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Abstract: By utilizing the generating function of higher-order Bernoulli polynomials, we
uncover novel relationships that intertwine higher-order Bernoulli polynomials, higher-order Bernoulli
numbers, Stirling numbers of the second kind, and central factorial numbers of the second kind.
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the second kind. Additionally, we derive series expansions for both positive integer and real powers of
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1. Introduction

Let N denote the set of positive integers and N0 = N ∪ {0}. For n ∈ N0, the Stirling numbers of the
second kind, denoted as S (n, k), (as referenced in [5]), are defined by the equation:

xn =

n∑
k=0

S (n, k)(x)k, (1.1)

where the falling factorial (x)k is given by x(x − 1) · · · (x − k + 1) for k ≥ 1 and (x)0 = 1. Additionally,
the Stirling numbers of the second kind S (n, k) can be generated by the following series expansion:

(ez − 1)k

k!
=

∞∑
n=k

S (n, k)
zn

n!
. (1.2)
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As an analogue of the Stirling numbers of the second kind, the central factorial numbers of the
second kind, denoted as T (n, k) (as referenced in [2, 3, 12]), are defined by the equation:

xn =

n∑
k=0

T (n, k)x[k], (1.3)

where the central factorial x[k] is given by x(x + k
2 − 1)(x + k

2 − 2) · · · (x + k
2 − k + 1) for k ≥ 1 and

x[0] = 1 (as introduced and studied by Steffensen [17]). The central factorial numbers of the second
kind T (n, k) can be generated by the following series expansion:

1
k!

(
2sinh

z
2

)k
=

∞∑
n=k

T (n, k)
zn

n!
. (1.4)

An explicit expression was provided by Riordan in [16], as follows:

T (n, k) =
1
k!

k∑
j=0

(−1) j

(
k
j

) (
k
2
− j

)n

. (1.5)

By comparing (1.4) with (1.2), we obtain a formula that relates S (n, k) and T (n, k):

T (n, k) =

n∑
j=k

(−1)k− j

(
n
j

) (
k
2

)n− j

S ( j, k). (1.6)

In the recent paper by Qi and Taylor [15], with the assistance of the Faà di Bruno formula [5],
a pivotal tool in combinatorial analysis, several series expansions for any positive integer powers of
the sinc and hyperbolic sinc functions were derived in terms of the central factorial numbers and the
Stirling numbers of the second kind, respectively. The expansions are as follows:

sinclz =

∞∑
k=0

(−1)k T (2k + l, l)(
2k+l

l

) (2z)2k

(2k)!
, (1.7)

sinclz =

∞∑
k=0

(−1)k

 2k∑
j=0

(−1) j

(
2k
j

) (
2
l

) j S ( j + l, l)(
j+l
l

)  (2z)2k

(2k)!
, (1.8)

sinhclz =

∞∑
k=0

T (2k + l, l)(
2k+l

l

) (2z)2k

(2k)!
, (1.9)

where l ∈ N0, and the functions are defined as:

sincz =

{ sinz
z , z , 0,
1, z = 0,

and

sinhcz =

{ sinhz
z , z , 0,
1, z = 0.
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Furthermore, for any r ∈ R, they derived several series expansions for real powers of the sinc and sinhc
functions:

sincrz = 1 +

∞∑
q=1

(−1)q

 2q∑
k=1

〈−r〉k
k!

k∑
j=1

(−1) j

(
k
j

)
T (2q + j, j)(

2q+ j
j

)  (2z)2q

(2q)!
, (1.10)

sincrz = 1 +

∞∑
q=1

(−1)q
[ 2q∑

k=1

〈−r〉k
k!

k∑
j=1

(−1) j

(
k
j

)
×

2q∑
m=0

(−1)m

(
2q
m

) ( j
2

)m S (2q + j − m, j)(
2q+ j−m

j

) ] (2z)2q

(2q)!
, (1.11)

sinhcrz = 1 +

∞∑
q=1

 2q∑
k=1

〈−r〉k
k!

