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1. Introduction and preliminaries

Let (M, d) be a metric space. A Banach contraction mapping G : M → M satisfies the following
inequality:

d(Gp,Gq) ≤ kd(p, q) ∀p, q ∈ M,

where k ∈ [0, 1).
Two key characteristics of the Banach contraction mapping [1, 2] are as follows:

1) It is continuous.
2) If (M, d) is complete, it contains a unique fixed point in M.

A Kannan contraction mapping G : M → M satisfies the following inequality:

d(Gp,Gq) ≤ k[d(p,Gp) + d(q,Gq)] ∀p, q ∈ M,

where k ∈ [0, 1/2).
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Two important characteristics of the Kannan contraction mapping [3] are as follows:
1) It may be discontinuous.
2) If (M, d) is complete, it contains a unique fixed point in M.

Both of the above mappings are also Picard operators on complete metric spaces (M, d), that is,
Fix(G)={p} and Gn p0 → p as n→ ∞, for any p0 ∈ M. These mappings are considered one of the most
effective tools in nonlinear analysis due to their wide domain of applicability.

The literature on metric fixed-point theory is rich and contains many interesting results. Within the
last decades, we have seen concepts like α-admissibility and α-ψ-contraction mapping [4]; ϕ-nearly
contraction mapping and ϕ-nearly nonexpansive mapping [5]; asymptotically T-regular mapping in
modular G-metric spaces [6]; relation theoretic contractions [7]; product-operated metric spaces [8];
F-contraction mapping [9]; interpolative Kannan mapping [10]; enriched Kannan mapping [11]; MR-
Kannan mapping [12]; etc.

Berinde and Păcurar [11] used the technique of enriching the contractive type mappings through
the Krasnoselskii averaging process and introduced the notions of enriched Kannan mapping and
enriched Bianchini mapping. They also proved the existence of a fixed point for these notions with the
help of Kransnoselskii iteration. Berinde and Păcurar also presented the notions of enriched Banach
contraction [13] and enriched ϕ-contraction in convex metric spaces [14]. The directions provided by
Berinde and Păcurar inspired the other researchers. As a result, we have seen enriched ϕ-contraction
using normed linear spaces [15]; enriched multivalued contraction [16]; enriched Kannan-type
semigroup mapping [17]; MR-Kannan-type interpolative contractions [18]; enriched ρ-contraction
and enriched ρ-Kannan mapping in modular function spaces [19]; enriched Suzuki mappings in
Hadamard spaces [20]; Wardowski-type enriched contractive mappings [21]; enriched generalized
Bianchini mapping [22]; enriched Kannan-type mappings in convex metric spaces [23]; etc.

The literature review provides a lot of applications of enriched type contraction mappings in other
topics of mathematics, like split feasibility problems [11, 22], variational inequality problems [11, 22],
linear systems of equations [22], and integral equations [23]. Numerous scientific and technical
domains have recognized possible uses of the above-listed topics. For example, these problems are
helpful for phase retrieval, compressed sensing, and image reconstruction in signal processing. They
are employed in data analysis, optimization, and machine learning within the discipline of computer
science. They are also useful in equilibrium problems, game theory, and finance in the context of
economics. In addition to the above, these topics have a lot of other uses in engineering and
transportation problems.

The notions of enriched Kannan mapping and enriched Bianchini mapping, along with related fixed-
point results, are mentioned below.

Definition 1.1. [11] Let (M, ∥ · ∥) be a normed linear space. A mapping G : M → M is said to be an
enriched Kannan mapping if there exist l ∈ [0,∞) and k ∈ [0, 1/2) such that

∥l(p − q) +Gp −Gq∥ ≤ k(∥p −Gp∥ + ∥q −Gq∥) ∀p, q ∈ M.

Theorem 1.1. [11] Let (M, ∥ · ∥) be a Banach space, and let G : M → M be an enriched Kannan
mapping. Then, G contains a unique fixed point in M.

Definition 1.2. [11] Let (M, ∥ · ∥) be a normed linear space. A mapping G : M → M is said to be an
enriched Bianchini mapping if there exist l ∈ [0,∞) and k ∈ [0, 1) such that

∥l(p − q) +Gp −Gq∥ ≤ k max{∥p −Gp∥, ∥q −Gq∥} ∀p, q ∈ M.
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Theorem 1.2. [11] Let (M, ∥ · ∥) be a Banach space, and let G : M → M be an enriched Bianchini
mapping. Then, G contains a unique fixed point in M.

In the next section, we have presented a few generalizations of the above-mentioned enriched
Kannan mapping and enriched Bianchini mapping, along with corresponding fixed-point results. The
generalizations are obtained in two different ways. One generalization is based on an inward
modification of the ideas of Berinde and Păcurar [11], while the other generalization is based on an
outward modification.

Throughout the article, we denote the set of all natural numbers by N and the set of all real numbers
by R.

2. Main results

In this section, we have generalized the notions of Berinde and Păcurar [11] as inward and outward
enriched mappings by using the methodology of Samet et al. [4] and have studied the existence of fixed
points for these new notions.

The following definition presents the concept of an inward enriched Kannan mapping.

Definition 2.1. Let (M, ∥ · ∥) be a normed linear space. A mapping G : M → M is called an inward
enriched Kannan mapping if, for each p, q ∈ M, we have

∥θ(p, q)(p − q) +Gp −Gq∥ ≤ k(∥p −Gp∥ + ∥q −Gq∥), (2.1)

where θ : M × M → R is a mapping and k ∈ [0, 1/2).

The above definition can also be expressed in the form of metric spaces, as given below.
Let (M, d) be a metric space. A mapping G : M → M is called an inward enriched Kannan mapping

if, for each p, q ∈ M, we have

d(θ(p, q)p +Gp, θ(p, q)q +Gq) ≤ k(d(p,Gp) + d(q,Gq)), (2.2)

where θ : M × M → R is a mapping and k ∈ [0, 1/2).
We now provide an example to support the concept of inward enriched Kannan mapping.

