
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(2): 3251–3268.
DOI: 10.3934/math.2025151
Received: 30 September 2024
Revised: 14 December 2024
Accepted: 02 January 2025
Published: 20 February 2025

Research article

A modulus-based modified multivariate spectral gradient projection method
for solving the horizontal linear complementarity problem

Ting Lin1, Hong Zhang2 and Chaofan Xie1,*

1 School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, Fuqing
350300, China

2 Key Laboratory of Nondestructive Testing, Fujian Province University, Fuqing 350300, China

* Correspondence: Email: chaofanxie@hotmail.com; Tel: +15959165013.

Abstract: In this research, we investigated the nonnegative cone horizontal linear complementarity
problem (HLCP). Initially, we transformed the HLCP into a fixed-point equation using the modulus
defined within the nonnegative cone. By redefining this fixed-point equation as a monotone system,
we introduced an improved multivariate spectral gradient projection method for solving it. This study
shows that the proposed iterative method converges to the solution of the HLCP, assuming the specified
conditions are met. Additionally, numerical examples were included to illustrate the practicality
and effectiveness of the modulus-based enhanced multivariate spectral gradient projection method in
computational settings.

Keywords: horizontal linear complementarity problem; modulus-based algorithm; multivariate
spectral gradient projection; nonnegative cone; monotone system
Mathematics Subject Classification: 65F45, 65G99, 65H20, 90C30

1. Introduction

In this study, we focus on the nonnegative cone horizontal linear complementarity problem (HLCP):
Given the matrices A, B ∈ Rn×n and a source term q ∈ Rn, our goal is to find a pair of vectors, denoted
as x, y, that meet the following criteria:

Ax − By = q, x ∈ Rn
+, y ∈ Rn

+, ⟨x, y⟩ = 0, (1.1)

where Rn
+ = {x ∈ R

n | x ⩾ 0} is the so-called nonnegative cone. Here, ⟨·, ·⟩ is the Euclidean inner
product and ∥ · ∥ denotes the Euclidean norm. Obviously, if either A = In or B = In, the HLCP
simplifies to the linear complementarity problem (LCP).

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025151

3252

The HLCP has many applications in noncooperative games, optimization problems, economic
equilibrium problems, and traffic assignment problems [1]. The finite-difference discretization of
hydrodynamic lubrication also gives rise to the HLCP [2]. Many scholars have studied this problem.
Various methods can be employed to address this issue, including interior point approaches [3], neural
network techniques [4], and verification techniques [5]. In [6], Mezzadri and Galligani introduced a
class of projected splitting methods.

Recently, the modulus-based matrix-splitting approach, a widely used technique, has been applied
to many kinds of linear/nonlinear complementarity problems. For example, Mezzadri and Galligani
in 2019 presented the modulus-based matrix-splitting method to solve the HLCP [7]. Furthermore, the
convergence of the methods proposed in [7] has been enlarged by Zheng and Vong [8]. Zhang et al. [9]
have introduced a two-step parallel iterative approach for solving large sparse HLCP problems.

The first-order methods have been the subject of considerable attention in recent years, largely
due to their minimal storage requirements. One of the most widely known first-order methods is
the spectral gradient method, which was first introduced by Barzilai and Borwein in reference [10]
and subsequently extended by Raydan and La Cruz in references [11–13]. In their study, Zhang and
Zhou [14] employed the spectral gradient projection method for unconstrained monotone equations,
as proposed by Solodov and Svaiter [15]. This approach is based on the inexact Newton method.
Furthermore, Yu et al. demonstrated the efficacy of this approach in solving constrained monotone
equations, as evidenced by the favorable outcomes reported in reference [16]. In a recent study,
Ibrahim et al. proposed the projection method with inertial step [17] for nonlinear equations, Li et al.
studied the modified spectral gradient projection-based algorithm [18] for large-scale constrained
nonlinear equations, and Ibrahim et al. proposed the two-step inertial derivative-free projection
method [19] for solving nonlinear equations.

Jiang [20] developed a derivative-free descent technique for the nonlinear complementarity
problem (NCP) when the nonlinear mapping is directionally differentiable and strongly monotone,
utilizing an equivalent system of nonlinear equations derived from the squared Fischer-Burmeister (FB)
function. Mangasarian et al. [21] introduced another derivative-free descent method for the
strongly monotone NCP by minimizing the implicit Lagrangian function, establishing its global
convergence. Ma et al. [22] proposed a smooth Broyden-like method for the NCP, which uses a
smooth approximation of the FB function and a derivative-free line search rule, demonstrating global
convergence under suitable conditions. This smooth Broyden-like method has also been shown to
achieve global and superlinear convergence under appropriate conditions.

Yu et al. [23] converted the absolute value equation into a monotone system and resolved it using
a multivariate spectral gradient method. Drawing inspiration from this work, we first reframe the
HLCP (1.1) into a fixed-point equation based on the modulus defined within the nonnegative cone. By
transforming the implicit fixed-point equation into a monotone system, we introduce a new class of
modified multivariate spectral gradient projection methods for its solution. We outline the conditions
under which the new equation remains monotone and continuous. It is shown that the proposed iterative
method converges to the solution of the HLCP in equation (1.1) under the specified assumptions.
Additionally, numerical examples illustrate that the modulus-based modified multivariate spectral
gradient projection method is both feasible and efficient.

The proposed algorithm is contrasted with the modulus-based matrix-splitting iterative method,
which generally requires matrix inversion, a step not needed here. Since matrix inversion is

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3253

computationally intensive, the algorithm described in this paper holds a distinct advantage. Compared
to conventional gradient descent methods, there is potential for improving the line search technique
and the distribution strategy of the spectral gradient in existing algorithms. This paper’s algorithm has
been refined by incorporating a new line search technique [24] and a more efficient allocation of the
spectral gradient, leading to better performance in reducing the number of iterations and CPU time.

