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2 Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta,
Antofagasta 1270300, Chile

3 Departamento de Matemática, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente,
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Abstract: In this paper, we analyze and characterize the setAT which consists of all possible profiles
at a fixed time of the entropy solution of the elementary wave interaction problem in a bounded domain
for a convex scalar conservation law. The elementary wave interaction problem is the initial and
boundary value problem for a scalar conservation law, where the flux is a strictly convex function,
and the initial and boundary data are constant functions. In the first main result of the article, we state
and prove that AT is a subset of the set of piecewise functions that are constant on each subdomain,
or there is a subdomain where the function is strictly increasing. We prove the result by applying the
method of characteristics in three steps: the Riemann problem solution, the entropy solution of the
interaction of two Riemann problems, and restriction of the entropy solution to the spatial bounded
domain. Moreover, we characterize the strictly increasing part of the solution’s profile regarding the
flux function. In the second result, which is stated as an application of the first result, we introduce the
conditions for ill-posedness and local flux identification from the knowledge of the entropy solution’s
profile.
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1. Introduction

The study of conservation laws was initially oriented toward analyzing problems related to
gas dynamics, but afterward, it was considered in the study of phenomena that occurr in several
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areas, such as electrophoresis, chromatography, sedimentation, combustion, elasticity, secondary oil
recovery [1–5], and others [6]. There are new applications, including the study of biology and even
social models [7–9]. There has been excellent progress in understanding the functional framework
for studying scalar conservation laws. A particular challenge in the context of conservation laws
is the solution of inverse problems and optimal control problems. In a broad sense, the functional
spaces have a low regularity which does not permit a straightforward application of the standard
methods developed to analyze the optimal control theory of elliptic or parabolic equations [10–12].
In particular, an interesting aspect in control theory is the characterization of the attainable profiles of
the solution [13–17]. The knowledge of the set of possible profiles is an interesting aspect to develop in
the functional framework when studyng the inverse problem of flux identification and the convergence
of numerical methods for parameter identification in chromatography [18] and sedimentation [19–23].
Hence, in the present article, we apply the method of characteristics to construct the entropy solution
of the elementary wave interaction problem and introduce a characterization of the reachable profiles
of the solution.

The elementary wave interaction problem is defined as the following initial boundary value
problem:

ut + f (u)x = 0, (x, t) ∈ Q := (0, 1) × R+, (1.1)
u(x, 0) = uL, x ∈ (0, 1), (1.2)
u(0, t) = u0, t ∈ R+, (1.3)
u(1, t) = uR, t ∈ R+, (1.4)

when (uL, u0, uR) ∈ R3 and the flux function f is a strictly convex function

f ∈ Uad := { f ∈ C2(R) : f ′′(u) > 0, u ∈ R, and f (0) = f ′(0) = 0}. (1.5)

We note that the assumption f (0) = f ′(0) = 0, as is given in (1.5), is not a restrictive assumption, since
we can apply a change of variable to rewrite any general convex flux function in the form of a flux
function belonging to Uad [24].

We observe that (1.1)–(1.4) is a particular case of the Cauchy–Dirichlet problem for scalar
conservation laws on a spatially bounded domain given by

ut + f (u)x = 0, (x, t) ∈ QT := (0, 1) × (0,T ), (1.6)
u(x, 0) = ϕ(x), x ∈ (0, 1), (1.7)
u(0, t) = g(t), t ∈ (0,T ), (1.8)
u(1, t) = h(t), t ∈ (0,T ). (1.9)

The well-posedness of (1.6)–(1.9) was investigated by Bardos, Le Roux, and Nedelec in [25]. By
applying Kružkov’s theory [26], the authors obtained results concerning the existence, uniqueness,
and stability of the entropy solutions. We recall that an entropy solution of the initial-boundary value
problem (1.6)–(1.9) is a function u ∈ L1

loc(QT ) that satisfies the inequality"
QT

{
|u − k|φt + sgn(u − k)( f (u) − f (k))φx

}
dxdt +

∫ 1

0
|ϕ − k|φ(x, 0)dx
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+

∫ T

0
sgn(g(t) − k)( f (u(0, t)) − f (k))φx(0, t)dt (1.10)

−

∫ T

0
sgn(h(t) − k)( f (u(1, t)) − f (k))φx(1, t)dt ≥ 0,

which holds for all φ ∈ C∞0 (QT ) with φ ≥ 0 and for each k ∈ R. Here, sgn(·) denotes the sign function.
Additionally, it is well known that the boundary conditions (1.8)–(1.9) require a definition, which is
given by introducing a boundary inequality that consistently selects the boundary conditions (see Item
(3) of Proposition 4.1 given below).

The main result of the paper is given by the following theorem.

Theorem 1.1. Let us consider the notations Rang( f ) for the range of a function f : R → R, um =

min{uL, u0, uR}, uM = min{uL, u0, uR}, and AT the set of reachable profiles of the entropy solutions of
the elementary wave interaction problem (1.1)–(1.4) at a fixed time t = T ∈ (0,∞) defined by

AT =
{
u(x,T ) : u is the entropy solution of the problem (1.1)–(1.4)

}
.

Given T > 0, u(x,T ) ∈ AT has the form

u(x,T ) =



ρ1, 0 ≤ x < x1,

ρ2, x1 ≤ x < x2,

ψ(x), x2 ≤ x < x3,

ρ3, x3 ≤ x < x4,

ρ4, x4 ≤ x ≤ 1,

(1.11)

with ρ = (ρ1, ρ2, ρ3, ρ4) ∈ [um, uM]4, x = (x1, x2, x3, x4) ∈ [0, 1]4, and ψ is a constant or a
strictly increasing function with Rang(ψ) ⊂ [um, uM]. Moreover, in the strictly increasing case, the

correspondence rule for ψ is defined by ψ(x) =
(

f ′
)−1(

(x − 1)/T
)

when u0 < 0 or ψ(x) =
(

f ′
)−1(

x/T
)

when u0 > 0.
The proof of Theorem 1.1 is given by introducing a systematic construction of the entropy solution

of (1.1)–(1.4) and characterizing the possible profiles. Let us consider the Riemann problem

ut + f (u)x = 0, (x, t) ∈ R × (b,∞), (1.12)

u(x, b) =
{
α, x ≤ a,
β, x > a,

x ∈ R, (1.13)

