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Abstract: In many theories and applications with uncertainty, using intervals to characterize
uncertainty is simple and operable. It is crucial to choose a proper order for an interval method.
In general, a total order is superior to a partial order for those applications in which we have to make
a final decision. Motivated by this idea, we generalized interval-valued monotone comparative statics
(MCS) with a partial order to interval-valued MCS with a total order, to be more precise, with an
admissible order. The generalization was not trival. We obtained a necessary and sufficient condition
for MCS by a series of new concepts such as an interval-valued quasi-super-modular function and
an interval-valued single crossing property with an admissible order. The same condition was only
sufficient in the existing literature. Furthermore, we illustrated the efficiency of the interval-valued
MCS with the lexicographical orders and XY-order, which are well-known admissible orders. Finally,
we applied our results in interval games with strategic complements to get the monotonity of the best
response correspondence for player i.
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1. Introduction

The real world is full of uncertainty. How to characterize all kinds of uncertainties has been a
hot topic for researchers. Generally speaking, stochastic and fuzzy approaches are used widely, but
parameters describing uncertain information in stochastic methods are considered as random variables.
They should have corresponding probability distribution functions, which is hard to obtain in practice.
Similarly, parameters with uncertainty in fuzzy methods are always seen as fuzzy sets, whose fuzzy
membership functions should be provided in advance. To some extent, the above embarrassment can
be solved by using intervals to describe uncertainty. In fact, interval methods have been applied in all
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kinds of uncertain problems [1–4].
Comparing between intervals is essential in an interval method, so it is important to choose a proper

order relation between intervals to represent a decision-maker’s preference for interval profits. The
order relation �LU is widely used for intervals of real numbers, which inherits from the usual order
between real numbers [1–5]. The order compares both the upper and lower bounds of two intervals
simultaneously, called LU-order, which represents the decision-maker’s preference for the alternative
with the higher minimum profit and maximum profit. However, the pursuit for both optimal results is
restricted in practice. Another drawback of LU-order is that it is only a partial order. In fact, using
LU-order usually gets a group of choices rather than a unique result, which makes it harder for decision-
makers to make decisions. It seems more realistic to use such an order in which the first indices of
two intervals are compared, then the second will be done if their first indices are equal. Clearly, this is
a total order such as the lexicographical orders and XY-order [6]. Meanwhile, using a total order can
provide decision-makers a unique result to facilitate their decision-making process.

Considering the importance of total orders in applications, Bustince et al. proposed admissible
orders by refining LU-order on L([0, 1]), where L([0, 1]) denotes closed subintervals of [0,1] [7].
The lexicographical orders and XY-order, as the most used examples of total orders, are both specific
admissible orders. Afterward, the research on admissible orders was published successively [7–14]. It
is worth to note that admissible orders have been extended and applied in all kinds of areas such as
linear and nonlinear optimization [15,16], decision-making [17–19], classification [20–23], clustering
[24] and image processing [25].

However, there are few applications in economics and game theories to use admissible orders to
deal with uncertain problems as far as we know. This is one of the contributions of our paper to
use admissible orders for monotone comparative statics (MCS). Comparative statics is a common
notion in economics, which is to compare two equilibrium (statics) before and after changing economic
situations. The usual methods to analyze comparative statics are to apply the implicit function theorem
to first-order conditions or to exploit the identities of duality theory. However, these methods need
some strong assumptions such as convexity, smoothness, strict second derivative conditions, and so on.
All these assumptions couldn’t be necessary for any meaningful comparative statics conclusions [26].
In 1978, Topkis proposed an important monotone theorem for maximizer sets by defining so-called
super-modularity and increasing differences for real-valued functions [27]. MCS began to become a
hot topic [26–34]. MCS is different from the above classical methods, which provides a clear direction
for decision-makers to increase or decrease related parameters. Furthermore, MCS is consistent with
strategic complements in games [35].

Let X be a lattice and T be a partially ordered set with partial orders ≤X,≤T , respectively. A function
f : X → < is called a super-modular function (SMF) if f (x) + f (y) ≤ f (x ∧ y) + f (x ∨ y) for
all x, y in X. A function f : X × T → < satisfies increasing differences property (IDP) in (x, t) if
f (x2, t1) − f (x1, t1) ≤ f (x2, t2) − f (x1, t2) for x1 ≤X x2 and t1 ≤T t2. In applications [35–39], super-
modularity means the incremental returns, associated with increases in other decision variables, goes
up with increasing in one decision variable. Similarly, IDP means the marginal returns can be raised
by increasing a parameter. They both express the concept of complementarity to some extent, which is
the key to codirectional incentives in economics, but they are cardinal and do not necessarily hold true
for MCS [27].

The more general concepts of quasi-super-modularity and single crossing property were proposed
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by Milgrom and Shannon [26]. A function f : X → < is a quasi-super-modular function (QSMF) if
f (x ∧ y) ≤ f (x)⇒ f (y) ≤ f (x ∨ y) and f (x ∧ y) < f (x)⇒ f (y) < f (x ∨ y) for all x, y in X. A function
f : X × T → < satisfies single crossing property (SCP) if f (x1, t1) ≤ f (x2, t1) ⇒ f (x1, t2) ≤ f (x2, t2)
and f (x1, t1) < f (x2, t1) ⇒ f (x1, t2) < f (x2, t2) for x1 ≤X x2 and t1 ≤T t2. Clearly, quasi-super-
modularity and SCP are weaker than super-modularity and IDP, respectively, but they are ordinal and
sufficient and necessary for MCS [26]. Furthermore, only an order relation is needed in QSMF and
SCP, compared to SMF and IDP.

The success of QSMF and SCP in a real-valued situation is undoubted, but uncertainty in economic
environment is inevitable. So, Li and Luo generalized SMF, IDP, QSMF, and SCP to obtain a series of
corresponding interval-valued concepts by using LU-order [5]. This generalization does not undermine
the sufficient condition for MCS, but the necessity cannot be preserved. In our opinion, the reason is
that LU-order is a veritable partial order, which is limited in the proof of necessity. In this paper, we
generalize those real-valued concepts above by using an admissible order to preserve the sufficiency
and necessity successfully for MCS under interval uncertainty.

Furthermore, we apply the conclusions in interval games with strategic complements. Classical
games with strategic complements (GSC) are connected with MCS naturally based on the
synchronization [35]. Considering uncertainty in games, an interval game emerged from bankruptcy
situations by employing fuzzy sets [40]. Thereafter, interval games were studied by many
researchers [41–46], but most of these topics discuss solvability or existence of Nash equilibria
rather than monotonicity. In our paper, we pay more attention to monotonicity of the best response
correspondence for player i in an interval GSC, which is another contribution that differs from
previous research.

The remainder of the paper is organized as follows. In Section 2, we review some preliminaries,
including lattice theory, admissible orders, and interval arithmetic. In Section 3, we generalize
the interval-valued SMF, IDP, QSMF, and SCP with an admissible order and show their essential
properties. Furthermore, we modify the results by using the specific admissible orders, i.e., the
lexicographical orders and XY-order. In Section 4, we propose a monotone theorem, which is sufficient
and necessary for interval-valued MCS, by using those generalized concepts in the previous section.
We illustrate the superiority of admissible orders and apply the monotone theorem in an economic
example. In Section 5, we apply interval-valued MCS in an interval GSC. Two different games
are analyzed in this section, which are an interval-valued coordination game and an interval-valued
Bertrand oligopoly model. Finally, we draw our conclusions in the last section.

2. Preliminaries

Let X be a nonempty set with a reflexive, antisymmetric, and transitive order ≤X, and call it a
partially ordered set or a poset. A strict order relation <X in a poset X is that x <X y if, and only if,
x ≤X y and x , y. A poset X is total or linear, called a chain, if any two elements in X are comparable
by ≤X.