The paper is structured as follows: In Section 2, we develop a monotone system of equations
that is equivalent to the HLCP. In Section 3, we introduce a modified multivariate spectral gradient
projection method grounded in the modulus approach. Section 4 focuses on the convergence analysis
of the proposed algorithm. Numerical experiments and their outcomes are detailed and analyzed in
Section 5. Finally, concluding observations are provided in Section 6.

2. The establishment of equivalent equations

This section introduces some notations and auxiliary results.

Theorem 2.1. Let matrices A, B ∈ Rn×n and vector q ∈ Rn. Then,
− if (x, y) is a solution to the HLCP in (1.1), then z = 1

2 (x − y) fulfills

(A + B)z + (A − B)|z| = q; (2.1)

− if z satisfies (2.1), then
x = |z| + z, y = |z| − z (2.2)

is a solution of the HLCP, where z ∈ Rn. |z| denotes the absolute value of z.

Proof. With regard to the first statement, since (x, y) is a solution of the HLCP in (1.1), it follows that
both variables are nonnegative and can be expressed as Eq (2.2) with z ∈ Rn. If we put (2.2) into (1.1),
we obtain (x, y) as a solution to the complementarity problem if and only if

A(z + |z|) + B(z − |z|) = q. (2.3)

Rearranging the above equation can easily be written as (2.1).
About the second statement, we commence with (2.1), which can be rewritten as Eq (2.3) through

the simple rearrangement of terms. By defining x and y as specified in Eq (2.2), we derive

Ax − By = q,

where x, y is nonnegative. It can be readily confirmed that xi > 0 and yi = 0 when zi > 0, whereas
xi = 0 and yi > 0 when zi < 0. If zi = 0, then trivially xi = yi = 0. Here, zi denotes the i-th component
of z, with a similar notation used for xi and yi. Consequently, the complementarity condition is met,
and (x, y) constitutes a solution to the HLCP as stated in Eq (1.1). This completes the proof. □

Let x = |z|+ z, y = |z| − z, where z ∈ Rn. According to Theorem 2.1, the HLCP in (1.1) is equivalent
to the fixed-point equation

(B + A)z − (B − A)|z| = q.

If B − A is invertible, we have

(B − A)−1(B + A)z − |z| = (B − A)−1q.

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3254

We set
F(z) := (B − A)−1(B + A)z − |z| − (B − A)−1q, (2.4)

where z ∈ Rn.

Definition 2.1. A mapping F : Rn → Rn is defined as monotone if, for ∀α, β ∈ Rn,

(α − β)T (F(α) − F(β)) ⩾ 0

is satisfied.

Definition 2.2. A mapping F : Rn → Rn is considered Lipschitz continuous if, for ∀α, β ∈ Rn, there
exists a constant L > 0 such that

∥F(α) − F(β)∥ ⩽ L∥α − β∥.

Assumption 2.1. In Eq (2.4), (B − A) is invertible and (B − A)−1A is semi-positive definite.

Theorem 2.2. F(z) is monotone as long as (B − A)−1A is semi-positive definite.

Proof. For any α, β ∈ Rn, the dot product αTβ =
∑n

i=1 αiβi. Specifically, we have defined the index set

I1 = {i ∈ R | αi ⩾ 0, βi ⩾ 0}, I2 = {i ∈ R | αi ⩾ 0, βi ⩽ 0},

and
I3 = {i ∈ R | αi ⩽ 0, βi ⩾ 0}, I4 = {i ∈ R | αi ⩽ 0, βi ⩽ 0}.

On one side,

⟨|α| − |β|, α − β⟩ =
∑
i∈I1

⟨|αi| − |βi|, αi − βi⟩ +
∑
i∈I2

⟨|αi| − |βi|, αi − βi⟩

+
∑
i∈I3

⟨|αi| − |βi|, αi − βi⟩ +
∑
i∈I4

⟨|αi| − |βi|, αi − βi⟩

=
∑
i∈I1

⟨αi − βi, αi − βi⟩ +
∑
i∈I2

⟨αi − βi + 2βi, αi − βi⟩

+
∑
i∈I3

⟨βi − αi + 2αi, βi − αi⟩ +
∑
i∈I4

⟨−αi + βi, αi − βi⟩,

and expanding it out, we notice that
∑

i∈I2
⟨2βi, αi − βi⟩ ⩽ 0, and

∑
i∈I3
⟨2αi, βi − αi⟩ ⩽ 0. Hence,

⟨|α| − |β|, α − β⟩ ⩽
∑
i∈I1

⟨αi − βi, αi − βi⟩ +
∑
i∈I2

⟨αi − βi, αi − βi⟩

+
∑
i∈I3

⟨αi − βi, αi − βi⟩ +
∑
i∈I4

⟨−αi + βi, αi − βi⟩

=
∑
i∈I1

⟨αi − βi, αi − βi⟩ +
∑
i∈I2

⟨αi − βi, αi − βi⟩

+
∑
i∈I3

⟨αi − βi, αi − βi⟩ −
∑
i∈I4

⟨αi − βi, αi − βi⟩

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3255

⩽
∑
i∈I1

⟨αi − βi, αi − βi⟩ +
∑
i∈I2

⟨αi − βi, αi − βi⟩

+
∑
i∈I3

⟨αi − βi, αi − βi⟩ +
∑
i∈I4

⟨αi − βi, αi − βi⟩

=
∑

i∈I1∪I2∪I3∪I4

⟨αi − βi, αi − βi⟩

= (α − β)T (α − β).

On the flip side,

⟨F(α) − F(β), α − β⟩ = ⟨(B − A)−1(B + A)α − |α| − (B − A)−1q − (B − A)−1(B + A)β
+ |β| + (B − A)−1q, α − β⟩

= ⟨(B − A)−1(B + A)α − (B − A)−1(B + A)β − |α| + |β|, α − β⟩
= ⟨(B − A)−1(B + A)(α − β) − (|α| − |β|), α − β⟩
= (α − β)T (B − A)−1(B + A)(α − β) − ⟨(|α| − |β|), α − β⟩
⩾ (α − β)T (B − A)−1(B + A)(α − β) − (α − β)T (α − β)
⩾ (α − β)T ((B − A)−1(B + A) − I)(α − β)
= (α − β)T ((B − A)−1(B + A) − (B − A)−1(B − A))(α − β)
= 2(α − β)T ((B − A)−1A)(α − β).

