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Abstract: In certain nonlinear systems, period-doubling bifurcations are a common way to cause 

chaos. Additionally, bifurcation advance or delay can be realized using anti-control of 

period-doubling bifurcation. To address the practical needs of engineering, anti-control of 

period-doubling bifurcation is a typical method of applying chaos. Based on these reasons, we 

conducted the following research: First, we proposed a new one-dimensional discrete system with 

three parameters and a square term. Existence and stability at the fixed point were studied for the 

one-dimensional discrete system with three parameters and a square term. Furthermore, bifurcation 

theory was used to determine the conditions of existence for transcritical bifurcation and 

period-doubling bifurcation. Numerical experiments verified the theoretical assessments of the 

bifurcation’s results. Then, the state linear feedback control approach was used to implement the 

anti-control of period-doubling bifurcation in order to realize period-doubling bifurcation advance 

for the one-dimensional discrete system with three parameters and a square term. The conditions of 

the appropriate control parameters were analyzed in theory. Numerical experiments confirmed the 

efficiency and robustness of anti-control of period-doubling bifurcation for the one-dimensional 

discrete system with three parameters and a square term. The one-dimensional discrete system with 

three parameters and a square term with the anti-controller has advantages in image encryption. 
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1. Introduction 

The chaotic system has a high sensitivity to the initial condition and random-alike appearance, 

so it shows erratic, aperiodic, and nonlinear phenomena easily. Some of these phenomena are 

investigated by researching dynamical behaviors such as stability, bifurcations, and chaos [1]; some 

are investigated by explaining the formation and overall structure of strange attractors [2]; some are 

studied with computational simulations for Lyapunov exponent [3], time series analysis, and cobweb 

representation [4]. The erratic, aperiodic, and nonlinear phenomena can be used in many branches of 

society and nature; thus, many researchers are attracted to investigate the chaotic systems. Chaotic 

maps have emerged as a primary focus of research. Chaotic maps are the iterative functions in 

dynamical systems that display chaotic behavior. They are susceptible to the system’s specifications 

and starting circumstances. They are applied in various fields, which attract the attention of 

researchers to construct chaotic maps and investigate chaotic behaviors [5–9]. The constructed 

chaotic maps encompass one-dimension maps, two-dimension maps, and high-dimension maps [10–12]. 

Among these maps, one-dimensional chaotic maps are a fascinating subject because of their good 

chaotic qualities and simple structure, making them the most feasible of these maps to implement. 

One of the well-known chaotic maps is the logistic map, which is defined by 

1 (1 ), 0,1,2,n n nx μx x n+ = −    =         (1)
 

where 0μ  ,  0,1nx  . In 1976, May demonstrated that logistic maps may display complicated 

chaotic behaviors [13]. Following May’s work, a large number of one-dimensional chaotic maps are 

discovered that, for certain parameters with straightforward equations, show chaotic behavior, such 

as the Tent Map, Sine Map [14], one-dimensional cosine within sine chaotic map [15], and the 

one-dimensional quadratic map [16]. Among these maps, the structure of the one-dimensional 

chaotic map K [4] is the most similar to the one-dimensional logistic map, which is defined by 

1

(1 )
( ) , 0,1, 2,

1

n n
n n

n

μx x
x K x n

x
+

−
= =   = 

+
      (2) 

where 0μ  ,  0,1nx  . Furthermore, compared to a one-dimensional logistic map, the range of 

chaos and stability in a one-dimensional chaotic map K is greater. One-dimensional logistic map and 

one-dimensional chaotic map K both belong to one-dimensional discrete systems where the 

denominator is a linear function and the numerator is a quadratic function. Due to its unique 

mathematical properties, this type of discrete system has a wide range of applications in various 

fields, including in economics and finance, in mechanics and vibration analysis, in biology, in signal 

processing and control systems, in algorithm analysis and data structures, in chaos theory, in 

optimization problems, and in the field of education and testing. These applications demonstrate the 

diversity and importance of the one-dimensional discrete system with a linear denominator and a 

quadratic numerator. Thus, the one-dimensional discrete system with three parameters and a square 

term is proposed and further studied in this paper, which can be defined as a one-dimensional 

discrete system with a linear denominator and a quadratic numerator. Through a one-dimensional 

discrete system with three parameters and a square term, we can better understand and predict the 

behavior of complex systems and find optimal solutions to practical problems. 

Though one-dimensional chaotic maps are advantageous because of their straightforward design 

and ease of use, the complexity and security of one-dimensional chaotic maps are considered. In 

order to increase the range of stability and the chaotic behavior, control technology is crucial. Most 
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researchers contribute to controlling chaos and bifurcations [17,18]. Since the occurrences of 

bifurcations may cause chaos, sometimes the controllers are designed to make the bifurcations 

appear in advance. These controllers are called the anti-control of bifurcations, which is the inverse 

process of the bifurcation control. The anti-control method is theoretically straightforward and 

efficient [19]. It satisfies the practical requirements of engineering applications by enabling the 

system to accomplish the required bifurcation phenomena at any critical value [20]. As 

period-doubling bifurcation may cause chaos, a few researchers have been interested in the 

anti-control on period-doubling bifurcation [21]. The researchers in [22] carried out anti-control of 

multiplicative period bifurcations for one-dimensional logistic systems using feedback control 

methods to set up nonlinear controllers for the purpose of anti-control of period multiplicative 

bifurcations that are divided into two. It aims to manage the period-doubling bifurcations and lower 

the higher stable 2n-periodic orbit of the system to be controlled to lower stable 2m-periodic orbits 

(m<n). In this paper, in order to increase the complexity of chaos, anti-control of period-doubling 

bifurcation is designed to make the one-dimensional discrete system with three parameters and a 

square term to generate the period-doubling bifurcation at a predetermined position. 