when f ∈ Uad, a ∈ R and b ∈ R+ are given. The analysis begins by reformulating the solution of the
Riemann problem (1.13) with a new notation. Specifically, we introduce a partition of R2 (see (2.11))
such that the possible constant solutions and shock or rarefaction waves are characterized by α and β
(see Proposition 2.1). We then study all possible shock and rarefaction interactions by considering the
construction of the entropy solution of the following initial value problem

wt + f (w)x = 0, (x, t) ∈ R × (b,∞), (1.14)

w(x, b) =


α, x ≤ a,
β, a < x < c,
γ, x ≥ c,

x ∈ R. (1.15)
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The solution of the initial value problem (1.14)–(1.15) is constructed by analyzing the solution
of two Riemann problems, one centered at (a, b) separating the states (α, β) and another centered
at (c, b) separating the states (β, γ). We introduce a partition of R3, characterizing the solution of
the Cauchy problem (1.14)–(1.15) in terms of constant states (α, β, γ) and we also give a connection
with the partition R2 of the Riemann problem. Afterward, we restrict w to x ∈ [0, 1] and, using the
characterization of the entropy solution of scalar conservation laws on bounded domains, we deduce
all possible types of entropy solutions for the initial boundary value problem (1.1)–(1.4). Hence, by
analyzing each type of solution, we construct a characterization of the setAT containing the elementary
wave interaction problem solution profiles at the fixed time t = T .

Related results are given in [27–29]. In those articles, the authors use some results of advanced
mathematical analysis, such as the method of generalized characteristics and the semigroup theory, to
characterize the attainable sets for scalar conservation laws and balance laws.

A particular application of the main result of this work is the analysis and numerical solution of
the inverse problem of flux identification from knowledge of an observed model solution’s profile in a
fixed time. We note that the identification of a nonlinear flux function in scalar conservation laws is a
relevant inverse problem in many interesting applications of conservation laws theory, for instance, in
sedimentation and chromatography (see [18–20]). In these applications, the reconstruction of the flux
function should be done by observing the end-time profile of the forward problem solution. In [18], the
authors formulate the inverse problem as an optimal control problem and, using this formulation, they
introduce the convergence framework for a numerical method applied to the solution of the parameter
identification problem. Advances and improvements on the numerical solution and the analysis of the
flux identification problem are given in [19–23] and [30–32], respectively. Nevertheless, despite these
results, the mathematical framework for the well-posedness of the inverse problem still needs to be
clarified. The major drawback, which prevents the direct application of optimal control theory on the
inverse problem’s analysis, is the formation of discontinuities in the direct problem solution, even when
the initial–boundary and flux functions are smooth [34, 35]. Concerning the well–posdennes analysis,
we note that the existence of solutions for the flux identification problem was obtained in [18]. This
result is based on the continuous dependence of the entropy solution with respect to the flux function
(see [33]). An alternative proof of existence can be obtained by adaptation of the technique introduced
by Ulbrich in [14]. However, to the best of our knowledge, results on the uniqueness of solutions for
the flux identification problem have yet to be published. Hence, this paper contributes to answering the
uniqueness question of flux identification, since we introduce the conditions for ill–posedness and the
local flux identification in a particular and representative case of the direct problem: the elementary
wave interaction problem.

The paper is organized as follows. In Section 2, we construct the entropy solution of the Riemann
problem (1.12)–(1.13) and give a partition of R2 characterizing the type of entropy solution. In
Section 3, we present the systematic construction of the entropy solution of the Cauchy problem (1.14)–
(1.15). In Section 4, we present the entropy solution of the elementary wave interaction problem (1.1)–
(1.4). In Section 5, we prove Theorem 1.1. In Section 6, we present the applications of the result to
the flux identification problem. Finally, in Section 7, we give the conclusions and some future research
perspectives.
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2. The entropy solution of the Riemann problems (1.12)–(1.13)

We recall the results related to the entropy solution of the Riemann problem (1.12)–(1.13) and
introduce an appropriate notation which will be used below in the solution of the elementary wave
interaction problem. In a broad sense, the entropy solution of the problem (1.12)–(1.13) can be
characterized in terms of the constant states α and β and is given by two possible types of waves
called shock waves and rarefactions.

Definition 2.1. Let a, α, β ∈ R, b ∈ R+, f ∈ Uad, and

σ(α, β) =
f (β) − f (α)
β − α

, β , α, (2.1)

we define the shock and rarefaction waves as follows:

(i) A shock wave originating at (a, b) and between states α and β is denoted by S (α,β)
(a,b) and is defined

as the function of R × [b,∞) to R given by

S (α,β)
(a,b) (x, t) =

{
α, x − a ≤ σ(α, β)(t − b),
β, otherwise.

Furthermore, we will use
−→
S (α,β)

(a,b) ,
←→
S (α,β)

(a,b) , and
←−
S (α,β)

(a,b) to denote the shock waves such that the
propagation speed is positive, negative, or zero, i.e., σ > 0, σ = 0, or σ < 0, respectively.

(ii) A rarefaction wave centered at (a, b) and separating the steady states α and β is denoted by R(α,β)
(a,b)

and defined as the continuous function of R × [b,∞) to R given by

R(α,β)
(a,b) (x, t) :=


α, x − a < f ′(α)(t − b),

( f ′)−1
( x − a

t − b

)
, f ′(α)(t − b) ≤ x − a ≤ f ′(β)(t − b),

β, otherwise.

Furthermore, we use
−→
R (α,β)

(a,b) ,
←→
R (α,β)

(a,b) , and
←−
R (α,β)

(a,b) to denote the rarefactions such as 0 < f ′(α) < f ′(β),
f ′(α) ≤ 0 ≤ f ′(β), and f ′(α) < f ′(β) < 0, respectively.

Proposition 2.1. Consider the notation of Definition 2.1. Moreover, consider the sets

C = {(x, y) ∈ R2 : x = y}, S = {(x, y) ∈ R2 : x > y}, R = {(x, y) ∈ R2 : x < y}, (2.2)

defining a partition of R2. The entropy solution of (1.12)–(1.13) is defined analytically as

u(x, t) =


α, when (α, β) ∈ C, i.e., α = β,
S (α,β)

(a,b) (x, t), when (α, β) ∈ S, i.e., α > β,
R(α,β)

(a,b) (x, t), when (α, β) ∈ R, i.e., α < β,

for (x, t) ∈ R × (b,∞).
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(a) Notation p′ (b) Partition of R2

p

u

f(u)
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f(p)=f(p’)
Λ

S

R

x

y

S
0

S
-
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y = x

-
R

0
R

+

+

Figure 1. Notation p′ to characterize the orientation of a shock curve’s orientation and the
partition of R2 to characterize the entropy solution of (1.12)–(1.13) in terms of the initial
states α and β, including the orientation of shocks and rarefactions. We note that y = x′ is
reduced to y = −x when f is an even function.

