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1. Introduction

Fractional-order calculus is an operator that was derived from the generalization of integral-
order calculus to non-integral calculus. It was first mentioned in the letters between Leibniz and
L‘Hospital in 1695. In the following 300 years, owing to the lack of accurate physical meaning
and application background, the research about fractional-order calculus remained only on pure
theory [1, 2]. After Mandelbrot first proposed in 1982, there were extensive examples of fractional-
order in nature and many scientific and technological fields, and the self-similarity between integers
and fractional-order parts was demonstrated [3]. The fractional-order calculus, as the dynamic basis of
fractal geometry and fractal dimension, has become a hot research subject.

Compared with the traditional integer-order model, a fractional-order model provides an
effective tool to describe the inherent memory and genetic characteristics of real materials and
processes [4, 5]. Fractional-order dynamic systems have been employed in electromagnetic waves,
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electrolyte polarization, viscoelastic systems, economy, biology, system control, medicine, and so
on [6, 7]. In real world processes, especially complex processes, they are more likely to be fractional-
order systems.

The early research model of the integer-order neural networks contained only the first derivative of
the system state. In 1987, Babcock and Westervelt added inductance to the circuit of the analog neural
network, where the inertial term is the second derivative term of the system, and the obvious chaotic
and bifurcation behaviors have been obtained [8]. Therefore, an integral-order inertial neural network
was proposed. From a biological perspective, the increase of inertial terms has a strong biological
background, such as the critical behavior of squid axons in the small-signal range, which can be
viewed as caused by inductance or capacitance [9]; the membrane of some specialized neurons, for
example, hair cells in the vertebrate cochlea, electroreceptors in certain fish (e.g., electric fish and
cartilaginous fishes), retinas in lower vertebrates, and so on, can be achieved by adding inductors
to analog circuitry [10]; even some non-neuronal cells, such as the Purkinje fibers of the heart
muscle and individual skeletal muscle fibers, exhibit electrical properties, just as their membranes
containing inductors [11].

Compared with neural networks without inertia, the inertial neural networks have more complex
dynamic characteristics. In applications, the addition of inertia is helpful to the memory search
of disorders. Therefore, the research of inertial neural networks has attracted more and more
attention from domestic and foreign scholars in recent years [12, 13]. For example, the condition
of global asymptotic stability and the condition of global robust stability of the integer-order inertial
neural networks are obtained by Linear matrix inequality in reference [12], and the periodicity and
synchronization of the integer-order inertial neural networks are studied by employing the matrix
measure method and Alan formula [14, 15].

The Cohen-Grossberg neural network is one of the most representative neural networks because it
contains many well-known neural networks as its special cases, such as the Hopfield Neural Network
and cellular neural network. Cohen-Grossberg neural networks can describe many models from
neurobiology, population biology, and evolution. The introduction of the inertia term in the networked
system can stimulate the neural network to produce complex dynamic behaviors, such as periodic
oscillation, bifurcation, dissipation, and synchronization. When the integer-order systems cannot be
used to describe the problems, using a fractional-order system is often more concise and efficient to
fit the actual situation. Fractional-order systems have great potential to surpass integer-order systems
and have shown wider application value. Therefore, a growing number of scholars began to study
fractional-order calculus and obtained many results in different fields. The problems of the numerical
solution, chaos, stability control, and synchronization of fractional-order differential equation are hot
topics in nonlinear research [16–18].

The model of a fractional-order inertial neural network is a differential equation with two different
fractional-order derivative terms, whose dynamic behavior is more complex and can be used widely.
Therefore, it is of great significance and value to study the dynamic characteristics of fractional-order
inertial neural networks. Moreover, the research of fractional-order inertial neural networks mainly
encompass two kinds: One is the fractional-order of two different fractional-order derivatives which
are multiples; for example, in [14, 19–21], the global asymptotic stability, Mittag-Leffler stability, and
periodic stability of fractional-order inertial neural networks, and Cohen-Grossberg neural networks
have been studied. Another kind of inertial neural network has two different fractional-order derivatives
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that are not multiplies, but only the results of asymptotic stability or synchronous stability have been
studied, as shown in [22, 23].

The existence and stability of anti-periodic solutions of the systems have not been studied. In
practical application, the dynamic behavior of nonlinear differential systems is not only periodic, but
also anti-periodic, so the existence and stability of anti-periodic solutions have attracted much attention.
Let x(t) be the solution of the system, and there exits a constant ω > 0 that satisfies x(t + ω) =

−x(t), then x(t) is said to be an anti-periodic solution of the system. In real world problems, anti-
periodic phenomena are widely observed in fields such as biology, physics, and engineering, such
as, anti-periodic oscillation, vibration, and anti-periodic solutions of impulse equations. Therefore,
it is practical to study the anti-periodic solutions. There are many results for anti-periodic solutions
for fractional-order Hopfield neural networks and neural networks, such as those in [24–27]. For
incommensurate fractional-order Cohen-Grossberg neural networks with inertia, the relative study has
not been explored yet, so in this paper, we study the existence and the global asymptotical stability of
anti-periodic solutions for a class of incommensurate fractional-order inertial neural networks that are
characterized by two different fractional-order derivatives that are not multiples.