The remainder of this paper is structured as follows: The one-dimensional discrete system with 

three parameters and a square term is described in Section 2, and the existence and stability of its 

fixed points are studied. The bifurcation behaviors of the one-dimensional discrete system with three 

parameters and a square term are analyzed theoretically and numerically in Section 2. Using 

bifurcation theory, we demonstrate the existence of transcritical bifurcation and period-doubling 

bifurcation. We derive conditions for transcritical bifurcation and period-doubling bifurcation. In 

Section 3, the state linear feedback control approach is used to create the anti-control of the 

period-doubling bifurcation for the one-dimensional discrete system with three parameters and a 

square term. Numerical experiments are used to verify the effectiveness and robustness of the 

anti-control of the period-doubling bifurcation for the one-dimensional discrete system with three 

parameters and a square term. An image encryption experiment is carried out for the 

one-dimensional discrete system with three parameters and a square term with an anti-controller. Our 

major conclusions are outlined in Section 4. 

2. Stability and bifurcation of the fixed points of the one-dimensional discrete system with 

three parameters and a square term 

2.1. Existence and stability of the fixed points 

Consider the one-dimensional discrete system with three parameters and a square term 

   : 0,1 0,1f → , which is defined as 

( )1

(1 )
, 0,1, 2,n n

n n

n

μx x
x f x n

a bx
+

−
= = = 

+
      (3) 

where 0μ  , 0a  , 0b  ,  0,1nx  . The one-dimensional discrete system with three parameters 

and a square term (1) is called the Smith-like population growth model. The meaning and function of 

nx , μ , a , b  are similar to the parameters in the Smith’s population growth model [23]. nx  is 

similar to the number of populations, and n represents the number of iterations. μ  is similar to 

population fertility. a is similar to the maximum population size that the environment can sustain. b 
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is similar to the impact of population density on resource availability. The one-dimensional discrete 

system with three parameters and a square term (1) can be used in many fields, such as biological 

population study, ecosystem dynamic analysis, population policy formulation reference, market trend 

analysis, resource management and allocation, and epidemic prevention and control. 

The one-dimensional discrete system with three parameters and a square term (3) can be 

rewritten as 

( )
(1 )

,
μx x

x f x
a bx

−
=

+
        (4) 

where 0μ  , 0a  , 0b  ,  0,1x  . 

The fixed points of the one-dimensional discrete system with three parameters and a square 

term (3) satisfy the following equation 

* *
*

*

(1 )μx x
x

a bx

−
=

+
.          (5) 

By a simple analysis, the following propositions are obtained. 

Proposition 1. (a) If μ a , the one-dimensional discrete system with three parameters and a square 

term (3) has the unique fixed point * 0x = ; (b) if μ a , the one-dimensional discrete system with 

three parameters and a square term (3) has two fixed points: 

*

1 0x = , 
*

2

μ a
x

μ b

−
=

+
. 

Proof of Proposition 1. The solutions of equation 

* *
*

*

(1 )μx x
x

a bx

−
=

+
 

are 

* 0x =  and 
* μ a

x
μ b

−
=

+
. 

a) If μ a , then 

* 0
μ a

x
μ b

−
= 

+
. 

However, the one-dimensional discrete system with three parameters and a square term (3) 

shows that  * 0,1x  ; thus, * 0x =  is a unique solution of Eq (5). Thus, if μ a , the 

one-dimensional discrete system with three parameters and a square term (3) has a unique 

fixed point * 0x = . 

b) If μ a , then 

*1 0
μ a

x
μ b

−
 = 

+
. 
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* 0x =  and 
* μ a

x
μ b

−
=

+
 

are the solutions of Eq (5). Thus, if μ a , the one-dimensional discrete system with three 

parameters and a square term (3) has two fixed points: 

*

1 0x =  and 
*

2

μ a
x

μ b

−
=

+
. 

This completes the proof. 

In order to study the stability of the fixed points of one-dimensional discrete system with three 

parameters and a square term (3), a very small displacement nδx  is set at the fixed points *x , 

namely 

*

n nδx x x= − , 

the one-dimensional discrete system with three parameters and a square term (3) can be rewritten as 

* *

1 ( )n nx δx f x δx++ = + .         (6) 

The Taylor expansion of map (6) is simplified as 

*

1 ( )n nδx f x δx          (7) 

where 

( )
( )

2

2

2aμ aμx bμx
f x

a bx

− −
 =

+
. 