For any x and y in a poset X, x ∨ y is denoted the least upper bound of x and y, and x ∧ y is denoted
the greatest lower bound. A poset X is a lattice if x ∨ y and x ∧ y exist in X for any x and y in X. We
call a subset S of X a sub-lattice if S is closed under the two operations. Refer to [47] for more details
about lattice theory.
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In this paper, we study those maximization problems in which objective functions are interval-
valued in<. We denote I(<) = {A = [a, a]‖a, a ∈ <, a ≤ a} as the set of all closed intervals in<. The
intervals we discuss in this paper are in I(<).

For all A = [a, a] and B = [b, b] in I(<), if a ≤ b and a ≤ b, then A �LU B, which is a well-known
LU-order. The following is the definition of an admissible order, extended from L([0, 1]) to I(<).

Definition 2.1. The order �adm is called an admissible order if it is a total order first, and for all
A, B ∈ I(<), A �adm B whenever A �LU B.

The definition is abstract, but Bustince et al. proposed a method to generate a concrete admissible
order by two aggregation functions [7], which can be extended to I(<) naturally. Here, we focus on
the so-called (α, β)-orders, a class of admissible orders generated by kα mappings.

Definition 2.2. Let A = [a, a], B = [b, b], and α, β ∈ [0, 1], α , β. A �(α,β) B if, and only if, kα(A) <
kα(B), or kα(A) = kα(B) and kβ(A) ≤ kβ(B), where kα(A) = (1 − α)a + αa and kβ(A) = (1 − β)a + βa.
A ≺(α,β) B if, and only if, A �(α,β) B and A , B.

In the literature on the structure of admissible orders, the researchers usually choose (α, β)-orders
to study [48,49]. Specifically, the lexicographical order 1 on I(<) is an (α, β)-order when α = 0 and
β = 1. Similarly, the lexicographical order 2 is an (α, β)-order when α = 1 and β = 0. XY-order is also
an (α, β)-order, in which α = 1

2 and β = 1. For convenience, we give the definitions of the three widely
used orders in their usual forms.

Definition 2.3. Let A = [a, a], B = [b, b]. A �Lex1 B if, and only if, a < b, or a = b and a ≤ b. If
A �Lex1 B and A , B, then A ≺Lex1 B.

Definition 2.4. Let A = [a, a], B = [b, b]. A �Lex2 B if, and only if, a < b, or a = b and a ≤ b. If
A �Lex2 B and A , B, then A ≺Lex2 B.

Definition 2.5. Let A = [a, a], B = [b, b]. A �XY B if, and only if, a + a < b + b, or a + a = b + b and
a − a ≤ b − b. If A �XY B and A , B, then A ≺XY B.

Remark 2.1. It has been proved that A �XY B if, and only if, a + a < b + b, or a + a = b + b and
a ≤ b in [7]. Considering an easier operation, we choose this way to compare two intervals rather
than Definition 2.5 when we use XY-order.

In this paper, we still need some operations between intervals, which are listed as follows.

Definition 2.6. Let A = [a, a], B = [b, b]. A+ B = [a+b, a+b]. kA = [ka, ka], where k is a nonnegative
real number. A 	 B = [min(a − b, a − b),max(a − b, a − b)].

Remark 2.2. The subtraction 	 should be denoted more exactly by 	gH, which is called a generalized
Hukuhara difference (gH-difference) between two intervals [50]. In fact, there are other interval
subtractions such as Hukuhara difference [51] and g-difference [52]. So far, gH-difference has been
widely used owing to its good performance in interval problems [53–57]. We use simplified mark 	
where there is no confusion.
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3. Interval-valued QSMF and SCP with an (α, β)-order

In this section, we generalize the real-valued concepts of SMF, IDP, QSMF, and SCP to interval-
valued ones with an (α, β)-order, and investigate some properties to characterize them for applications.

Let X be a lattice and T be a poset. f : X → I(<) is an interval-valued function, which maps any
x ∈ X to a related closed interval f (x) = [ f (x), f (x)]. Here, f (x) and f (x) are real-valued.

Definition 3.1. An interval-valued function f : X → I(<) is called an interval-valued super-modular
function with an (α, β)-order (I(α,β)SMF) if for all x, y in X,

f (x) + f (y) �(α,β) f (x ∧ y) + f (x ∨ y). (3.1)

The definition is a formal generalization of the classical SMF. Li and Luo did the same
generalization using LU-order, called an interval SMF (ISMF) [5]. To distinguish and compare with
our related definitions, we call ISMF in [5] ILUSMF in our paper. In fact, an ILUSMF must be an
I(α,β)SMF because LU-order is refined in an admissible order, an (α, β)-order of course.

Example 3.1. Let f : X → I(<) be an interval-valued function.
1) If X is a chain, then f is an I(α,β)SMF.
2) Let x = (x1, x2) ∈ X = <2 and f (x) = [x1x2, x2

1 + x2
2]. Then, f is an I(α,β)SMF since it is an

ILUSMF [5]. The graph of f is illustrated in Figure 3.1.
3) Let x = (x1, x2) ∈ X = [−π4 ,

π
4 ]×[−π4 ,

π
4 ] and f (x) = [x1x2, cosx1x2]. f is an I(α,β)SMF, where α = 0

and β = 1. Note that it is a general I(α,β)SMF rather than an ILUSMF. The graph of f is illustrated in
Figure 3.2.

Figure 3.1. The graph of interval-
valued function f in Example 3.1-2.

Figure 3.2. The graph of interval-
valued function f in Example 3.1-3.

Definition 3.2. An interval-valued function f : X × T → I(<) satisfies interval-valued increasing
differences property in (x, t) with an (α, β)-order ( I(α,β)IDP) if for x1 ≤X x2 and t1 ≤T t2,

f (x2, t1) 	 f (x1, t1) �(α,β) f (x2, t2) 	 f (x1, t2). (3.2)
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Considering the relationship between LU-order and an (α, β)-order, we have the following theorem
by using the related results in [5].

Theorem 3.1. Let f : X × T → I(<) be an interval-valued function. If f and f are super-modular in

x, then f is an I(α,β)SMF. If f and f satisfy IDP in (x, t), then f satisfies I(α,β)IDP.

However, if we compare two intervals A and B by an (α, β)-order, the key is the relationship between
kα(A) and kα(B), or kβ(A) and kβ(B), not between the endpoints of two intervals. In fact, a general kα
mapping carries more information on uncertainty. For better understanding (α, β)-order, we give two
lemmas about kα as follows.

Lemma 3.1. Let α ∈ [0, 1] and A = [a, a] ∈ I(<). kα : I(<) → < is a real-valued function, where
kα(A) = (1 − α)a + αa. Then, kα(A + B) = kα(A) + kα(B), and for λ > 0, kα(λA) = λkα(A).

The proof is clear. The lemma reveals the linearity of kα to a great extent.

Lemma 3.2. Let f : X × T → I(<). Denote kα ◦ f the composition of kα and f , which is a function
from X × T into<. If f and f are super-modular in x, then kα ◦ f is super-modular in x; and if f and

f satisfy IDP in (x, t), kα ◦ f satisfies IDP.

Theorem 3.2. Let f : X → I(<), and α, β ∈ [0, 1], α , β. If kα ◦ f and kβ ◦ f are super-modular, then
f is an I(α,β)SMF.