This is a new subject that is worthy of study, it will provide a new theoretical basis for the practical
application of dynamic performance.

The major ideas and innovations of this paper are listed below:
1) The incommensurate fractional-order Cohen-Grossberg neural network with inertia is proposed

for the first time. The system proposed, including the general fractional-order Cohen-Grossberg neural
networks and the fractional-order Cohen-Grossberg neural networks with inertia as the special cases,
extends the scope of the research.

2) By constructing the sequence of solutions in the system and the Ascoli-Arzela theorem, the
boundedness of the solution and the existence of the anti-periodic solution is derived. The research
methods are innovative.

3) By constructing a Lyapunov function, the sufficient conditions for the global asymptotical
stability of the anti-periodic solution of the system are derived. The ways adopted are innovative.

4) The results are new, and they provide a theoretical basis for the study of the stability of
the system.

In this paper, the incommensurate fractional-order Cohen-Grossberg neural networks with inertia
are considered, which are described as

Dα
t (xi(t)) = −γiD

β
t (xi(t)) − αi(xi(t))[hi(xi(t)) −

n∑
j=1

ai j f j(x j(t))

−

n∑
j=1

bi j f j(x j(t − τi j)) − Ii(t)], (t > 0), (1.1)

for all i = 1, 2, · · ·, n, where Dα
t and Dβ

t are the Riemann-Liouville fractional derivative with order
α, β(0 < β ≤ 1, β ≤ α ≤ β + 1); xi(t) is the state variable of the ith neuron at time t; and αi(·) > 0 ,
hi(·) are the abstract amplification function and the behavior function of the ith neuron; γi > 0 is the
damping coefficient; ai j and bi j are the connection weights; f j(·) is the activation function of the jth
neuron; τi j > 0 are time delays; Ii(t) is the external input of the ith neuron at time t.
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The initial conditions of system (1.1) are:xi(t) = χi(t),
Dβ

t (xi(t)) = ψi(t),
− τ ≤ t ≤ 0, τ = max

0≤i, j≤n
{τi j}, i = 1, 2, · · ·, n, (1.2)

where χi(t) and ψi(t) are continuous and bounded.
Remark:

(1) If α = β, system (1.1) is the general fractional-order Cohen-Grossberg neural network:

Dα
t (xi(t)) = −αi(xi(t))[hi(xi(t)) −

n∑
j=1

ai j f j(x j(t)) −
n∑

j=1

bi j f j(x j(t − τi j)) − Ii(t)], (t > 0).

(2) If α = 2β, system (1.1) is the fractional-order Cohen-Grossberg neural network with inertia of
commensurate orders:

D2β
t (xi(t)) = −γiD

β
t (xi(t)) − αi(xi(t))[hi(xi(t)) −

n∑
j=1

ai j f j(x j(t)) −
n∑

j=1

bi j f j(x j(t − τi j)) − Ii(t)], (t > 0),

for the two kinds of neural networks, they have some results, such as [16] and [17].

2. Preliminaries

Definition 2.1 [2] The fractional-order Riemann-Liouville integral of function f (t) with order q is
defined as

t0 D−q
t f (t) =

1
Γ(q)

∫ t

t0
(t − υ)q−1 f (υ)dυ, t ≥ t0 ≥ 0,

where Γ(q) =
∫ +∞

0
tq−1e−tdt, q > 0.

Definition 2.2 [2] The Riemann-Liouville fractional-order derivative with order q is defined as

RL
t0 Dq

t f (t) = Dn
t0(D

q−n
t f (t)) =

1
Γ(n − q)

dn

dtn

∫ t

t0

f (r)
(t − r)q−n+1 dr,

where q > 0 is a real number and n − 1 ≤ q ≤ n, t ≥ t0 ≥ 0.
Let X = {x|x = (x1, x2, · · ·, xn)T , xi ∈ R}; thus, it is easy to see that X is a Banach space with norm

‖x‖ = [
∑n

i=1 |xi(t)|p]
1
p ,p ≥ 1.

