. In the following, we will show that system (3.29) is the FTS and FTCS.

Theorem 3.2. Suppose there exist (n−m)× (n−m) real symmetric matrices P1 > 0, P2 > 0, 2(n−m)×
2(n − m) real diagonal matrices Q, M, (n − m) × (n − m) real matrices S 1, S 2, and positive constants
α1, α2, β1, β2, ξ1, ξ2, T > T ′ > 0, %2 > %1 > % > 0, and ~ > 1, satisfying the following:

(I7)
(
HÃ + ÃT H − α1H − N − NT HB̃

? −Q

)
≤ 0,

(I8)
(
HÃ + ÃT H − α2H HB̃

? −M

)
≤ 0,

(I9)


−~P1 S 1 S 2

? −P1 0
? ? −P2

 ≤ 0,

(I10) ξ1I ≤ H ≤ ξ2I,

(I11) N(0, t) ln ~ +
N(0,t)∑

i=0
ai + (α2 + β2)tN(0,t)+1 − (α2 + β2 − (α1 + β1))

N(0,t)∑
i=0

δi ≤ ln(ξ1%
2
2) − ln(ξ2%

2
1),

where H =

(
P1 + P2 −P2

−P2 P2

)
, L = diag

{
l 1 , · · · , l m , · · · , l m , l m+1 , · · · , l n

}
, β1 = λmax(LQLH−1), β2 =

λmax(LMLH−1). Then, system (3.29) is FTS w.r.t (T , %1, %2 ) under a hybrid control. Furthermore, if
t ∈ [T − T ′,T ], and

(I12) N(0, t) ln ~ +
N(0,t)∑

i=0
ai + (α2 + β2)tN(0,t)+1 − (α2 + β2 − (α1 + β1))

N(0,t)∑
i=0

δi ≤ ln(ξ1%
2) − ln(ξ2%

2
1)

holds, then system (3.29) is FTCS w.r.t (T , %1, %2, %,T
′) under a hybrid control. Besides, N(0, t)

delegates the number of control periods on [0,T ], T , tk. The IMC gain matrices G1 and G2 are
given by G1 = P−1

1 S T
1 , G2 = P−1

1 S T
1 + P−1

2 S T
2 , and the APIC gain matrix is given by K̃ = H−1N.

Proof. The proof process of Theorem 3.3 follows similarly to that of Theorem 3.1, which is omitted
here. �

Remark 3.4. The conditions (I5), (I6), (I11), and (I12) in Theorems 3.1 and 3.2 reveal the intricate
interplay between the control interval width, the event-triggered parameter, and the boundary
parameters. The results indicate that as the event-triggered parameter increases, the corresponding
value of the IMS also increases, which can lead to the failure of the ETM. As a result, the IMS is
entirely composed of the FIMS, thus preventing the system from reaching FTS and FTCS under the
given conditions. Additionally, the values of α2 and β2 must increase as the event-triggered parameter
and impulse sequence values increase to ensure that conditions (I5), (I6), (I11), and (I12) hold.

4. Numerical examples

To demonstrate the validity of the hybrid control method, two numerical examples are provided.
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Example 4.1. For system (2.1), where function f (xi) = 0.3(|0.85xi(t−τ)+2|−|0.85xi(t−τ)−2|), i = 1, 2,
τ = 0.5 and

A =

(
3.84 0

0 2.90

)
, B =

(
0.1 0
0 0.1

)
, C =

(
1 0
0 0.1

)
.

Now, consider system (2.1), where x2 is a known state, while x1 is unknown state. A transition
matrix J can be constructed such that the transformed states are expressed as y1 = x2, y2 = x1. The
transition matrix J, along with the transformed system matrices Ay and By , are given by the following:

J =

(
0 1
1 0

)
, Ay =

(
2.90 0

0 3.84

)
, By =

(
0.1 0
0 0.1

)
.

Let y(0) = [1, 1]T , and the parameters be %1 = 1.3, %2 = 2, T = 3. Based on the trajectories of
system (2.1), as shown in Figure 5, system (2.1) is not FTS w.r.t. (3,1.3,2) without hybrid control.
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Figure 5. State trajectories of system (2.1).