Proof. For any x, y ∈ X, we need to prove f (x) + f (y) �(α,β) f (x ∧ y) + f (x ∨ y), namely, [ f (x) +

f (y), f (x) + f (y)] �(α,β) [ f (x ∧ y) + f (x ∨ y), f (x ∧ y) + f (x ∨ y)]. That is, (1 − α)( f (x) + f (y)) +

α( f (x) + f (y)) < (1 − α)( f (x ∧ y) + f (x ∨ y)) + α( f (x ∧ y) + f (x ∨ y)), or the relation is equal and

(1 − β)( f (x) + f (y)) + β( f (x) + f (y)) ≤ (1 − β)( f (x ∧ y) + f (x ∨ y)) + β( f (x ∧ y) + f (x ∨ y)). After
rearranging, we need to prove that kα ◦ f (x) + kα ◦ f (y) < kα ◦ f (x ∧ y) + kα ◦ f (x ∨ y), or the relation
is equal and kβ ◦ f (x) + kβ ◦ f (y) ≤ kβ ◦ f (x ∧ y) + kβ ◦ f (x ∨ y). This is natural if kα ◦ f and kβ ◦ f are
super-modular. The proof is finished. �

f is an ILUSMF if, and only if, f and f are super-modular in [5]. However, it is not necessary for an
I(α,β)SMF that kα ◦ f and kβ ◦ f are super-modular, which will be shown in the following example.

Example 3.2. Let X = {x, y, x ∧ y, x ∨ y}, in which x and y are incomparable. f : X → I(<) is an
interval-valued function, where f (x) = [0, 1], f (y) = [−1, 2], f (x ∧ y) = [0, 1], f (x ∨ y) = [0, 1]. If
α = 1

3 , β = 2
3 , f (x) + f (y) �(α,β) f (x ∧ y) + f (x ∨ y) for any x, y ∈ X, that is, f is an I(α,β)SMF. However,

kβ ◦ f (x) + kβ ◦ f (y) > kβ ◦ f (x ∧ y) + kβ ◦ f (x ∨ y). kβ ◦ f is not super-modular.

Remark 3.1. In Example 3.2, we also have f (x) + f (y) > f (x ∧ y) + f (x ∨ y). That is to say, f is not
super-modular. Moreover, f is not an ILUSMF, which is proposed in [5]. So, when the interval-valued
SMF is needed, ILUSMF becomes invalid, but our I(α,β)SMF can still be used. This is a discrete example,
unlike the continuous example in Example 3.1-3.

Actually, when we compare two intervals using an (α, β)-order, we always compare their kα terms
first. We don’t need to compare their kβ terms unless the kα terms are equal. From this point, we think
that kα ◦ f is more important than kβ ◦ f in characterizing properties of an interval-valued function by
using an (α, β)-order. Theorem 3.2 and Example 3.2 provide some clues for this idea. The following
theorem is also a support, whose proof is obvious and omitted.
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Theorem 3.3. Let f : X → I(<), and α, β ∈ [0, 1], α , β. If f is an I(α,β)SMF, kα ◦ f is super-modular.

Note that kα(A 	 B) , kα(A) − kα(B) according to Definition 2.6, which leads to an unsatisfying
result on I(α,β)IDP. The fact is that f does not satisfy I(α,β)IDP even if kα ◦ f and kβ ◦ f both satisfy IDP.

Example 3.3. Let X = {x, y, x ∧ y, x ∨ y}, in which x and y are incomparable, and T = {1, 2} with
a natural order. f : X × T → I(<), whose corresponding interval-values are listed in Table 3.1.
For α = 1

4 , β ∈ [0, 1] and β , α, kα ◦ f and kβ ◦ f satisfy IDP. However, f (x, 1) 	 f (x ∧ y, 1) �(α,β)

f (x, 2) 	 f (x ∧ y, 2), that is, f does not satisfy I(α,β)IDP.

Table 3.1. Corresponding interval-values of f in Example 3.3.

T
X

x y x ∧ y x ∨ y

1 [0,2] [0,2] [0,1] [0,2]
2 [0,1] [0,1] [-1,3] [0,1]

Example 3.3 indicates that the subtraction 	 on I(<) is different greatly from the natural subtraction
on<, which is not a converse of the interval addition. In fact, other subtractions between intervals are
like this one, except for H-difference, but H-difference does not always exist [51].

Fortunately, SCP is a better substitute for IDP, even if it is weaker. Actually, the weaker SCP and
QSMF are just conditions to get a nondecreasing maximizer [26]. We generalize QSMF and SCP for
an interval-valued function by an (α, β)-order as follows.

Definition 3.3. A function f : X → I(<) is called an interval-valued quasi-super-modular function
with an (α, β)-order (I(α,β)QSMF) if for any x, y in X,{

f (x ∧ y) �(α,β) f (x)⇒ f (y) �(α,β) f (x ∨ y),
f (x ∧ y) ≺(α,β) f (x)⇒ f (y) ≺(α,β) f (x ∨ y).

(3.3)

Theorem 3.4. Let f : X → I(<), and α, β ∈ [0, 1], α , β. If kα ◦ f and kβ ◦ f are quasi-super-modular,
f is an I(α,β)QSMF.

The proof of the theorem is similar to the one of Theorem 3.2, but the converse is not true. In the
following example, kα ◦ f is not quasisupermodular even if f is an I(α,β)QSMF. The result shows the
complexity under the weaker conditions, compared with Theorem 3.3.

Example 3.4. Let X = {x, y, x ∧ y, x ∨ y}, in which x and y are incomparable. f : X → I(<) is
given by f (x) = [1, 3], f (y) = [0, 2], f (x ∧ y) = [0, 1], f (x ∨ y) = [0, 4]. If α = 1

2 , β = 1, which is
XY-order, f is an I(α,β)QSMF but kα ◦ f is not a QSMF. The fact is that kα ◦ f (x) = kα ◦ f (x ∨ y) when
kα ◦ f (x ∧ y) < kα ◦ f (y).

Another point worth noting is that f may not necessarily be an I(α,β)QSMF even if f and f are both
quasi-super-modular. For example, we redefine f by f (x) = [1, 1.5], f (y) = [0, 4], f (x ∧ y) = [0, 2],
f (x ∨ y) = [1, 2] in Example 3.4. It can be verified that f and f are quasi-super-modular, but when
f (x∧ y) �(α,β) f (x), we have f (y) �(α,β) f (x∨ y) for α = 1

2 and ∀β ∈ [0, 1], α , β. We realize again that
it is a better choice to pay more attention to kα ◦ f and kβ ◦ f .
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Definition 3.4. An interval-valued function f : X × T → I(<) satisfies interval-valued single crossing
property with an (α, β)-order (I(α,β)SCP) if for x1 ≤X x2 and t1 ≤T t2,{

f (x1, t1) �(α,β) f (x2, t1)⇒ f (x1, t2) �(α,β) f (x2, t2),
f (x1, t1) ≺(α,β) f (x2, t1)⇒ f (x1, t2) ≺(α,β) f (x2, t2).

(3.4)

Similarly, we characterize a function satisfying I(α,β)SCP by kα ◦ f and kβ ◦ f in the following
theorem, which is an answer to the trouble in I(α,β)IDP. Its proof is obvious and omitted.

Theorem 3.5. Let f : X ×T → I(<), α, β ∈ [0, 1] and α , β. If kα ◦ f and kβ ◦ f satisfy SCP, f satisfies
I(α,β)SCP.

In a real-valued case, an SMF is a QSMF and a function satisfying IDP has SCP. Here, we can prove
that an I(α,β)SMF is still an I(α,β)QSMF, but a function satisfying I(α,β)IDP may not satisfy I(α,β)SCP.

Example 3.5. Let X = {x, y, x ∧ y, x ∨ y}, in which x and y are incomparable, and T = {1, 2} with a
natural order. f : X × T → I(<), whose corresponding interval-values are listed in Table 3.2. Then,
f satisfies I(α,β)IDP if α = 3

4 . However, when f (x ∧ y, 1) �(α,β) f (x, 1), f (x ∧ y, 2) �(α,β) f (x, 2), that is,
the function does not satisfy I(α,β)SCP.

Table 3.2. Corresponding interval-values of f in Example 3.5.