Obviously, F(z) will be monotone, as long as (B − A)−1A is semi-positive definite. This completes the
proof. □

Theorem 2.3. The function F(z) is Lipschitz continuous, meaning there exists a nonnegative constant
L such that the following inequality is satisfied:

∥F(α) − F(β)∥ ⩽ L∥α − β∥.

Proof. For ∀α, β ∈ Rn, by the Lipschitz condition and (2.4), we have

∥F(α) − F(β)∥ = ∥(B − A)−1(B + A)α − |α| − (B − A)−1(B + A)β + |β|∥
= ∥(B − A)−1(B + A)(α − β) − (|α| − |β|)∥
⩽ ∥(B − A)−1(B + A)(α − β)∥ + ∥|α| − |β|∥
⩽ ∥(B − A)−1(B + A)∥∥α − β∥ + ∥α − β∥
= (∥(B − A)−1(B + A)∥ + 1)∥α − β∥.

Since ∥(B− A)−1(B+ A)∥ ⩾ 0, thus, set L = ∥(B− A)−1(B+ A)∥+ 1, and it can be demonstrated that the
Lipschitz condition is satisfied. This completes the proof. □

According to Theorems 2.2 and 2.3, under the condition of Assumption 2.1, HLCP (1.1) can be
equivalently reformulated to a monotone system:

F(z) = 0. (2.5)

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3256

3. Algorithm

For monotone system (2.5), the matrix-splitting method was commonly used in the past. In each
iteration, the fixed-point equation needs to be inverted to obtain a new iteration point. As we know, it
takes a certain amount of time to find the inverse. In order to simplify the time cost, we introduce a new
multivariate spectral gradient method to solve (2.5), called the modulus-based modified multivariate
spectral gradient projection method (M-MMSGP). The M-MMSGP algorithm employs a novel line
search methodology [24] that differs from existing gradient algorithms. It utilizes the multivariate
spectral gradient vector as the descent direction and assigns the multivariate spectral gradient as a
whole, which significantly reduces the number of iterations of the algorithm and CPU time.

Algorithm 3.1. M-MMSGP algorithm for (2.5)
Step 0: We are given ε > 0, z ∈ Rn. Let σ, β ∈ (0, 1), α0 = 1, r, αmin ∈ [0, 1]. Set k := 0.
Step 1: If

∥∥∥F(zk)
∥∥∥ ⩽ ε, then halt and consider zk as an approximate solution.

Step 2: Calculate search direction
dk = −αk. ∗ F(zk). (3.1)

Step 3: Find vk = zk + θkdk, where θk£ = βmk , and mk is the smallest nonnegative integer such that

−F(zk + θkdk)T dk ⩾ σγkθk∥dk∥2, (3.2)

where γk£ =
∥F(zk)∥

1 + ∥F(zk)∥
.

Step 4: Compute the new iterate by

zk+1 = zk −

〈
F(vk), zk − vk

〉
∥∥∥F(vk)

∥∥∥2 F(vk). (3.3)

Step 5: Update the spectral vector by

αk+1 = max{αminones(n, 1),
(sk)T yk

(sk)T sk ones(n, 1)}, (3.4)

where sk = zk+1 − zk and yk = F(zk+1) − F(zk) + rsk.
Step 6: Increase k by 1 and return to Step 1.

Remark 3.1. If Algorithm 3.1 terminates at finite iteration k and F(zk) = 0, then zk is the solution to
F(z) = 0. If k approaches infinity and F(zk) , 0, Algorithm 3.1 produces an infinite sequence {zk}. For
simplicity, we can assume that {zk} is an infinite sequence.

Remark 3.2. (1) Based on the monotonic behavior of F(z), we can derive

(sk)T yk = (zk+1 − zk)T (F(zk+1) − F(zk) + rsk) ⩾ r((sk)T sk). (3.5)

(2) From the Lipschitz continuity of F(z), we can deduce that

(sk)T yk ⩽ (L + r)((sk)T sk). (3.6)

(3) From (3.4)–(3.6), we can deduce that

min{αmin, r}∥F(zk)∥2 ⩽ ∥dk∥2 ⩽ max{αmin, L + r}∥F(zk)∥2. (3.7)

Here, L = ∥(B − A)−1(B + A)∥ + 1 is given by Theorem 2.3.

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3257

The subsequent lemma illustrates that Algorithm 3.1 is well-defined.

Lemma 3.1. According to the propositions outlined above, there exists a nonnegative integer mk

ensuring that (3.2) is satisfied for all k ⩾ 0.

Proof. Assume there is a k0 ⩾ 0 for which (3.2) fails to hold for any nonnegative integer m, i.e.,

⟨F(zk0 + βmdk0), dk0⟩ < σ
∥F(zk0)∥

1 + ∥F(zk0)∥
βm∥dk0∥2.

By letting m→ ∞ and utilizing the continuity of F(z), we obtain

−⟨F(zk0), dk0⟩ ⩽ 0. (3.8)

Based on Step 1 of Algorithm 3.1 and (3.1), we find that

F(zk) , 0, dk , 0,

for any k ⩾ 0. Consequently, it follows that

−⟨F(z0), d0⟩ = ⟨F(z0), F(z0)⟩ > 0,

and

−⟨F(zk), dk⟩ = ⟨F(zk), αkF(zk)⟩ ⩾ min{αmin, r}∥F(zk)∥2 > 0, (3.9)

where k ⩾ 0. This result conflicts with (3.8), thus completing the proof. □

4. Convergence analysis

In this part, we demonstrate that every convergent subsequence {zk j} of the sequence {zk} produced
by Algorithm 3.1 approaches a solution of system (2.5). Due to the equivalence, it also converges to a
solution of the HLCP (1.1).