Example 2.1. Consider M = {1, 2, 3} with a usual metric defined on it. Define G : M → M by

Gp =


1, p = 1,
2, p = 3,
3, p = 2,

and θ : M × M → R by

θ(p, q) =


−2, p, q ∈ {1, 2} with p , q,

−1/2, p, q ∈ {1, 3} with p , q,

1, p, q ∈ {2, 3} with p , q,

2, p = q.
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The readers can easily verify that the definition of inward enriched Kannan mapping is satisfied in this
example. But the mapping mentioned above is neither a Kannan mapping nor an enriched Kannan
mapping. To see this, consider p = 2, q = 3, and p = 1, q = 3, respectively.

The subsequent outcome guarantees the existence of a fixed point
for an inward enriched Kannan mapping.

Theorem 2.1. Let (M, ∥ · ∥) be a Banach space, and let G : M → M be an inward enriched Kannan
mapping. Let η ∈ (0, 1) be such that the following conditions hold:

(i) There exists p0 ∈ M with θ(p0, (1 − η)p0 + ηGp0) = l;

(ii) For each p, q ∈ M with θ(p, q) = l, we get θ((1 − η)p + ηGp, (1 − η)q + ηGq) = l;

(iii) For each sequence {pn} in M with θ(pn, pn+1) = l ∀n ∈ N and pn → p as n → ∞, we have
θ(pn, p) = l ∀n ∈ N;

where l = 1
η
− 1. Then, G contains a fixed point in M. Moreover, if θ(p, q) > −1 ∀p, q ∈ M, then G

contains a unique fixed point in M.

Proof. By the condition (i), we say that there exists p0 ∈ M with θ(p0, (1 − η)p0 + ηGp0) = l. Define
p1 = (1 − η)p0 + ηGp0. Then, we can write θ(p0, p1) = l. By (2.1), we get

∥θ(p0, p1)(p0 − p1) +Gp0 −Gp1∥ ≤ k(∥p0 −Gp0∥ + ∥p1 −Gp1∥).

That is,

∥l(p0 − p1) +Gp0 −Gp1∥ ≤ k(∥p0 −Gp0∥ + ∥p1 −Gp1∥).

Since l = 1
η
− 1, the above inequality is equivalent to∥∥∥∥∥∥

(
1
η
− 1

)
(p0 − p1) +Gp0 −Gp1

∥∥∥∥∥∥ ≤ k(∥p0 −Gp0∥ + ∥p1 −Gp1∥).

Simplifying the above inequality, we obtain∥∥∥Gηp0 −Gηp1

∥∥∥ ≤ k(∥p0 −Gηp0∥ + ∥p1 −Gηp1∥),

where Gη is an averaged map, that is, Gηp = (1−η)p+ηGp ∀p ∈ M. By condition (ii) and θ(p0, p1) = l,
we get θ((1− η)p0 + ηGp0, (1− η)p1 + ηGp1) = l. Again, define p2 = (1− η)p1 + ηGp1. Then, we have
θ(p1, p2) = l. Again, by (2.1), we get

∥θ(p1, p2)(p1 − p2) +Gp1 −Gp2∥ ≤ k(∥p1 −Gp1∥ + ∥p2 −Gp2∥).

That is, ∥∥∥∥∥∥
(
1
η
− 1

)
(p1 − p2) +Gp1 −Gp2

∥∥∥∥∥∥ ≤ k(∥p1 −Gp1∥ + ∥p2 −Gp2∥).

This implies ∥∥∥Gηp1 −Gηp2

∥∥∥ ≤ k(∥p1 −Gηp1∥ + ∥p2 −Gηp2∥).

Continuing the above procedure, we can obtain a sequence {pn} in M with the following properties:
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• pn = Gηpn−1 ∀n ∈ N;
• θ(pn−1, pn) = l ∀n ∈ N;
• The following inequality is valid for each n ∈ N:∥∥∥Gηpn−1 −Gηpn

∥∥∥ ≤ k(∥pn−1 −Gηpn−1∥ + ∥pn −Gηpn∥). (2.3)

We can rewrite (2.3) as

∥pn − pn+1∥ ≤ k(∥pn−1 − pn∥ + ∥pn − pn+1∥) ∀n ∈ N.

This inequality further shows that

∥pn − pn+1∥ ≤
k

1 − k
∥pn−1 − pn∥ ∀n ∈ N. (2.4)

Using (2.4) and induction, we obtain

∥pn − pn+1∥ ≤

(
k

1 − k

)n

∥p0 − p1∥ ∀n ∈ N. (2.5)

Next, we will show that {pn} is a Cauchy in M by using the triangle property of normed space and (2.5).

∥pn − pm∥ ≤

m−1∑
j=n

∥∥∥p j − p j+1

∥∥∥ ≤ m−1∑
j=n

(
k

1 − k

) j

∥p0 − p1∥ ∀n < m. (2.6)

The fact k
1−k < 1 provides the convergence of

∑∞
j=1

(
k

1−k

) j
. Thus, from (2.6), we get

limn,m→∞ ∥pn − pm∥ = 0. That is, {pn} is a Cauchy in a Banach space M. Thus, we get a point p∗ in M
such that pn → p∗ as n→ ∞. From condition (iii) and the fact that θ(pn−1, pn) = l ∀n ∈ N, we say that
θ(pn−1, p∗) = l ∀n ∈ N. By (2.1), we obtain

∥θ(pn−1, p∗)(pn−1 − p∗) +Gpn−1 −Gp∗∥ ≤ k(∥pn−1 −Gpn−1∥ + ∥p∗ −Gp∗∥) ∀n ∈ N.

That is, ∥∥∥∥∥∥
(
1
η
− 1

)
(pn−1 − p∗) +Gpn−1 −Gp∗

∥∥∥∥∥∥ ≤ k(∥pn−1 −Gpn−1∥ + ∥p∗ −Gp∗∥) ∀n ∈ N.

This yields ∥∥∥Gηpn−1 −Gηp∗
∥∥∥ ≤ k(∥pn−1 −Gηpn−1∥ + ∥p∗ −Gηp∗∥) ∀n ∈ N.

We can also express the above inequality as∥∥∥pn −Gηp∗
∥∥∥ ≤ k(∥pn−1 − pn∥ + ∥p∗ −Gηp∗∥) ∀n ∈ N. (2.7)

By using the triangle property of the norm and (2.7), we obtain

∥p∗ −Gηp∗∥ ≤ ∥p∗ − pn∥ + ∥pn −Gηp∗∥
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≤ ∥p∗ − pn∥ + k(∥pn−1 − pn∥ + ∥p∗ −Gηp∗∥) ∀n ∈ N.