When *( ) 1f x  , 1nδx +  is larger than nδx , which means the displacement from the fixed 

point is increasing, so the fixed point is unstable. 

When *( ) 1f x  , 1nδx +  is smaller than nδx , which means the displacement from the fixed 

point is decreasing, then the fixed point is stable. 

According to the above analysis, the stability of the fixed points of the one-dimensional discrete 

system with three parameters and a square term (3) satisfies Theorem 1. 

Theorem 1. Considering the one-dimensional discrete system with three parameters and a square 

term (3), the stability of the fixed points is listed as follows: 

The fixed point * 0x =  is
, 0 ,

, .

stable μ a

unstable μ a

 



 

The fixed point 
* μ a

x
μ b

−
=

+
 is

3 (9 )( )
, ,

2

3 (9 )( )
, .

2

a b a b a b
stable a μ

a b a b a b
unstable μ

 + + + +
 




+ + + +




 

Proof of Theorem 1. When the fixed point is 
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* 0x = , ( )0
μ

f
a

 = . 

If 

0 μ a  , ( )0 1
μ

f
a

 =  , 

then the unique fixed point * 0x =  is stable; if 

μ a , ( )0 1
μ

f
a

 =  , 

the fixed point * 0x =  is unstable. 

When the fixed point is 

* μ a
x

μ b

−
=

+
, 

22

( )

μ a ab aμ μ
f

μ b a b μ

 − + −
 = 

+ + 
. 

If 

3 (9 )( )

2

a b a b a b
a μ

+ + + +
  , 

22
1

( )

μ a ab aμ μ
f

μ b a b μ

 − + −
 =  

+ + 
, 

the fixed point 

* μ a
x

μ b

−
=

+
 

is stable; if 

3 (9 )( )

2

a b a b a b
μ

+ + + +
 , 

22
1

( )

μ a ab aμ μ
f

μ b a b μ

 − + −
 =  

+ + 
, 

the fixed point 

* μ a
x

μ b

−
=

+
 

is unstable. 

This completes the proof. 

2.2. Transcritical bifurcation and period-doubling bifurcation 

With the discussion in Section 2.1, it can be found that the stability of the fixed point * 0x =  

can be changed at μ a= , so the bifurcation maybe happen at μ a= . 

Lemma 1. [24] Considering the one-parameter family of ( 2)rC r  , the one-dimensional map 
1 1( , ) , ,x f x μ x μ  , if it satisfies 
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(0,0) 0f = , 
(0,0)

1
f

x


=


, (0,0) 0

f

μ


=


, 

2

(0,0) 0
f

x μ




 
, 

2

2
(0,0) 0

f

x





, 

then, the map undergoes a transcritical bifurcation at ( , ) (0,0)x μ = . 

According to Lemma 1, we have Theorem 2. 

Theorem 2. If μ a= , the one-dimensional discrete system with three parameters and a square 

term (3) undergoes a transcritical bifurcation at the fixed point * 0x = . 

Proof of Theorem 2. Considering the fixed point * 0x = , the parameter μ a= , let μ μ a= − . We 

consider the parameter μ  as a new and dependent variable, then the one-dimensional discrete 

system with three parameters and a square term (3) becomes 

( )
1

(1 )
( ) .

n n

n n

n

μ a x x
x h x

a bx
+

+ −
= =

+
       (8) 

Equation (8) can be described as 

( ) (1 )
( , ) ,

μ a x x
x h x μ

a bx

+ −
=

+
        (9) 

where (0,0) 0h = . 

With a simple calculation, we can obtain 

2

(0,0)2

2

(0,0)

2 2 2

(0,0)2 3

2 2

(0,0)2

(0,0) ( )( 2 )
1,

( )

(0,0) ( )
0,

(0,0) 2( )( ) 2 ( )( 2 )

( )

2( )
0,

(0,0) 2
1 0.

( )

h μ a a ax bx

x a bx

h x x

μ a bx

h μ a a bx b μ a a ax bx

x a bx

a b

a

h a ax bx

x μ a bx

 + − −
 = =

 +

 −
 = =

 +

 − + + − + − −
=

 +

− +
               = 

 − −
= = 

  +

, 

According to Lemma 1, the map (9) undergoes a transcritical bifurcation at ( , ) (0,0)x μ = . It is 

equal to when the one-dimensional discrete system with three parameters and a square term (3) 

undergoes a transcritical bifurcation at 
*( , ) (0, )x μ a= . 

This completes the proof. 

From Theorem 1, the stability of the fixed point 

* μ a
x

μ b

−
=

+
 

can be changed at 
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3 (9 )( )

2

a b a b a b
μ

+ + + +
= . 

Thus, the bifurcations may happen at 

3 (9 )( )

2

a b a b a b
μ

+ + + +
= . 

Lemma 2. [24] Consider a one-parameter family of ( 3)rC r  , the one-dimensional map 
1 1( , ) , ,x f x μ x μ  , if it satisfies 

(0,0) 0f = , (0,0) 1
f

x


= −


, 

2

(0,0) 0
f

μ


=


, 

2 2

2
(0,0) 0

f

x


=


, 

2 2

(0,0) 0
f

x μ




 
, 

3 2

3
(0,0) 0

f

x





, 

then the map undergoes a period-doubling bifurcation at ( , ) (0,0)x μ = . 