Lemma 4.1. [15] Let F(z) be monotone, and z, v ∈ Rn such that F(v)T (z − v) > 0. Let z∗ be a solution
of F(z) = 0 and

z+ = z −
F(v)T (z − v)
∥F(v)∥2

F(v).

Then we have
∥z+ − z∗∥2 ⩽ ∥z − z∗∥2 − ∥z+ − z∥2.

Theorem 4.1. Given Assumption 2.1, assume the sequence {zk} is generated by the M-MMSGP method
with ε = 0. In this case, either the sequence {zk} is finite, and the final iterate {zk} is a solution to
F(z) = 0, or the sequence {zk} is infinite, and

lim
k→∞
θk∥dk∥ = 0.

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3258

Proof. By Assumption 2.1 and Theorem 2.2, F(z) in (2.4) is monotone. By (3.2) of Algorithm 3.1,
we have

F(vk)T (zk − vk) = −βmk F(vk)T dk ⩾ σγkβ
mk∥dk∥2 > 0.

By Lemma 4.1, one has
∥zk+1 − z∗∥2 ⩽ ∥zk − z∗∥2 − ∥zk+1 − zk∥2, (4.1)

where z∗ solves F(z) = 0. Hence, {∥zk − z∗∥} is a decreasing sequence and ∥zk − z∗∥ ⩽ ∥z0 − z∗∥ holds for
all k ⩾ 1 which implies that {zk} ⊂ {z ∈ Rn : ∥z − z∗∥ ⩽ ∥z0 − z∗∥}. Hence, {zk} is a bounded sequence.

Given the continuity of F(z), the sequence {∥F(zk)∥} is bounded.

∥dk∥2 = ∥αk∥
2∥F(zk)∥2 ⩽ max{αmin, L + r}∥F(zk)∥2. (4.2)

By (4.2), {dk} is also bounded. From Step 3 of Algorithm 3.1, we have vk = zk + θkdk. Since {zk} and
{dk} are bounded, θk ∈ (0, 1), so {vk} is bounded. Given the continuity of F(v), the sequence {∥F(vk)∥}
is bounded. There exists a positive constant M such that ∥F(vk)∥ ⩽ M for all k ⩾ 1.

Assuming without loss of generality that the sequence {zk} is infinite, from (4.1) we obtain

lim
k→∞
∥zk+1 − zk∥ = 0. (4.3)

By (3.3) we have

∥zk+1 − zk∥ =
|F(vk)T (zk − vk)|
∥F(vk)∥2

∥F(vk)∥ =
|F(vk)Tθkdk|

∥F(vk)∥2
∥F(vk)∥

⩾
σ(θk)2γk∥dk∥2

∥F(vk)∥2
∥F(vk)∥ =

σ

1 + ∥F(vk)∥2
(θk)2∥dk∥2

⩾
σ

1 + M
(θk)2∥dk∥2.

Combining the above inequality and (4.3) yields limk→∞ θk∥dk∥ = 0. This concludes the proof. □
The subsequent theorem illustrates the global convergence of the proposed M-MMSGP method.

Theorem 4.2. Under the condition of Assumption 2.1, suppose that sequence {zk} is generated by the
proposed M-MMSGP method with ε = 0. Then, {zk} converges to some point z∗ satisfying F(z∗) = 0.

Proof. By Theorem 4.1, we get
lim
k→∞
θk∥dk∥ = 0. (4.4)

(1) If lim infk→∞ ∥dk∥ = 0, then from (3.7), it follows that lim infk→∞ ∥F(zk)∥ = 0. Consequently,
there exists a subsequence {zk j} ⊂ {zk} such that limk j→∞ ∥F(zk j)∥ = 0. Given the continuity of F(z), this
implies limk j→∞ ∥z

k j − z∗∥ = 0, where z∗ is a point satisfying F(z∗) = 0.
(2) If lim infk→∞ ∥dk∥ > 0, then according to Theorem 4.1, limk→∞ θk = 0. From Eq (4.4), it follows

that limk→∞ ∥F(zk)∥ > 0.
Based on Algorithm 3.1, we have

−F(zk + βmk−1dk)T dk < σγkβ
mk−1∥dk∥2.

Given that the sequences {zk} and {dk} are bounded, they must have at least one cluster point.
Therefore, there exist subsequences {zk j} ⊂ {zk} and {dk j} ⊂ {dk} that converge to this cluster point.

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3259

In the above equation, let k → ∞, and we can get

−F(ẑ)T d̂ ⩽ 0, (4.5)

where ẑ and d̂ are limit points of subsequences {zk j} ⊂{zk} and {dk j} ⊂ {dk} , respectively. On the other
hand, let k → ∞ in (3.9), and we have

−F(ẑ)T d̂ ⩾ 0. (4.6)

This contradicts (4.5). Therefore, inequality lim infk→∞ ∥dk∥ > 0 does not hold. This completes the
proof. □

5. Numerical results

In this section, we present some numerical results to demonstrate the efficiency of Algorithm 3.1.
We choose a modified gradient projection algorithm (MGP) [25] used to solve (2.5), a modified
multivariate spectral gradient algorithm (MMSGP) [23] used to solve (2.5), a modulus-based
Jacobi algorithm (MJ) [6] used to solve (2.1), and a modified spectral gradient projection-based
algorithm (PGP) [18] used to solve (2.5) as the comparison. All methods were implemented in
MATLAB R2018a and executed on a personal computer with an Intel Core i7 processor operating
at 1.80 GHz and 8GB of RAM.

All experiment results include three aspects: the elapsed CPU time in seconds (CPU), the norm of
absolute residual vectors (RES), and the number of iteration steps (IT), respectively. RES is defined
as RES := ∥Ax(k) − By(k) − q∥.

