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1. Introduction

In this study, we focus on the nonnegative cone horizontal linear complementarity problem (HLCP):
Given the matrices A, B ∈ Rn×n and a source term q ∈ Rn, our goal is to find a pair of vectors, denoted
as x, y, that meet the following criteria:

Ax − By = q, x ∈ Rn
+, y ∈ Rn

+, ⟨x, y⟩ = 0, (1.1)

where Rn
+ = {x ∈ R

n | x ⩾ 0} is the so-called nonnegative cone. Here, ⟨·, ·⟩ is the Euclidean inner
product and ∥ · ∥ denotes the Euclidean norm. Obviously, if either A = In or B = In, the HLCP
simplifies to the linear complementarity problem (LCP).
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The HLCP has many applications in noncooperative games, optimization problems, economic
equilibrium problems, and traffic assignment problems [1]. The finite-difference discretization of
hydrodynamic lubrication also gives rise to the HLCP [2]. Many scholars have studied this problem.
Various methods can be employed to address this issue, including interior point approaches [3], neural
network techniques [4], and verification techniques [5]. In [6], Mezzadri and Galligani introduced a
class of projected splitting methods.

Recently, the modulus-based matrix-splitting approach, a widely used technique, has been applied
to many kinds of linear/nonlinear complementarity problems. For example, Mezzadri and Galligani
in 2019 presented the modulus-based matrix-splitting method to solve the HLCP [7]. Furthermore, the
convergence of the methods proposed in [7] has been enlarged by Zheng and Vong [8]. Zhang et al. [9]
have introduced a two-step parallel iterative approach for solving large sparse HLCP problems.

The first-order methods have been the subject of considerable attention in recent years, largely
due to their minimal storage requirements. One of the most widely known first-order methods is
the spectral gradient method, which was first introduced by Barzilai and Borwein in reference [10]
and subsequently extended by Raydan and La Cruz in references [11–13]. In their study, Zhang and
Zhou [14] employed the spectral gradient projection method for unconstrained monotone equations,
as proposed by Solodov and Svaiter [15]. This approach is based on the inexact Newton method.
Furthermore, Yu et al. demonstrated the efficacy of this approach in solving constrained monotone
equations, as evidenced by the favorable outcomes reported in reference [16]. In a recent study,
Ibrahim et al. proposed the projection method with inertial step [17] for nonlinear equations, Li et al.
studied the modified spectral gradient projection-based algorithm [18] for large-scale constrained
nonlinear equations, and Ibrahim et al. proposed the two-step inertial derivative-free projection
method [19] for solving nonlinear equations.

Jiang [20] developed a derivative-free descent technique for the nonlinear complementarity
problem (NCP) when the nonlinear mapping is directionally differentiable and strongly monotone,
utilizing an equivalent system of nonlinear equations derived from the squared Fischer-Burmeister (FB)
function. Mangasarian et al. [21] introduced another derivative-free descent method for the
strongly monotone NCP by minimizing the implicit Lagrangian function, establishing its global
convergence. Ma et al. [22] proposed a smooth Broyden-like method for the NCP, which uses a
smooth approximation of the FB function and a derivative-free line search rule, demonstrating global
convergence under suitable conditions. This smooth Broyden-like method has also been shown to
achieve global and superlinear convergence under appropriate conditions.

Yu et al. [23] converted the absolute value equation into a monotone system and resolved it using
a multivariate spectral gradient method. Drawing inspiration from this work, we first reframe the
HLCP (1.1) into a fixed-point equation based on the modulus defined within the nonnegative cone. By
transforming the implicit fixed-point equation into a monotone system, we introduce a new class of
modified multivariate spectral gradient projection methods for its solution. We outline the conditions
under which the new equation remains monotone and continuous. It is shown that the proposed iterative
method converges to the solution of the HLCP in equation (1.1) under the specified assumptions.
Additionally, numerical examples illustrate that the modulus-based modified multivariate spectral
gradient projection method is both feasible and efficient.

The proposed algorithm is contrasted with the modulus-based matrix-splitting iterative method,
which generally requires matrix inversion, a step not needed here. Since matrix inversion is
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computationally intensive, the algorithm described in this paper holds a distinct advantage. Compared
to conventional gradient descent methods, there is potential for improving the line search technique
and the distribution strategy of the spectral gradient in existing algorithms. This paper’s algorithm has
been refined by incorporating a new line search technique [24] and a more efficient allocation of the
spectral gradient, leading to better performance in reducing the number of iterations and CPU time.