Theorem 3. If 

3 (9 )( )

2

a b a b a b
μ

+ + + +
= , 

one-dimensional discrete system with three parameters and a square term (3) undergoes a 

period-doubling bifurcation at the fixed point 

* μ a
x

μ b

−
=

+
. 

Proof of Theorem 3. Considering the parameter 

3 (9 )( )

2

a b a b a b
μ

+ + + +
= , 

the fixed point 

* (9 )( )

3( ) (9 )( )

a b a b a bμ a
x

μ b a b a b a b

+ + + +−
= =

+ + + + +
. 

Let 

3 (9 )( )

2

a b a b a b
μ μ

+ + + +
= − , *

n nx x x= − . 

We consider the parameter μ  as a new and dependent variable, then the one-dimensional 

discrete system with three parameters and a square term (3) becomes 

1

2 * * * 2 * * * 2

*

( , )

3 (9 )( )
(1 2 ) ( ) ( )

2

( )

n n

n n n

n

x h x μ

a b a b a b
μ x x x x x ax bx x b x

a b x x

+ =

 + + + +
 + − + − + − − − −   

 =
+ +

. (10) 

Equation (10) can be described as 
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2 * * * 2 * * * 2

*

( , )

3 (9 )( )
(1 2 ) ( ) ( )

2
,

( )

x h x μ

a b a b a b
μ x x x x x ax bx x b x

a b x x

 + + + +
 + − + − + − − − −    

 
=

+ +

 (11) 

where (0,0) 0h = . With a simple calculation, we can obtain 

(0,0)
1

h

x


= −


, 

2 2

2

(0,0)
0

h

x


=


, 

2 2

3 2 2 3 4 3 2 2 3 4

4

(0,0)

(432 576 192 16 ) (9 )( ) 1296 2448 1408 272 16

[3 (9 )( )] ( )

h

x μ

a a b ab b a b a b a a b a b ab b

a b a b a b a b



 

+ + + + + + + + + +
=

+ + + + +

 

0 , 

3 2

3

4 3 3 2 2 2 3

2 4 3

4

3 2 2

(0,0)

81 144 27 (9 )( ) 80 33 (9 )( ) 16

11 (9 )( ) (9 )( )

12 3 3 (9 )( )

/ ( ) (9 8 3 (9 )( ) (9 )( ))(3 (9 )(

h

x

a a b a a b a b a b a b a b a b ab

ab a b a b b b a b a b

a a b a b a b

a b a ab a a b a b b b a b a b a b a b a





 + + + + + + + + + +
= −  

+ + + + + +  

  + + + +
 

+ + + + + + + + + + + + + 4))

0.

b 
 



 

According to Lemma 2, the map (11) undergoes a period-doubling bifurcation at 

( , ) (0,0)x μ = . 

It is equal to when the one-dimensional discrete system with three parameters and a square 

term (3) undergoes a period-doubling bifurcation at 

* (9 )( ) 3 (9 )( )
( , ) ( , )

23( ) (9 )( )

a b a b a b a b a b a b
x μ

a b a b a b

+ + + + + + + +
=

+ + + +
. 

This completes the proof. 

2.3. Numerical experiments on stability and bifurcation 

In this section, some numerical experiments are conducted to verify the correctness of the 

theoretical analysis of stability and bifurcation of the one-dimensional discrete system with three 

parameters and a square term (3). 
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When 1, 0a b= = , the one-dimensional discrete system with three parameters and a square 

term (3) is described as 

( ) (1 )x f x μx x= − , 

which is the
 
logistic map. To investigate the evolution characteristics of the logistic map’s iterative 

behavior across varying intervals of parameter μ , numerical experiments are conducted with the 

initial state 0 0.01x = . The varying interval of parameter μ  is set to (0,4] . In the experiment, the
 

logistic map is iterated 500 times. The results of the first 200 iterations are discarded, and the 

subsequent 300 iterations’ results are plotted. The numerical experiment result is shown in Figure 1. 

In Figure 1, when 0 1μ  , 0x = , it means that the
 
logistic map converges to 0x = , and * 0x =  

is a stable fixed point as 0 1μ  . When 1 3μ  , the
 
logistic map converges to a non-zero state 

rather than to zero. This shows that the logistic map undergoes a transcritical bifurcation at 

*( , ) (0,1)x μ = . 

In Figure 1, it can be readily observed that 3μ =  is a critical value of the parameter for the logistic 

map. The logistic map undergoes a period-doubling bifurcation at 3μ = . The findings from the 

numerical experiments are consistent with the conclusions drawn from the theoretical analysis. 

 

Figure 1. The output of x with respect to μ  for the logistic map. 