In the following experiments, when the prescribed iteration number ITmax = 600 is exceeded or the
residual vector satisfies RES ⩽ 10−6, all runs are terminated. We will consider the problems with six
dimensions, i.e., n = 100, 400, 900, 1600, 2500, and 3600.

The primary numerical outcomes are presented in Tables 1–5, as well as Figures 1–4, to facilitate
easy comparison. In these tables and figures, the algorithm parameters are set as follows:
(1) For the MGP algorithm, set λ0 = 0.4, δ = 1.01, α = 0.4

δ
;

(2) For the MMSGP algorithm, set α0 = 1, β = 0.2, τ = 0.001, σ = 0.01, r = 0.001;
(3) For the MJ algorithm, set Ω = 0.5In;
(4) For the PGP algorithm, set β = 1, ρ = 0.8, σ = 10−5, l = 10−4, u = 1030;
(5) For the M-MMSGP algorithm, set λmin = 0.1ones(n, 1), β = 0.618, σ = 0.01, r = 0.001.

Example 5.1. [7] To solve the HLCP, consider the tridiagonal matrix

S = tridiag(−1, 4,−1) ∈ Rm×m,

where m is a given positive integer. We define the matrices A, B ∈ Rn×n, with n = m2, as A = Â + µI
and B = B̂ + νI with µ, v as the real parameters and

Â = tridiag (−Im, S ,−Im) =

S −Im

−Im S −Im
. . .

. . .
. . .

−Im S −Im

−Im S

∈ Rn×n,

B̂ = tridiag(0, S , 0) ∈ Rn×n.

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3260

Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.
Example 5.1 can be derived from the discretization form of a two-dimensional boundary problem,

which is specifically described as

∆z +
∂2w
∂2u
+ µz + νw − q = 0, z ⩾ 0,w ⩾ 0, zT w = 0,

where z(u, v),w(u, v), and q(u, v) are three two-dimensional maps. Therefore, under appropriate
boundary conditions, the boundary problem is discretized by the five-point difference discretization
method, and its discretization scheme is in the form of an HLCP.

Example 5.2. [10] To solve the HLCP, consider the tridiagonal matrix

S =

4 −0.5
−1.5 4 −0.5

. . .
. . .

. . .

−1.5 4 −0.5
−1.5 4

∈ Rm×m,

where m is a given positive integer. We define the matrices A, B ∈ Rn×n, with n = m2, as A = Â + µI
and B = B̂ + νI with µ, v as the real parameters and

Â = tridiag (−1.5Im, S ,−0.5Im) =

S −0.5Im

−1.5Im S −0.5Im
. . .

. . .
. . .

−1.5Im S −0.5Im

−1.5Im S

∈ Rn×n,

B̂ = tridiag(0, S , 0) ∈ Rn×n.

Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.

Example 5.3. To solve the HLCP, where A ∈ Rn×n and B ∈ Rn×n, consider the block-tridiagonal
matrices

A = tridiag(−1, 7,−1) ∈ Rn×n

and
B = tridiag(−2Im,C,−2Im)

=

C −2Im

−2Im C −2Im
. . .

. . .
. . .

−2Im C −2Im

−2Im C

∈ Rn×n

with the tridiagonal matrix
C = tridiag(−1, 7,−1) ∈ Rm×m.

Here, n = m2. Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.
This example is adapted from the literature [10].

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3261

Example 5.4. To solve the HLCP, where A ∈ Rn×n and B ∈ Rn×n, consider the block-tridiagonal
matrices

A = tridiag (−0.5Im,C,−0.5Im) =

C −0.5Im

−0.5Im C −0.5Im
. . .

. . .
. . .

−0.5Im C −0.5Im

−0.5Im C

∈ Rn×n

and
B = tridiag(−1, 7,−1) ∈ Rn×n

with the tridiagonal matrix
C = tridiag(−1, 4,−1) ∈ Rm×m.

Here, n = m2. Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.
This example is adapted from the literature [10].

Example 5.5. To solve the HLCP, where A ∈ Rn×n and A is a random matrix with eigenvalues
{1, 1, 3, 3, 3, ...}, consider

B = 1.8In ∈ R
n×n.

Here, n = m2. Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.

For Examples 5.1–5.5, the numeric results are list in Tables 1–5, respectively.
Table 1 contains the results of the M-MMSGP method, MJ method, MGP method, and PGP method

for Example 5.1 under n = 100, 400, 900, 1600, 2500, and 3600, respectively. Here, we take µ = 2,
and ν = 3. Among the four algorithms, it can be seen that the M-MMSGP algorithm has obvious
advantages in both the number of iterations and the CPU time. The M-MMSGP algorithm has good
numerical performance.

Table 1. Numerical results of Example 5.1.

Algorithms M-MMSGP MJ MGP PGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES IT/CPU/RES

100 20/0.0018/9.05e-7 52/0.0460/8.05e-7 98/0.0029/8.81e-7 29/0.0064/4.08e-7
400 28/0.0040/5.99e-7 61/0.4781/9.73e-7 104/0.0062/8.71e-7 30/0.0127/7.07e-7
900 33/0.0077/8.06e-7 63/3.0354/8.55e-7 107/0.0114/8.69e-7 26/0.0177/2.51e-7
1600 38/0.0158/7.26e-7 64/14.5580/7.66e-7 109/0.0188/8.71e-7 32/0.0236/4.30e-7
2500 24/0.0101/7.31e-7 64/40.8561/8.64e-7 110/0.0285/9.48e-7 28/0.0365/6.55e-7
3600 31/0.0218/7.76e-7 64/113.5324/9.52e-7 111/0.0459/9.83e-7 34/0.0526/4.68e-7

Tables 2 and 3 contain the results of the M-MMSGP method, MJ method, MGP method, and PGP
method for Examples 5.2 and 5.3 under n = 100, 400, 900, 1600, 2500, and 3600, respectively. The
M-MMSGP algorithm has excellent numerical performance. The numerical results show that the M-
MMSGP method excels in both CPU time and iteration count. Among the four algorithms, the MGP
algorithm has the most iteration steps but consumes less CPU time. The MJ algorithm has the highest

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3262

CPU time but fewer iteration steps. The MJ algorithm requires inversion in each iteration, while the
other three algorithms do not require inversion, which requires more CPU time. Therefore, the MJ
algorithm has the highest CPU time. The selection of gradient descent direction in the MGP algorithm
is not effective, while the other three algorithms have better descent directions, so the MGP algorithm
has more iteration steps. The PGP algorithm always spends more CPU time than the M-MMSGP
algorithm although the number of iteration steps is less than the M-MMSGP algorithm in certain
dimensions. The M-MMSGP algorithm only needs to compare and allocate spectral gradients, which
provides better CPU time. Especially for the M-MMSGP algorithm, the larger the matrix dimension,
the faster the convergence speed.