The paper is structured as follows: In Section 2, we develop a monotone system of equations
that is equivalent to the HLCP. In Section 3, we introduce a modified multivariate spectral gradient
projection method grounded in the modulus approach. Section 4 focuses on the convergence analysis
of the proposed algorithm. Numerical experiments and their outcomes are detailed and analyzed in
Section 5. Finally, concluding observations are provided in Section 6.

2. The establishment of equivalent equations

This section introduces some notations and auxiliary results.

Theorem 2.1. Let matrices A, B ∈ Rn×n and vector q ∈ Rn. Then,
− if (x, y) is a solution to the HLCP in (1.1), then z = 1

2 (x − y) fulfills

(A + B)z + (A − B)|z| = q; (2.1)

− if z satisfies (2.1), then
x = |z| + z, y = |z| − z (2.2)

is a solution of the HLCP, where z ∈ Rn. |z| denotes the absolute value of z.

Proof. With regard to the first statement, since (x, y) is a solution of the HLCP in (1.1), it follows that
both variables are nonnegative and can be expressed as Eq (2.2) with z ∈ Rn. If we put (2.2) into (1.1),
we obtain (x, y) as a solution to the complementarity problem if and only if

A(z + |z|) + B(z − |z|) = q. (2.3)

Rearranging the above equation can easily be written as (2.1).
About the second statement, we commence with (2.1), which can be rewritten as Eq (2.3) through

the simple rearrangement of terms. By defining x and y as specified in Eq (2.2), we derive

Ax − By = q,

where x, y is nonnegative. It can be readily confirmed that xi > 0 and yi = 0 when zi > 0, whereas
xi = 0 and yi > 0 when zi < 0. If zi = 0, then trivially xi = yi = 0. Here, zi denotes the i-th component
of z, with a similar notation used for xi and yi. Consequently, the complementarity condition is met,
and (x, y) constitutes a solution to the HLCP as stated in Eq (1.1). This completes the proof. □

Let x = |z|+ z, y = |z| − z, where z ∈ Rn. According to Theorem 2.1, the HLCP in (1.1) is equivalent
to the fixed-point equation

(B + A)z − (B − A)|z| = q.

If B − A is invertible, we have

(B − A)−1(B + A)z − |z| = (B − A)−1q.
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We set
F(z) := (B − A)−1(B + A)z − |z| − (B − A)−1q, (2.4)

where z ∈ Rn.

Definition 2.1. A mapping F : Rn → Rn is defined as monotone if, for ∀α, β ∈ Rn,

(α − β)T (F(α) − F(β)) ⩾ 0

is satisfied.

Definition 2.2. A mapping F : Rn → Rn is considered Lipschitz continuous if, for ∀α, β ∈ Rn, there
exists a constant L > 0 such that

∥F(α) − F(β)∥ ⩽ L∥α − β∥.

Assumption 2.1. In Eq (2.4), (B − A) is invertible and (B − A)−1A is semi-positive definite.

Theorem 2.2. F(z) is monotone as long as (B − A)−1A is semi-positive definite.

Proof. For any α, β ∈ Rn, the dot product αTβ =
∑n

i=1 αiβi. Specifically, we have defined the index set

I1 = {i ∈ R | αi ⩾ 0, βi ⩾ 0}, I2 = {i ∈ R | αi ⩾ 0, βi ⩽ 0},

and
I3 = {i ∈ R | αi ⩽ 0, βi ⩾ 0}, I4 = {i ∈ R | αi ⩽ 0, βi ⩽ 0}.