We introduce a suggested notation to characterize the orientation of different waves in terms of
the states defining the initial condition. We begin by considering the partition of the plane R2 by
the sets C,S, and R as given in Proposition 2.1. We continue by introducing partitions of S and R
by considering the orientation of shocks and rarefactions. First, we consider the set S, where there
are three possible types of shock waves, depending on the sign of the shock’s velocity: sgn(σ). To
make this fact more precise, we introduce the function Λp(u) = f (u) − f (p), where p ∈ R is fixed.
It is observed that the set of roots of Λp consists of two elements, p and another one that will be
denoted by p′; that is, p′ is defined as p′ ∈ R − {p} and is such that Λp(p′) = 0. Furthermore, since
f ∈ Uad, it is noted that pp′ < 0; that is, both p and p′ have different signs. Note that in the case
where f is an even function, p′ = −p; see Figure 1(a). Then, when (α, β) ∈ S, the solution of (1.12)–
(1.13) is a shock wave with a constant positive speed when f (α) > f (β) and α > 0; equivalently
α > 0 ∧ β ∈ [min{α′, α},max{α′, α}]. Similarly, we can characterize the shock waves with a constant
negative speed, and zero velocity. More precisely, if we define the notation

S− = {(x, y) ∈ S : y < min{x′, x} < 0}, (2.3)
S+ = {(x, y) ∈ S : x > 0 ∧ y ∈ (x′, x)}, (2.4)
S0 = {(x, y) ∈ S : x > 0 ∧ y = x′}, (2.5)

we have

S (α,β)
(a,b) :=


−→
S (α,β)

(a,b) , σ(α, β) > 0 ⇔ α > 0 ∧ β ∈ (α′, α) ⇔ (α, β) ∈ S+,
←→
S (α,β)

(a,b) , σ(α, β) = 0 ⇔ α > 0 ∧ β = α′ ⇔ (α, β) ∈ S0,
←−
S (α,β)

(a,b) , σ(α, β) < 0 ⇔ β < min{α, α′} < 0 ⇔ (α, β) ∈ S−,

(2.6)

see Figure 2(a)–(c).
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(a)
←−
S (α,β)

(a,b) (b)
←→
S (α,β)

(a,b)

bα β

u(x,t)= α

u(x,t)=
β

0

t

x
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a
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←−
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β

x
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β
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-1

α β
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α
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β
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t

x
0a
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(e)
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R (α,β)

(a,b) (f)
−→
R (α,β)

(a,b)

b
α β

u(x,t)=
β

u(x
,t)

=

u(x,t)=
α

(f’
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-1
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x,
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=

α

u(x,t)=
β

u(x
,t)

=

t

x
0a

(f’
)  

(x
-a

/t-
b)

Figure 2. Characteristics for the entropy solution of (1.12)–(1.13) including the orientation
of shocks and rarefactions in terms of the partition (2.11). (a)–(c) Shock waves when (α, β) ∈
S−, S0, and S+, respectively. (d)–(f) Rarefaction waves when (α, β) ∈ R−, R0, and R+,
respectively.

Second, we consider the set R and we note that when (α, β) ∈ R, the solution of (1.12)–(1.13) is
a rarefaction wave with three possible types of behavior, depending on the sign of the characteristic
velocity of the edge of the fans, i.e., sgn( f ′(α)) and sgn( f ′(β)). More precisely, if we introduce the
following sets:

R+ = {(x, y) ∈ R : y > x > 0}, (2.7)
R0 = {(x, y) ∈ R : y ≥ 0 ≥ x, x , y}, (2.8)
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R− = {(x, y) ∈ R : 0 > y > x}, (2.9)

we obtain the following characterization:

R(α,β)
(a,b) :=


−→
R (α,β)

(a,b) , f ′(β) > f ′(α) > 0 ⇔ β > α > 0⇔ (α, β) ∈ R+,
←→
R (α,β)

(a,b) , f ′(β) ≥ 0 ≥ f ′(α) ⇔ β ≥ 0 ≥ α⇔ (α, β) ∈ R0,
←−
R (α,β)

(a,b) , 0 > f ′(β) > f ′(α) ⇔ 0 > β > α⇔ (α, β) ∈ R−;

(2.10)

see Figure 2(d)–(f). Hence, using the sets defined in (2.4)–(2.3) and (2.7)–(2.9), we have{
C,S−,S0,S+,R−,R0,R+

}
is a partition of R2, (2.11)

which characterizes the solution of the Riemann problem (1.12)–(1.13).

3. Entropy solution of (1.14)–(1.15)

To construct the entropy solution w of (1.14)–(1.15) for t > b, we require the solution of two
Riemann problems: one centered at (a, b) separating the states (α, β) (see (1.12)–(1.13)) and another at
(c, b) separating the states (β, γ) of the form

ut + f (u)x = 0, (x, t) ∈ R × (b,∞) (3.1)

u(x, b) =
{
β, x ≤ c,
γ, x > c,

x ∈ R. (3.2)

From Proposition 2.1, the solution of (1.12)–(1.13) can be a constant function, a shock S (α,β)
(a,b) , or

a rarefaction R(α,β)
(a,b) , depending on the states (α, β). Similarly, the solution of (3.1) and (3.2) can be

a constant function when (β, γ) ∈ C, a shock S (β,γ)
(c,b) when (β, γ) ∈ S, or a rarefaction R(β,γ)

(c,b) when
(β, γ) ∈ R. We then have nine possible combinations of the sets containing the states (α, β) and (β, γ)
as summarized in Table 1, where we use the set notation

Ecc = {(x, y, z) ∈ R3 : x = y = z}, Ecs = {(x, y, z) ∈ R3 : x = y > z}, (3.3)
Ecr = {(x, y, z) ∈ R3 : x = y < z}, Esc = {(x, y, z) ∈ R3 : x > y = z}, (3.4)
Erc = {(x, y, z) ∈ R3 : x < y = z}, Ess = {(x, y, z) ∈ R3 : x > y > z}, (3.5)
Esr = {(x, y, z) ∈ R3 : x = y = z}, Ers = {(x, y, z) ∈ R3 : x = y = z}, (3.6)
Ess = {(x, y, z) ∈ R3 : x < y < z}. (3.7)

Table 1. Possible interactions of solutions for (1.12)–(1.13) and (3.1)–(3.2).