Table 2. Numerical results of Example 5.2.

Algorithms M-MMSGP MJ MGP PGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES IT/CPU/RES

100 19/0.0009/8.52e-7 57/0.0116/7.91e-7 98/0.0027/8.45e-7 52/0.0151/6.75e-7
400 21/0.0020/3.94e-7 64/0.4632/8.08e-7 104/0.0060/9.15e-7 33/0.0129/4.19e-7
900 31/0.0066/8.66e-7 65/2.9363/9.31e-7 107/0.0114/9.05e-7 33/0.0222/3.78e-7
1600 38/0.0146/7.56e-7 66/12.7681/8.34e-7 109/0.0190/9.00e-7 25/0.0242/2.62e-7
2500 39/0.0225/8.56e-7 66/43.2360/9.43e-7 110/0.0290/9.74e-7 28/0.0364/6.69e-7
3600 34/0.0251/8.57e-7 67/116.0291/7.95e-7 112/0.0416/8.55e-7 29/0.0459/8.34e-7

Table 3. Numerical results of Example 5.3.

Algorithms M-MMSGP MJ MGP PGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES IT/CPU/RES

100 23/0.0041/2.36e-7 65/0.0160/9.41e-7 127/0.0070/9.23e-7 44/0.0129/8.89e-7
400 25/0.0116/8.48e-7 72/0.5340/8.98e-7 138/0.0072/9.48e-7 30/0.0212/7.73e-7
900 28/0.0207/7.26e-7 75/3.8034/8.08e-7 142/0.0159/9.65e-7 41/0.0306/3.92e-7
1600 30/0.0085/2.98e-7 76/15.1479/9.30e-7 145/0.0240/9.00e-7 46/0.0297/8.93e-7
2500 27/0.0116/9.77e-7 77/52.1398/9.58e-7 147/0.0368/8.77e-7 43/0.0403/7.97e-7
3600 25/0.0154/7.99e-7 78/139.2645/9.28e-7 148/0.0527/9.31e-7 33/0.0525/9.29e-7

Table 4 contains the results of the M-MMSGP method, MJ method, MGP method, and MMSGP
method for Example 5.4 under n = 400, 900, 1600, 2500, and 3600, respectively. The M-MMSGP
algorithm has excellent numerical performance. The numerical results indicate that the M-MMSGP
method has the optimal CPU time. The iteration times of the M-MMMGP algorithm are only inferior
to the MJ algorithm in certain dimensions. Overall, the M-MMSGP algorithm also has better numerical
performance in terms of iteration times. The reason why the MJ algorithm takes more time than the
M-MMSGP algorithm is that the MJ algorithm requires inversion in each iteration, which requires a
certain amount of CPU time. The M-MMSGP algorithm only needs to compare and allocate spectral
gradients, which provides better CPU time.

The experimental results demonstrate that despite having a lower number of iterations, the MMSGP
algorithm consumes the most CPU time. Specifically, when n = 900, the CPU time surpasses 100
seconds. The reason why MMSGP has fewer iterations is that the algorithm needs to assign values to

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3263

each element in the gradient direction in order to find the optimal gradient descent direction. However,
due to the allocation of each element, more CPU time is required when the dimensionality is high. The
M-MMSGP algorithm only requires an overall comparison of the distribution spectral gradient, which
occupies less CPU time. Especially for the M-MMSGP algorithm, the larger the matrix dimension, the
faster the convergence speed.

Table 4. Numerical results of Example 5.4.

Algorithms M-MMSGP MJ MGP MMSGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES IT/CPU/RES

400 21/0.0047/3.25e-7 21/0.1738/4.40e-7 95/0.0052/9.51e-7 16/9.1435/2.50e-7
900 21/0.0044/2.52e-7 21/0.9589/7.55e-7 98/0.0105/8.55e-7 16/104.1921/3.70e-7

1600 23/0.0065/7.48e-7 22/4.3433/3.31e-7 99/0.0169/9.74e-7 */*/*
2500 21/0.0086/6.62e-7 22/14.7866/4.28e-7 101/0.0260/8.39e-7 */*/*
3600 23/0.0129/5.05e-7 22/38.1063/5.25e-7 102/0.0371/8.40e-7 */*/*

Remark: */*/*: CPU > 100.

From Table 5, it can be seen that the M-MMSGP method is sensitive to solving the HLCP. The
numerical calculation results include the M-MMSGP algorithm, MJ algorithm, and MGP algorithm,
which have good performance. The M-MMSGP method has the optimal CPU time and iteration times.
The experimental data indicates that for the M-MMSGP algorithm, an increase in dimensionality does
not significantly affect the number of iterations, suggesting robust numerical performance. Compared
to the other two algorithms, the MJ algorithm outperforms the MGP algorithm, while the M-MMSGP
algorithm surpasses both.

Table 5. Numerical results of Example 5.5.