Definition 2.3 Let µ(t) = (µ1(t), µ2(t), · · ·, µn(t))T be a solution of system (1.1), and ν(t) =

(ν1(t), ν2(t), · · ·, νn(t))T be the solution of system (1.1) under initial conditions νi(t) = χi(t), Dd
t (νi(t)) =

ψi(t) for −τ ≤ t ≤ 0. If
lim
t→∞
|µ(t) − ν(t)| = 0,

then the solution ν(t) of system (1.1) is globally asymptotically stable.
Definition 2.4 [28] If h(x) is continuous in R, and h(t + ω) = −h(t) for t ∈ R, then h(x) is called an
anti-period function, where ω > 0.
Lemma 2.1 [23] If u(t) ∈ R is continuous and derivable in [0, δ], and 0 < q < 1, n − 1 < p < n, then

(1) Dp
t Dq

t u(t) = Dp+q
t u(t).
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(2) D−p
t Dq

t u(t) = D−p+q
t u(t).

(3) D−q
t C = C

Γ(q+1) t
q.

Lemma 2.2 [23] If χ(t) is derivable, and χ′(t) is continuous, then

1
2

Dq
t χ

2(t) ≤ χ(t)Dq
t χ(t), 0 < q ≤ 1.

Lemma 2.3 [14] If u(t) is continuous in [0,+∞), and there is m1 > 0,m2 > 0, which satisfies u(t) ≤
−m1D−q

0,t u(t) + m2, then for t ≥ 0

u(t) ≤ m2Eq(−m1tq),

where Eq(·) is a Mittag-Leffler function with parameter q.
Lemma 2.4(The Ascoli-Arzela Theorem) X is a topological space, which is separable, F : { f : X →
Rn} is a family of functions. If F is equi-continous everywhere in X, for any x ∈ X, { f (x) : f ∈ F} is a
bounded subset in Rn, then each function sequence has a subsequence that is uniformly convergent in
any compact subset of X.

The research is established on the assumptions for i, j = 1, 2, · · ·, n:
H1 : αi(·) is bounded, and has bounded derivative. That is, there is αi ≥ 0, αi > 0, Ai > 0, which satisfies

0 ≤ αi ≤ αi(xi(t)) ≤ αi, |α
′
i(·)| ≤ Ai.

H2 : f j(·) satisfies Lipschitz conditions with constant l j, and is bounded with f j > 0. That is,

| f j(s) − f j(v)| ≤ l j|s − v|, | f j(·)| ≤ f j,

for all s, v ∈ R.
H3 : ϑi(xi) has a bounded derivative of xi, where ϑi(xi) = αi(xi)hi(xi). That is, there is ϑi > 0, ϑi > 0,
which satisfies

0 ≤ ϑi ≤ ϑ
′
i(xi) ≤ ϑi.

H4 : Ii(t) is bounded. That is,

|Ii(t)| ≤ Ii, Ii > 0.

H5 : αi(xi)Ii(t +ω) = −αi(−xi)Ii(t), αi(xi)hi(xi) = −αi(−xi)hi(−xi), αi(xi) fi(xi) = −αi(−xi) fi(−xi), where
ω > 0.

Let ξi(t) = Dβ
t xi(t) + ηixi(t), ηi > 0, from (1.1) one has

Dβ
t xi(t) = ξi(t) − ηixi(t),

Dα−β
t [ξi(t) − ηixi(t)] = −γiξi(t) + γiηixi(t)

−αi(xi(t))[hi(xi(t)) −
n∑

j=1
ai j f j(x j(t))

−
n∑

j=1
bi j f j(x j(t − τi j)) − Ii(t)],

(2.1)
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3. Major results

Theorem 3.1 If Assumptions H1 − H4 hold, and xi(t) is the solution of system (1.1), then xi(t) and
Dβ

t xi(t) (i = 1, 2, ..., n) are bounded on (0,T ], where T is a positive finite real number.
Proof. From Assumption H3,

αi(xi(t))hi(xi(t)) − αi(0)hi(0) = ϑ
′

i(θ)xi(t),

where θ is between 0 and xi(t). From (1.1), one has

Dα
t xi(t) = −γiD

β
t xi(t) − αi(xi(t))hi(xi(t)) + αi(0)hi(0) − αi(0)hi(0)

+αi(xi(t))[
n∑

j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j)) + Ii(t)]

= −γiD
β
t xi(t) − ϑ

′

i(θ)xi(t) − αi(0)hi(0)

+αi(xi(t))[
n∑

j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j)) + Ii(t)],

and

Dα
t |xi(t)| ≤ −γiD

β
t |xi(t)| − ϑ

′

i(θ)|xi(t)| + |αi(0)hi(0)|

+αi[
n∑

j=1

(|ai j| + |bi j|) f j + Ii]