Since m = n − m = 1, there is no need to construct an augmentation term. Therefore, under the
hybrid control, system (2.1) is given as follows:

˙̄y(t) = (Ā − K̄)ȳ(t) + BF̄(t − τ), t ∈ [tk, tk + δk),
˙̄y(t) = Āȳ(t) + BF̄(t − τ), t ∈ [tk + δk, tk+1),
ȳ1(t) = G1ȳ1(t−), t = tk,

ȳ2(t) = G2ȳ1(t−), t = tk,

(4.1)

where ȳ1 = y1 and ȳ2 = y2 represent the known and unknown states, respectively. F̄1 = f (x2),
F̄2 = f (x1), Ā = Ay, and B̄ = By. Choose P1 = 2.4, P2 = 2.2, α1 = 1.5, α2 = 9.6, ~ = 1.04,
ξ1 = 1, and ξ2 = 3.5. Under condititions (I1)–(I3) of Theorem 3.1, using the MATLAB toolbox, one
can obtain the following:

K̄ =

(
10.08 12
−14 16.4

)
, G1 = 0.1056, G2 = 0.2207.
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Let ak = 8, δk = 1.3, and ∆ = 3; the ETM can be constructed by the following:

tk+1 = min{t∗k+1, tk + 3},
t∗k+1 = inf{t > tk + 1.3 : ȳT

1 P1ȳ1 ≥ e8(ȳT
1 P1ȳ1 + (ȳ2 − ȳ1)T P2(ȳ2 − ȳ1))}.

(4.2)

Therefore, the impulse instants are obtained as t1 = 1.3995, t2 = 2.7992, and t3 = 4.1989. Furthermore,
for t ∈ [0, 3], the IMS {tk} satisfies the following:

0.0392k +

k∑
i=0

ai + (α2 + β2)tk+1 − (α2 + β2 − (α1 + β1))
k∑

i=0

δi ≤ −0.3912, k = 1, 2, 3.

From Theorem 3.1, system (4.1) is FTS w.r.t (3,1.3,2) under the hybrid control strategy. For ȳ(0) =

[1.1, 1]T , the state trajectories of x1(t) and x2(t) are illustrated in Figure 6. Furthermore, let T ′ = 1,
% = 0.2; when t ∈ [T − T ′,T ], the IMS {tk} satisfies the following inequality:

0.0392k +

k∑
i=0

ai + (α2 + β2)tk+1 − (α2 + β2 − (α1 + β1))
k∑

i=0

δi ≤ −4.9964, k = 1, 2, 3.
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Figure 6. State trajectories of x1 and x2.

Moreover, according to Theorem 3.1, system (4.1) is FTCS w.r.t (3,1.3,2,0.2,1) under the hybrid
control strategy. Let ȳ(0) = [1.1, 1]T . Figure 7 illustrates the trajectory of the norm ‖x(t)‖ , while
Figure 8 depicts the trajectories of u1.
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Figure 7. Trajectory of ‖x(t)‖.
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Figure 8. IMC u1 of system (4.1).

Example 4.2. For system (2.1), where function f (xi) = 0.3(|0.85xi(t − τ) + 2| − |0.85xi(t − τ) − 2|), i =

1, 2, 3, τ = 0.5 and

A =


−9.01 1.57 5.9

0.3 −0.34 −7.83
−1.62 0 −1.1

 , B =


−0.1 0 0

0 −0.1 0
0 0 0.1

 , C =


1 0 0
0 0.1 0
0 0 0.1

 .
Now, consider system (2.1), where x3 is a known state, while x1 and x2 are unknown states. A

transition matrix J can be constructed such that the transformed states are expressed as y1 = xT
3 , y2 =

(x1, x2)T . The transition matrix J, along with the transformed system matrices Ay and By , are given by
the following:
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J =


0 0 1
1 0 0
0 1 0

 , Ay =


−1.1 −1.62 0
5.9 −9.01 1.57
−7.83 0.3 −0.34

 , By =


0.1 0 0
0 −0.1 0
0 0 −0.1

 .
Let y(0) = [0.1, 0.1, 0.1]T , and the parameters be %1 = 1.3, %2 = 2, T = 6. Based on the trajectories

of system (2.1), as shown in Figure 9, system (2.1) is not FTS w.r.t. (6,1.3,2) without a hybrid control.
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Figure 9. State trajectories of system (4.1).