As n→ ∞, the above inequality reduces to

∥p∗ −Gηp∗∥ ≤ k∥p∗ −Gηp∗∥.

This inequality only exists when ∥p∗ −Gηp∗∥ = 0, that is, p∗ = Gηp∗. Hence, p∗ = (1 − η)p∗ + ηGp∗,
that is, p∗ = Gp∗.

We now discuss the uniqueness of a fixed point of G. Consider we have two fixed points, p∗ and q∗,
then by hypothesis, we have θ(p∗, q∗) > −1, that is θ(p∗, q∗) + 1 > 0. Using (2.1), we obtain

∥θ(p∗, q∗)(p∗ − q∗) +Gp∗ −Gq∗∥ = ∥(θ(p∗, q∗) + 1)(p∗ − q∗)∥ ≤ k(∥p∗ −Gp∗∥ + ∥q∗ −Gq∗∥) = 0.

This implies p∗ = q∗. Hence, the fixed point of G is unique. □

Remark 2.1. The uniqueness of a fixed point can also be obtained in the preceding theorem by
substituting θ(p, q) > −1 ∀p, q ∈ M with p ∈ Gp and q ∈ Gq for the condition θ(p, q) > −1 ∀p, q ∈ M.

Remark 2.2. Theorem 2.1 reduces to Theorem 1.1 with l > 0 by defining θ(p, q) = l ∀p, q ∈ M, where
l > 0 is a fixed constant.

The following illustration clarifies the requirements of the aforementioned theorem.

Example 2.2. Consider M = R with ∥p∥ = |p| ∀p ∈ M. Define G : M → M and θ : M × M → R by

Gp =

−2p
3 , p > 0,

0, p ≤ 0,

and

θ(p, q) =

 1
4 , p, q ≤ 0,
0, otherwise.

First, we discuss the existence of (2.1) by the following cases:
Case 1. For p, q ≤ 0, we have Gp = 0 = Gq. Then, we obtain

∥θ(p, q)(p − q) +Gp −Gq∥ = |(1/4)(p − q)|
≤ (1/4)(|p| + |q|)
= (1/4)(∥p −Gp∥ + ∥q −Gq∥)

≤
2.25

5

(
∥p −Gp∥ + ∥q −Gq∥

)
.

Case 2. For p, q > 0, we have Gp = −2p
3 and Gq = −2q

3 . Then, we obtain

∥θ(p, q)(p − q) +Gp −Gq∥ =
∣∣∣∣∣0(p − q) +

−2p
3
−
−2q

3

∣∣∣∣∣
=

2
3

(|p − q|)
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≤
2.25

5

(∣∣∣∣∣5p
3

∣∣∣∣∣ + ∣∣∣∣∣5q
3

∣∣∣∣∣)
=

2.25
5

(
∥p −Gp∥ + ∥q −Gq∥

)
.

Case 3. For p ≥ 0 and q < 0, we have Gp = −2p
3 and Gq = 0. Then, we obtain

∥θ(p, q)(p − q) +Gp −Gq∥ =
∣∣∣∣∣0(p − q) +

−2p
3
− 0

∣∣∣∣∣
=

2
3

(
|p|

)
≤

2.25
5

(∣∣∣∣∣5p
3

∣∣∣∣∣ + |q|)
=

2.25
5

(
∥p −Gp∥ + ∥q −Gq∥

)
.

By considering the above cases, we see that (2.1) holds with k = 2.25
5 . Next, we discuss the existence

of Axioms (i)–(iii). By given θ, we assume l = 1
4 ; this implies η = 4

5 . For Axiom (i), take p0 = −1,
then (1−η)p0+ηGp0 =

(
1 − 4

5

)
(−1)+ 4

5 (0) < 0, thus θ(p0, (1−η)p0+ηGp0) = 1
4 with η = 4

5 . If p, q ≤ 0,
then (1 − η)p + ηGp = (1 − η)p ≤ 0 and (1 − η)q + ηGq = (1 − η)q ≤ 0. Hence, Axiom (ii) holds; that
is, θ(p, q) = 1

4 implies θ((1 − η)p + ηGp, (1 − η)q + ηGq) = 1
4 with η = 4

5 . Also, for each sequence {pn}

in M with θ(pn, pn+1) = 1
4 ∀n ∈ N and pn → p as n → ∞, we have θ(pn, p) = 1

4 ∀n ∈ N. Hence, all
conditions of Theorem 2.1 are valid in this example, and G has a fixed point.

The following definition presents the concept of an outward enriched Kannan mapping.

Definition 2.2. Let (M, ∥ · ∥) be a normed linear space. A mapping G : M → M is called an outward
enriched Kannan mapping if there exist l ∈ [0,∞) and k ∈ [0, 1/2) such that

θ(p, q)∥l(p − q) +Gp −Gq∥ ≤ k(∥p −Gp∥ + ∥q −Gq∥) ∀p, q ∈ M, (2.8)

where θ : M × M → [0,∞) is a mapping.

The above definition can also be expressed in terms of metric spaces, as follows:
Let (M, d) be a metric space. A mapping G : M → M is called an outward enriched Kannan

mapping if there exist l ∈ [0,∞) and k ∈ [0, 1/2) such that

θ(p, q)d(lp +Gp, lq +Gq) ≤ k(d(p,Gp) + d(q,Gq)) ∀p, q ∈ M, (2.9)

where θ : M × M → [0,∞) is a mapping.
To strengthen the idea of outward enriched Kannan mapping, we have developed the following

example:

Example 2.3. Consider M = [0,∞) with a usual metric defined on it. Define G : M → M by

Gp =

1 − p, p ∈ [0, 1],
p, p ≥ 1,
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and θ : M × M → [0,∞) by

θ(p, q) =

1, p, q ∈ [0, 1],
0, otherwise.

It is easy to verify that the definition of outward enriched Kannan mapping holds for this example with
l = 1−2k for each k ∈ [0, 1/2). But the mapping mentioned above is not an enriched Kannan mapping;
for instance, consider p, q ≥ 1.

Outward enriched Kannan mappings also possess fixed points under certain conditions, as stated in
the following theorem.