On one side,

⟨|α| − |β|, α − β⟩ =
∑
i∈I1

⟨|αi| − |βi|, αi − βi⟩ +
∑
i∈I2

⟨|αi| − |βi|, αi − βi⟩

+
∑
i∈I3

⟨|αi| − |βi|, αi − βi⟩ +
∑
i∈I4

⟨|αi| − |βi|, αi − βi⟩

=
∑
i∈I1

⟨αi − βi, αi − βi⟩ +
∑
i∈I2

⟨αi − βi + 2βi, αi − βi⟩

+
∑
i∈I3

⟨βi − αi + 2αi, βi − αi⟩ +
∑
i∈I4

⟨−αi + βi, αi − βi⟩,

and expanding it out, we notice that
∑

i∈I2
⟨2βi, αi − βi⟩ ⩽ 0, and

∑
i∈I3
⟨2αi, βi − αi⟩ ⩽ 0. Hence,

⟨|α| − |β|, α − β⟩ ⩽
∑
i∈I1

⟨αi − βi, αi − βi⟩ +
∑
i∈I2

⟨αi − βi, αi − βi⟩

+
∑
i∈I3

⟨αi − βi, αi − βi⟩ +
∑
i∈I4

⟨−αi + βi, αi − βi⟩

=
∑
i∈I1

⟨αi − βi, αi − βi⟩ +
∑
i∈I2

⟨αi − βi, αi − βi⟩

+
∑
i∈I3

⟨αi − βi, αi − βi⟩ −
∑
i∈I4

⟨αi − βi, αi − βi⟩
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⩽
∑
i∈I1

⟨αi − βi, αi − βi⟩ +
∑
i∈I2

⟨αi − βi, αi − βi⟩

+
∑
i∈I3

⟨αi − βi, αi − βi⟩ +
∑
i∈I4

⟨αi − βi, αi − βi⟩

=
∑

i∈I1∪I2∪I3∪I4

⟨αi − βi, αi − βi⟩

= (α − β)T (α − β).

On the flip side,

⟨F(α) − F(β), α − β⟩ = ⟨(B − A)−1(B + A)α − |α| − (B − A)−1q − (B − A)−1(B + A)β
+ |β| + (B − A)−1q, α − β⟩

= ⟨(B − A)−1(B + A)α − (B − A)−1(B + A)β − |α| + |β|, α − β⟩
= ⟨(B − A)−1(B + A)(α − β) − (|α| − |β|), α − β⟩
= (α − β)T (B − A)−1(B + A)(α − β) − ⟨(|α| − |β|), α − β⟩
⩾ (α − β)T (B − A)−1(B + A)(α − β) − (α − β)T (α − β)
⩾ (α − β)T ((B − A)−1(B + A) − I)(α − β)
= (α − β)T ((B − A)−1(B + A) − (B − A)−1(B − A))(α − β)
= 2(α − β)T ((B − A)−1A)(α − β).

Obviously, F(z) will be monotone, as long as (B − A)−1A is semi-positive definite. This completes the
proof. □

Theorem 2.3. The function F(z) is Lipschitz continuous, meaning there exists a nonnegative constant
L such that the following inequality is satisfied:

∥F(α) − F(β)∥ ⩽ L∥α − β∥.

Proof. For ∀α, β ∈ Rn, by the Lipschitz condition and (2.4), we have

∥F(α) − F(β)∥ = ∥(B − A)−1(B + A)α − |α| − (B − A)−1(B + A)β + |β|∥
= ∥(B − A)−1(B + A)(α − β) − (|α| − |β|)∥
⩽ ∥(B − A)−1(B + A)(α − β)∥ + ∥|α| − |β|∥
⩽ ∥(B − A)−1(B + A)∥∥α − β∥ + ∥α − β∥
= (∥(B − A)−1(B + A)∥ + 1)∥α − β∥.

Since ∥(B− A)−1(B+ A)∥ ⩾ 0, thus, set L = ∥(B− A)−1(B+ A)∥+ 1, and it can be demonstrated that the
Lipschitz condition is satisfied. This completes the proof. □

According to Theorems 2.2 and 2.3, under the condition of Assumption 2.1, HLCP (1.1) can be
equivalently reformulated to a monotone system:

F(z) = 0. (2.5)
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3. Algorithm

For monotone system (2.5), the matrix-splitting method was commonly used in the past. In each
iteration, the fixed-point equation needs to be inverted to obtain a new iteration point. As we know, it
takes a certain amount of time to find the inverse. In order to simplify the time cost, we introduce a new
multivariate spectral gradient method to solve (2.5), called the modulus-based modified multivariate
spectral gradient projection method (M-MMSGP). The M-MMSGP algorithm employs a novel line
search methodology [24] that differs from existing gradient algorithms. It utilizes the multivariate
spectral gradient vector as the descent direction and assigns the multivariate spectral gradient as a
whole, which significantly reduces the number of iterations of the algorithm and CPU time.

Algorithm 3.1. M-MMSGP algorithm for (2.5)
Step 0: We are given ε > 0, z ∈ Rn. Let σ, β ∈ (0, 1), α0 = 1, r, αmin ∈ [0, 1]. Set k := 0.
Step 1: If

∥∥∥F(zk)
∥∥∥ ⩽ ε, then halt and consider zk as an approximate solution.

Step 2: Calculate search direction
dk = −αk. ∗ F(zk). (3.1)

Step 3: Find vk = zk + θkdk, where θk£ = βmk , and mk is the smallest nonnegative integer such that

−F(zk + θkdk)T dk ⩾ σγkθk∥dk∥2, (3.2)

where γk£ =
∥F(zk)∥

1 + ∥F(zk)∥
.