Algorithms M-MMSGP MJ MGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES

100 31/0.0157/7.11e-7 34/0.0196/9.86e-7 55/0.0191/7.77e-7
400 32/0.2418/9.36e-7 36/0.2665/5.69e-7 57/0.5623/9.03e-7
900 30/1.1550/4.80e-7 36/1.6824/8.86e-7 58/3.1461/9.65e-7

1600 29/3.8054/4.62e-7 37/7.1720/6.44e-7 59/10.3077/9.08e-7
2500 32/9.9062/6.22e-7 37/23.6482/8.12e-7 60/25.8178/8.10e-7

Figure 1 shows the relationship between the number of iterations and RES for Example 5.1. It can
be seen that the RES descent speed of the M-MMSGP algorithm is faster than that of the MJ algorithm
and MGP algorithm. This also verifies the effectiveness of the M-MMSGP algorithm. Figure 2 shows
the relationship between the number of iterations and RES for Example 5.3. It can be seen that the RES
drop speed of the M-MMSGP algorithm is the fastest among the three algorithms. Figure 3 shows the
relationship between the number of iterations and RES for Example 5.4. It can be seen that the RES
drop speed of the M-MMSGP algorithm is the fastest among the three algorithms. The relationship
between the number of iterations and RES in Example 5.5 is shown in Figure 4. The above proves that
the M-MMSGP algorithm has good numerical performance.

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3264

The aforementioned numerical results highlight that the M-MMSGP algorithm demonstrates greater
efficiency in terms of CPU time and iteration count under specific conditions. Therefore, our proposed
method could be well-suited for solving the HLCP.

The M-MMSGP algorithm employs a novel linear search method, which is distinct from existing
gradient algorithms. It utilizes multivariate spectral gradient vectors as the descent direction and
allocates the multivariate spectral gradients as a whole, resulting in a significant increase in the number
of iterations and CPU time required by the algorithm.

20 25 30 35 40 45 50 55 60

IT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
E

S

m = 30

M-MMSGP

MJ

MGP

Figure 1. Relationship between IT and RES for Example 5.1.

20 25 30 35 40 45 50 55 60 65 70

IT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
E

S

m = 30

M-MMSGP

MJ

MGP

Figure 2. Relationship between IT and RES for Example 5.3.

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3265

0 10 20 30 40 50 60 70

IT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
E

S

m = 20

M-MMSGP

MJ

MGP

Figure 3. Relationship between IT and RES for Example 5.4.

10 15 20 25 30 35 40 45 50 55 60

IT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
E

S

m = 20

M-MMSGP

MJ

MGP

Figure 4. Relationship between IT and RES for Example 5.5.

6. Conclusions

The focus of this study is the HLCP. First, the HLCP is reconstructed into a fixed-point equation
based on the modulus defined in the nonnegative cone. By rewriting the fixed-point equation as a
monotone system, we put forward a new class of modified multivariate spectral gradient projection
method for solving it. It is shown that the proposed iterative method converges to the HLCP solution,
assuming the specified conditions are met. Furthermore, the viability and efficacy of the modulus-based

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

3266

modified multivariate spectral gradient projection method are illustrated through numerical examples.
The algorithm presented in this paper has been developed to address the horizontal complementarity
problem within the theoretical framework of this study. Further efforts could be directed toward solving
this problem under more simplified assumptions.

Author contributions

Ting Lin: Conceptualization, Methodology, Validation, Formal analysis, Resources, Writing–
review and editing, Supervision, Project administration; Hong Zhang: Data curation, Visualization;
Chaofan Xie: Conceptualization, Software, Validation, Data curation, Writing–original draft
preparation, Visualization. All authors have read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was funded by the National Natural Science Foundation of China under
Grant 62071123 and 61601125, Natural Science Foundation of Fujian Province of China (number:
2023J011117), the Fujian Province Education Hall Youth Project (number: JAT220258), and the Fujian
Natural Science Foundation Project (number: 2019J01887).

Conflict of interest

The authors declare no conflicts of interest.

References

1. M. C. Ferris, J. S. Pang, Engineering and economic applications of complementarity problems,
SIAM Rev., 39 (1997), 669–713. http://doi.org/10.1137/S0036144595285963

2. H. Zheng, S. Vong, On the modulus-based successive overrelaxation iteration method for horizontal
linear complementarity problems arising from hydrodynamic lubrication, Appl. Math. Comput.,
402 (2021), 126165. https://doi.org/10.1016/j.amc.2021.126165

3. S. Asadi, H. Mansouri, Z. Darvay, M. Zangiabadi, N. Mahdavi-Amiri, Large-neighborhood
infeasible predictor-corrector algorithm for horizontal linear complementarity problems over
Cartesian product of symmetric cones, J. Optim. Theory Appl., 180 (2019), 811–829.
https://doi.org/10.1007/s10957-018-1402-6

4. X. B. Gao, J. Wang, Analysis and application of a one-layer neural network for solving
horizontal linear complementarity problems, Int. J. Comput. Intell. Syst., 7 (2014), 724–732.
https://doi.org/10.1080/18756891.2013.858903

5. U. Schäfer, Verification methods for the horizontal linear complementarity problem, Proc. Appl.
Math. Mech., 8 (2008), 10799–10800. https://doi.org/10.1002/pamm.200810799

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

https://dx.doi.org/http://doi.org/10.1137/S0036144595285963
https://dx.doi.org/https://doi.org/10.1016/j.amc.2021.126165
https://dx.doi.org/https://doi.org/10.1007/s10957-018-1402-6
https://dx.doi.org/https://doi.org/10.1080/18756891.2013.858903
https://dx.doi.org/https://doi.org/10.1002/pamm.200810799

3267

6. F. Mezzadri, E. Galligani, Splitting methods for a class of horizontal linear
complementarity problems, J. Optim. Theory Appl., 180 (2019), 500–517.
https://doi.org/10.1007/s10957-018-1395-1

7. F. Mezzadri, E. Galligani, Modulus-based matrix splitting methods for horizontal linear
complementarity problems, Numer. Algor., 83 (2020), 201–219. https://doi.org/10.1007/s11075-
019-00677-y