T
X

x y x ∧ y x ∨ y

1 [0,1] [0,1] [0,1] [0,3]
2 [0,1] [-1,3] [-1,3] [0,5]

Examples 3.3 and 3.5 indicate that the generalization of IDP with a general (α, β)-order is
not successful. However, when we use a specific (α, β)- order, the lexicographical order 1, the
corresponding results can be modified.

We change �(α,β) to �Lex1 in corresponding definitions above to obtain ILex1SMF, ILex1IDP,
ILex1QSMF, and ILex1SCP. In this case, kα ◦ f = f and kβ ◦ f = f .

Theorem 3.6. Let f : X × T → I(<). If f and f satisfy IDP, then f satisfies ILex1IDP. Furthermore, if f
satisfies ILex1IDP, then it satisfies ILex1SCP.

Proof. The first conclusion is the specific result of Theorem 3.1 if α = 0 and β = 1. We pay more
attention to the second one, which is not true for a general (α, β)-order. Suppose that f has ILex1IDP,
x1 ≤X x2, t1 ≤T t2, and f (x1, t1) �Lex1 f (x2, t1). Then, 0 �Lex1 f (x2, t1) 	 f (x1, t1); furthermore,
0 �Lex1 f (x2, t2) 	 f (x1, t2) by ILex1IDP. So, f (x1, t2) �Lex1 f (x2, t2). The strict inequality can be proved
similarly. In conclusion, f satisfies ILex1SCP. �

When substituting the lexicographical order 2 for the lexicographical order 1, we can get the similar
results. Hence, using the lexicographical orders in theories and applications seems to be a good choice,
and indeed they are, but information on uncertainty carried at the two endpoints of an interval may be
more stuffless than on some point in the interval.
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Another (α, β)-order, i.e., XY-order, is a well-known alternative. So, we supply similar concepts

with XY-order, i.e., IXYSMF, IXYIDP, IXYQSMF, and IXYSCP. Note that kα ◦ f =
f + f

2 and kβ ◦ f = f in

XY-order. For convenience, we denote fc =
f + f

2 .
It is a pity that there are not similar results as in Theorem 3.6. We define the corresponding interval-

values of f in Table 3.3, where f has the same domain as Example 3.5. We can verify fc and f satisfy
IDP. However, f (x, 1) 	 f (x ∧ y, 1) �XY f (x, 2) 	 f (x ∧ y, 2), that is, f does not satisfy IXYIDP.

Table 3.3. Corresponding interval-values of redefined f .

T
X

x y x ∧ y x ∨ y

1 [2,3] [0,3] [0,3] [2,3]
2 [0.5,1.5] [-1,1] [-1,1] [0.5,1.5]

4. Interval-valued MCS with an (α, β)-order

Li and Luo tried to generalize the sufficient and necessary condition for MCS in real-valued cases
to interval-valued cases [5]. However, the generalization is partially successful, in which the necessity
fails. In this section, we fill the gap by using I(α,β)QSMF and I(α,β)SCP.

Here, we need a set order to compare the sets of maximizers and constraints.

Definition 4.1. Let X be a lattice with the given order ≤X. For S 1, S 2 of power set P(X), S 1 ≤S S 2 if
for each x ∈ S 1 and y ∈ S 2, x ∧ y ∈ S 1 and x ∨ y ∈ S 2.

The order is called a strong set order, introduced by Veinott [58]. Note that S ≤S S if, and only if, S
is a sub-lattice of X. A set-valued function A : T → P(X) is monotone nondecreasing if A(t1) ≤S A(t2)
whenever t1 ≤T t2, where T is a poset.

Theorem 4.1. Let f : X × T → I(<), S ⊆ X and α, β ∈ [0, 1], α , β. Then, arg maxx∈S f (x, t) is
monotone nondecreasing in (t, S ) if, and only if, f is an I(α,β)QSMF in x and satisfies I(α,β)SCP in (x, t).

Proof. Denote A(t, S ) = arg maxx∈S f (x, t) for convenience. We prove the sufficiency first. Suppose
S 1 ≤S S 2 and t1 ≤T t2, then we will show A(t1, S 1) ≤S A(t2, S 2), that is, ∀x ∈ A(t1, S 1) and ∀y ∈
A(t2, S 2), x ∧ y ∈ A(t1, S 1), and x ∨ y ∈ A(t2, S 2). Since x ∈ A(t1, S 1) and S 1 ≤S S 2, then f (x ∧
y, t1) �(α,β) f (x, t1). Clearly, f (y, t1) �(α,β) f (x ∨ y, t1) because f is an I(α,β)QSMF in x. Furthermore,
f (y, t2) �(α,β) f (x ∨ y, t2) because f satisfies I(α,β)SCP in (x, t). Hence, x ∨ y ∈ A(t2, S 2). Similarly, we
have x ∧ y ∈ A(t1, S 1).

Next, we solve the necessity of I(α,β)QSMF. For any x, y in X, let S 1 = {x, x ∧ y} and S 2 = {y, x ∨ y},
then S 1 ≤S S 2. If f (x ∧ y, t) �(α,β) f (x, t), then x ∈ A(t, S 1). Considering A(t, S 1) ≤S A(t, S 2), x ∨ y ∈
A(t, S 2), that is, f (y, t) �(α,β) f (x ∨ y, t). Furthermore, if f (x ∧ y, t) ≺(α,β) f (x, t), then A(t, S 1) = {x}.
Clearly, A(t, S 2) = {x ∨ y}, that is, f (y, t) ≺(α,β) f (x ∨ y, t).

Finally, we prove that I(α,β)SCP is also necessary. Let x ≤X y, t1 ≤T t2 and S = {x, y}. f (x, t1) �(α,β)

f (y, t1) implies y ∈ A(t1, S ). Since A(t1, S ) ≤S A(t2, S ), then y ∈ A(t2, S ), that is, f (x, t2) �(α,β) f (y, t2).
The implication in a strict situation holds in a similar way. �

We have two corollaries in the following. One is a simplified result above and the other is about the
structure of a maximizer, which are proved by Theorem 4.1 easily and omitted.
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Corollary 4.1. Let f : X → I(<), S ⊆ X, and α, β ∈ [0, 1], α , β. Then, arg maxx∈S f (x) is monotone
nondecreasing in S if, and only if, f is an I(α,β)QSMF.

Corollary 4.2. Let f : X → I(<), S be a sub-lattice of X ,α, β ∈ [0, 1] and α , β. If f is an I(α,β)QSMF,
arg maxx∈S f (x) is a sub-lattice of S .

Sidering the results in Theorems 3.4 and 3.5, we have a new conclusion as follows. It is sufficient
and easy to verify for a monotone nondecreasing maximizer.

Theorem 4.2. Let f : X × T → I(<), S ⊆ X, and α, β ∈ [0, 1], α , β. If kα ◦ f and kβ ◦ f are QSMF
and satisfy SCP, then arg maxx∈S f (x, t) is monotone nondecreasing in (t, S ).

The conclusions above are true, of course, when we use the lexicographical orders or XY-order in
the related statements. In the following example, we show that when you choose an order in uncertain
situations, it shows your preferences on uncertainty, which may bring different results.

Example 4.1. Let X = {x, y, x ∧ y, x ∨ y}, in which x and y are incomparable, and T = {1, 2} with a
natural order. f : X × T → I(<), whose corresponding interval-values is given in Table 4.1.

Table 4.1. Corresponding interval-values of f in Example 4.1.

T
X

x y x ∧ y x ∨ y

1 [-1,2] [-1,2] [-1.5,3] [0,1]
2 [0,3] [0,3] [-0.5,4] [1,2]

We can verify that f and f are SMF, then fc is SMF based on Lemma 3.2. Considering an SMF is

a QSMF, f , f , and fc are all QSMF. Similarly, f and f satisfy IDP, then fc satisfies IDP, that is, they
have SCP.