(β, γ) ∈ C (β, γ) ∈ S (β, γ) ∈ R
(α, β) ∈ C (α, β, γ) ∈ Ecs (α, β, γ) ∈ Ecs (α, β, γ) ∈ Ecr

(α, β) ∈ S (α, β, γ) ∈ Esc (α, β, γ) ∈ Ess (α, β, γ) ∈ Esr

α, β) ∈ R (α, β, γ) ∈ Erc (α, β, γ) ∈ Ers (α, β, γ) ∈ Ess

AIMS Mathematics Volume 10, Issue 2, 3124–3159.
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We notice that {
Ecc,Ecs,Ecr,Esc,Erc,Ess,Esr,Ers,Err

}
is a partition of R3. (3.8)

Hence, the analysis of all possible wave interactions is equivalent to constructing the solution for the
sets of the partition of R3 given in (3.8). To be more precise, we consider five cases:

Case (i): (α, β, γ) ∈ Ecc ∪ Ecs ∪ Ecr ∪ Esc ∪ Erc,
Case (ii): (α, β, γ) ∈ Ess,
Case (iii): (α, β, γ) ∈ Esr,
Case (iv): (α, β, γ) ∈ Ers,
Case (v): (α, β, γ) ∈ Err.

It is clear that we cover all possible interactions by analyzing all five cases.
Case (i). Let (α, β, γ) ∈ Ecc ∪ Ecs ∪ Ecr ∪ Esc ∪ Erc. We observe that (α, β, γ) ∈ Ecc is equivalent
to α = β = γ, w is the constant function, (α, β, γ) ∈ Ecs ∪ Ecr is reduced to requiring the algebraic
restriction of the states α = β and β , γ, and w is the solution of the Riemann problem (3.1)–(3.2). For
(α, β, γ) ∈ Esc∪Erc, we find that α , β and β = γ, and w is the solution of the Riemann problem (1.12)–
(1.13). Thus, we deduce that the entropy solution of the Cauchy problem (1.14)-(1.15) is given by

w(x, t) =



α, (α, β, γ) ∈ Ecc,

S (β,γ)
(c,b) (x, t), (α, β, γ) ∈ Ecs,

R(β,γ)
(c,b) (x, t), (α, β, γ) ∈ Ecr,

S (α,β)
(a,b) (x, t), (α, β, γ) ∈ Esc,

R(α,β)
(a,b) (x, t), (α, β, γ) ∈ Erc,

(3.9)

for (x, t) ∈ R × [b,∞). We observe that if we consider the orientation of the characteristics in the case
of (α, β, γ) ∈ Ecc, we have three cases: α > 0, α = 0, and α < 0. Similarly, from (2.6) and (2.10),
we have three subclasses in each set: Ecs, Ecr, Esc, Erc, depending on the orientation of the shocks and
rarefactions. For instance, in the case of Ecs, we can distinguish the cases

−→
S (β,γ)

(c,b) when (β, γ) ∈ S−,
←→
S (β,γ)

(c,b) when (β, γ) ∈ S0, and
←−
S (β,γ)

(c,b) when (β, γ) ∈ S+. Moreover, for notational convenience, we define
the set A i B as follows:

A i B =
{
(x, y, z) ∈ R3 : (x, y) ∈ A ⊂ R2 and (y, z) ∈ B ⊂ R2

}
. (3.10)

Then, using the partition (2.11), we have

Ecc = C i C, Ecs = (C i S−) ∪ (C i S0) ∪ (C i S+),
Ecr = (C i S−) ∪ (C i S0) ∪ (C i S+), Esc = (S− i C) ∪ (S0 i C) ∪ (S+ i C),
Erc = (R− i C) ∪ (R0 i C) ∪ (R+ i C);

and we can rewrite the function in (3.9) as follows:

w =



α, (α, β, γ) ∈ C i C;
←−
S (β,γ)

(c,b) , (α, β, γ) ∈ (C i S−);
←→
S (β,γ)

(c,b) , (α, β, γ) ∈ (C i S0);
−→
S (β,γ)

(c,b) , (α, β, γ) ∈ (C i S+);
←−
R (β,γ)

(c,b) , (α, β, γ) ∈ (C i S−);
←→
R (β,γ)

(c,b) , (α, β, γ) ∈ (C i S0);
−→
R (β,γ)

(c,b) , (α, β, γ) ∈ (C i S+);
←−
S (α,β)

(a,b) , (α, β, γ) ∈ (S− i C);
←→
S (α,β)

(a,b) , (α, β, γ) ∈ (S0 i C);
−→
S (α,β)

(a,b) , (α, β, γ) ∈ (S+ i C);
←−
R (α,β)

(a,b) , (α, β, γ) ∈ (R− i C);
←→
R (α,β)

(a,b) , (α, β, γ) ∈ (R0 i C);
−→
R (α,β)

(a,b) , (α, β, γ) ∈ (R+ i C).

(3.11)
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Case (ii). Let (α, β, γ) ∈ Ess. In this case, we have the interaction of two shock waves, one originating
at (a, b), given by x = a+σ(α, β)(t−b), and another originating at (c, b), given by x = c+σ(β, γ)(t−b).
The intersection of the shock curves is defined by

xss = a +
σ(α, β)(c − a)
σ(α, β) − σ(β, γ)

= c +
σ(α, β)(c − a)
σ(α, β) − σ(β, γ)

, tss = b +
c − a

σ(α, β) − σ(β, γ)
· (3.12)

We notice that for t > tss, w is defined by the shock wave S (α,γ)
(xss,tss)

. In this case, the entropy solution
of the Cauchy problem (1.14)–(1.15) is given by

w(x, t) =


α, x ≤ a + σ(α, β)(t − b), t ≤ tss,

β, a + σ(α, β)(t − b) < x ≤ c + σ((β, γ)(t − b), t ≤ tss,

γ, x > c + σ((β, γ)(t − b), t ≤ tss,

S (α,γ)
(xss,tss)

(x, t), t ≥ tss,

(3.13)

for (x, t) ∈ R×[b,∞).We notice that when (α, β) ∈ S− and (β, γ) ∈ S−, we have γ < β < min{α′, α} < 0,
which implies that xss < a, and tss > b, since σ(α, β) < 0 and σ(β, γ) < σ(α, β), and also implies
σ(α, γ) < 0. We can develop a similar analysis for the other cases, getting the results given in Table 2.