Theorem 2.2. Let (M, ∥ · ∥) be a Banach space, and let G : M → M be an outward enriched Kannan
mapping. Let the following conditions also hold:

(i) There exists p0 ∈ M such that θ(p0, (1 − η)p0 + ηGp0) = 1;

(ii) For each p, q ∈ M with θ(p, q) = 1, we have θ((1 − η)p + ηGp, (1 − η)q + ηGq) = 1;

(iii) For each sequence {pn} in M with θ(pn, pn+1) = 1 ∀n ∈ N and pn → p as n → ∞, we have
θ(pn, p) = 1 ∀n ∈ N.

Where η = 1
l+1 and l is the constant that appears in (2.8). Then, G contains a fixed point in M. Moreover,

if θ(p, q) > 0 ∀p, q ∈ M, then G contains a unique fixed point in M.

Proof. First, we discuss the proof for an outward enriched Kannan mapping with l > 0. The condition
(i) of the theorem implies that p0 ∈ M with θ(p0, (1 − η)p0 + ηGp0) = 1 with η = 1

l+1 . Set p1 =

(1 − η)p0 + ηGp0. Then, we can write θ(p0, p1) = 1. By (2.8), we obtain

θ(p0, p1)∥l(p0 − p1) +Gp0 −Gp1∥ ≤ k(∥p0 −Gp0∥ + ∥p1 −Gp1∥).

Since θ(p0, p1) = 1 and l = 1
η
− 1 > 0, the above inequality is equivalent to∥∥∥∥∥∥

(
1
η
− 1

)
(p0 − p1) +Gp0 −Gp1

∥∥∥∥∥∥ ≤ k(∥p0 −Gp0∥ + ∥p1 −Gp1∥).

This implies ∥∥∥Gηp0 −Gηp1

∥∥∥ ≤ k(∥p0 −Gηp0∥ + ∥p1 −Gηp1∥),

where Gη is an averaged map with η = 1
l+1 . As θ(p0, p1) = 1 then condition (ii) provides θ((1 − η)p0 +

ηGp0, (1 − η)p1 + ηGp1) = 1 with η = 1
l+1 . By setting p2 = (1 − η)p1 + ηGp1, we write θ(p1, p2) = 1.

Again, by (2.8), we obtain

θ(p1, p2)∥l(p1 − p2) +Gp1 −Gp2∥ ≤ k(∥p1 −Gp1∥ + ∥p2 −Gp2∥).

After performing a few simplifications, we obtain∥∥∥Gηp1 −Gηp2

∥∥∥ ≤ k(∥p1 −Gηp1∥ + ∥p2 −Gηp2∥).

Working with this procedure, we can obtain a sequence {pn} in M with the following properties:
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• pn = Gηpn−1 ∀n ∈ N with η = 1
l+1 ;

• θ(pn−1, pn) = 1 ∀n ∈ N;
• For an averaged map Gη with η = 1

l+1 , we obtain∥∥∥Gηpn−1 −Gηpn

∥∥∥ ≤ k(∥pn−1 −Gηpn−1∥ + ∥pn −Gηpn∥) ∀n ∈ N. (2.10)

We can rewrite (2.10) as

∥pn − pn+1∥ ≤ k(∥pn−1 − pn∥ + ∥pn − pn+1∥) ∀n ∈ N.

By collecting the same terms on one side of the inequality, we obtain

∥pn − pn+1∥ ≤
k

1 − k
∥pn−1 − pn∥ ∀n ∈ N. (2.11)

Using (2.11) and induction, we obtain

∥pn − pn+1∥ ≤

(
k

1 − k

)n

∥p0 − p1∥ ∀n ∈ N. (2.12)

From (2.12), one can see that

∥pn − pm∥ ≤

m−1∑
j=n

∥∥∥p j − p j+1

∥∥∥ ≤ m−1∑
j=n

(
k

1 − k

) j

∥p0 − p1∥ ∀n < m. (2.13)

Thus, limn,m→∞ ∥pn − pm∥ = 0. That is, {pn} is Cauchy in a Banach space M. Hence, a point p∗ exists
in M such that pn → p∗ as n→ ∞. Since θ(pn−1, pn) = 1 ∀n ∈ N, then by the condition (iii), we obtain
θ(pn−1, p∗) = 1 ∀n ∈ N. By (2.8), we obtain

θ(pn−1, p∗) ∥l(pn−1 − p∗) +Gpn−1 −Gp∗∥ ≤ k(∥pn−1 −Gpn−1∥ + ∥p∗ −Gp∗∥) ∀n ∈ N.

That is, ∥∥∥∥∥∥
(
1
η
− 1

)
(pn−1 − p∗) +Gpn−1 −Gp∗

∥∥∥∥∥∥ ≤ k(∥pn−1 −Gpn−1∥ + ∥p∗ −Gp∗∥) ∀n ∈ N.

By simplifying the above inequality, we obtain∥∥∥Gηpn−1 −Gηp∗
∥∥∥ ≤ k(∥pn−1 −Gηpn−1∥ + ∥p∗ −Gηp∗∥) ∀n ∈ N.

Equivalently, we say ∥∥∥pn −Gηp∗
∥∥∥ ≤ k(∥pn−1 − pn∥ + ∥p∗ −Gηp∗∥) ∀n ∈ N. (2.14)

The limiting case of (2.14), as n→ ∞, is provided below:

∥p∗ −Gηp∗∥ ≤ k∥p∗ −Gηp∗∥ ∀n ∈ N,

which only holds when ∥p∗ − Gηp∗∥ = 0, that is, p∗ = Gηp∗. Hence, p∗ = (1 − η)p∗ + ηGp∗, that is,
p∗ = Gp∗.

We next talk about the case where l = 0. The theorem’s formulation gives us the following
conditions for l = 0.
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• For each p, q ∈ M, we have

θ(p, q)∥Gp −Gq∥ ≤ k(∥p −Gp∥ + ∥q −Gq∥) ∀p, q ∈ M;

• There exists p0 ∈ M such that θ(p0,Gp0) = 1;
• For each p, q ∈ M with θ(p, q) = 1, we get θ(Gp,Gq) = 1;
• For each sequence {pn} in M with θ(pn, pn+1) = 1 ∀n ∈ N and pn → p as n → ∞, we have
θ(pn, p) = 1 ∀n ∈ N.

It is guaranteed that there is a fixed point of G under these circumstances. Since Gη = G1 = G and
pn = Gpn−1 ∀n ∈ N.