Step 4: Compute the new iterate by

zk+1 = zk −

〈
F(vk), zk − vk

〉
∥∥∥F(vk)

∥∥∥2 F(vk). (3.3)

Step 5: Update the spectral vector by

αk+1 = max{αminones(n, 1),
(sk)T yk

(sk)T sk ones(n, 1)}, (3.4)

where sk = zk+1 − zk and yk = F(zk+1) − F(zk) + rsk.
Step 6: Increase k by 1 and return to Step 1.

Remark 3.1. If Algorithm 3.1 terminates at finite iteration k and F(zk) = 0, then zk is the solution to
F(z) = 0. If k approaches infinity and F(zk) , 0, Algorithm 3.1 produces an infinite sequence {zk}. For
simplicity, we can assume that {zk} is an infinite sequence.

Remark 3.2. (1) Based on the monotonic behavior of F(z), we can derive

(sk)T yk = (zk+1 − zk)T (F(zk+1) − F(zk) + rsk) ⩾ r((sk)T sk). (3.5)

(2) From the Lipschitz continuity of F(z), we can deduce that

(sk)T yk ⩽ (L + r)((sk)T sk). (3.6)

(3) From (3.4)–(3.6), we can deduce that

min{αmin, r}∥F(zk)∥2 ⩽ ∥dk∥2 ⩽ max{αmin, L + r}∥F(zk)∥2. (3.7)

Here, L = ∥(B − A)−1(B + A)∥ + 1 is given by Theorem 2.3.
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The subsequent lemma illustrates that Algorithm 3.1 is well-defined.

Lemma 3.1. According to the propositions outlined above, there exists a nonnegative integer mk

ensuring that (3.2) is satisfied for all k ⩾ 0.

Proof. Assume there is a k0 ⩾ 0 for which (3.2) fails to hold for any nonnegative integer m, i.e.,

⟨F(zk0 + βmdk0), dk0⟩ < σ
∥F(zk0)∥

1 + ∥F(zk0)∥
βm∥dk0∥2.

By letting m→ ∞ and utilizing the continuity of F(z), we obtain

−⟨F(zk0), dk0⟩ ⩽ 0. (3.8)

Based on Step 1 of Algorithm 3.1 and (3.1), we find that

F(zk) , 0, dk , 0,

for any k ⩾ 0. Consequently, it follows that

−⟨F(z0), d0⟩ = ⟨F(z0), F(z0)⟩ > 0,

and

−⟨F(zk), dk⟩ = ⟨F(zk), αkF(zk)⟩ ⩾ min{αmin, r}∥F(zk)∥2 > 0, (3.9)

where k ⩾ 0. This result conflicts with (3.8), thus completing the proof. □

4. Convergence analysis

In this part, we demonstrate that every convergent subsequence {zk j} of the sequence {zk} produced
by Algorithm 3.1 approaches a solution of system (2.5). Due to the equivalence, it also converges to a
solution of the HLCP (1.1).

Lemma 4.1. [15] Let F(z) be monotone, and z, v ∈ Rn such that F(v)T (z − v) > 0. Let z∗ be a solution
of F(z) = 0 and

z+ = z −
F(v)T (z − v)
∥F(v)∥2

F(v).

Then we have
∥z+ − z∗∥2 ⩽ ∥z − z∗∥2 − ∥z+ − z∥2.

Theorem 4.1. Given Assumption 2.1, assume the sequence {zk} is generated by the M-MMSGP method
with ε = 0. In this case, either the sequence {zk} is finite, and the final iterate {zk} is a solution to
F(z) = 0, or the sequence {zk} is infinite, and

lim
k→∞
θk∥dk∥ = 0.
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Proof. By Assumption 2.1 and Theorem 2.2, F(z) in (2.4) is monotone. By (3.2) of Algorithm 3.1,
we have

F(vk)T (zk − vk) = −βmk F(vk)T dk ⩾ σγkβ
mk∥dk∥2 > 0.

By Lemma 4.1, one has
∥zk+1 − z∗∥2 ⩽ ∥zk − z∗∥2 − ∥zk+1 − zk∥2, (4.1)

where z∗ solves F(z) = 0. Hence, {∥zk − z∗∥} is a decreasing sequence and ∥zk − z∗∥ ⩽ ∥z0 − z∗∥ holds for
all k ⩾ 1 which implies that {zk} ⊂ {z ∈ Rn : ∥z − z∗∥ ⩽ ∥z0 − z∗∥}. Hence, {zk} is a bounded sequence.

Given the continuity of F(z), the sequence {∥F(zk)∥} is bounded.

∥dk∥2 = ∥αk∥
2∥F(zk)∥2 ⩽ max{αmin, L + r}∥F(zk)∥2. (4.2)

By (4.2), {dk} is also bounded. From Step 3 of Algorithm 3.1, we have vk = zk + θkdk. Since {zk} and
{dk} are bounded, θk ∈ (0, 1), so {vk} is bounded. Given the continuity of F(v), the sequence {∥F(vk)∥}
is bounded. There exists a positive constant M such that ∥F(vk)∥ ⩽ M for all k ⩾ 1.