Based on the theorems in [5] and Theorem 4.2, arg maxx∈X f (x, t) is monotone nondecreasing in t
when we use LU-order, the lexicographical orders, and XY-order, respectively.

Actually, arg maxx∈X f (x, 1) = {x, y, x ∧ y, x ∨ y} and arg maxx∈X f (x, 2) = {x, y, x ∧ y, x ∨ y} by
LU-order, which is meaningless for making decisions. Such a result is not unexpected. Due to partial
incomparability of LU-order, using it for analysis may not provide effective assistance to decision-
makers. In other words, the interval-valued MCS in [5] is restrictive.

However, when we use the lexicographical order 1, arg maxx∈X f (x, 1) = {x ∨ y} and
arg maxx∈X f (x, 2) = {x ∨ y}. arg maxx∈X f (x, 1) = {x ∧ y} and arg maxx∈X f (x, 2) = {x, y} by the
lexicographical order 2. arg maxx∈X f (x, 1) = {x ∧ y} and arg maxx∈X f (x, 2) = {x ∧ y} by XY-order.
Though the results are different, they are clear and valuable to decision-makers.

Furthermore, we take an example in economics to show how to use MCS to adjust
economic behavior.

Example 4.2. Consider the effects of a short run increase in the market size on the monopoly price.
Let the number of customers be N. The objective of the firm is to maximize the profit function f (q,N) =

Nq(P(q) + p) − (C(Nq) + cq) by choosing the quantity q ∈ K sold to each customer, where P(q) + p is
inverse demand, C(Nq) + cq are costs, and p, c ≥ 0.
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Note that the two function P and C are interval-valued here given the uncertainty of rewards and
costs in most economical situations. Denote P(q) = [P(q), P(q)] and C(q) = [C(q),C(q)] for q ∈ K.
Then, f = [ f (q,N), f (q,N)] is interval-valued, which is compared by using the lexicographical order 1.

Clearly, f is an ILex1QSMF in q since K is a chain. Next, we show f has ILex1SCP in (q,N). f can
be rewritten by a family of functions U(q, y,N) = Ny−C(Nq) and y = h(q, α1, α2) = qP(q) +α1q +α2,
where α1 = p − c and α2 is arbitrary. Then, f (q,N) and f (q,N) satisfy SCP in (q,N) if C(q) and C(q)
are both concave by using Theorem 11 in [26].

Consequently, if C(q) and C(q) of the cost function C are concave, arg maxq∈K f (q,N), denoted by
q∗(N), is nondecreasing in N for all choices of K and P, based on Theorem 4.2. Similarly, if C(q) and
C(q) are convex, q∗(N) is nonincreasing in N for all choices of K and P.

It is worth noting that the above result has nothing to do with the properties of the inverse demand
function P. In other words, it is enough for the firm to adjust its costs only if it wants a positive cycle.

5. Interval GSC with an (α, β)-order

A GSC is one of the lattice games, which describes a situation that each player intends to move in the
same direction as their opponents. If opponents increase, then the best choice is to increase as well for
a given player. SCP and QSMF are used in a GSC to characterize when maximizers are increasing in
parameters in an optimization problem, which can be seen as a mathematical foundation for strategic
complements [37]. When considering uncertainty in games, interval games arise. Specifically, an
interval GSC (denoted by ILUGSC in our paper) is proposed in [5] by using LU-order. In this section,
we study a new interval GSC by using an (α, β)-order.

Definition 5.1. An interval GSC with an (α, β)-order (I(α,β)GSC) is a lattice game Γ = (Xi, ui)N
i=1, where:

1) Finitely many players are considered and indexed by i ∈ {1, 2, · · · ,N}.
2) For every player i, Xi, called the action space, is a nonempty and a sub-complete lattice in <ni

with the usual order. X = X1 × X2 × · · · × Xn is the space of profiles of actions with the product partial
order. We denote X = Xi × X−i for convenience, where X−i = X1 × · · · × Xi−1 × Xi+1 × · · · × XN . An
element in X is x = (x1, x2, · · · , xn) or x = (xi, x−i).

3) For every player i, the payoff function ui(xi, x−i) is interval-valued in I(<), in which (a) for
α, β ∈ [0, 1], α , β, kα ◦ ui, and kβ ◦ ui are upper semicontinuous on X and continuous on X−i and (b)
ui has I(α,β)SCP in (xi, x−i), and for each x−i, ui(·, x−i) is an I(α,β)QSMF in xi.

In an I(α,β)GSC, Bi(x−i) = arg maxxi∈Xi ui(xi, x−i) is the best response set of player i to opponent
actions x−i and B(x) = B1(x−1) × B2(x−2) × · · · × BN(x−N) is the joint best response correspondence. If
x∗ ∈ B(x∗), x∗ is a Nash equilibrium.

The following is an example of I(α,β)GSC, which is transformed from a classical coordination game.

Example 5.1. Suppose that two players are considering working together by adopting a technology.
The technology to be selected is either technology a or technology b. One player prefers technology
a to technology b, the other prefers b to a. It is meaningless for collaboration if they choose different
technologies. In this case, each player considers not only his own choice but also choice of another
player. The best result is to move in the direction of choosing the same technology as another player.
Based on uncertainty, we use an interval to represent the payoff to a player from the collective choices
of both players.
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The related data is listed in Table 5.1.

Table 5.1. Interval-valued coordination game.

P1

P2 a b

a [1,3] [0,2] [0,0] [0,1]
b [0,1] [0,0] [1,2] [2,3]

The first interval in each cell is payoff for player 1 and the second interval is the payoff for
player 2. For example, when player 1 chooses a and player 2 chooses a, the first interval, [1,3],
in the corresponding cell is player 1’s payoff from this collective choice (a, b), that is, u1(a, a) = [1, 3].
The second interval, [0,2], is player 2’s payoff from this collective choice, denoted u2(a, a) = [0, 2].
Here, X = X1 × X2, X1 = X2 = {a, b}, and suppose a � b.

It is clear that for α, β ∈ [0, 1], α , β, kα ◦ ui and kβ ◦ ui are upper semicontinuous on X and
continuous on X−i(i = 1, 2) because ui(i = 1, 2) is discrete. Furthermore, we can verify that u1 and u2

have I(α,β)SCP in (x1, x2) and (x2, x1), respectively. For x2, u1(·, x2) is an I(α,β)QSMF in x1 owing to the
linearity of X1 , and a similar result is for x1. According to Definition 5.1, this is an I(α,β)GSC.

In the I(α,β)GSC, B1(a) = {a}, B1(b) = {b}, B2(a) = {a}, and B2(b) = {b}. Furthermore, B(a, a) =

{(a, a)}, B(a, b) = {(b, a)}, B(b, b) = {(b, b)}, and B(b, a) = {(a, b)}. So the Nash equilibrium set is
{(a, a), (b, b)}. Indeed, the best result is to move in the direction of choosing the same technology as the
other player, just like in a classical coordination game.

Specifically, if we use the lexicographical order 1 in Definition 5.1, we get an ILex1GSC. In the
following, we take Bertrand oligopoly as an example to show that it is just an ILex1GSC and its Nash
equilibrium is unique.

Bertrand oligopoly is a model of price competition in economics. It emphasizes that oligopolies
make decisions at the same time as other firms without any historical decisions. It is worth it to
note that the model is based on the following assumptions. First, oligopoly firms compete through
price selection. Second, the products produced by each oligopoly are homogeneous, such as branded
handbags, bottles of perfume, running shoes, and so on. Finally, there is no formal or informal collusion
between oligopoly firms. It can be realized that demand for the product of one firm is inverse to the
price it charges but positive to the price other firms charge for their own product.