We now discuss the uniqueness of a fixed point of G. Let there exist two fixed points, p∗ and q∗,
then by hypothesis, we have θ(p∗, q∗) > 0. Using (2.8), we obtain

θ(p∗, q∗)∥l(p∗ − q∗) +Gp∗ −Gq∗∥ = θ(p∗, q∗)∥(l + 1)(p∗ − q∗)∥
≤ k(∥p∗ −Gp∗∥ + ∥q∗ −Gq∗∥) = 0.

This implies p∗ = q∗. Hence, G has a unique fixed point. □

Remark 2.3. In the aforementioned theorem, the uniqueness of a fixed point can also be established
by substituting θ(p, q) > 0 ∀p, q ∈ M with p ∈ Gp and q ∈ Gq for the condition θ(p, q) > 0 ∀p, q ∈ M.

Remark 2.4. Theorem 2.2 reduces to Theorem 1.1 by defining θ(p, q) = 1 ∀p, q ∈ M.

The following example supports and explains the above theorem.

Example 2.4. Consider M = R with ∥p∥ = |p| ∀p ∈ M. Define G : M → M by

Gp =

1 − p, p ∈ [0, 1],
p, otherwise,

and θ : M × M → [0,∞) by

θ(p, q) =

1, p, q ∈ [0, 1],
0, otherwise.

The definition of outward enriched Kannan mapping holds for this example with l = 1
2 and k = 1

4 . For
instance, consider the following cases:
Case 1. For p, q ∈ [0, 1], we have Gp = 1 − p and Gq = 1 − q. Then, we obtain

θ(p, q)∥l(p − q) +Gp −Gq∥ = 1
(∣∣∣∣∣12(p − q) + (1 − p) − (1 − q)

∣∣∣∣∣)
=

∣∣∣∣∣12(p − q) − (p − q)
∣∣∣∣∣

=
1
2

(|p − q|)

=
1
4

(|2p − 2q|)
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=
1
4

(|(2p − 1) − (2q − 1)|)

≤
1
4

(|2p − 1| + |2q − 1|)

= k(∥p −Gp∥ + ∥q −Gq∥).

Case 2. For p < [0, 1] and q ∈ M. Then, we obtain

θ(p, q)∥l(p − q) +Gp −Gq∥ = 0 ≤ k(∥p −Gp∥ + ∥q −Gq∥).

Next, we discuss the existence of Axioms (i)–(iii) with η = 1
l+1 =

1
1
2+1
= 2

3 , since the definition of

outward enriched Kannan mapping holds with l = 1
2 . For Axiom (i), consider p0 = 0, then (1 −

η)p0 + ηGp0 =
(
1 − 2

3

)
(0) + 2

3 (1) ∈ [0, 1], thus θ(p0, (1 − η)p0 + ηGp0) = 1. If p, q ∈ [0, 1], then
(1−η)p+ηGp = (1− 2

3 )p+ 2
3 (1−p) ≤ p+(1−p) = 1 and (1−η)q+ηGq = (1− 2

3 )q+ 2
3 (1−q) ≤ q+(1−q) = 1.

Hence, Axiom (ii) holds; that is, θ(p, q) = 1 implies θ((1− η)p+ ηGp, (1− η)q+ ηGq) = 1 with η = 2
3 .

Also, for each sequence {pn} in M with θ(pn, pn+1) = 1 ∀n ∈ N and pn → p as n → ∞, we have
θ(pn, p) = 1 ∀n ∈ N. Hence, all conditions of Theorem 2.2 are valid in this example, and G has a fixed
point.

Remark 2.5. In the above example, by considering p = 2 and q = 3, we conclude the following:

• Theorem 2.1 is not applicable for the given θ.
• Theorem 1.1 is not applicable.
• Kannan fixed-point theorem [3] is not applicable.

We now provide generalized notions of enriched Bianchini mappings and discuss the existence of
fixed points for these notions.

Definition 2.3. Let (M, ∥ · ∥) be a normed linear space. A mapping G : M → M is called an inward
enriched Bianchini mapping if, for each p, q ∈ M, we have

∥θ(p, q)(p − q) +Gp −Gq∥ ≤ k max{∥p −Gp∥, ∥q −Gq∥} (2.15)

where θ : M × M → R is a mapping and k ∈ [0, 1).

The existence of a fixed point for the aforementioned idea is given by the following theorem.

Theorem 2.3. Let (M, ∥ · ∥) be a Banach space, and let G : M → M be an inward enriched Bianchini
mapping. Let η ∈ (0, 1) be such that the following conditions hold:

(i) There exists p0 ∈ M with θ(p0, (1 − η)p0 + ηGp0) = l;

(ii) For each p, q ∈ M with θ(p, q) = l, we have θ((1 − η)p + ηGp, (1 − η)q + ηGq) = l;

(iii) For each sequence {pn} in M with θ(pn, pn+1) = l ∀n ∈ N and pn → p as n → ∞, we have
θ(pn, p) = l ∀n ∈ N;

where l = 1
η
− 1. Then, G contains a fixed point in M. Moreover, if θ(p, q) > −1 ∀p, q ∈ M, then G

contains a unique fixed point in M.
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Proof. From the condition (i), we obtain p0 ∈ M with θ(p0, (1 − η)p0 + ηGp0) = l. By letting p1 =

(1 − η)p0 + ηGp0, we can write θ(p0, p1) = l. By (2.15), we obtain

∥θ(p0, p1)(p0 − p1) +Gp0 −Gp1∥ ≤ k max{∥p0 −Gp0∥, ∥p1 −Gp1∥}.

This inequality is equivalent to the following.∥∥∥∥∥∥
(
1
η
− 1

)
(p0 − p1) +Gp0 −Gp1

∥∥∥∥∥∥ ≤ k max{∥p0 −Gp0∥, ∥p1 −Gp1∥}.

Simplifying the above inequality, we obtain∥∥∥Gηp0 −Gηp1

∥∥∥ ≤ k max{∥p0 −Gηp0∥, ∥p1 −Gηp1∥}.

As θ(p0, p1) = l, by (ii), we get θ((1 − η)p0 + ηGp0, (1 − η)p1 + ηGp1) = l. We can also rewrite it as
θ(p1, p2) = l by setting p2 = (1 − η)p1 + ηGp1. Again, by (2.15), we obtain

∥θ(p1, p2)(p1 − p2) +Gp1 −Gp2∥ ≤ k max{∥p1 −Gp1∥, ∥p2 −Gp2∥}.