Table 2. Possible solutions for (α, β, γ) ∈ Ess with the algebraic relations for the states
(α, β, γ), the intersection of the shocks (xsstss) defined in (3.12), and the characterization of
σ(α, γ).

(β, γ) ∈ S− (β, γ) ∈ S0 (β, γ) ∈ S+

(α, β) ∈ S− γ < β < min{α′, α} < 0
xss < a, tss > b
σ(α, γ) < 0
⇕

(α, β, γ) ∈ S− i S−

(α, β) ∈ S0 γ < β = α′ < 0 < α
xss = a, tss > b
σ(α, γ) < 0
⇕

(α, β, γ) ∈ S0 i S−

(α, β) ∈ S+ α > 0, β ∈ (α′, α), γ ∈ (β′, β) α > 0, α > β > α′, γ = β′ β′ < γ < 0 < β < α
a < xss < b, tss > b xss = c, tss > b xss > c, tss > b
σ(α, γ) ∈ R σ(α, γ) > 0 σ(α, γ) > 0
⇕ ⇕ ⇕

(α, β, γ) ∈ S+ i S− (α, β, γ) ∈ S+ i S0 (α, β, γ) ∈ S+ i S+

Case (iii). Let (α, β, γ) ∈ Esr. In this case, the shock curve originating in (a, b), given by x = a +
σ(α, β)(t − b), intersects the left hand of the rarefaction centered in (c, b) with the equation x = c +
f ′(β)(t − b), which is given by

xsr = a +
σ(α, β)(c − a)
σ(α, β) − f ′(β)

= c +
f ′(β)(c − a)

σ(α, β) − f ′(β)
, tsr = b +

c − a
σ(α, β) − f ′(β)

· (3.14)
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At (xsr, tsr) emanates a shock with a curve (X+(t), t) that satisfies the following ordinary differential
equation:

dX+

dt
= σ

(
u(X+(t), t), α

)
, f ′(u) =

X+ − c
t − b

, f ′(β) ≤
X+ − c
t − b

≤ f ′(γ), (3.15)

X+(tsr) = xsr. (3.16)

We observe that X+ = c + f ′(u)(t − b) implies that dX+/dt = f ′′(u)(t − b)du/dt + f ′(u), and∫ u

β

f ′′(u)
σ(u, α) − f ′(u)

du = ln
(

t
tsr

)
, β ≤ u ≤ γ.

We distinguish three cases: (a) if γ = α, the shock curve (X+(t), t) is able to cross the whole
rarefaction completely only when t → ∞; (b) if γ < α, the shock curve (X+(t), t) is able to cross the
whole rarefaction completely at

ˆ̂tsr = tsr

∫ u

β

f ′′(u)
σ(u, α) − f ′(u)

du; β ≤ u ≤ γ;

and (c) if γ > α, it is impossible for the shock curve (X+(t), t) to cross the whole rarefaction completely.
Then the entropy solution of the Cauchy problem (1.14)–(1.15) has two forms: when (X+(t), t) is able
to cross the whole rarefaction completely

w(x, t) =



α,
(
x ≤ a + σ(α, β)(t − b) and t ≤ tsr

)
or

(
x ≤ X+(t) and tsr ≤ t ≤ ˆ̂t

)
β, a + σ(α, β)(t − b) < x ≤ c + f ′(β)(t − b) and t ≤ tsr,

( f ′)−1
( x − c

t − b

)
,

(
c + f ′(β)(t − b) ≤ x ≤ c + f ′(γ)(t − b) and t ≤ tsr

)
or

(
x ≤ X+(t) ≤ x ≤ c + f ′(γ)(t − b) and tsr ≤ t ≤ ˆ̂tsr

)
,

γ, x > c + σ(β, γ)(t − b) and t ≤ ˆ̂tsr,

S (α,γ)

( ˆ̂xsr , ˆ̂tsr)
(x, t), t ≥ ˆ̂tsr,

(3.17)

when γ < α, or

w(x, t) =


α,

(
x ≤ a + σ(α, β)(t − b) and t ≤ tsr

)
or

(
x ≤ X+(t) and t ≥ tsr

)
β, a + σ(α, β)(t − b) < x ≤ c + f ′(β)(t − b) and t ≤ tsr,

( f ′)−1
( x − c

t − b

)
,

(
c + f ′(β)(t − b) ≤ x ≤ c + f ′(γ)(t − b) and t ≤ tsr

)
or

(
x ≤ X+(t) ≤ x ≤ c + f ′(γ)(t − b),

(3.18)

when γ ≥ α, for (x, t) ∈ R × [b,∞). In Table 3, a classification of several possible cases is presented.
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Table 3. Possible solutions for (α, β, γ) ∈ Esr with the algebraic relations for the states
(α, β, γ), the intersection of shocks (xsrtsr) defined in (3.14), and the characterization
of σ(α, γ).

(β, γ) ∈ R− (β, γ) ∈ R0 (β, γ) ∈ R+

(α, β) ∈ S− β <min{α′,α} <0, β < γ< 0 β < min{α′, α} < 0 ≤ γ
⇕ ⇕

(α, β, γ) ∈ S− i R−; (α, β, γ) ∈ S− i R0;
xsr < a, tsr > b xsr < a, tsr > b

(α, β) ∈ S0 β = α′ < γ < 0 < α β = α′ < 0 < α, γ ≥ 0
⇕ ⇕

(α, β, γ) ∈ S0 i R−; (α, β, γ) ∈ S0 i R0;
xsr = a, tsr > b xsr = a, tsr > b

(α, β) ∈ S+ α′ < β < γ < 0 < α α′ < β ≤ 0 < α, γ ≥ 0 0 < β < α, β < γ
⇕ ⇕ ⇕

(α, β, γ) ∈ S+ i R−; (α, β, γ) ∈ S+ i R0; (α, β, γ) ∈ S+ i R+;
a < xsr < b, tsr > b xsr = c, tsr > b xsr > c, tsr > b