≤ −γiD
β
t |xi(t)| − ϑi|xi(t)| + |αi(0)hi(0)|

+αi[
n∑

j=1

(|ai j| + |bi j|) f j + Ii],

if 0 < t ≤ T < +∞, from Lemma 2.1 and the formula above, one has

Dβ
t Dα−β

t |xi(t)| = Dα
t |xi(t)| ≤ −γiD

β
t |xi(t)| − ϑi|xi(t)| + |αi(0)hi(0)|

+αi[
n∑

j=1

(|ai j| + |bi j|) f j + Ii],

and

Dα−β
t |xi(t)| ≤ −γi|xi(t)| − ϑiD

−β
t |xi(t)|

+D−βt [αi

n∑
j=1

(|ai j| + |bi j|) f j + αiIi + |αi(0)hi(0)|]

≤ −γi|xi(t)| +
1

Γ(β + 1)
[αi

n∑
j=1

(|ai j| + |bi j|) f j + αiIi + |αi(0)hi(0)|]T β,

|xi(t)| ≤ −γiD
−α+β
t |xi(t)| +

1
Γ(β + 1)

1
Γ(α − β + 1)

[αi

n∑
j=1

(|ai j| + |bi j|) f j
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+αiIi + |αi(0)hi(0)|]Tα.

From Lemma 2.3,
|xi(t)| ≤ AiEα−β(−γitα−β),

where

Ai =
1

Γ(β + 1)
1

Γ(α − β + 1)
[αi

n∑
j=1

(|ai j| + |bi j|) f j + αiIi + |αi(0)hi(0)|]Tα,

hence, xi(t) is bounded in (0,T ].
On the other hand, if ξi(t) = Dβ

t xi(t) +ηixi(t), ηi > 0, then system (1.1) can be transformed to (2.1),
from the second formula in (2.1),

Dα−β
t (ξi(t) − ηixi(t)) = −γi(ξi(t) − ηixi(t)) − αi(xi(t))[hi(xi(t)) −

n∑
j=1

ai j f j(x j(t))

−

n∑
j=1

bi j f j(x j(t − τi j)) − Ii(t)]

= −γi(ξi(t) − ηixi(t)) − αi(xi(t))hi(xi(t)) − αi(0)hi(0) + αi(0)hi(0)

+αi(xi(t))[
n∑

j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j)) + Ii(t)]

= −γi(ξi(t) − ηixi(t)) − ϑ
′

i(θ)xi(t) + αi(0)hi(0)

+αi(xi(t))[
n∑

j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j)) + Ii(t)].

(3.1)

According to the boundedness of xi(t), there is Mi > 0, such that |xi(t)| ≤ Mi, and from (3.1),
one has

Dα−β
t |ξi(t) − ηixi(t)| ≤ −γi|ξi(t) − ηixi(t)| + |ϑ

′

i(θ)||xi(t)| + |αi(0)hi(0)|

+αi

n∑
j=1

(|ai j| + |bi j|) f j + αiIi,

if 0 < t ≤ T < +∞, from the formula above, one has

|ξi(t) − ηixi(t)| ≤ −γiD
−α+β
t |ξi(t) − ηixi(t)| + D−α+β

t [ϑiMi + |αi(0)hi(0)|

+αi

n∑
j=1

(|ai j| + |bi j|) f j + αiIi]

≤ −γiD
−α+β
t |ξi(t) − ηixi(t)| +

1
Γ(α − β + 1)

[ϑiMi + |αi(0)hi(0)|

+αi

n∑
j=1

(|ai j| + |bi j|) f j + αiIi]Tα−β

= −γiD
−α+β
t |ξi(t) − ηixi(t)| +

Bi

Γ(α − β + 1)
Tα−β, (3.2)
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where

Bi =
1

Γ(α − β + 1)
[αi

n∑
j=1

(|ai j| + |bi j|) f j + αiIi + ϑiMi + |αi(0)hi(0)|].

From Lemma 2.3
|ξi(t) − ηixi(t)| ≤

Bi

Γ(α − β + 1)
Tα−βEα−β(−γitα−β),

from the first formula in (2.1), Dβ
t xi(t) = ξi(t) − ηixi(t), one can see that Dβ

t xi(t) is bounded in [0,T ].
Theorem 3.2 If Assumptions H1–H5 are satisfied in system (1.1), then system (1.1) has at least one
anti-period solution.
Proof. For any s ∈ N, if ω satisfies Assumption H5, then from (1.1) one has

Dβ
t [(−1)s+1xi(t + (s + 1)ω)] = (−1)s+1[−ηixi(t + (s + 1)ω) + ξi(t + (s + 1)ω)],

Dα−β
t [(−1)s+1ξi(t + (s + 1)ω)] = (−1)s+1{−γiξi(t + (s + 1)ω) + γiηixi(t + (s + 1)ω)

−αi(xi(t + (s + 1)ω))[hi(xi(t + (s + 1)ω))

−
n∑

j=1
ai j f j(x j(t + (s + 1)ω)) −

n∑
j=1

bi j f j(x j(t + (s + 1)ω − τi j))

+Ii(t + (s + 1)ω)] + ηiD
α−β
t [xi(t + (s + 1)ω)]}.