k∑
j=1

(−1) j

(
k
j

)
T (2q + j, j)(

2q+ j
j

)  (2z)2q

(2q)!
, (1.12)

sinhcrz = 1 +

∞∑
q=1

[ 2q∑
k=1

〈−r〉k
k!

k∑
j=1

(−1) j

(
k
j

)
×

2q∑
m=0

(−1)m

(
2q
m

) ( j
2

)m S (2q + j − m, j)(
2q+ j−m

j

) ] (2z)2q

(2q)!
, (1.13)

where 〈r〉k = r(r + 1) · · · (r + k − 1) for k ≥ 1 and 〈r〉0 = 1. Utilizing these series expansions, they
also presented several identities for the central factorial numbers of the second kind and the Stirling
numbers of the second kind. Furthermore, Qi [14] explored connections among central factorial
numbers, the Stirling numbers, and specific matrix inverses, and derived several closed-form formulas
and inequalities.

In this paper, starting from the generating function of higher-order Bernoulli polynomials,
we establish novel connections among higher-order Bernoulli polynomials, higher-order Bernoulli
numbers, Stirling numbers of the second kind, and central factorial numbers of the second kind. By
leveraging these connections, we rederive several identities attributed to Qi and Taylor, which pertain
to Stirling numbers of the second kind and central factorial numbers of the second kind. Furthermore,
we derive novel series expansions for both positive integer powers and real powers of the sinc and
sinhc functions.

2. Identities linking Stirling numbers, central factorial numbers, and higher-order Bernoulli
polynomials

The higher-order Bernoulli polynomials B(α)
k (x) [6, 8, 11, 18], also known as Nörlund

polynomials [10, 13], are typically defined through their generating functions as follows:

( z
ez − 1

)α
exz =

∞∑
k=0

B(α)
k (x)

zk

k!
. (2.1)

Specifically, B(α)
n = B(α)

n (0) is referred to as the higher-order Bernoulli numbers [1, 7]. When α = 1,
these reduce to the classical Bernoulli numbers Bn (see [4, 9, 19]). In this section, we aim to elucidate
the intricate relationships among higher-order Bernoulli numbers, higher-order Bernoulli polynomials,
Stirling numbers of the second kind, and central factorial numbers of the second kind.

The following identity presents a relationship between higher-order Bernoulli numbers and Stirling
numbers of the second kind.
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Lemma 2.1. [18, Example 7.1] For l, n ∈ N0,

B(−l)
n =

S (n + l, l)(
n+l

l

) . (2.2)

Proof. By setting α = −l and x = 0 in (2.1), we obtain the following equation:( z
ez − 1

)−l
=

∞∑
k=0

B(−l)
k

zk

k!
.

Utilizing (1.2), we can rewrite the left-hand side as:( z
ez − 1

)−l
=

(
ez − 1

z

)l

= l!z−l
∞∑

n=l

S (n, l)
zn

n!
.

By substituting n by n + l, we obtain( z
ez − 1

)−l
= l!

∞∑
n=0

S (n + l, l)
zn

(n + l)!
.

Therefore,
∞∑

k=0

B(−l)
k

zk

k!
= l!

∞∑
n=0

S (n + l, l)
zn

(n + l)!
.

By comparing the coefficients of zn/n! on both sides, we derive Eq (2.2). �

Below is a relationship presented between higher-order Bernoulli polynomials and central factorial
numbers.

Lemma 2.2. For l, n ∈ N0,

B(−l)
n

(
−

l
2

)
=

T (n + l, l)(
n+l

l

) . (2.3)

Proof. By setting α = −l and x = −l/2 in (2.1), we derive the following equation:( z
ez − 1

)−l
e−

l
2 z =

∞∑
k=0

B(−l)
k

(
−

l
2

)
zk

k!
.