Example 5.2. (Interval-valued Bertrand oligopoly) We can formalize Bertrand oligopoly as a game
as follows. N firms are considered and indexed i ∈ {1, 2, · · · ,N}. The unit price of firm i is xi ∈

Xi = [0, a] ⊂ <, in which a is a possible maximum unit price. Let qi be quantity of demand for the
product of firm i and qi = f (xi) + g(x−i). f is an interval-valued function from Xi to I(<), reflecting
uncertain demand conditions of firm i. We denote f (xi) = [ f (xi), f (xi)], where 0 ≤ f (xi) ≤ f (xi)
and they are decreasing. Similarly, g(x−i) = [g(x−i), g(x−i)] reflects demand conditions of opponents,
where 0 ≤ g(x−i) ≤ g(x−i), and they are increasing. Let c be marginal cost of production, considered a
constant with 0 < c < a. The profit to firm i is total revenue minus total cost for a profile of other firms
prices x−i, that is, ui(xi, x−i) = qixi − cqi = (xi − c)( f (xi) + g(x−i)).

Specifically, we suppose f (xi) = r − bxi and f (xi) = r − bxi. The constants r, r, b, b > 0, and

2b > (N − 1)γ, which carry uncertain demand information in the industry. Then, f and f are strictly
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decreasing and twice differentiable. Let g(x−i) = γ(
∑

k,i xk) and g(x−i) = γ(
∑

k,i xk), in which γ, γ > 0
and carry uncertain information of opponents. Here, g and g are strictly increasing in each xk(k , i)
and continuously differentiable. Therefore, ui(xi, x−i) = (xi − c)(r − bxi + γ(

∑
k,i xk)), ui(xi, x−i) =

(xi − c)(r − bxi + γ(
∑

k,i xk)).

Because
∂2ui

∂xi∂xk
= γ > 0 and ∂2ui

∂xi∂xk
= γ > 0 for i , k, ui and ui have IDP in (xi, x−i), even SCP [26],

and they are QSMF in xi since Xi is a chain. According to the conclusions in the sections above, we get
an ILex1GSC and the best response set of firm i to opponents x−i is nondecreasing in theory. Actually,
∂ui

∂xi
= r − 2bxi + γ(

∑
k,i xk) + cb, and

∂2ui

∂x2
i

= −2b < 0 in the game. So the best response set of firm i to

opponents x−i is Bi(x−i) = { 1
2b (r + cb + γ(

∑
k,i xk))}. Clearly, the set is a singleton for each x−i owing to

the strictly concave property of ui in xi.
We can more intuitively perceive the relationship between the best response set of firm i and

opponents x−i in Figure 5.1. Here, we let N = 5, c = 1, r = 2, b = 3, and γ = 1, then
Bi(x−i) = { 6

5+
∑

k,i xk
}. Note that the graph in Figure 5.1 is not the set graph of Bi(x−i), which only

shows the changes of Bi(x−i) as
∑

k,i xk undergoes changes.

O
∑

k 6=i xk

Bi(x−i)

1

5/6

1

Figure 5.1. The relationship between the best response set of firm i and opponents x−i.

In fact, when opponents increase their prices, the best action of a given player is to increase as
well. Note that there is a unique Nash equilibrium xi∗ =

r+cb
2b−(N−1)γ (i = 1, · · · ,N) in the game.

It is worth it to point out that using the lexicographical order 1 in this game is superior to using
LU-order. We need to compare ui only based on the strictly concave ui, rather than to compare both
ui and ui. Another point is that the maximum points in ui and ui are not necessarily the same, that is,
finding the maximum interval by LU-order is more difficult.

We may view the cost c as a parameter, which reflects changes in manufacturing technology. Then,
we get a parameterized game. Generally speaking, there are strategic complements at a parameter t ∈ T
for each player in such a game, in which each player tends to take a higher action in t [5,35].

Definition 5.2. A parameterized I(α,β)GSC Γ = (Xi, ui)N
i=1,T ) is an I(α,β)GSC first for each t ∈ T, in
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which T is a poset, called the parameter space. An additional condition is ui(xi, x−i, t), the payoff
function of player i, has I(α,β)SCP in (xi, t) for x−i.

Similarly, we know what a parameterized ILex1GSC is. Let the cost be c ∈ T = [0, a) in the
Example 5.2, then we get a parameterized interval-valued Bertrand oligopoly model.

Example 5.3. (Parameterized interval-valued Bertrand oligopoly) The additional condition for the

parameter c ∈ T holds since
∂2ui

∂xi∂c = − f ′(xi) > 0 and ∂2ui
∂xi∂c = − f ′(xi) > 0. We obtain a parameterized

ILex1GSC. Actually, the best response set of firm i to opponents x−i and the parameter c, Bi(x−i, c) =

{ 1
2b (r + cb + γ(

∑
j,i x j))}, is nondecreasing. When the costs increase, the best action is to increase its

price for the given firm i supposing the prices of opponents were fixed.

In Examples 5.2 and 5.3, using the lexicographical order 1 to resolve the model is convenient,
and the case using the lexicographical order 2 is completely similar, but their results only rely on the
endpoints of the related interval-valued functions. Considering the information on uncertainty should
be more fully used, we substitute XY-order for the lexicographical order 1 in Example 5.2.

Example 5.4. Denote k 1
2
◦ ui(x) = uic(x) = 1

2 (ui(x) + ui(x)). We continue to use the specific case in

Example 5.1. We can verify uic has IDP in (xi, x−i) since ∂2uic
∂xi∂x j

= 1
2 (γ + γ) > 0, and ui has IDP in

(xi, x−i), which is shown in Example 5.1. So, ui has IXYSCP in (xi, x−i). uic and ui are QSMF in xi

clearly. In conclusion, we get an IXYGSC, in which the best response set of firm i to opponents x−i is
Bi(x−i) = { 1

2(b+b)
[(r + r) + c(b + b) + (γ + γ)(

∑
j,i x j)]}. The Nash equilibrium is also unique, that is,

xi∗ =
(r+r)+c(b+b)

2(b+b)−(N−1)(γ+γ
(i = 1, · · · ,N).

The result is different from that in Example 5.2, which carries more information on uncertainty
clearly. The parameterized case using XY-order is similar and omitted.

6. Conclusions

In view of the importance of admissible orders in theory and application, we generalize four
classical concepts of a real-valued function into an interval-valued function by using an (α, β)-order,
which is an admissible order. They are I(α,β)SMF, I(α,β)IDP, I(α,β)QSMF, and I(α,β)SCP. The essential
properties to characterize them are proposed by using kα mappings. These properties in interval-valued
situations are not perfect as in real-valued situations, so that we give abundant examples to illustrate
all kinds of special cases. Fortunately, when we use the specific (α, β)-orders, i.e., the lexicographical
orders, we obtain some modified properties.

The important thing is that I(α,β)QSMF and I(α,β)SCP are used as the necessary and sufficient
condition for MCS, which is superior to the existing results in interval cases. We take one simple
example first to show different results by using the lexicographical orders, XY-order, and LU-order.
When you choose an order in uncertain situations, it shows your preferences on uncertainty, which
may bring different results. Then, we use the lexicographical order 1 to resolve another example in
economics to show how to use MCS to adjust economic behavior.

Considering a natural connection between GSC and MCS, we propose the definition of I(α,β)GSC
and parameterized I(α,β)GSC. In this part, we transform a classical coordination game into an interval-
valued game first. Then, we illustrate that an interval-valued Bertrand oligopoly model is an ILex1GSC
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by using the lexicographical order 1. In the interval-valued Bertrand oligopoly, the best response
correspondence for player i is nondecreasing and the Nash equilibrium is unique. Furthermore, we
discuss a parameterized case in the same game. When we use the lexicographical order 2, the results
are similar, but information about uncertainty in a game is carried less by the lexicographical orders
than by XY-order. Therefore, we use XY-order in the interval-valued Bertrand oligopoly again to
obtain a unique Nash equilibrium, which represents more uncertainty.