(3.3)
From the Assumptions in this theorem,

Dβ
t [(−1)s+1xi(t + (s + 1)ω)] = −ηi(−1)s+1xi(t + (s + 1)ω) + (−1)s+1ξi(t + (s + 1)ω),

Dα−β
t [(−1)s+1ξi(t + (s + 1)ω)] = −γi(−1)s+1ξi(t + (s + 1)ω) + γiηi(−1)s+1xi(t + (s + 1)ω)

−αi((−1)s+1xi(t + (s + 1)ω))[hi((−1)s+1xi(t + (s + 1)ω))

−
n∑

j=1
ai j[ f j((−1)s+1x j(t + (s + 1)ω)) −

n∑
j=1

bi j[ f j((−1)s+1x j(t + (s + 1)ω − τi j))

+Ii(t)] + ηiD
α−β
t ((−1)s+1xi(t + (s + 1)ω)),

(3.4)
which means (−1)s+1xi(t + (s + 1)ω) and (−1)s+1ξi(t + (s + 1)ω) are the solutions of system (2.1). As
the boundedness of xi(t) and Dβ

t xi(t) is proved in Theorem 3.1, one can deduce from ξi(t) = Dβ
t xi(t) +

ηixi(t) that (−1)s+1xi(t + (s + 1)ω) and (−1)s+1ξi(t + (s + 1)ω) are bounded and differentiable; thus,
the functional sequences {(−1)s+1xi(t + (s + 1)ω)} and {(−1)s+1ξi(t + (s + 1)ω)} are equicontinuous and
uniformly bounded. According to Ascoli-Arzela Theorem, a subsequence {sω}s∈N is chosen so that
{(−1)sxi(t + sω)}s∈N , {(−1)sξi(t + sω)}s∈N uniformly converge to functions x∗i (t) and ξ∗i (t), respectively,
which are continuous on arbitrary compact sets. Thus, one has

lim
s→+∞

(−1)sxi(t + sω) = x∗i (t),

lim
s→+∞

(−1)sξi(t + sω) = ξ∗i (t), i = 1, 2, · · ·, n.

Then it is going to prove that x∗(t) = (x∗1(t), x∗2(t), · · ·, x∗n(t))T and ξ∗(t) = (ξ∗1(t), ξ∗2(t), · · ·, ξ∗n(t))T are
the anti-period solutions of system (2.1).

As

x∗(t + ω) = lim
s→+∞

(−1)sx(t + ω + sω) = − lim
s→+∞

(−1)s+1x(t + (s + 1)ω) = −x∗(t),

AIMS Mathematics Volume 10, Issue 2, 3180–3196.



3188

ξ∗(t + ω) = lim
s→+∞

(−1)sξ(t + ω + sω) = − lim
s→+∞

(−1)s+1ξ(t + (s + 1)ω) = −ξ∗(t),

one can see that x∗(t) and ξ∗(t) are anti-period functions.
From (3.3), one has

Dβ
t [(−1)sxi(t + sω)] = −ηi(−1)sxi(t + sω) + (−1)sξi(t + sω),

Dα−β
t [(−1)sξi(t + sω)] = −γi(−1)sξi(t + sω) + γiηi(−1)sxi(t + sω)

−αi(−1)s(xi(t + sω))[hi((−1)sxi(t + sω)) −
n∑

j=1
ai j f j((−1)sx j(t + sω))

−
n∑

j=1
bi j f j((−1)sx j(t + sω − τi j)) − Ii(t)] + ηiD

α−β
t (−1)sxi(t + sω),

(3.5)
since f j(·) is continuous, (−1)sxi(t+ sω) and (−1)sξi(t+ sω) uniformly converge to continuous functions
x∗i (t) and ξ∗i (t) respectively. Thus, from (3.5), one has

lim
s→+∞

Dβ
t (−1)sxi(t + sω) = Dβ

t x∗i (t),

lim
s→+∞

Dα−β
t (−1)sξi(t + sω) = Dα−β

t ξ∗i (t),

and 
Dβ

t x∗i (t) = −ηix∗i (t) + ξ∗i (t),

Dα−β
t ξ∗i (t) = −γiξ

∗
i (t) + γiηix∗i (t) − αi(x∗i (t))[hi(x∗i (t)) −

n∑
j=1

ai j f j(x∗j(t))