That is, ∥∥∥∥∥∥
(
1
η
− 1

)
(p1 − p2) +Gp1 −Gp2

∥∥∥∥∥∥ ≤ k max{∥p1 −Gp1∥, ∥p2 −Gp2∥}.

This implies ∥∥∥Gηp1 −Gηp2

∥∥∥ ≤ k max{∥p1 −Gηp1∥, ∥p2 −Gηp2∥}.

Continuing the same pattern, we get a sequence {pn} in M with the following properties:

• pn = Gηpn−1 ∀n ∈ N;
• θ(pn−1, pn) = l ∀n ∈ N;
• The following inequality is valid for each n ∈ N:∥∥∥Gηpn−1 −Gηpn

∥∥∥ ≤ k max{∥pn−1 −Gηpn−1∥, ∥pn −Gηpn∥}. (2.16)

We can rewrite (2.16) as

∥pn − pn+1∥ ≤ k max{∥pn−1 − pn∥, ∥pn − pn+1∥} ∀n ∈ N.

In order to proceed with the proof, we assume that the above inequality yields the following:

∥pn − pn+1∥ ≤ k∥pn−1 − pn∥ ∀n ∈ N. (2.17)

Otherwise, we obtain a fixed point of Gη and hence of G. Using (2.17) and induction, we obtain

∥pn − pn+1∥ ≤ kn∥p0 − p1∥ ∀n ∈ N. (2.18)
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Following the proof of Theorem 2.1, we say that (2.18) guarantees that {pn} is Cauchy in a Banach
space M. Hence, {pn} converges to some p∗ in M, that is, pn → p∗ as n→ ∞. From the condition (iii)
and the fact that θ(pn−1, pn) = l ∀n ∈ N, we say that θ(pn−1, p∗) = l ∀n ∈ N. By (2.15), we obtain

∥θ(pn−1, p∗)(pn−1 − p∗) +Gpn−1 −Gp∗∥ ≤ k max{∥pn−1 −Gpn−1∥, ∥p∗ −Gp∗∥} ∀n ∈ N.

That is,∥∥∥∥∥∥
(
1
η
− 1

)
(pn−1 − p∗) +Gpn−1 −Gp∗

∥∥∥∥∥∥ ≤ k max{∥pn−1 −Gpn−1∥, ∥p∗ −Gp∗∥} ∀n ∈ N.

This yields ∥∥∥Gηpn−1 −Gηp∗
∥∥∥ ≤ k max{∥pn−1 −Gηpn−1∥, ∥p∗ −Gηp∗∥} ∀n ∈ N.

That is, ∥∥∥pn −Gηp∗
∥∥∥ ≤ k max{∥pn−1 − pn∥, ∥p∗ −Gηp∗∥} ∀n ∈ N. (2.19)

Letting n→ ∞ in (2.19), we obtain

∥p∗ −Gηp∗∥ ≤ k∥p∗ −Gηp∗∥ ∀n ∈ N.

This implies ∥p∗−Gηp∗∥ = 0, that is, p∗ = Gηp∗. Hence, p∗ = (1−η)p∗+ηGp∗ and we obtain p∗ = Gp∗.
Next, we discuss the uniqueness of a fixed point of G. Suppose that there are two fixed points, p∗

and q∗, then by hypothesis, we have θ(p∗, q∗) > −1, that is, θ(p∗, q∗) + 1 > 0. Using (2.15), we obtain

∥θ(p∗, q∗)(p∗ − q∗) +Gp∗ −Gq∗∥ = ∥(θ(p∗, q∗) + 1)(p∗ − q∗)∥ ≤ k max{∥p∗ −Gp∗∥, ∥q∗ −Gq∗∥} = 0.

The above inequality implies that p∗ = q∗. Hence, G contains a unique fixed point. □

Remark 2.6. Theorem 2.3 reduces to Theorem 1.2 with l > 0 by letting θ(p, q) = l ∀p, q ∈ M, where
l > 0 is a fixed constant.

To support the above theorem, we provide the following example.

Example 2.5. Consider M = R with ∥p∥ = |p| ∀p ∈ M. Define G : M → M and θ : M × M → R by

Gp =

−p, p > 0,
0, p ≤ 0,

and

θ(p, q) =

1
3 , p, q ≤ 0,
0, otherwise.

To discuss the existence of (2.15), we consider the following cases.
Case 1. For p, q ≤ 0, we have Gp = 0 = Gq. Then, we obtain

∥θ(p, q)(p − q) +Gp −Gq∥ = |(1/3)(p − q)|
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≤ (1/3)(|p| + |q|)

≤
2
3

(
max{∥p −Gp∥, ∥q −Gq∥}

)
.

Case 2. For p, q > 0, we have Gp = −p and Gq = −q. Then, we obtain

∥θ(p, q)(p − q) +Gp −Gq∥ = |0(p − q) + (−p) − (−q)|
= |p − q|

< max{|p|, |q|}

<
2
3

(
max{∥p −Gp∥, ∥q −Gq∥}

)
.

Case 3. For p ≤ 0 and q > 0, we have Gp = 0 and Gq = −q. Then, we obtain

∥θ(p, q)(p − q) +Gp −Gq∥ = |0(p − q) + 0 − (−q)|
= |q|

<
2
3

(
max{|p|, |2q|}

)
=

2
3

(
max{∥p −Gp∥, ∥q −Gq∥}

)
.

The above cases show that (2.15) holds with k = 2
3 . We now discuss the existence of Axioms (i)–

(iii). By given θ, we assume l = 1
3 ; this implies η = 3

4 . For Axiom (i), consider p0 = −2, then
(1 − η)p0 + ηGp0 =

(
1 − 3

4

)
(−2) + 3

4 (0) < 0, thus θ(p0, (1 − η)p0 + ηGp0) = 1
3 with η = 3

4 . If p, q ≤ 0,
then (1 − η)p + ηGp = (1 − η)p < 0 and (1 − η)q + ηGq = (1 − η)q < 0. Hence, Axiom (ii) holds; that
is, θ(p, q) = 1

3 implies θ((1 − η)p + ηGp, (1 − η)q + ηGq) = 1
3 with η = 3

4 . Also, for each sequence {pn}

in M with θ(pn, pn+1) = 1
3 ∀n ∈ N and pn → p as n → ∞, we have θ(pn, p) = 1

3 ∀n ∈ N. Hence, all
conditions of Theorem 2.3 are valid in this example, and G has a fixed point.