Utilizing (1.4), we can rewrite the left-hand side as:( z
ez − 1

)−l
e−

l
2 z =

(
e

z
2 − e−

z
2

z

)l

= l!z−l
∞∑

n=l

T (n, l)
zn

n!
.

By substituting n with n + l, we obtain( z
ez − 1

)−l
e−

l
2 z = l!

∞∑
n=0

T (n + l, l)
zn

(n + l)!
.
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Therefore,

∞∑
k=0

B(−l)
k

(
−

l
2

)
zk

k!
= l!

∞∑
n=0

T (n + l, l)
zn

(n + l)!
.

By comparing the coefficients of zn/n! on both sides, we obtain Eq (2.3). �

Lemma 2.3. For r ∈ R and n ∈ N0,

B(r)
2n+1

( r
2

)
= 0. (2.4)

Proof. Since the function
(

z
ez−1

)r
e

r
2 z =

(
z

e
z
2 −e−

z
2

)r
is even, we can directly obtain the desired result by

applying Eq (2.1). �

Using the property of B(−l)
n (− l

2 ) for l ∈ N0, we obtain the following corollaries.

Corollary 2.1. [15, Theorem 3] For l, n ∈ N0,

T (2n + 1 + l, l) = 0. (2.5)

Proof. From (2.4), we know that B(−l)
2n+1

(
− l

2

)
= 0 for l ∈ N0. Combining this with (2.3), we can derive

the desired result. �

Corollary 2.2. [15, Theorem 1] For l ∈ N0 and z ∈ C,

sinclz =

∞∑
k=0

(−1)k T (2k + l, l)(
2k+l

l

) (2z)2k

(2k)!
. (2.6)

Proof. We start with the expression:

sinclz =

(
eiz − e−iz

2iz

)l

=

(
2iz

e2iz − 1

)−l

e−ilz.

According to (2.1) and (2.4), we have

sinclz =

∞∑
k=0

B(−l)
k

(
−

l
2

)
(2iz)k

k!
=

∞∑
k=0

(−1)kB(−l)
2k

(
−

l
2

)
(2z)2k

(2k)!
. (2.7)

Substituting (2.3) into (2.7), we obtain the desired result. �

Corollary 2.3. For l ∈ N0 and z ∈ C,

sinhclz =

∞∑
k=0

T (2k + l, l)(
2k+l

l

) (2z)2k

(2k)!
. (2.8)
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Proof. We start with the expression:

sinhclz =

(
ez − e−z

2z

)l

=

(
2z

e2z − 1

)−l

e−lz.

According to (2.1) and (2.4), we have

sinhclz =

∞∑
k=0

B(−l)
k

(
−

l
2

)
(2z)k

k!
=

∞∑
k=0

B(−l)
2k

(
−

l
2

)
(2z)2k

(2k)!
. (2.9)

Substituting (2.3) into (2.9), we obtain the desired result. �

Based on the properties of higher-order Bernoulli polynomials, we can derive a formula for
B(−l)

n

(
− l

2

)
in terms of Stirling numbers of the second kind, as well as a formula for B(−l)

n in terms
of central factorial numbers of the second kind.

Theorem 2.1. For l, n ∈ N0,

B(−l)
n

(
−

l
2

)
=

n∑
k=0

(
n
k

) (
−

l
2

)k S (n − k + l, l)(
n−k+l

l

) , (2.10)

B(−l)
n =

n∑
k=0

(
n
k

) (
l
2

)k T (n − k + l, l)(
n−k+l

l

) . (2.11)

Proof. By (2.1), we have

B(α)
n (x) =

n∑
k=0

(
n
k

)
xkB(α)

n−k.