−
n∑

j=1
bi j f j(x∗j(t − τi j)) − Ii(t)] + ηiD

α−β
t x∗i (t),

(3.6)

which means x∗(t), ξ∗(t) are the solutions of system (2.1). Thus, x∗(t) is the anti-period solution of
system (1.1).
Theorem 3.3 If Assumptions H1 to H5 are satisfied, and 1 − 2γiηi − ϑi > 0,

ci = ηi + γiη
2
i − ηiϑi −

1
2

(1 − 2γiηi − ϑi) −
n∑

j=1

[(
1
2

+ ηi)|a ji| +
1
2
η2

i |b ji|]liα j

−(
1
2

+ ηi)ϑi[
n∑

j=1

(|ai j| + |bi j|) f j + Ii] > 0,

di = γi −
1
2

n∑
j=1

(|a ji| + |b ji|)liαi −
1
2
ϑi[

n∑
j=1

(|ai j| + |bi j|) f j + Ii] −
1
2

(1 − 2γiηi − ϑi) > 0,

for i = 1, 2, · · · n, then the anti-period solution of system (1.1) is global asymptotically stable on [0,T ],
where T is a finite real number.
Proof. From Theorem 3.2, there is at least one anti-period solution of system (1.1). Suppose that
x(t) = (x1(t), x2(t), ..., xn(t))T is the anti-period solution of system (1.1), and x(t) is the solution of
system (1.1).
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Let zi(t) = xi(t)−xi(t), νi(t) = ξi(t)−ξi(t) , where ξi(t) = Dβ
t ξi(t)+ηiξi(t), ξi(t) = Dβ

t xi(t)+ηixi(t),ηi >

0, from (2.1), one has

Dβ
t zi(t) = −ηizi(t) + νi(t)

Dα−β
t [νi(t) − ηizi(t)] = −γi[νi(t) − ηizi(t)] + αi(xi(t))hi(xi(t)) − αi(xi(t))hi(xi(t))

+αi(xi(t))[
n∑

j=1
ai j( f j(x j(t)) − f j(x j(t))) +

n∑
j=1

bi j( f j(x j(t − τi j)) − f j(x j(t − τi j)))]

+[αi(xi(t)) − αi(xi(t))][
n∑

j=1
ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j)) + Ii(t)].

(3.7)
From Assumptions H1 and H3,αi(xi(t))hi(xi(t)) − αi(xi(t))hi(xi(t)) = −ϑ

′

i(θi)zi(t),
αi(xi(t)) − αi(xi(t)) = α

′

i(θ
∗
i )zi(t),

(3.8)

where θi and θ∗i are between xi(t) and xi(t).
Consider the Lyapunov function

W(t, z(t), ν(t)) =

n∑
i=1

{
1
2

Dβ−1
t z2

i (t) +
1
2

Dα−β−1
t [νi(t) − ηizi(t)]2 +

n∑
j=1

|bi j|l j

∫ t

t−τi j

z2
j(s)ds}, (3.9)

where z(t) = (z1(t), z2(t), ..., zn(t))T , ν(t) = (ν1(t), ν2(t), ..., νn(t))T , one has

W
′

t (t, z(t), ν(t)) =

n∑
i=1

{
1
2

Dβ
t z2

i (t) +
1
2

Dα−β
t [νi(t) − ηizi(t)]2 +

n∑
j=1

|bi j|l j(z2
j(t) − z2

j(t − τi j))}

≤

n∑
i=1

{zi(t)D
β
t zi(t) + [νi(t) − ηizi(t)]D

α−β
t [νi(t) − ηizi(t)]

+

n∑
j=1

|bi j|l j(z2
j(t) − z2

j(t − τi j))}

=

n∑
i=1

{zi(t)[−ηizi(t) + νi(t)] + [νi(t) − ηizi(t)][−γi(νi(t) − ηizi(t))

+αi(xi(t))hi(xi(t)) − αi(xi(t))hi(xi(t)) + αi(xi(t))[
n∑

j=1

ai j( f j(x j(t) − f j(x j(t)))

+

n∑
j=1

bi j( f j(x j(t − τi j) − f j(x j(t − τi j)))] + (νi(t) − ηizi(t))(αi(xi(t)) − αi(xi(t)))

[
n∑

j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j)) + Ii(t)] + |bi j|l j(z2
j(t) − z2

j(t − τi j))}. (3.10)

As
0 < 1 − 2γiηi − ϑi ≤ 1 − 2γiηi − ϑ

′

i(θ) ≤ 1 − 2γiηi − ϑi,

AIMS Mathematics Volume 10, Issue 2, 3180–3196.