When 1, 1a b= = , the one-dimensional discrete system with three parameters and a square 

term (3) is described as 

( )
(1 )

1

μx x
x K x

x

−
=

+
, 

which is the chaotic map K. To investigate the evolution characteristics of the chaotic map K’s 

iterative behavior across varying intervals of parameter μ , numerical experiments are conducted 

with the initial state 0 0.01x = . The varying interval of parameter μ  is set to (0,6] . In the 

experiment, the
 
chaotic map K is iterated 500 times. The results of the first 200 iterations are 
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discarded, and the subsequent 300 iterations’ results are plotted. Figure 2 shows the output of x with 

respect to μ  for 1, 1a b= = . In Figure 2, when 0 1μ  , 0x = , it means that the
 
chaotic map K 

converges to 0x = , and * 0x =  is a stable fixed point as 0 1μ  . When 

1 2 5μ  + , 

the
 
chaotic map K converges to a non-zero state rather than to zero. This means that the fixed point 

0x =  loses its stability as 1μ  . Thus, the chaotic map K undergoes a transcritical bifurcation at 

*( , ) (0,1)x μ = . 

In Figure 2, it can be readily observed that 

2 5μ = +  

is a critical value of the parameter for the chaotic map K. The chaotic map K undergoes a 

period-doubling bifurcation at 

2 5μ = + . 

From Figure 2, the findings from the numerical experiments are consistent with the results of [4]. 

This shows that the theoretical analysis is correct. 

 

Figure 2. The output of x with respect to μ  for the chaotic map K. 

When 2, 0.2a b= = , the one-dimensional discrete system with three parameters and a square 

term (3) is described as 

( )
(1 )

2 0.2

μx x
x f x

x

−
=

+
. 

Numerical experiments are conducted with the initial state 0 0.01x = . The varying interval of 

parameter μ  is set to (0,9] . In the experiment, the
 
one-dimensional discrete system with three 

parameters and a square term (3) with 2, 0.2a b= =  is iterated 500 times. The results of the first 200 
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iterations are discarded, and the subsequent 300 iterations’ results are plotted. Figure 3 shows the 

output of x with respect to μ . This demonstrates that when 0 2μ  , the one-dimensional discrete 

system with three parameters and a square term (3) with 2, 0.2a b= =  converges to the fixed point 
* 0x = , and * 0x =  is stable. When 2μ  , the one-dimensional discrete system with three 

parameters and a square term (3) with 2, 0.2a b= =  converges to a non-zero state rather than to 

zero. Thus, the one-dimensional discrete system with three parameters and a square term (3) with 

2, 0.2a b= =  undergoes a transcritical bifurcation at 

*( , ) (0,2)x μ = . 

In Figure 3, it can be readily observed that the one-dimensional discrete system with three 

parameters and a square term (3) with 2, 0.2a b= =  undergoes a period-doubling bifurcation at 

3 (9 )( )
6.26

2

a b a b a b
μ

+ + + +
=  . 

The results of the numerical experiments are consistent with the results of the theoretical analysis. 

 

Figure 3. The output of x with respect to μ  for the one-dimensional discrete system 

with three parameters and a square term (3) as 2, 0.2a b= = . 

3. Anti-control of period-doubling bifurcation for the one-dimensional discrete system with 

three parameters and a square term 

3.1. Linear feedback controller 

Period-doubling bifurcation serves as a mechanism through which chaotic behavior can emerge. 

Therefore, in certain scenarios, the premature occurrence of period-doubling bifurcation may be 

necessary to facilitate the onset of chaos. The anti-controller of the period-doubling bifurcation can 

cause the premature occurrence of period-doubling bifurcation. Thus, in this section, we design an 

anti-controller of period-doubling bifurcation to make the one-dimensional discrete system with 
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three parameters and a square term (3) to undergo the period-doubling bifurcation at a predetermined 

parameter’s position, and the period-doubling bifurcation point appears in the period-1 orbit. 

Considering the one-dimensional discrete system with three parameters and a square term (3), 

the controlled system of anti-controlling of period-doubling bifurcation is taken as 

1

(1 )
( ) n n

n n

n

μx x
x f x u

a bx
+

−
= = +

+
,       (12) 

where u  is a linear feedback controller, which is designed as 

1 2 nu k k x= + ,         (13) 

1k  and 2k  are control parameters. Substituting feedback controller (13) into system (12), controlled 

system (12) can be described as 

1 1 2

(1 )
( ) n n

n n n

n

μx x
x f x k k x

a bx
+

−
= = + +

+
.      (14) 

According to Theorem 1, when 

3 (9 )( )
( , )

2

a b a b a b
μ a

+ + + +
 , 

the equality 

* μ a
x

μ b

−
=

+
 

is the period-1 point of the one-dimensional discrete system with three parameters and a square 

term (3), and the one-dimensional discrete system with three parameters and a square term (3) is 

stable at 

* μ a
x

μ b

−
=

+
. 

Thus, the one-dimensional discrete system with three parameters and a square term (3) cannot 

undergo the period-doubling bifurcation at μ , where 

3 (9 )( )
( , )

2

a b a b a b
μ a

+ + + +
 . 

In order to make the period-doubling bifurcation of the one-dimensional discrete system with 

three parameters and a square term (3) come out in advance, and make the period-doubling 

bifurcation point appear in the period-1 orbit, we choose the predetermined parameter’s position to 

be 0μ μ= , and 

0

3 (9 )( )
( , )

2

a b a b a b
μ a

+ + + +
 . 