Remark 2.7. For p = 1 and q = 0, we can calculate ∥θ(p, q)(p−q)+G(p)−G(q)∥ = |0(1−0)+(−1)−0| =
1, ∥p − Gp∥ = 2, and ∥q − Gq∥ = 0. Hence, it is trivial to mention that the above-defined example is
not an inward enriched Kannan mapping, and Theorem 2.1 is not applicable in this example.

The following definition provides the concept of outward enriched Bianchini mapping.

Definition 2.4. Let (M, ∥ · ∥) be a normed linear space. A mapping G : M → M is called an outward
enriched Bianchini mapping if there exist l ∈ [0,∞) and k ∈ [0, 1) such that

θ(p, q)∥l(p − q) +Gp −Gq∥ ≤ k max{∥p −Gp∥, ∥q −Gq∥} ∀p, q ∈ M, (2.20)

where θ : M × M → [0,∞) is a mapping.

Theorem 2.4. Let (M, ∥ · ∥) be a Banach space, and let G : M → M be an outward enriched Bianchini
mapping. Let the following conditions also hold:

(i) There exists p0 ∈ M such that θ(p0, (1 − η)p0 + ηGp0) = 1;

(ii) For each p, q ∈ M with θ(p, q) = 1, we have θ((1 − η)p + ηGp, (1 − η)q + ηGq) = 1;
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(iii) For each sequence {pn} in M with θ(pn, pn+1) = 1 ∀n ∈ N and pn → p as n → ∞, we have
θ(pn, p) = 1 ∀n ∈ N.

Where η = 1
l+1 and l is the constant that appears in (2.20). Then, G contains a fixed point in M.

Moreover, if θ(p, q) > 0 ∀p, q ∈ M, then G contains a unique fixed point in M.

Proof. First, assume that G is an outward enriched Bianchini mapping with a value of l greater than
zero. The condition (i) ensures p0 ∈ M such that θ(p0, (1 − η)p0 + ηGp0) = 1 with η = 1

l+1 . Assume
that p1 = (1 − η)p0 + ηGp0. Then, we say θ(p0, p1) = 1. Using (2.20), we obtain

θ(p0, p1)∥l(p0 − p1) +Gp0 −Gp1∥ ≤ k max{∥p0 −Gp0∥, ∥p1 −Gp1∥}. (2.21)

As θ(p0, p1) = 1 and l = 1
η
− 1 > 0, then (2.21) provides∥∥∥∥∥∥

(
1
η
− 1

)
(p0 − p1) +Gp0 −Gp1

∥∥∥∥∥∥ ≤ k max{∥p0 −Gp0∥, ∥p1 −Gp1∥}.

After performing some calculations, it implies that∥∥∥Gηp0 −Gηp1

∥∥∥ ≤ k max{∥p0 −Gηp0∥, ∥p1 −Gηp1∥},

where Gη is an averaged map with η = 1
l+1 . As θ(p0, p1) = 1, then the condition (ii) implies θ((1 −

η)p0 + ηGp0, (1 − η)p1 + ηGp1) = 1 with η = 1
l+1 . By considering p2 = (1 − η)p1 + ηGp1, we say that

θ(p1, p2) = 1. Again, by (2.20), we obtain

θ(p1, p2)∥l(p1 − p2) +Gp1 −Gp2∥ ≤ k max{∥p1 −Gp1∥, ∥p2 −Gp2∥}.

After performing a few simplifications, we obtain∥∥∥Gηp1 −Gηp2

∥∥∥ ≤ k max{∥p1 −Gηp1∥, ∥p2 −Gηp2∥}.

This procedure generates a sequence {pn} in M with the following properties:

• pn = Gηpn−1 ∀n ∈ N with η = 1
l+1 ;

• θ(pn−1, pn) = 1 ∀n ∈ N;
• For an averaged map Gη with η = 1

l+1 , we obtain∥∥∥Gηpn−1 −Gηpn

∥∥∥ ≤ k max{∥pn−1 −Gηpn−1∥, ∥pn −Gηpn∥} ∀n ∈ N. (2.22)

We can restate (2.22) as

∥pn − pn+1∥ ≤ k max{∥pn−1 − pn∥, ∥pn − pn+1∥} ∀n ∈ N. (2.23)

If we assume that max{∥pn−1 − pn∥, ∥pn − pn+1∥} = ∥pn − pn+1∥ for some n, then we obtain a fixed point
of Gη and G. To continue the proof, we assume it is not possible, then by (2.23), we obtain

∥pn − pn+1∥ ≤ k∥pn−1 − pn∥ ∀n ∈ N. (2.24)

AIMS Mathematics Volume 10, Issue 2, 3207–3226.



3222

Using (2.24) and induction, we obtain

∥pn − pn+1∥ ≤ kn∥p0 − p1∥ ∀n ∈ N. (2.25)

From (2.25), one can see that

∥pn − pm∥ ≤

m−1∑
j=n

∥∥∥p j − p j+1

∥∥∥ ≤ m−1∑
j=n

k j∥p0 − p1∥ ∀n < m. (2.26)

Thus, limn,m→∞ ∥pn − pm∥ = 0. That is, {pn} is Cauchy in a Banach space M. Hence, a point p∗ exists
in M such that pn → p∗ as n→ ∞. Since θ(pn−1, pn) = 1 ∀n ∈ N, then by following the condition (iii),
we obtain θ(pn−1, p∗) = 1 ∀n ∈ N. By (2.20), we obtain

θ(pn−1, p∗) ∥l(pn−1 − p∗) +Gpn−1 −Gp∗∥ ≤ k max{∥pn−1 −Gpn−1∥, ∥p∗ −Gp∗∥} ∀n ∈ N.

That is,∥∥∥∥∥∥
(
1
η
− 1

)
(pn−1 − p∗) +Gpn−1 −Gp∗

∥∥∥∥∥∥ ≤ k max{∥pn−1 −Gpn−1∥, ∥p∗ −Gp∗∥} ∀n ∈ N.