Case (iv). Let (α, β, γ) ∈ Ers. This case is similar to Case (iii). The shock curve originating in (c, b),
given by x = c + σ(β, γ)(t − b), intersecting the right-hand of the rarefaction centered in (a, b) with
equation x = a + f ′(β)(t − b), at (xrs, xrs), defined by

xrs = a +
f ′(β)(c − a)

f ′(β) − σ(β, γ)
= c +

σ(β, γ)(c − a)
f ′(β) − σ(β, γ)

, trs = b +
c − a

f ′(β) − σ(β, γ)
· (3.19)

At (xrs, trs), a shock emanates with the curve (X−(t), t), which is defined by the solution of

dX−

dt
= σ

(
u(X−(t), t), γ

)
, f ′(u) =

X− − a
t − b

, f ′(α) ≤
X− − a
t − b

≤ f ′(β), (3.20)

X−(trs) = xrs. (3.21)

From X− = a + f ′(u)(t − b), we get dX−/dt = f ′′(u)(t − b)du/dt + f ′(u); consequently∫ u

α

f ′′(u)
σ(u, γ) − f ′(u)

du = ln
(

t
trs

)
, α ≤ u ≤ β.

Moreover, we find that (X−(t), t) is able to cross the whole rarefaction completely only when t → ∞
and γ = α, and it can cross the whole rarefaction completely at a finite time

ˆ̂trs = trs

∫ u

α

f ′′(u)
σ(u, γ) − f ′(u)

du, α ≤ u ≤ β;

when γ < α; it is impossible to cross the whole rarefaction when γ > α. Therefore, the entropy
solution of the Cauchy problem (1.14)–(1.15) has two forms: when (X−(t), t) is able to cross the whole
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rarefaction completely

w(x, t) =



α, x ≤ a + f ′(α)(t − b) and t ≤ ˆ̂trs,

( f ′)−1
( x − c

t − b

)
,

(
c + f ′(β)(t − b) ≤ x ≤ c + f ′(γ)(t − b) and t ≤ tsr

)
or

(
a + f ′(α)(t − b) ≤ x ≤ X−(t) and trs ≤ t ≤ ˆ̂trs

)
,

β, a + f ′(β)(t − b) < x ≤ c + σ(β, γ)(t − b) and t ≤ trs,

γ,
(
x > c + σ(β, γ)(t − b) and t ≤ trs

)
or

(
x > X−(t) and trs ≤ t ≤ ˆ̂trs

)
,

S (α,γ)

( ˆ̂xrs, ˆ̂trs)
(x, t), t ≥ ˆ̂trs,

(3.22)

when γ < α, or

w(x, t) =



α, x ≤ a + f ′(α)(t − b),

( f ′)−1
( x − c

t − b

)
,

(
c + f ′(β)(t − b) ≤ x ≤ c + f ′(γ)(t − b) and t ≤ tsr

)
or

(
a + f ′(α)(t − b) ≤ x ≤ X−(t) and t ≥ trs

)
,

β, a + f ′(β)(t − b) < x ≤ c + σ(β, γ)(t − b) and t ≤ trs,

γ,
(
x > c + σ(β, γ)(t − b) and t ≤ trs

)
or

(
x > X−(t) and t ≥ trs

)
,

(3.23)

when γ ≥ α, for (x, t) ∈ R × [b,∞). A specific notation and details of all possible cases are presented
in Table 4.

Table 4. Possible solutions for (α, β, γ) ∈ Ers with the algebraic relations for the states
(α, β, γ), the intersection of shocks (xsrtsr) defined in (3.19), and the characterization of
σ(α, γ).

(β, γ) ∈ S− (β, γ) ∈ S0 (β, γ) ∈ S+

(α, β) ∈ R− β <min{α′,α} <0, β < γ< 0 β < min{α′, α} < 0 ≤ γ
xsr < a, tsr > b xsr < a, tsr > b
⇕ ⇕

(α, β, γ) ∈ R− i S−; (α, β, γ) ∈ R− i S0;
(α, β) ∈ R0 β = α′ < γ < 0 < α β = α′ < 0 < α, γ ≥ 0

⇕ ⇕

(α, β, γ) ∈ R0 i S−; (α, β, γ) ∈ R0 i S0;
xsr = a, tsr > b xsr = a, tsr > b

(α, β) ∈ R+ α′ < β < γ < 0 < α α′ < β ≤ 0 < α, γ ≥ 0 0 < β < α, β < γ
⇕ ⇕ ⇕

(α, β, γ) ∈ R+ i S−; (α, β, γ) ∈ R+ i S0; (α, β, γ) ∈ R+ i S+;
a < xsr < b, tsr > b xsr = c, tsr > b xsr > c, tsr > b

Case (v). Let (α, β, γ) ∈ Err. In this case, we have the interaction of two rarefaction waves, one
originating at (a, b) and separating the states (α, β), and another originating at (c, b) and separating the
states (β, γ). We observe that x = a + f ′(β)(t − b) and x = c + f ′(β)(t − b) are parallel. In this case, w
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is defined as follows:

w(x, t) =



α, x < a + f ′(α)(t − b),

( f ′)−1
( x − a

t − b

)
, a + f ′(α)(t − b) ≤ x ≤ a + f ′(β)(t − b),

β, a + f ′(β)(t − b) < x < c + f ′(β)(t − b),

( f ′)−1
( x − c

t − b

)
, c + f ′(β)(t − b) ≤ x ≤ c + f ′(γ)(t − b),

γ, t > c + f ′(γ)(t − b),

(3.24)

for (x, t) ∈ R × [b,∞). We notice that when (α, β) ∈ R− and (β, γ) ∈ R−, we have α < β < γ < 0. We
can develop a similar analysis for the other cases, obtaining the results in Table 5.

Table 5. Summary of possible solutions for (α, β, γ) ∈ Err in terms of α, β, and γ.

(β, γ) ∈ R− (β, γ) ∈ R0 (β, γ) ∈ R+

(α, β) ∈ R− α < β < γ < 0 α < β < 0 ≤ γ
⇕ ⇕

(α, β, γ) ∈ R− i R− (α, β, γ) ∈ R− i R0

(α, β) ∈ R0 α < β = 0 < γ α ≤ 0 ≤ β < γ, α , β
⇕ ⇕

(α, β, γ) ∈ R0 i R0 (α, β, γ) ∈ R0 i R+

(α, β) ∈ R+ 0 < α < β < γ
⇕

(α, β, γ) ∈ R+ i R+

Summarizing, in Cases (i)–(v), we have proved the following theorem.