8. H. Zheng, S. Vong, On convergence of the modulus-based matrix splitting iteration method for
horizontal linear complementarity problems of H+-matrices, Appl. Math. Comput., 369 (2020),
124890. https://doi.org/10.1016/j.amc.2019.124890

9. Y. X. Zhang, H. Zheng, S. Vong, X. P. Lu, A two-step parallel iteration method for large
sparse horizontal linear complementarity problems, Appl. Math. Comput., 438 (2023), 127609.
https://doi.org/10.1016/j.amc.2022.127609

10. J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988),
141–148. https://doi.org/10.1093/imanum/8.1.141

11. W. La Cruz, M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optim.
Methods Softw., 18 (2003), 583–599. https://doi.org/10.1080/10556780310001610493

12. W. La Cruz, J. M. Martı́nez, M. Raydan, Spectral residual method without gradient information
for solving large-scale nonlinear systems of equations, Math. Comp., 75 (2006), 1429–1448.
https://doi.org/10.1090/S0025-5718-06-01840-0

13. M. Raydan, The Barzilai and Borwein gradient method for the large scale
unconstrained minimization problem, SIAM J. Optim., 7 (1997), 26–33.
https://doi.org/10.1137/S1052623494266365

14. L. Zhang, W. J. Zhou, Spectral gradient projection method for solving
nonlinear monotone equations, J. Comput. Appl. Math., 196 (2006), 478–484.
https://doi.org/10.1016/j.cam.2005.10.002

15. M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems
of monotone equations, In: Reformulation: nonsmooth, piecewise smooth, semismooth and
smoothing methods, New York: Springer, 1998, 355–369. https://doi.org/10.1007/978-1-4757-
6388-1 18

16. Z. S. Yu, J. Lin, J. Sun, Y. H. Xiao, L. Y. Liu, Z. H. Li, Spectral gradient projection method for
monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416–2423.
https://doi.org/10.1016/j.apnum.2009.04.004

17. A. H. Ibrahim, P. Kumam, M. Sun, P. Chaipunya, A. B. Abubakar, Projection method with inertial
step for nonlinear equations: application to signal recovery, J. Ind. Manag. Optim., 19 (2022),
30–55. https://doi.org/10.1016/j.apnum.2009.04.004

18. D. D. Li, J. Q. Wu, Y. Li, S. H. Wang, A modified spectral gradient projection-based algorithm for
large-scale constrained nonlinear equations with applications in compressive sensing, J. Comput.
Appl. Math., 424 (2023), 115006. https://doi.org/10.1016/j.cam.2022.115006

19. A. H. Ibrahim, S. Al-Homidan, Two-step inertial derivative-free projection method for
solving nonlinear equations with application, J. Comput. Appl. Math., 451 (2024), 116071.
https://doi.org/10.1016/j.cam.2024.116071

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

https://dx.doi.org/https://doi.org/10.1007/s10957-018-1395-1
https://dx.doi.org/https://doi.org/10.1007/s11075-019-00677-y
https://dx.doi.org/https://doi.org/10.1007/s11075-019-00677-y
https://dx.doi.org/https://doi.org/10.1016/j.amc.2019.124890
https://dx.doi.org/https://doi.org/10.1016/j.amc.2022.127609
https://dx.doi.org/https://doi.org/10.1093/imanum/8.1.141
https://dx.doi.org/https://doi.org/10.1080/10556780310001610493
https://dx.doi.org/https://doi.org/10.1090/S0025-5718-06-01840-0
https://dx.doi.org/https://doi.org/10.1137/S1052623494266365
https://dx.doi.org/https://doi.org/10.1016/j.cam.2005.10.002
https://dx.doi.org/https://doi.org/10.1007/978-1-4757-6388-1_18
https://dx.doi.org/https://doi.org/10.1007/978-1-4757-6388-1_18
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2009.04.004
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2009.04.004
https://dx.doi.org/https://doi.org/10.1016/j.cam.2022.115006
https://dx.doi.org/https://doi.org/10.1016/j.cam.2024.116071

3268

20. H. Y. Jiang, Unconstrained minimization approaches to nonlinear complementarity problems, J.
Global Optim., 9 (1996), 169–181. https://doi.org/10.1007/BF00121662

21. O. L. Mangasarian, M. V. Solodov, A linearly convergent derivative-free descent method
for strongly monotone complementarity problems, Comput. Optim. Appl., 14 (1999), 5–16.
https://doi.org/10.1023/A:1008752626695

22. C. F. Ma, L. J. Chen, D. S. Wang, A globally and superlinearly convergent smoothing Broyden-
like method for solving nonlinear complementarity problem, Appl. Math. Comput., 198 (2008),
592–604. https://doi.org/10.1016/j.amc.2007.08.057

23. Z. S. Yu, L. Li, Y. Yuan, A modified multivariate spectral gradient algorithm for solving absolute
value equations, Appl. Math. Lett., 121 (2021), 107461. https://doi.org/10.1016/j.aml.2021.107461

24. K. Amini, A. Kamandi, A new line search strategy for finding separating hyperplane in projection-
based methods, Numer. Algor., 70 (2015), 559–570. https://doi.org/10.1007/s11075-015-9961-1

25. J. Yang, H. W. Liu, A modified projected gradient method for monotone variational inequalities, J.
Optim. Theory Appl., 179 (2018), 197–211. https://doi.org/10.1007/s10957-018-1351-0

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 2, 3251–3268.

https://dx.doi.org/https://doi.org/10.1007/BF00121662
https://dx.doi.org/https://doi.org/10.1023/A:1008752626695
https://dx.doi.org/https://doi.org/10.1016/j.amc.2007.08.057
https://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107461
https://dx.doi.org/https://doi.org/10.1007/s11075-015-9961-1
https://dx.doi.org/https://doi.org/10.1007/s10957-018-1351-0
https://creativecommons.org/licenses/by/4.0

	Introduction
	The establishment of equivalent equations
	Algorithm
	Convergence analysis
	Numerical results
	Conclusions