With the anti-controller of period-doubling bifurcation, we choose the proper control parameters 

1k  and 2k  to generate the period-doubling bifurcation at 0μ , and make 
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* 0

0

μ a
x

μ b

−
=

+
 

to be the period-1 point of the controlled system (14). Moreover, the controlled system (14) is stable 

at 

* 0

0

μ a
x

μ b

−
=

+
. 

According to the above analysis, the processes of determining the proper control parameters 1k  

and 2k  are listed as follows: 

a) Control parameters 1k  and 2k  are needed to make 

* 0

0

μ a
x

μ b

−
=

+
 

to be the period-1 point of the controlled system (14). 

In order to make 

* 0

0

μ a
x

μ b

−
=

+
 

to be the period-1 point of the controlled system (14), 0

0

μ a

μ b

−

+
 must satisfy 

0 0
0

0 00 0
1 2

0 00

0

1
μ a μ a

μ
μ b μ bμ a μ a

k k
μ b μ bμ a

a b
μ b

  − −
−  

+ +  − −  = + +  
+ + −  +  

+ 

.     (15) 

With a simple calculation, 1k  and 2k  satisfy 

0
1 2

0

0
μ a

k k
μ b

−
+ =

+
.        (16) 

b) Control parameters 1k  and 2k  are needed to guarantee the controlled system (11) is stable 

at the fixed point 

* 0

0

μ a
x

μ b

−
=

+
. 

In order to have a controlled system (14) be stable at 

* 0

0

μ a
x

μ b

−
=

+
, 

it must have 
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0

0

( ) 1
μ

μ

a
f

b

−
 

+
. 

Since the Jacobi matrix of controlled system (14) at the fixed point 

* 0

0

μ a
x

μ b

−
=

+
 

is 

0
2

2

0 0

0 0

2
( )

( )

a a ab
f k

b a b

μ μ μ

μ μ

− − + +
 = +

+ +
, 

thus 1k  and 2k  must satisfy 

2

0 0
2

0

2
1

( )

μ aμ ab
k

a b μ

− + +
+ 

+
.        (17) 

c) Control parameters 1k  and 2k  are needed to ensure that the controlled system (14) has 

period-2 points. 

In the controlled system (14), period-2 points x  must satisfy 

( ( ))x f f x= .         (18) 

That is 

0 0
0 1 2 1 2

0
1 2 1 2

0
1 2

(1 ) (1 )
[ ] [1 ]

(1 )
[ ]

(1 )
[ ]

μ x x μ x x
μ k k x k k x

μ x xa bx a bxx k k k k x
μ x x a bx

a b k k x
a bx

− −
+ +  − − −

−+ += + + + +
− +

+ + +
+

. (19) 

Four analytical solutions of Eq (19) are 

2 2

1 2 0 0 1 2 1 0 2 1

1

2 0

2 2

1 2 0 1 2 1 0 2 1

2
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2 3 2 21
1 2 1 2 0 2
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2 3 2 21
1 2 1 2 0 2

2 2 2
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After calculation, 3x  and 4x  are the period-2 points of the controlled system (14), 1x  and 

2x  are the period-1 points of the controlled system (14). 

To ensure that the periodic points 3x  and 4x  are real numbers,
 1k  and 2k  must satisfy 

2 3 2 21
1 2 1 2 0 2

2 2 2 2

1 2 0 1 2 2 1 0 2 2 2 0

2 22
0 1 0 2 2 0

( 1) 2 [( 1) ( 1)]
2

1 1 1
[( 2 1) 6 ( ) ( 1)( 1) ] ( ) 0

3 3 3

1
[ 4 ( ) ( 1)( 3)]

2 2

k
k k b k k μ a k b

k k μ a k k k k μ a k k b k b b μ

k
μ a k μ a k k μ

 
+ − − − + − 

 
 

+ − + + + + + + + + −  + −  
 
 

− + + − + + −    

(20) 

and 

2 0 2 02( )( ) 0bk μ k b b μ− + −  .        (21) 

Combining the above analysis, we obtain Theorem 4. 

Theorem 4. For the one-dimensional discrete system with three parameters and a square term (3), 

the anti-controller of period-doubling bifurcation is designed as 

1 2 nu k k x= + . 

Let the predetermined parameter’s position be 0μ , and 

0

3 (9 )( )
( , )

2

a b a b a b
μ a

+ + + +
 . 

If the control parameters 1k  and 2k  meet the following conditions: 
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0
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 − + − 

 (22) 

the discrete system (3) with the anti-controller of period-doubling bifurcation undergoes a 

period-doubling bifurcation at 

0
0

0

( , ) ( , )
μ a

x μ μ
μ b

 −
=

+
, 

and the period-doubling bifurcation point appears in the period-1 orbit. 

3.2. Numerical experiments on anti-control of period-doubling bifurcation 

3.2.1. Effectiveness and robustness of the anti-controller of period-doubling bifurcation 

In this section, we do some numerical experiments to test the effectiveness of the anti-controller 

of period-doubling bifurcation for the one-dimensional discrete system with three parameters and the 

square term (3). 