Theorem 3.1. Consider the partition of R3 given in (3.8). In this case,

w : R × [b,∞)→ R given by



(3.9), for (α, β, γ) ∈ Ecc ∪ Ecs ∪ Ecr ∪ Esc ∪ Erc,
(3.13), for (α, β, γ) ∈ Ess,
(3.17) when γ < α or (3.18) when γ ≥ α, for (α, β, γ) ∈ Esr,
(3.22) when γ < α or (3.23) when γ ≥ α, for (α, β, γ) ∈ Ers,
(3.24), for (α, β, γ) ∈ Err,

(3.25)

defines the entropy solution of the Cauchy problem (1.14)–(1.15).

4. Entropy solution of the initial value problem (1.1)–(1.4)

We note that the initial value problem (1.1)–(1.4) is well-posed in the sense of the entropy solutions
(see [25]). The inequality (1.10) provides the natural condition, which implies uniqueness. As
pointed out in [25], we note that the boundary condition (1.9) may not be satisfied in an almost
everywhere* pointwise sense and becomes a boundary inequality. In general, the definition of this weak

*Let (X,Σ, µ) a measure space, a property P is said to hold almost everywhere in X, if there exists a measurable set N ∈ Σ with
µ(N) = 0 and all x ∈ N − X have the property P.
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boundary sense requires additional assumptions on the coefficients, initial, and boundary conditions.
However, the simplification introduced by the hypothesis (1.5) and the constant values of the initial and
boundary value functions (see (1.2)–(1.4)) allows a simpler characterization of the entropy solution.
For the completeness of this presentation, we write a result presented by Liu and Pan in the following
proposition; see [24] for details.

Proposition 4.1. Let u(x, t) be a piecewise C1(QT ) function. Then, under the assumption (1.5), u(x, t)
is an entropy solution of (1.1)–(1.4) if and only if the following four conditions are satisfied:

1) u(x, t) is a classical solution of (1.6) in the domains where it is C1.

2) If x = X(t) is a discontinuity curve of u, then the Rankine–Hugoniot

dX(t)
dt
= σ

(
u(X(t) − 0, t), u(X(t) + 0, t)

)
,

and the Lax shock condition u(X(t) − 0, t) > u(X(t) + 0, t), are satisfied.
3) The entropy boundary inequalities

u(0, t) = uL or σ
(
u(0, t), k

)
≤ 0, k ∈ I(u(0, t), uL), k , u(0, t),

u(1, t) = uR or σ
(
u(1, t), k

)
≥ 0, k ∈ I(u(1, t), uR), k , u(1, t),

holds, for almost every t ≥ 0. Here, I(a, b) := [min{a, b},max{a, b}].
4) u(x, 0) = u0 for almost every x ∈ (0, 1).

We obtain the entropy solution of the initial-boundary value problem (1.1)–(1.4) in two steps. First,
we construct the entropy solution of the Cauchy problem

vt + f (v)x = 0, v(x, 0) =


uL, x ≤ 0,
u0, 0 < x < 1,
uR, x ≥ 1.

(4.1)

Then we apply Proposition 4.1 to restrict the solution to x ∈ [0, 1]×R. We find that the entropy solution
of (4.1) can be obtained by applying the previous analysis of the Cauchy problem (1.14)–(1.15) with
a = 0, b = 0, c = 1, α = uL, β = u0, and γ = uR. More precisely, by application of Theorem 3.1, we find
that the entropy solution of the problem (4.1) is given by (3.25) or, more precisely

v(x, t) = w(x, t), given by (3.25) with (a, b, c) = (0, 0, 1) and (α, β, γ) = (uL, u0, uR)
= w(x, t), given by

(3.9) with (a, b, c) = (0, 0, 1) and (α, β, γ) = (uL, u0, uR) ∈ Ecc ∪ Ecs ∪ Ecr ∪ Esc ∪ Erc,
(3.13) with (a, b, c) = (0, 0, 1) and (α, β, γ) = (uL, u0, uR) ∈ Ess,
(3.17) with (a, b, c) = (0, 0, 1), (α, β, γ) = (uL, u0, uR) ∈ Esr and uL < uR,

or (3.18) with (a, b, c) = (0, 0, 1), (α, β, γ) = (uL, u0, uR) ∈ Esr and uL ≥ uR,
(3.22) with (a, b, c) = (0, 0, 1), (α, β, γ) = (uL, u0, uR) ∈ Ers and uL < uR,

or (3.23) with (a, b, c) = (0, 0, 1), (α, β, γ) = (uL, u0, uR) ∈ Ers and uL ≥ uR,
(3.24) with (a, b, c) = (0, 0, 1) and (α, β, γ) = (uL, u0, uR) ∈ Err.

(4.2)
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Then we apply Proposition 4.1 to analyze the restriction of (4.2) to (x, t) ∈ [0, 1] × R by separating the
five cases used in the analysis given in Section 3 to construct w.
Case (i). Let (uL, u0, uR) ∈ Ecc ∪ Ecs ∪ Ecr ∪ Esc ∪ Erc. From (4.2), we observe that v is defined
by (3.9). However, to distinguish the different cases, we consider (3.11) instead of (4.2). Let us
consider (uL, u0, uR) ∈ C i C; when we restrict v to x ∈ [0, 1], we obtain

u1(x, t) = u0, (x, t) ∈ [0, 1] × R. (4.3)

If (uL, u0, uR) ∈ Ecs, we observe that the restriction of
←−
S (u0,uR)

(1,0) to x ∈ [0, 1] is given by

u2(x, t) =
{

u0, 0 ≤ x ≤ σ(u0, uR)t + 1,
uR, otherwise,

(4.4)

and the restriction of
←→
S (u0,uR)

(1,0) and
−→
S (u0,uR)

(1,0) is given by (4.3). Then, for (uL, u0, uR) ∈ Ecs, the entropy
solution of the problem (1.1)–(1.4) is defined by (4.3) when (uL, u0, uR) ∈ (C i S0) ∪ (C i S+) and by
(4.4) when (uL, u0, uR) ∈ C i S−. Let us remember that for (uL, u0, uR) ∈ Ecr, we see that