Choosing α = −l and x = −l/2 yields

B(−l)
n

(
−

l
2

)
=

n∑
k=0

(
n
k

)
B(−l)

n−k ·

(
−

l
2

)k

. (2.12)

Substituting (2.2) into (2.12), we obtain (2.10). From (2.12), we derive(
−

l
2

)−n

B(−l)
n

(
−

l
2

)
=

n∑
k=0

(
n
k

) (
−

l
2

)−k

B(−l)
k ,

which can be rearranged to(
−

l
2

)−n

B(−l)
n =

n∑
k=0

(−1)n−k

(
n
k

) (
−

l
2

)−k

B(−l)
k

(
−

l
2

)
.

Simplifying this expression results in

B(−l)
n =

n∑
k=0

(
n
k

) (
l
2

)k

B(−l)
n−k

(
−

l
2

)
. (2.13)

Substituting (2.3) into (2.13), we obtain (2.11). �
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Corollary 2.4. For l, n ∈ N0,

T (n + l, l)(
n+l

l

) =

n∑
k=0

(
n
k

) (
−

l
2

)k S (n − k + l, l)(
n−k+l

l

) , (2.14)

S (n + l, l)(
n+l

l

) =

n∑
k=0

(
n
k

) (
l
2

)k T (n − k + l, l)(
n−k+l

l

) . (2.15)

Proof. By comparing (2.3) with (2.10), we derive (2.14). Similarly, by comparing (2.2) with (2.11),
we obtain (2.15). �

For (2.14) and its alternative proof, one should also refer to Corollary 6 in [15].

Corollary 2.5. [15, Theorem 4] For l, n ∈ N0,

2n+1∑
k=0

(−1)k

(
2n + 1

k

) (
2
l

)k S (k + l, l)(
k+l

l

) = 0. (2.16)

Proof. By using (2.4) and (2.10) and replacing k by 2n + 1 − k, we arrive at (2.16). �

Furthermore, we consider the case of the r-th order Bernoulli polynomial with r ∈ R.

Lemma 2.4. For r ∈ R, n ∈ N0,

B(−r)
2n

(
−

r
2

)
=

2n∑
j=0

(
r
j

)(
2n − r
2n − j

)
B(− j)

2n

(
−

j
2

)
. (2.17)

Proof. From (2.1), we have

B(−r)
2n

(
−

r
2

)
=

[
z2n

(2n)!

] ( z
e

z
2 − e−

z
2

)−r
=

[
z2n

(2n)!

] 2n∑
k=0

(
r
k

) (
e

z
2 − e−

z
2

z
− 1

)k

.

Since
2n∑

k=0

(
r
k

) (
e

z
2 − e−

z
2

z
− 1

)k

=

2n∑
k=0

(
r
k

) k∑
j=0

(
k
j

)
(−1)k− j

(
e

z
2 − e−

z
2

z

) j

=

2n∑
k=0

(
r
k

) k∑
j=0

(
k
j

)
(−1)k− j

∞∑
q=0

B(− j)
2q

(
−

j
2

) z2q

(2q)!
,

we obtain

B(−r)
2n

(
−

r
2

)
=

2n∑
k=0

(
r
k

) k∑
j=0

(
k
j

)
(−1)k− jB(− j)

2n

(
−

j
2

)
=

2n∑
j=0

(−1) jB(− j)
2n

(
−

j
2

) 2n∑
k= j

(−1)k

(
r
k

)(
k
j

)
.

Simple calculations yields

2n∑
k= j

(−1)k

(
r
k

)(
k
j

)
=

2n∑
k= j

(
−r + k − 1

k

)(
k
j

)
=

(
−r + j − 1

j

) 2n∑
k= j

(
−r + k − 1

k − j

)
=

(
−r + j − 1

j

)(
2n − r
2n − j

)
= (−1) j

(
r
j

)(
2n − r
2n − j

)
. (2.18)

Therefore, we derive the desired result. �
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Utilizing Lemma 2.4, we can derive explicit expressions for B(−r)
2n

(
− r

2

)
in terms of central factorial

numbers of the second kind and Stirling numbers of the second kind.