When 1, 1a b= = , the one-dimensional discrete system with three parameters and a square term (3) 

is the chaotic map K. In order to investigate the dynamical behavior and the chaotic degree of the 

strange attractors, numerical experiments are conducted to evaluate the Lyapunov exponents with 

varying parameter μ . The numerical experiments’ results are listed in Figure 4. Figure 4 is the 

Lyapunov exponent diagram of the chaotic map K with the initial state 0 0.01x =  and the varying 

interval of parameter μ  to be [1,5.5] . 

From the Figure 4, we learn that the Lyapunov exponents are negative with 1 5.23μ  , and 

the Lyapunov exponents are positive with 5.23 5.5μ  . This means that the chaotic map K is 

stable as 1 5.23μ  , and the chaotic map K is chaotic as 5.23 5.5μ  . Thus, the chaotic map K 

occurs the chaotic phenomenon once μ  exceeds the value 5.23. In order to make the chaotic 

phenomenon occur in advance, the anti-controller of the period-doubling bifurcation is applied to 

chaotic map K. From Figure 2, the chaotic map undergoes the period-doubling bifurcation at 

2 5.μ = +  In order to make the period-doubling bifurcation occur in advance, we set the 

predetermined parameter’s position to be 0 2μ = . When 01, 1, 2a b μ= = = , the control parameters 

1k  and 2k  are computed using formula (22). The results of 1k  and 2k  are 1 0.416,k =  

2 1.249k = − . Chaotic map K with the anti-controller of the period-doubling bifurcation is described 

as 
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1

(1 )
0.416 1.249

1

n n
n n

n

μx x
x x

x
+

−
= + −

+
.       (23) 

 

Figure 4. Lyapunov exponent diagram of chaotic map K without controllers. 

Numerical simulations are conducted to investigate the iterative behavior of the system (23) 

across varying intervals of parameter μ . The varying interval of parameter μ  is set to [1,4.5] , and 

the initial state is 0 0.01x = . In the experiment, system (23) is iterated 500 times. The results of the 

first 100 iterations are discarded, and the subsequent 400 iterations’ results are plotted. The 

numerical simulation’s results are shown in Figure 5. 

 

Figure 5. Bifurcation diagram of x  vs. μ  for chaotic map K with the anti-controller of 

the period-doubling bifurcation. 

It is obvious that chaotic map K with the anti-controller of the period-doubling bifurcation 

undergoes a period-doubling bifurcation at 2μ = . The anti-controller of the period-doubling 
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bifurcation is effective. Figure 6 is the Lyapunov exponent diagram of the controlled system (23) 

with 1 0.416k = , 2 1.249k = − . This shows that the chaotic phenomenon occurs as 3.744μ = . The 

purpose of making chaos appear in advance has been achieved. 

 

Figure 6. Lyapunov exponent diagram of chaotic map K with the anti-controller of the 

period-doubling bifurcation. 

For the numerical experiment of Figure 5, we set a perturbation 0.1x =  to the initial state

0 0.01x = . Figure 7 is the bifurcation diagram of the controlled system (23) with varying intervals of 

parameter μ  and the initial state 0 0.11x = . In Figure 7, the period-doubling bifurcation still occurs 

at 2μ =  for the controlled system (23). This indicates that the anti-controller of period-doubling 

bifurcation is robust. 

 

Figure 7. Bifurcation diagram of x  vs. μ  for chaotic map K with the anti-controller of 

the period-doubling bifurcation, where initial states 0 0.11,x = 1 0.416,k =  and 

2 1.249k = − . 
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3.2.2. Application of the anti-control of period-doubling bifurcation in image encryption 

From Section 3.2.1, it is indicated that the anti-controller of period-doubling bifurcation can 

make the chaos appear in advance. The chaotic sequence generated via period-doubling bifurcation 

exhibits a high degree of randomness and unpredictability, making it suitable for image encryption. 

Given that chaotic sequences frequently emerge near period-doubling bifurcations, when the system 

lacks chaotic behavior, a predetermined parameter’s position can be established within the range of 

period-1 of the system. By anti-control of period-doubling bifurcation, period-doubling bifurcations 

can be induced at specified predetermined parameter points. Subsequently, parameter values in the 

vicinity of the period-doubling bifurcation are incorporated into the image encryption algorithm, 

enabling the system to generate complex chaotic dynamics through the period-doubling process as 

parameters evolve. This approach facilitates the generation of pseudo-random sequences for pixel 

position permutation or pixel gray value encryption, thereby enhancing image encryption 

effectiveness. 

In this section, anti-control of period-doubling bifurcation for the one-dimensional discrete 

system with three parameters and a square term (3) is used in image encryption. In order to illustrate 

how to use the anti-controller of period-doubling control in image encryption, we take chaotic map K 

as an example. In Section 3.2.1, chaotic map K with an anti-controller of the period-doubling 

bifurcation undergoes the period-doubling bifurcation at 2μ = . Thus, controlled chaotic map K is 

used in image encryption, in which the plaintext image is “Lena”, 

1 0.416k = , 2 1.249k = − , 2 4.6μ  , 

and the initial state 0 0.01x = . In the numerical experiment, chaotic map K is iterated 5000 times for 

every [2,4.6]μ . The results of the first 1000 iterations are discarded, and the subsequent 4000 

iterations’ results are used in image encryption. Figure 8 lists the plaintext image, the encryption 

image, and the decryption image. 