3190

from Assumptions H1 ∼ H4 and (3.8), (3.10) can be reduced to

W
′

t (t, z(t), ν(t))) ≤
n∑

i=1

{−ηi(1 + γiηi)z2
i (t) − γiν

2
i (t) + (1 − 2γiηi)zi(t)νi(t) − ϑ

′

i(θ)zi(t)νi(t)

+ηiϑ
′

i(θ)z
2
i (t) + [

n∑
j=1

|a ji|liα j + ϑi

n∑
j=1

(|ai j| + |bi j|) f j + ϑiIi](|νi(t)| + ηi|zi(t)|)|zi(t)|

+αi

n∑
j=1

|bi j|l j(|νi(t)| + ηi|zi(t)|)|z j(t − τi j)| +
n∑

j=1

|bi j|l j(z2
j(t) − z2

j(t − τi j))}

≤

n∑
i=1

{−{ηi + γiη
2
i − ηiϑi −

1
2

(1 − 2γiηi − ϑi) −
n∑

j=1

[(
1
2

+ ηi)|a ji| +
1
2
η2

i |b ji|]liα j

−(
1
2

+ ηi)ϑi

n∑
j=1

(|ai j| + |bi j|) f j − (
1
2

+ ηi)ϑiIi}z2
i (t) − [γi −

1
2

n∑
j=1

(|a ji| + |b ji|)]liαi

−
1
2
ϑi

n∑
j=1

(|ai j| + |bi j|) f j −
1
2
ϑiIi −

1
2

(1 − 2γiηi − ϑi)ν
2
i (t)}

=

n∑
i=1

{−ciz2
i (t) − diν

2
i (t)}.

< 0. (3.11)

That if W
′

t (t, z(t), ν(t))) < 0, then

0 ≤ W(t, z(t), ν(t))) ≤ W(0, z(0), ν(0))),

and from (3.9)

0 ≤
1
2

Dβ−1
t z2

i (t) ≤ W(0, z(0), ν(0))),

which leads to

1
2

Dβ−1
t z2

i (t) =
1

2Γ(1 − β)

∫ t

0
(t − r)−βz2

i (r)dr

=
1

2Γ(1 − β)
[
∫ t

2

0
(t − r)−βz2

i (r)dr +

∫ t

t
2

(t − r)−βz2
i (r)dr]

≤ W(0, z(0), ν(0))).

On the other hand, according to integral mean value theorem, there is ξ ∈ ( t
2 , t) which satisfies

Dβ−1
t z2

i (t) ≤
1

Γ(1 − β)

∫ t

t
2

(t − r)−βz2
i (r)dr =

z2
i (ξ)

Γ(1 − β)

∫ t

t
2

(t − r)−βdr

=
z2

i (ξ)
Γ(2 − β)

(
t
2

)1−β ≤ W(0, z(0), ν(0))),
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one can see that 1 − β > 0, ξ ∈ ( t
2 , t), so ξ → +∞ as t → +∞, which means

lim
t→+∞

z2
i (t) = lim

ξ→+∞
z2

i (ξ) = 0.

Thus, one has

lim
t→+∞

‖x(t) − x(t)‖ = lim
t→+∞

n∑
i=1

|xi(t) − xi(t)| = lim
t→+∞

n∑
i=1

zi(t) = 0,

from Definition 2.3, the anti-period solution of system (1.1) is global asymptotically stable.

4. A numerical example

Consider the incommensurate fractional-order Cohen-Grossberg neural networks with inertia as

Dα
t (xi(t)) = −γiD

β
t (xi(t)) − αi(xi(t))[hi(xi(t)) −

3∑
j=1

ai j f j(x j(t))

−

3∑
j=1

bi j f j(x j(t − τi j)) − Ii(t)], (t > 0) i = 1, 2, 3. (4.1)

Example 4.1. The parameters in the system are

α = 1.2, β = 0.5, γ1 = 1, γ2 = 0.5, γ3 = 0.75, η1 =
1
3
, η2 =

1
2
, η3 =

5
12
,

a11 = 0.15, a12 = 0.10, a13 = 0.10, a21 = 0.12, a22 = 0.10, a23 = 0.15,

a31 = 0.10, a32 = 0.15, a33 = 0.12, b11 = 0.10, b12 = 0.15, b13 = 0.10,

b21 = 0.10, b22 = 0.10, b23 = 0.20, b31 = 0.12, b32 = 0.10, b33 = 0.15,

and the functions are

h1(x1) = 6x1, h2(x2) = 2.6x2, h3(x3) = 4x3, Ii(t) = 0.01sin2t,

f j(x j) = 0.1sin(2x j), i, j = 1, 2, 3.

Let
α1(x1) =

1
40

(2 −
1

1 + x2
1

), α2(x2) =
3

80
(2 +

1
1 + x2

2

).