Assuming without loss of generality that the sequence {zk} is infinite, from (4.1) we obtain

lim
k→∞
∥zk+1 − zk∥ = 0. (4.3)

By (3.3) we have

∥zk+1 − zk∥ =
|F(vk)T (zk − vk)|
∥F(vk)∥2

∥F(vk)∥ =
|F(vk)Tθkdk|

∥F(vk)∥2
∥F(vk)∥

⩾
σ(θk)2γk∥dk∥2

∥F(vk)∥2
∥F(vk)∥ =

σ

1 + ∥F(vk)∥2
(θk)2∥dk∥2

⩾
σ

1 + M
(θk)2∥dk∥2.

Combining the above inequality and (4.3) yields limk→∞ θk∥dk∥ = 0. This concludes the proof. □
The subsequent theorem illustrates the global convergence of the proposed M-MMSGP method.

Theorem 4.2. Under the condition of Assumption 2.1, suppose that sequence {zk} is generated by the
proposed M-MMSGP method with ε = 0. Then, {zk} converges to some point z∗ satisfying F(z∗) = 0.

Proof. By Theorem 4.1, we get
lim
k→∞
θk∥dk∥ = 0. (4.4)

(1) If lim infk→∞ ∥dk∥ = 0, then from (3.7), it follows that lim infk→∞ ∥F(zk)∥ = 0. Consequently,
there exists a subsequence {zk j} ⊂ {zk} such that limk j→∞ ∥F(zk j)∥ = 0. Given the continuity of F(z), this
implies limk j→∞ ∥z

k j − z∗∥ = 0, where z∗ is a point satisfying F(z∗) = 0.
(2) If lim infk→∞ ∥dk∥ > 0, then according to Theorem 4.1, limk→∞ θk = 0. From Eq (4.4), it follows

that limk→∞ ∥F(zk)∥ > 0.
Based on Algorithm 3.1, we have

−F(zk + βmk−1dk)T dk < σγkβ
mk−1∥dk∥2.

Given that the sequences {zk} and {dk} are bounded, they must have at least one cluster point.
Therefore, there exist subsequences {zk j} ⊂ {zk} and {dk j} ⊂ {dk} that converge to this cluster point.
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In the above equation, let k → ∞, and we can get

−F(ẑ)T d̂ ⩽ 0, (4.5)

where ẑ and d̂ are limit points of subsequences {zk j} ⊂{zk} and {dk j} ⊂ {dk} , respectively. On the other
hand, let k → ∞ in (3.9), and we have

−F(ẑ)T d̂ ⩾ 0. (4.6)

This contradicts (4.5). Therefore, inequality lim infk→∞ ∥dk∥ > 0 does not hold. This completes the
proof. □

5. Numerical results

In this section, we present some numerical results to demonstrate the efficiency of Algorithm 3.1.
We choose a modified gradient projection algorithm (MGP) [25] used to solve (2.5), a modified
multivariate spectral gradient algorithm (MMSGP) [23] used to solve (2.5), a modulus-based
Jacobi algorithm (MJ) [6] used to solve (2.1), and a modified spectral gradient projection-based
algorithm (PGP) [18] used to solve (2.5) as the comparison. All methods were implemented in
MATLAB R2018a and executed on a personal computer with an Intel Core i7 processor operating
at 1.80 GHz and 8GB of RAM.

All experiment results include three aspects: the elapsed CPU time in seconds (CPU), the norm of
absolute residual vectors (RES), and the number of iteration steps (IT), respectively. RES is defined
as RES := ∥Ax(k) − By(k) − q∥.

In the following experiments, when the prescribed iteration number ITmax = 600 is exceeded or the
residual vector satisfies RES ⩽ 10−6, all runs are terminated. We will consider the problems with six
dimensions, i.e., n = 100, 400, 900, 1600, 2500, and 3600.

The primary numerical outcomes are presented in Tables 1–5, as well as Figures 1–4, to facilitate
easy comparison. In these tables and figures, the algorithm parameters are set as follows:
(1) For the MGP algorithm, set λ0 = 0.4, δ = 1.01, α = 0.4

δ
;

(2) For the MMSGP algorithm, set α0 = 1, β = 0.2, τ = 0.001, σ = 0.01, r = 0.001;
(3) For the MJ algorithm, set Ω = 0.5In;
(4) For the PGP algorithm, set β = 1, ρ = 0.8, σ = 10−5, l = 10−4, u = 1030;
(5) For the M-MMSGP algorithm, set λmin = 0.1ones(n, 1), β = 0.618, σ = 0.01, r = 0.001.