Since m < n − m , we construct an augmentation term of y1 using the known state x3. Therefore,
under the hybrid control, system (2.1) is given as the following:

˙̃y(t) = (Ã − K̃)ỹ(t) + BF̃(t − τ), t ∈ [tk, tk + δk),
˙̃y(t) = Ãỹ(t) + BF̃(t − τ), t ∈ [tk + δk, tk+1),
ỹ1(t) = G1ỹ1(t−), t = tk,

ỹ2(t) = G2ỹ1(t−), t = tk,

(4.3)

where ỹ1 = (x3, x3)T and ỹ2 = (x1, x2)T are the known states part and unknown states part, respectively.
Additionally, F̃1 = ( f (x3), f (x3))T , F̃2 = ( f (x1), f (x2))T , and

Ã =


−1.1 0 −1.62 0
−1.1 0 −1.62 0
5.9 0 −9.01 1.57
−1.83 0 0.3 −1.9

 , B̃ =


0.1 0 0 0
0.1 0 0 0
0 0 −0.1 0
0 0 0 −0.1

 .
Choose P1 = diag{3, 2.4}, P2 = diag{2.37, 2.2}, α1 = 9.4, α2 = 30, ~ = 1.1, ξ1 = 1, and ξ2 = 4. Under
condititions (I7) − (I9) of Theorem 3.3, using the MATLAB toolbox, one can obtain the following:

K̃ =


20.8862 0 1.2662 6.1772
20.8862 0 1.2662 6.1772
55.9590 0 −0.4202 21.3187
28.1870 0 −9.5951 2.7303

 , G1 =

(
0.3892 0

0 0.3818

)
, G2 =

(
0.8238 0

0 0.7786

)
.
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Let ak = 3.1, δk = 3, and ∆ = 9; the ETM can be constructed by the following:

tk+1 = min{t∗k+1, tk + 9},
t∗k+1 = inf{t > tk + 3 : ỹT

1 P1ỹ1 ≥ e3.1(ỹT
1 P1ỹ1 + (ỹ2 − ỹ1)T P2(ỹ2 − ỹ1))}.

(4.4)

Therefore, the impulse instants are obtained as t1 = 3.7418, t2 = 7.5089. Furthermore, for t ∈ [0, 6],
the IMS {tk} satisfies the following:

0.0392k +

k∑
i=0

ai + (α2 + β2)tk+1 − (α2 + β2 − (α1 + β1))
k∑

i=0

δi ≤ −0.5247, k = 1, 2.

By Theorem 3.3, system (4.3) is FTS w.r.t (6,1.3,2) under the hybrid control strategy. Moreover,
take T ′ = 2, % = 0.7; when t ∈ [T − T ′,T ], the IMS {tk} satisfies the following inequality:

0.0392k +

k∑
i=0

ai + (α2 + β2)tk+1 − (α2 + β2 − (α1 + β1))
k∑

i=0

δi ≤ −2.6244, k = 1, 2.

Moreover, by Theorem 3.3, system (4.3) is FTCS w.r.t (6,1.3,2,0.7,2) under the hybrid control
strategy. Let ỹ(0) = [0.3, 0.9, 0.9]T . Figure 10(a) illustrates the trajectories of x1(t) , x2(t), and ‖x(t)‖
are depicted in Figure 10(a), while Figure 10(b) depicts the trajectories of u1.
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Figure 10. State trajectories and IMC u1 of system (4.3).

5. Conclusions

To address the limitation of traditional control methods that require the system state information to
be completely known, this paper proposed a hybrid control strategy that combined IC and ETIMC to
study the FTS and FTCS problems of nonlinear systems with partially known states. By employing
impulsive differential inequalities and dimension extension techniques, impulsive control gains based
on partially known states information were designed, and sufficient conditions to achieve FTS and
FTCS were provided. Future research will focus on how to relax some restrictions in the theoretical
criteria, thereby extending the applicability of the proposed method to a broader class of nonlinear
systems.
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