In Section 3, sufficient theories and examples illustrate the difficulty in generalizing interval-valued
IDP. Although interval IDP can be reduced to interval SCP to be used, interval IDP itself is easier to
be verified as an important property to characterize MCS. Hence, it is necessary to continue to explore
interval IDP. In fact, the main difficulty in generalization is the limitation of interval subtraction. In
interval problems, especially those using interval calculus, interval subtraction cannot be avoided.
Therefore, we will systematically research interval subtraction in the future to achieve better results.

Recently, there has been a considerable amount of discussion on game theory and its integration with
economics, such as the strategic attitudes of participants in games [59], the propagation of monetary
shocks in a general equilibrium economy [60], open data in the digital economy [61], the psychology
of individuals in the evolutionary dynamics of populations [62], etc. Given that the specific objects
can all be considered from the perspective of uncertainty, we can subsequently introduce intervals
to these problems and try our best to make contributions to game theory and economic issues from
different aspects.
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Construction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy
sets with an application to decision making, Inform. Fusion, 27 (2016), 189–197.
https://doi.org/10.1016/j.inffus.2015.03.004

10. L. De Miguel, M. Sesma-Sara, M. Elkano, M. Asiain, H. Bustince, An algorithm for group decision
making using n-dimensional fuzzy sets, admissible orders and OWA operators, Inform. Fusion, 37
(2017), 126–131. https://doi.org/10.1016/j.inffus.2017.01.007

11. F. Santana, B. Bedregal, P. Viana, H. Bustince, On admissible orders over closed subintervals of
[0, 1], Fuzzy Set. Syst., 399 (2020), 44–54. https://doi.org/10.1016/j.fss.2020.02.009

12. H. Bustince, C. Marco-Detchart, J. Fernandez, C. Wagner, J. M. Garibaldi, Z. Takácˇ, Similarity
between interval-valued fuzzy sets taking into account the width of the intervals and admissible
orders, Fuzzy Set. Syst., 390 (2020), 23–47. https://doi.org/10.1016/j.fss.2019.04.002

13. J. V. Riera, S. Massanet, H. Bustince, J. Fernandez, On admissible orders on the set of
discrete fuzzy numbers for application in decision making problems, Mathematics, 9 (2021), 95.
https://doi.org/10.3390/math9010095

AIMS Mathematics Volume 10, Issue 2, 3160–3179.

https://dx.doi.org/ https://doi.org/10.1016/j.ins.2022.10.020
https://dx.doi.org/ https://doi.org/10.1016/j.chaos.2022.111846
https://dx.doi.org/ https://doi.org/10.1016/j.chaos.2021.111628
https://dx.doi.org/ https://doi.org/10.1016/j.apm.2022.11.014
https://dx.doi.org/ https://doi.org/10.1016/j.apm.2022.11.014
https://dx.doi.org/ https://doi.org/10.1016/j.fss.2023.108772
https://dx.doi.org/ https://doi.org/10.1080/03081070600574353
https://dx.doi.org/ https://doi.org/10.1016/j.fss.2012.07.015
https://dx.doi.org/ https://doi.org/10.1016/j.fss.2012.07.015
https://dx.doi.org/ https://doi.org/10.1109/TFUZZ.2013.2265090
https://dx.doi.org/ https://doi.org/10.1016/j.inffus.2015.03.004
https://dx.doi.org/ https://doi.org/10.1016/j.inffus.2015.03.004
https://dx.doi.org/ https://doi.org/10.1016/j.inffus.2017.01.007
https://dx.doi.org/ https://doi.org/10.1016/j.fss.2020.02.009
https://dx.doi.org/ https://doi.org/10.1016/j.fss.2019.04.002
https://dx.doi.org/ https://doi.org/10.3390/math9010095
https://dx.doi.org/ https://doi.org/10.3390/math9010095


3176

14. N. Zumelzu, B. Bedregal, E. Mansilla, H. Bustince, R. Dı́az, Admissible orders on fuzzy numbers,
IEEE T. Fuzzy Syst., 30 (2022), 4788–4799. https://doi.org/10.1109/TFUZZ.2022.3160326

15. D. C. Li, Y. Leung, W. Z. Wu, Multiobjective interval linear programming in admissible-order
vector space, Inform. Sciences, 486 (2019), 1–19. https://doi.org/10.1016/j.ins.2019.02.012

16. L. F. Li, Optimality conditions for nonlinear optimization problems with interval-valued
objective function in admissible orders, Fuzzy Optim. Decis. Making, 22 (2022), 247–265.
https://doi.org/10.1007/s10700-022-09391-2

17. U. Bentkowska, H. Bustince, A. Jurio, M. Pagola, B. Pekala, Decision making with an interval-
valued fuzzy preference relation and admissible orders, Appl. Soft Comput., 35 (2015), 792–801.
https://doi.org/10.1016/j.asoc.2015.03.012

18. P. D. Liu, Y. Y. Li, P. Wang, Social trust-driven consensus reaching model for multiattribute group
decision making: Exploring social trust network completeness, IEEE T. Fuzzy Syst., 31 (2023),
3040–3054. https://doi.org/10.1109/TFUZZ.2023.3241145

19. P. D. Liu, Y. Li, X. H. Zhang, W. Pedrycz, A multiattribute group decision-making method with
probabilistic linguistic information based on an adaptive consensus reaching model and evidential
reasoning, IEEE T. Cybern., 53 (2023), 1905–1919. https://doi.org/10.1109/TCYB.2022.3165030

20. J. Derrac, F. Chiclana, S. Garcı́a, F. Herrera, Evolutionary fuzzy k-nearest neighbors
algorithm using interval-valued fuzzy sets, Inform. Sciences, 329 (2016), 144–163.
https://doi.org/10.1016/j.ins.2015.09.007

21. S. Zeraatkar, F. Afsari, Interval-valued fuzzy and intuitionistic fuzzy-KNN for imbalanced data
classification, Expert Syst. Appl., 184 (2021), 115510. https://doi.org/10.1016/j.eswa.2021.115510

22. T. da Cruz Asmus, J. A. Sanz, G. P. Dimuro, B. Bedregal, J. Fernández, H. Bustince, N-
dimensional admissibly ordered interval-valued overlap functions and its influence in interval-
valued fuzzy-rule-based classification systems, IEEE T. Fuzzy Syst., 30 (2022), 1060–1072.
https://doi.org/10.1109/TFUZZ.2021.3052342

23. X. X. Wu, H. Tang, Z. Y. Zhu, L. T. Liu, G. R. Chen, M. S. Yang, Nonlinear strict distance
and similarity measures for intuitionistic fuzzy sets with applications to pattern classification and
medical diagnosis, Sci. Rep., 13 (2023), 13918. https://doi.org/10.1038/s41598-023-40817-y

24. M. Pagola, A. Jurio, E. Barrenechea, J. Fernández, H. Bustince, Interval-valued fuzzy clustering,
In: Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the
European Society for Fuzzy Logic and Technology, 2015, 1288–1294. https://doi.org/10.2991/ifsa-
eusflat-15.2015.182

25. P. Sussner, L. C. Carazas, An approach towards image edge detection based on interval-
valued fuzzy mathematical morphology and admissible orders, In: Proceedings of the 11th
Conference of the European, Society for Fuzzy Logic and Technology, 2019, 690–697.
https://doi.org/10.2991/eusflat-19.2019.96

26. P. Milgrom, C. Shannon, Monotone comparative statics, Econometrica, 62 (1994), 157–180.

27. D. M. Topkis, Minimizing a submodular function on a lattice, Oper. Res., 26 (1978), 209–376.
https://doi.org/10.1287/opre.26.2.305