Example 5.1. [7] To solve the HLCP, consider the tridiagonal matrix

S = tridiag(−1, 4,−1) ∈ Rm×m,

where m is a given positive integer. We define the matrices A, B ∈ Rn×n, with n = m2, as A = Â + µI
and B = B̂ + νI with µ, v as the real parameters and

Â = tridiag (−Im, S ,−Im) =



S −Im

−Im S −Im
. . .

. . .
. . .

−Im S −Im

−Im S


∈ Rn×n,

B̂ = tridiag(0, S , 0) ∈ Rn×n.
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Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.
Example 5.1 can be derived from the discretization form of a two-dimensional boundary problem,

which is specifically described as

∆z +
∂2w
∂2u
+ µz + νw − q = 0, z ⩾ 0,w ⩾ 0, zT w = 0,

where z(u, v),w(u, v), and q(u, v) are three two-dimensional maps. Therefore, under appropriate
boundary conditions, the boundary problem is discretized by the five-point difference discretization
method, and its discretization scheme is in the form of an HLCP.

Example 5.2. [10] To solve the HLCP, consider the tridiagonal matrix

S =



4 −0.5
−1.5 4 −0.5

. . .
. . .

. . .

−1.5 4 −0.5
−1.5 4


∈ Rm×m,

where m is a given positive integer. We define the matrices A, B ∈ Rn×n, with n = m2, as A = Â + µI
and B = B̂ + νI with µ, v as the real parameters and

Â = tridiag (−1.5Im, S ,−0.5Im) =



S −0.5Im

−1.5Im S −0.5Im
. . .

. . .
. . .

−1.5Im S −0.5Im

−1.5Im S


∈ Rn×n,

B̂ = tridiag(0, S , 0) ∈ Rn×n.

Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.

Example 5.3. To solve the HLCP, where A ∈ Rn×n and B ∈ Rn×n, consider the block-tridiagonal
matrices

A = tridiag(−1, 7,−1) ∈ Rn×n

and
B = tridiag(−2Im,C,−2Im)

=



C −2Im

−2Im C −2Im
. . .

. . .
. . .

−2Im C −2Im

−2Im C


∈ Rn×n

with the tridiagonal matrix
C = tridiag(−1, 7,−1) ∈ Rm×m.

Here, n = m2. Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.
This example is adapted from the literature [10].
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Example 5.4. To solve the HLCP, where A ∈ Rn×n and B ∈ Rn×n, consider the block-tridiagonal
matrices

A = tridiag (−0.5Im,C,−0.5Im) =



C −0.5Im

−0.5Im C −0.5Im
. . .

. . .
. . .

−0.5Im C −0.5Im

−0.5Im C


∈ Rn×n

and
B = tridiag(−1, 7,−1) ∈ Rn×n

with the tridiagonal matrix
C = tridiag(−1, 4,−1) ∈ Rm×m.

Here, n = m2. Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.
This example is adapted from the literature [10].

Example 5.5. To solve the HLCP, where A ∈ Rn×n and A is a random matrix with eigenvalues
{1, 1, 3, 3, 3, ...}, consider

B = 1.8In ∈ R
n×n.

Here, n = m2. Let z∗ = (1,−1, 1,−1, . . .)T , x∗ = |z∗| + z∗, and y∗ = |z∗| − z∗, and then q = Ax∗ − By∗.

For Examples 5.1–5.5, the numeric results are list in Tables 1–5, respectively.
Table 1 contains the results of the M-MMSGP method, MJ method, MGP method, and PGP method

for Example 5.1 under n = 100, 400, 900, 1600, 2500, and 3600, respectively. Here, we take µ = 2,
and ν = 3. Among the four algorithms, it can be seen that the M-MMSGP algorithm has obvious
advantages in both the number of iterations and the CPU time. The M-MMSGP algorithm has good
numerical performance.

Table 1. Numerical results of Example 5.1.