 

Figure 8. The correlation diagram of the image encryption using chaotic map K with the 

anti-controller of period-doubling bifurcation. 

This shows that image encryption with anti-control of period-doubling bifurcation is effective. 

Table 1 lists the R-channel correlations of plaintext image and ciphertext image. Table 2 lists the 

G-channel correlations of plaintext image and ciphertext image. Table 3 lists the B-channel 

correlations of plaintext image and ciphertext image. The lower the correlation between adjacent 
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pixels in a ciphertext image, the greater the resistance of the encryption algorithm to statistical 

analysis attacks. As the correlation coefficient of adjacent pixels in the ciphertext image approaches 

zero, the security of the encryption scheme is significantly enhanced. From Table 1 to Table 3, the 

correlation coefficients of the ciphertext image all approach zero. This means that the image 

encryption with anti-control of period-doubling bifurcation works very well. The information 

entropy of an image quantifies the unpredictability of the pixel gray-level distribution. For a 

grayscale image, the theoretical maximum information entropy is 8. A higher information entropy in 

the encrypted image indicates enhanced security of the ciphertext image. Table 4 lists the information 

entropy of the “Lena” ciphertext images with different discrete maps [25–28]. The information 

entropy of them is very close to 8. The number of pixel change rate (NPCR) and the unified average 

changing intensity (UACI) are two critical metrics employed to evaluate the robustness against 

differential attacks. Table 5 lists NPCR and UACI of image encryption with different discrete maps. 

It is obvious that NPCR and UACI of image encryption using chaotic map K with anti-controller of 

period-doubling bifurcation is a little larger than the other maps. Thus, the image encryption using 

chaotic map K with an anti-controller of period-doubling bifurcation demonstrates superior 

resistance to differential attacks. 

Table 1. R-channel correlation. 

 Horizontal correlation Vertical correlation Diagonal correlation 

Plaintext image R-channel correlation 0.97433 0.98846 0.96517 

Ciphertext image R-channel correlation -0.0078077 -0.012912 -0.021584 

Table 2. G-channel correlation. 

 Horizontal correlation Vertical correlation Diagonal correlation 

Plaintext image G-channel correlation 0.97416 0.98934 0.96534 

Ciphertext image G-channel correlation 0.010953 -0.02186 0.0074832 

Table 3. B-channel correlation. 

 Horizontal correlation Vertical correlation Diagonal correlation 

Plaintext image B-channel correlation 0.94955 0.97574 0.9342 

Ciphertext image B-channel correlation -0.010818 -0.0065805 0.0037925 

Table 4. Information entropy test results. 

Discrete map R G B 

The chaotic map K with anti-controller of 

period-doubling bifurcation 
7.9992 7.9993 7.9992 

Ref. [25] 7.9993 7.9992 7.9993 

Ref. [26] 7.9994 7.9994 7.9994 

Ref. [27] 7.9994 7.9994 7.9993 

Ref. [28] 7.9992 7.9993 7.9993 
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Table 5. NPCR and UACI. 

Discrete map NPCR (%) UACI (%) 

The chaotic map K with anti-controller 

of period-doubling bifurcation 
99.613 30.428 

Ref. [25] 99.615 30.427 

Ref. [26] 99.607 30.388 

Ref. [27] 99.608 30.424 

Ref. [28] 99.614 30.42 

4. Conclusions 

The main work of this paper includes three contents. The first content proposes the 

one-dimensional discrete system with three parameters and a square term (3), which are defined as 

( )1

(1 )
, 0,1, 2,n n

n n

n

μx x
x f x n

a bx
+

−
= =    = 

+
. 

The logistic map and chaotic map K both belong to the one-dimensional discrete system with 

three parameters and a square term (3). The stability of the fixed points and the bifurcation 

characteristics of the one-dimensional discrete system with three parameters and a square term (3)
 
are 

analyzed by theoretical analysis and numerical experiments in this paper. Moreover, the existence 

conditions of period-doubling bifurcation are derived in this paper.  

The second content is designing the anti-controller of period-doubling bifurcation for the 

one-dimensional discrete system with three parameters and a square term (3). By using the analytic 

method and the numerical computation, the proper control parameters of the anti-controller of 

period-doubling bifurcation are determined. With the adjustment of the control parameters, 

period-doubling bifurcation can generate at a predetermined position. The linear state feedback 

anti-controller of period-doubling bifurcation is effective and has robustness.  

The third content uses the anti-controller of period-doubling bifurcation of the one-dimensional 

discrete system with three parameters and a square term (3) to realize image encryption. Comparative 

experiments show that this method is effective in image encryption. 

The paper not only supplements the research of one-dimensional discrete systems with three 

parameters and a square term (3) but also has important theoretical value for one-dimensional 

discrete systems. The design idea of the anti-controller of period-doubling bifurcation can widely be 

extended to study two-dimensional maps or high-dimensional maps. 
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