AIMS Mathematics Volume 10, Issue 2, 3160–3179.

https://dx.doi.org/ https://doi.org/10.1109/TFUZZ.2022.3160326
https://dx.doi.org/ https://doi.org/10.1016/j.ins.2019.02.012
https://dx.doi.org/https://doi.org/10.1007/s10700-022-09391-2
https://dx.doi.org/ https://doi.org/10.1016/j.asoc.2015.03.012
https://dx.doi.org/ https://doi.org/10.1016/j.asoc.2015.03.012
https://dx.doi.org/ https://doi.org/10.1109/TFUZZ.2023.3241145
https://dx.doi.org/ https://doi.org/10.1109/TCYB.2022.3165030
https://dx.doi.org/ https://doi.org/10.1016/j.ins.2015.09.007
https://dx.doi.org/ https://doi.org/10.1016/j.ins.2015.09.007
https://dx.doi.org/ https://doi.org/10.1016/j.eswa.2021.115510
https://dx.doi.org/ https://doi.org/10.1109/TFUZZ.2021.3052342
https://dx.doi.org/ https://doi.org/10.1109/TFUZZ.2021.3052342
https://dx.doi.org/ https://doi.org/10.1038/s41598-023-40817-y
https://dx.doi.org/ https://doi.org/10.2991/ifsa-eusflat-15.2015.182
https://dx.doi.org/ https://doi.org/10.2991/ifsa-eusflat-15.2015.182
https://dx.doi.org/https://doi.org/10.2991/eusflat-19.2019.96
https://dx.doi.org/ https://doi.org/10.1287/opre.26.2.305
https://dx.doi.org/ https://doi.org/10.1287/opre.26.2.305


3177

28. V. Xavier, Nash equilibrium with strategic complementarities, J. Math. Econ., 19 (1990), 305–321.
https://doi.org/10.1016/0304-4068(90)90005-T

29. P. Milgrom, J. Roberts, The economics of modern manufacturing: Technology, strategy, and
organization, Am. Econ. Rev., 80 (1990), 511–528.

30. P. Milgrom, J. Roberts, Rationalizability, learning and equilibrium in games with strategic
complementarities, Econometrica, 58 (1990), 1255-1277.

31. P. Milgrom, J. Roberts, Comparing equilibria, Am. Econ. Rev., 84 (1994), 441–459.

32. S. Athey, Monotone comparative statics under uncertainty, Q. J. Econ., 117 (2002), 187–223.
https://doi.org/10.1162/003355302753399481

33. B. H. Strulovici, T. A. Weber, Monotone comparative statics: Geometric approach, J. Optim.
Theory Appl., 137 (2008), 641–673. https://doi.org/10.1007/s10957-007-9339-1

34. A. C. Barthel, T. Sabarwal, Directional monotone comparative statics, Econ. Theory, 66 (2018),
557–591. https://doi.org/10.1007/s00199-017-1079-3

35. T. Sabarwal, A unified approach to games with strategic complements and substitutes, In:
Monotone games, Chan: Palgrave Pivot, 2021.

36. D. M. Topkis, Supermodularity and complementarity, Princeton: Princeton University Press, 1998.

37. E. P. Klement, R. Mesiar, E. Pap, Archimax copulas and invariance under transformations, C. R.
Math. Acad. Sci. Paris Math., 340 (2005), 755–758. https://doi.org/10.1016/j.crma.2005.04.012

38. J. J. Arias-Garcia, B. De Baets, On the lattice structure of the set of supermodular quasi-copulas,
Fuzzy Set. Syst., 354 (2019), 74–83. https://doi.org/10.1016/j.fss.2018.03.013

39. C. L. Luo, X. Y. Zhou, B. Lev, Core Shapley value, nucleolus and Nash bargaining solution: A
survey of recent developments and applications in operations management, Omega, 110 (2022),
102638. https://doi.org/10.1016/j.omega.2022.102638

40. R. Branzei, D. Dimitrov, S. Tijs, Shapely-like values for interval bankruptcy games, Econ. Bull., 3
(2002), 1–8.

41. A. Chakeri, F. Sheikholeslam, Fuzzy Nash equilibriums in crisp and fuzzy games, IEEE T. Fuzzy
Syst., 21 (2013), 171–176. https://doi.org/10.1109/TFUZZ.2012.2203308

42. J. C. Fı́gueroa-Garcia, A. Mehra, S.Chandra, Optimal solutions for group matrix
games involving interval-valued fuzzy numbers, Fuzzy Sets Syst., 362 (2019), 55–70.
https://doi.org/10.1016/j.fss.2018.07.001

43. K. R. Liang, D. F. Li, K. W. Li, J. C. Liu, An interval noncooperative-cooperative biform game
model based on weighted equal contribution division values, Inform. Sciences, 619 (2023), 172–
192. https://doi.org/10.1016/j.ins.2022.11.016

44. X. Wang, K. L. Teo, Generalized Nash equilibrium problem over a fuzzy strategy set, Fuzzy Set.
Syst., 434 (2022), 172–184. https://doi.org/10.1016/j.fss.2021.06.006

45. Q. C. X. Zhang, L. Shu, B. C. Jiang, Moran process in evolutionary game dynamics
with interval payoffs and its application, Appl. Math. Comput., 446 (2023), 127875.
https://doi.org/10.1016/j.amc.2023.127875

AIMS Mathematics Volume 10, Issue 2, 3160–3179.

https://dx.doi.org/ https://doi.org/10.1016/0304-4068(90)90005-T
https://dx.doi.org/ https://doi.org/10.1016/0304-4068(90)90005-T
https://dx.doi.org/ https://doi.org/10.1162/003355302753399481
https://dx.doi.org/ https://doi.org/10.1162/003355302753399481
https://dx.doi.org/ https://doi.org/10.1007/s10957-007-9339-1
https://dx.doi.org/ https://doi.org/10.1007/s00199-017-1079-3
https://dx.doi.org/https://doi.org/10.1016/j.crma.2005.04.012
https://dx.doi.org/ https://doi.org/10.1016/j.fss.2018.03.013
https://dx.doi.org/ https://doi.org/10.1016/j.omega.2022.102638
https://dx.doi.org/ https://doi.org/10.1109/TFUZZ.2012.2203308
https://dx.doi.org/ https://doi.org/10.1016/j.fss.2018.07.001
https://dx.doi.org/ https://doi.org/10.1016/j.fss.2018.07.001
https://dx.doi.org/ https://doi.org/10.1016/j.ins.2022.11.016
https://dx.doi.org/ https://doi.org/10.1016/j.fss.2021.06.006
https://dx.doi.org/ https://doi.org/10.1016/j.amc.2023.127875
https://dx.doi.org/ https://doi.org/10.1016/j.amc.2023.127875


3178

46. R. Branzei, S. Z. A. Gok, O. Branzei, Cooperative games under interval uncertainty: On the
convexity of the interval undominated cores, Cent. Eur. J. Oper. Res., 19 (2011), 523–532.
https://doi.org/10.1007/s10100-010-0141-z

47. B. A. Davey, H. A. Priestley, Introduction to lattices and order, Cambridge: Cambridge University
Press, 2002.

48. M. Boczek, L. S. Jin, M. Kaluszka, Interval-valued seminormed fuzzy
operators based on admissible orders, Inform. Sciences, 574 (2021), 96–110.
https://doi.org/10.1016/j.ins.2021.05.065

49. P. Sussner, L. C. Carazas, Construction of Kα-orders including admissible ones on classes of
discrete intervals, Fuzzy Set. Syst., 480 (2024), 108857. https://doi.org/10.1016/j.fss.2024.108857

50. L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic,
Fuzzy Set. Syst., 161 (2010), 1564–1584. https://doi.org/10.1016/j.fss.2009.06.009
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