Algorithms M-MMSGP MJ MGP PGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES IT/CPU/RES

100 20/0.0018/9.05e-7 52/0.0460/8.05e-7 98/0.0029/8.81e-7 29/0.0064/4.08e-7
400 28/0.0040/5.99e-7 61/0.4781/9.73e-7 104/0.0062/8.71e-7 30/0.0127/7.07e-7
900 33/0.0077/8.06e-7 63/3.0354/8.55e-7 107/0.0114/8.69e-7 26/0.0177/2.51e-7
1600 38/0.0158/7.26e-7 64/14.5580/7.66e-7 109/0.0188/8.71e-7 32/0.0236/4.30e-7
2500 24/0.0101/7.31e-7 64/40.8561/8.64e-7 110/0.0285/9.48e-7 28/0.0365/6.55e-7
3600 31/0.0218/7.76e-7 64/113.5324/9.52e-7 111/0.0459/9.83e-7 34/0.0526/4.68e-7

Tables 2 and 3 contain the results of the M-MMSGP method, MJ method, MGP method, and PGP
method for Examples 5.2 and 5.3 under n = 100, 400, 900, 1600, 2500, and 3600, respectively. The
M-MMSGP algorithm has excellent numerical performance. The numerical results show that the M-
MMSGP method excels in both CPU time and iteration count. Among the four algorithms, the MGP
algorithm has the most iteration steps but consumes less CPU time. The MJ algorithm has the highest
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CPU time but fewer iteration steps. The MJ algorithm requires inversion in each iteration, while the
other three algorithms do not require inversion, which requires more CPU time. Therefore, the MJ
algorithm has the highest CPU time. The selection of gradient descent direction in the MGP algorithm
is not effective, while the other three algorithms have better descent directions, so the MGP algorithm
has more iteration steps. The PGP algorithm always spends more CPU time than the M-MMSGP
algorithm although the number of iteration steps is less than the M-MMSGP algorithm in certain
dimensions. The M-MMSGP algorithm only needs to compare and allocate spectral gradients, which
provides better CPU time. Especially for the M-MMSGP algorithm, the larger the matrix dimension,
the faster the convergence speed.

Table 2. Numerical results of Example 5.2.

Algorithms M-MMSGP MJ MGP PGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES IT/CPU/RES

100 19/0.0009/8.52e-7 57/0.0116/7.91e-7 98/0.0027/8.45e-7 52/0.0151/6.75e-7
400 21/0.0020/3.94e-7 64/0.4632/8.08e-7 104/0.0060/9.15e-7 33/0.0129/4.19e-7
900 31/0.0066/8.66e-7 65/2.9363/9.31e-7 107/0.0114/9.05e-7 33/0.0222/3.78e-7
1600 38/0.0146/7.56e-7 66/12.7681/8.34e-7 109/0.0190/9.00e-7 25/0.0242/2.62e-7
2500 39/0.0225/8.56e-7 66/43.2360/9.43e-7 110/0.0290/9.74e-7 28/0.0364/6.69e-7
3600 34/0.0251/8.57e-7 67/116.0291/7.95e-7 112/0.0416/8.55e-7 29/0.0459/8.34e-7

Table 3. Numerical results of Example 5.3.

Algorithms M-MMSGP MJ MGP PGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES IT/CPU/RES

100 23/0.0041/2.36e-7 65/0.0160/9.41e-7 127/0.0070/9.23e-7 44/0.0129/8.89e-7
400 25/0.0116/8.48e-7 72/0.5340/8.98e-7 138/0.0072/9.48e-7 30/0.0212/7.73e-7
900 28/0.0207/7.26e-7 75/3.8034/8.08e-7 142/0.0159/9.65e-7 41/0.0306/3.92e-7
1600 30/0.0085/2.98e-7 76/15.1479/9.30e-7 145/0.0240/9.00e-7 46/0.0297/8.93e-7
2500 27/0.0116/9.77e-7 77/52.1398/9.58e-7 147/0.0368/8.77e-7 43/0.0403/7.97e-7
3600 25/0.0154/7.99e-7 78/139.2645/9.28e-7 148/0.0527/9.31e-7 33/0.0525/9.29e-7

Table 4 contains the results of the M-MMSGP method, MJ method, MGP method, and MMSGP
method for Example 5.4 under n = 400, 900, 1600, 2500, and 3600, respectively. The M-MMSGP
algorithm has excellent numerical performance. The numerical results indicate that the M-MMSGP
method has the optimal CPU time. The iteration times of the M-MMMGP algorithm are only inferior
to the MJ algorithm in certain dimensions. Overall, the M-MMSGP algorithm also has better numerical
performance in terms of iteration times. The reason why the MJ algorithm takes more time than the
M-MMSGP algorithm is that the MJ algorithm requires inversion in each iteration, which requires a
certain amount of CPU time. The M-MMSGP algorithm only needs to compare and allocate spectral
gradients, which provides better CPU time.

The experimental results demonstrate that despite having a lower number of iterations, the MMSGP
algorithm consumes the most CPU time. Specifically, when n = 900, the CPU time surpasses 100
seconds. The reason why MMSGP has fewer iterations is that the algorithm needs to assign values to
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each element in the gradient direction in order to find the optimal gradient descent direction. However,
due to the allocation of each element, more CPU time is required when the dimensionality is high. The
M-MMSGP algorithm only requires an overall comparison of the distribution spectral gradient, which
occupies less CPU time. Especially for the M-MMSGP algorithm, the larger the matrix dimension, the
faster the convergence speed.