Theorem 2.2. For r ∈ R, n ∈ N0,

B(−r)
2n

(
−

r
2

)
=

2n∑
j=0

(
r
j

)(
2n − r
2n − j

)
T (2n + j, j)(

2n+ j
j

) , (2.19)

B(−r)
2n

(
−

r
2

)
=

2n∑
j=0

(
r
j

)(
2n − r
2n − j

) 2n∑
k=0

(
2n
k

) (
−

j
2

)k S (2n − k + j, j)(
2n−k+ j

j

) . (2.20)

Proof. By substituting (2.3) and (2.10) into (2.17), we obtain (2.19) and (2.20), respectively. �

Corollary 2.6. Let r ∈ R. We have

sincrz =

∞∑
q=0

(−1)q (2z)2q

(2q)!

2q∑
j=0

(
r
j

)(
2q − r
2q − j

)
T (2q + j, j)(

2q+ j
j

) , (2.21)

sincrz =

∞∑
q=0

(−1)q (2z)2q

(2q)!

2q∑
j=0

(
r
j

)(
2q − r
2q − j

) 2q∑
k=0

(
2q
k

) (
−

j
2

)k S (2q − k + j, j)(
2q−k+ j

j

) . (2.22)

Proof. According to (2.1), we have

sincrz =

(
2iz

e2iz − 1

)−r

e−irz =

∞∑
q=0

(−1)qB(−r)
2q

(
−

r
2

) (2z)2q

(2q)!
. (2.23)

Substituting (2.19) into (2.23), we immediately derive (2.21). Similarly, substituting (2.20) into (2.23),
we arrive at (2.22). �

Corollary 2.7. Let r ∈ R. We have

sinhcrz =

∞∑
q=0

(2z)2q

(2q)!

2q∑
j=0

(
r
j

)(
2q − r
2q − j

)
T (2q + j, j)(

2q+ j
j

) , (2.24)

sinhcrz =

∞∑
q=0

(2z)2q

(2q)!

2q∑
j=0

(
r
j

)(
2q − r
2q − j

) 2q∑
k=0

(
2q
k

) (
−

j
2

)k S (2q − k + j, j)(
2q−k+ j

j

) . (2.25)

Proof. According to (2.1), we have

sinhcrz =

(
2z

e2z − 1

)−r

e−rz =

∞∑
q=0

B(−r)
2q

(
−

r
2

) (2z)2q

(2q)!
. (2.26)

Substituting (2.19) into (2.26), we immediately derive (2.24). Similarly, substituting (2.20) into (2.26),
we arrive at (2.25). �

AIMS Mathematics Volume 10, Issue 2, 3197–3206.



3205

Remark 2.1. In fact, starting from (2.18), we obtain the following equality:

2q∑
j=0

(
r
j

)(
2q − r
2q − j

)
T (2q + j, j)(

2q+ j
j

) =

2q∑
k=0

(
r
k

) k∑
j=0

(−1)k− j

(
k
j

)
T (2q + j, j)(

2q+ j
j

) ,

which demonstrates that (1.10) and (1.11) are equivalent to our results, namely, (2.21) and (2.22).
Compared to (1.10) and (1.11), ours appear to be more concise. Similarly, (1.12) is equivalent
to (2.24), and (1.13) is equivalent to (2.25).

3. Conclusions

In conclusion, our study has uncovered novel connections among higher-order Bernoulli
polynomials, higher-order Bernoulli numbers, Stirling numbers of the second kind, and the central
factorial numbers of the second kind, through the utilization of the generating function of higher-order
Bernoulli polynomials. By leveraging these connections, we have validated the identities proposed
by Qi and Taylor concerning Stirling numbers of the second kind and the central factorial numbers
of the second kind. Additionally, we have derived series expansions for the sinc and sinhc functions,
encompassing both their positive integer and real power terms.
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