By simplifying the above inequality, we obtain∥∥∥Gηpn−1 −Gηp∗
∥∥∥ ≤ k max{∥pn−1 −Gηpn−1∥, ∥p∗ −Gηp∗∥} ∀n ∈ N.

Equivalently, we say ∥∥∥pn −Gηp∗
∥∥∥ ≤ k max{∥pn−1 − pn∥, ∥p∗ −Gηp∗∥} ∀n ∈ N. (2.27)

The limiting case of (2.27), as n→ ∞, is provided below.

∥p∗ −Gηp∗∥ ≤ k∥p∗ −Gηp∗∥,

which only holds when ∥p∗ − Gηp∗∥ = 0, that is, p∗ = Gηp∗. Hence, p∗ = (1 − η)p∗ + ηGp∗, that is,
p∗ = Gp∗.

Next, we discuss the situation in which l = 0. For l = 0, we obtain the following conditions from
the statement of the theorem:

• For each p, q ∈ M, we have

θ(p, q)∥Gp −Gq∥ ≤ k max{∥p −Gp∥, ∥q −Gq∥} ∀p, q ∈ M.

• There exists p0 ∈ M such that θ(p0,Gp0) = 1.
• For each p, q ∈ M with θ(p, q) = 1, we have θ(Gp,Gq) = 1.
• For each sequence {pn} in M with θ(pn, pn+1) = 1 ∀n ∈ N and pn → p as n → ∞, we have
θ(pn, p) = 1 ∀n ∈ N.
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Under these conditions, the existence of a fixed point of G is guaranteed. Since Gη = G1 = G and
pn = Gpn−1 ∀n ∈ N.

To discuss the uniqueness of a fixed point of G, assume that G has two fixed points, p∗ and q∗, then
by hypothesis, we obtain θ(p∗, q∗) > 0. By using (2.20), we obtain

θ(p∗, q∗)∥l(p∗ − q∗) +Gp∗ −Gq∗∥ = θ(p∗, q∗)∥(l + 1)(p∗ − q∗)∥
≤ k{∥p∗ −Gp∗∥, ∥q∗ −Gq∗∥} = 0.

The above inequality implies p∗ = q∗. Hence, G contains a unique fixed point. □

Remark 2.8. Theorem 2.4 reduces to Theorem 1.2 by assuming θ(p, q) = 1 ∀p, q ∈ M.

The following example supports the above result.

Example 2.6. Consider M = R with ∥p∥ = |p| ∀p ∈ M. Define G : M → M and θ : M × M → [0,∞)
by

Gp =

p, p > 0,
0, p ≤ 0,

and

θ(p, q) =

1, p, q ≤ 0,
0, otherwise.

The existence of (2.20) with l = 1
3 and k = 2

3 will be discussed by the following cases.
Case 1. For p, q ≤ 0, we have Gp = 0 = Gq. Then, we obtain

θ(p, q)∥l(p − q) +Gp −Gq∥ = |(1/3)(p − q)|
≤ (1/3)(|p| + |q|)

≤
2
3

(
max{∥p −Gp∥, ∥q −Gq∥}

)
.

Case 2. For p, q > 0, we have Gp = p and Gq = q. Then, we obtain

θ(p, q)∥l(p − q) +Gp −Gq∥ = 0 |(1/3)(p − q) + p − q|

= 0

=
2
3

(
max{∥p −Gp∥, ∥q −Gq∥}

)
.

Case 3. For p ≤ 0 and q > 0, we have Gp = 0 and Gq = q. Then, we obtain

θ(p, q)∥l(p − q) +Gp −Gq∥ = 0 |(1/3)(p − q) + 0 − q|

= 0

≤
2
3

(
max{∥p −Gp∥, ∥q −Gq∥}

)
.

Hence, (2.20) holds with k = 2
3 and l = 1

3 . As l = 1
3 , this provides η = 3

4 , since η = 1
l+1 . For Axiom (i),

consider p0 = −1, then (1 − η)p0 + ηGp0 =
(
1 − 3

4

)
(−1) + 3

4 (0) < 0, thus θ(p0, (1 − η)p0 + ηGp0) = 1
with η = 3

4 . If p, q ≤ 0, then (1− η)p+ ηGp = (1− η)p ≤ 0 and (1− η)q+ ηGq = (1− η)q ≤ 0. Hence,
Axiom (ii) holds; that is, θ(p, q) = 1 implies θ((1 − η)p + ηGp, (1 − η)q + ηGq) = 1 with η = 3

4 . Also,
for each sequence {pn} in M with θ(pn, pn+1) = 1 ∀n ∈ N and pn → p as n → ∞, we have θ(pn, p) = 1
∀n ∈ N. Hence, all conditions of Theorem 2.4 are valid in this example, and G has a fixed point.
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Remark 2.9. For p = 2 and q = 0, we see that
∥θ(p, q)(p − q) +G(p) −G(q)∥ = |0(2 − 0) + (2) − 0| = 2, ∥p −Gp∥ = 0, and ∥q −Gq∥ = 0. Hence, the
above-defined example is not an inward enriched Bianchini mapping, and Theorem 2.3 is not
applicable in this example.

Remark 2.10. The following algorithms are useful for obtaining a fixed point of G and can be extracted
from the proofs of the above-mentioned theorems.

• For each p0 ∈ M with θ(p0,Gηp0) = 1
η
− 1, where η ∈ (0, 1), a sequence {pn} defined by pn =

Gηpn−1 ∀n ∈ N converges to a fixed point of G, provided that either Theorem 2.1 or Theorem 2.3
holds.
• For each p0 ∈ M with θ(p0,G 1

l+1
p0) = 1, l ≥ 0, a sequence {pn} defined by pn = G 1

l+1
pn−1 ∀n ∈ N

converges to a fixed point of G, provided that either Theorem 2.2 or Theorem 2.4 holds.

Open problem: We invite the researchers to extend the other existing enriched contraction type
mappings by using the techniques presented in this article.

3. Conclusions

This article presents the notions of inward and outward enriched Kannan mappings, as well as
inward and outward enriched Bianchini mappings. These notions are the generalized forms of the
notions given by Berinde and Păcurar, known as enriched Kannan mapping and enriched Bianchini
mapping. The generality of the stated notions is also supported by examples. The existence of fixed
points for the aforementioned notions in Banach spaces is also studied.
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