Table 4. Numerical results of Example 5.4.

Algorithms M-MMSGP MJ MGP MMSGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES IT/CPU/RES

400 21/0.0047/3.25e-7 21/0.1738/4.40e-7 95/0.0052/9.51e-7 16/9.1435/2.50e-7
900 21/0.0044/2.52e-7 21/0.9589/7.55e-7 98/0.0105/8.55e-7 16/104.1921/3.70e-7

1600 23/0.0065/7.48e-7 22/4.3433/3.31e-7 99/0.0169/9.74e-7 */*/*
2500 21/0.0086/6.62e-7 22/14.7866/4.28e-7 101/0.0260/8.39e-7 */*/*
3600 23/0.0129/5.05e-7 22/38.1063/5.25e-7 102/0.0371/8.40e-7 */*/*

Remark: */*/*: CPU > 100.

From Table 5, it can be seen that the M-MMSGP method is sensitive to solving the HLCP. The
numerical calculation results include the M-MMSGP algorithm, MJ algorithm, and MGP algorithm,
which have good performance. The M-MMSGP method has the optimal CPU time and iteration times.
The experimental data indicates that for the M-MMSGP algorithm, an increase in dimensionality does
not significantly affect the number of iterations, suggesting robust numerical performance. Compared
to the other two algorithms, the MJ algorithm outperforms the MGP algorithm, while the M-MMSGP
algorithm surpasses both.

Table 5. Numerical results of Example 5.5.

Algorithms M-MMSGP MJ MGP
n IT/CPU/RES IT/CPU/RES IT/CPU/RES

100 31/0.0157/7.11e-7 34/0.0196/9.86e-7 55/0.0191/7.77e-7
400 32/0.2418/9.36e-7 36/0.2665/5.69e-7 57/0.5623/9.03e-7
900 30/1.1550/4.80e-7 36/1.6824/8.86e-7 58/3.1461/9.65e-7

1600 29/3.8054/4.62e-7 37/7.1720/6.44e-7 59/10.3077/9.08e-7
2500 32/9.9062/6.22e-7 37/23.6482/8.12e-7 60/25.8178/8.10e-7

Figure 1 shows the relationship between the number of iterations and RES for Example 5.1. It can
be seen that the RES descent speed of the M-MMSGP algorithm is faster than that of the MJ algorithm
and MGP algorithm. This also verifies the effectiveness of the M-MMSGP algorithm. Figure 2 shows
the relationship between the number of iterations and RES for Example 5.3. It can be seen that the RES
drop speed of the M-MMSGP algorithm is the fastest among the three algorithms. Figure 3 shows the
relationship between the number of iterations and RES for Example 5.4. It can be seen that the RES
drop speed of the M-MMSGP algorithm is the fastest among the three algorithms. The relationship
between the number of iterations and RES in Example 5.5 is shown in Figure 4. The above proves that
the M-MMSGP algorithm has good numerical performance.
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The aforementioned numerical results highlight that the M-MMSGP algorithm demonstrates greater
efficiency in terms of CPU time and iteration count under specific conditions. Therefore, our proposed
method could be well-suited for solving the HLCP.

The M-MMSGP algorithm employs a novel linear search method, which is distinct from existing
gradient algorithms. It utilizes multivariate spectral gradient vectors as the descent direction and
allocates the multivariate spectral gradients as a whole, resulting in a significant increase in the number
of iterations and CPU time required by the algorithm.
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Figure 1. Relationship between IT and RES for Example 5.1.
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Figure 2. Relationship between IT and RES for Example 5.3.
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Figure 3. Relationship between IT and RES for Example 5.4.
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Figure 4. Relationship between IT and RES for Example 5.5.

6. Conclusions

The focus of this study is the HLCP. First, the HLCP is reconstructed into a fixed-point equation
based on the modulus defined in the nonnegative cone. By rewriting the fixed-point equation as a
monotone system, we put forward a new class of modified multivariate spectral gradient projection
method for solving it. It is shown that the proposed iterative method converges to the HLCP solution,
assuming the specified conditions are met. Furthermore, the viability and efficacy of the modulus-based
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modified multivariate spectral gradient projection method are illustrated through numerical examples.
The algorithm presented in this paper has been developed to address the horizontal complementarity
problem within the theoretical framework of this study. Further efforts could be directed toward solving
this problem under more simplified assumptions.
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