α3(x3) =
1

32
(3 +

1
1 + x2

3

),

Then one can see that
0 ≤ 0.025 ≤ α1(x1) =

1
40

(2 −
1

1 + x2
1

) ≤ 0.05,

0 ≤ 0.075 ≤ α2(x2) =
3

80
(2 +

1
1 + x2

2

) ≤ 0.1125,
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0 ≤ 0.093 ≤ α3(x3) =
1

32
(3 +

1
1 + x2

3

) ≤ 0.125,

| f j(s) − f j(v)| ≤ 0.1|s − v|, | f j(·)| ≤ 0.1,

for all s, v ∈ R, j = 1, 2, 3.

ϑ1(x1) = α1(x1)h1(x1) = 0.15x1(2 −
1

1 + x2
1

),

ϑ2(x2) = α2(x2)h2(x2) =
7.8
80

x2(2 +
1

1 + x2
2

),

ϑ3(x3) = α3(x3)h3(x3) =
1
8

x3(3 +
1

1 + x2
3

),

0 ≤ 0.15 ≤ ϑ′1(x1) ≤ 0.319,

0 ≤ 0.1828 ≤ ϑ′2(x2) ≤ 0.292,

0 ≤ 0.359 ≤ ϑ′3(x3) ≤ 0.5,

|Ii(t)| ≤ 0.01,

αi(xi)Ii(t + ω) = −αi(−xi)Ii(t), αi(xi)hi(xi) = −αi(−xi)hi(−xi), αi(xi) fi(xi) = −αi(−xi) fi(−xi), where
ω = π/2 > 0. Thus, Assumptions H1-H5 are satisfied, and the constants in the Assumptions are

α1 = 0.025, α1 = 0.05, α2 = 0.075, α2 = 0.1125, α3 = 0.093, α3 = 0.125,

ϑ1 = 0.15, ϑ1 = 0.319, ϑ2 = 0.1828, ϑ2 = 0.292, ϑ3 = 0.359, ϑ3 = 0.5,

I1 = I2 = I3 = 0.01, l1 = l2 = l3 = 0.1, f 1 = f 2 = f 3 = 0.1,

after calculation, one has:

1 − 2γ1η1 − ϑ1 ≈ 0.015 > 0, 1 − 2γ2η2 − ϑ2 = 0.208 > 0, 1 − 2γ3η3 − ϑ3 = 0.208 > 0,

ci = ηi + γiη
2
i − ηiϑi −

1
2

(1 − 2γiηi − ϑi) −
3∑

j=1

[(
1
2

+ ηi)|a ji| +
1
2
η2

i |b ji|]liα j

−(
1
2

+ ηi)ϑi[
3∑

j=1

(|ai j| + |bi j|) f j + Ii] > 0,

where c1 ≈ 0.224, c2 ≈ 0.316 > 0, c3 ≈ 0.111 > 0.

di = γi −
1
2

3∑
j=1

(|a ji| + |b ji|)liαi −
1
2
ϑi[

3∑
j=1

(|ai j| + |bi j|) f j + Ii] −
1
2

(1 − 2γiηi − ϑi) > 0,

where d1 ≈ 0.894 > 0, d2 ≈ 0.325 > 0, d3 ≈ 0.218 > 0.
That is to say, the conditions in Theorem 3.3 are satisfied. It can be seen that system (4.1) has an

anti-periodic solution with a period of π/2 and it is global asymptotically stable.
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On the other hand, we get the states of the Example through numerical simulation, as shown in
Figure 1. It can be seen from the figure that it is consistent with the theoretical result of Theorem 3.3.

Figure 1. The trajectories of states x1(t), x2(t), x3(t) in system (4.1) in Example 4.1.

5. Conclusions

Stability is the basic condition to ensure the normal operation of the system. Moreover, it
is of great significance both in control theory and in practical application in various fields. It is of
great practical value to simulate complex biological neural networks with different derivatives α and β,
especially when they are incommensurate.

In this paper, the incommensurate fractional-order Cohen-Grossberg neural networks with inertia
is studied. By appropriate variable substitution, and using the Ascoli-Arzela Theorem, the sufficient
conditions for the boundedness of the system are deduced as Theorem 3.1. The existence of anti-period
solutions is investigated in Theorem 3.2. The global asymptotically stability of an anti-period solution
is derived in Theorem 3.3. Furthermore, an example is simulated to verify the correctness of the results.

The results are new and verified by simulation, which provide a new basis for the theoretical study
and practical application of the system. Similarly, the ideas and methods adopted can be further used
to study the performance of other incommensurate fractional-order neural networks. The following
two aspects can be further studied using the research ideas in this paper:

1) For the stability problems of fractional-order BAM neural networks with inertia and Cohen-
Grossberg-BAM neural networks with inertia;

2) If we change the Riemann-Liouville fractional-order derivative to Caputos fractional-order
derivative, we can get similar results.

The two aspects above are also the directions we are heading in the future.
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