←−
R (u0,uR)

(1,0) and
←→
R (u0,uR)

(1,0) restricted to x ∈ [0, 1] defines the functions

u3(x, t) =


u0, 0 ≤ x ≤ f ′(u0)t + 1,

( f ′)−1
(

x − 1
t

)
, f ′(u0)t + 1 ≤ x ≤ f ′(uR)t + 1,

uR, otherwise,

(4.5)

u4(x, t) =


u0, 0 ≤ x ≤ f ′(u0)t + 1,

( f ′)−1
(

x − 1
t

)
, otherwise,

(4.6)

respectively; and
−→
R (u0,uR)

(1,0) restricted to x ∈ [0, 1] is given by (4.3). Then, if (uL, u0, uR) ∈ Ecs, we find
that u is defined by (4.5) when (uL, u0, uR) ∈ C i R−, by (4.6) when (uL, u0, uR) ∈ C i R0, and by (4.3)
when (uL, u0, uR) ∈ C i R+. Similarly, analyzing the restriction of S (uL,u0)

(0,0) and R(uL,u0)
(0,0) to x ∈ [0, 1], we

get the following three types of entropy solutions:

u5(x, t) =
{

uL, 0 ≤ x ≤ σ(uL, u0)t
u0, otherwise,

(4.7)

u6(x, t) =

 ( f ′)−1
( x

t

)
, 0 ≤ x ≤ f ′(u0)t,

u0, otherwise,
(4.8)

u7(x, t) =


uL, 0 ≤ x ≤ f ′(uL)t,

( f ′)−1
( x

t

)
, f ′(uL)t ≤ x ≤ f ′(uR)t,

u0, otherwise;

(4.9)

deducing that u is defined by u5, u6, u7, and u1 when (uL, u0, uR) belongs to S+ iC, R0 iC, R+ iC, and

AIMS Mathematics Volume 10, Issue 2, 3124–3159.



3140

(S− i C) ∪ (S0 i C) ∪ (R− i C), respectively. In this case,

u(x, t) =



u1(x, t), (uL, u0, uR) ∈ (C i C) ∪ (C i S0) ∪ (C i S+) ∪ (C i R+)
∪(S0 i C) ∪ (S− i C) ∪ (R− i C),

u2(x, t), (uL, u0, uR) ∈ C i S−,
u3(x, t), (uL, u0, uR) ∈ C i R−,
u4(x, t), (uL, u0, uR) ∈ C i R0,

u5(x, t), (uL, u0, uR) ∈ S+ i C,
u6(x, t), (uL, u0, uR) ∈ R0 i C,

u7(x, t), (uL, u0, uR) ∈ R+ i C,

(4.10)

defines the entropy solution of the initial-boundary value problem (1.1)–(1.4) in Case (i).
Case (ii). Let (uL, u0, uR) ∈ Ess. From (4.2), (3.13), and the summary of all possible cases given in
Table 2, we study three cases separately. First, we consider (uL, u0, uR) ∈ (S− i S−) ∪ (S0 i S−) and
observe that u is defined by u2, as given in (4.4). Second, if (uL, u0, uR) ∈ (S+ i S0) ∪ (S+ i S+), we
find that u is given by u5, as defined in (4.7). Third, for (uL, u0, uR) ∈ (S+ iS−), we have the following
type of solutions

u8(x, t) =


uL, 0 ≤ x ≤ σ(uL, u0)t for t ≤ tss or 0 ≤ x ≤ σ(uL, uR)(t − tss) + xss for t > tss,

u0, σ(uL, u0)t ≤ x ≤ σ(u0, uR)t + 1 and t ≤ tss,

uR, otherwise,
(4.11)

u9(x, t) =


uL, 0 ≤ x ≤ σ(uL, u0)t for t ≤ tss or 0 ≤ x ≤ xss for t > tss,

u0, σ(uL, u0)t ≤ x ≤ σ(u0, uR)t + 1 for t ≤ tss,

uR, otherwise,
(4.12)

u10(x, t) =


uL, 0 ≤ x ≤ σ(uL, u0)t for t ≤ tss

or 0 ≤ x ≤ σ(uL, uR)(t − tss) + xss ≤ 1 for tss ≥ tss,

u0, σ(uL, u0)t ≤ x ≤ σ(u0, uR)t + 1 for t ≤ tss,

uR, otherwise,

(4.13)

when σ(uL, uR) < 0, σ(uL, uR) = 0, and σ(uL, uR) > 0, respectively. Consequently, we find that

u(x, t) =



u2(x, t), (uL, u0, uR) ∈ (S− i S0) ∪ (S0 i S−),
u5(x, t), (uL, u0, uR) ∈ (S+ i S0) ∪ (S+ i S+),
u8(x, t), (uL, u0, uR) ∈ (S+ i S−) ∩

{
(α, β, γ) ∈ R3 : σ(α, γ) < 0

}
,

u9(x, t), (uL, u0, uR) ∈ (S+ i S−) ∩
{
(α, β, γ) ∈ R3 : σ(α, γ) = 0

}
,

u10(x, t), (uL, u0, uR) ∈ (S+ i S−) ∩
{
(α, β, γ) ∈ R3 : σ(α, γ) > 0

}
,

(4.14)

is the entropy solution of the problem (1.1)–(1.4) when (uL, u0, uR) ∈ Ess.
Case (iii). Let (uL, u0, uR) ∈ Esr. From (4.2), (3.17), or (3.18) and Table 3, we distinguish seven
cases and four new functions labeled as u11, u12, u13, and u14, which are defined by the following
correspondence rules:

u11(x, t) =


u0 0 ≤ x ≤ f ′(u0)t + 1

( f ′)−1
(

x − 1
t

)
, f ′(u0)t ≤ x ≤ 1 for X+(t) ≤ t,

uL, otherwise,

when uL ≤ 0, (4.15)
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u12(x, t) =


u0 0 ≤ x ≤ f ′(u0)t + 1

( f ′)−1
(

x − 1
t

)
, f ′(u0)t ≤ x ≤ 1 for X++(t) ≤ t,

uL, otherwise,

when uL > 0, (4.16)

u13(x, t) =



u0 σ(uL, u0)t ≤ x ≤ f ′(u0)t + 1,

( f ′)−1
(

x − 1
t

)
, f ′(u0)t ≤ x ≤ f ′(uR)t + 1 for X+(t) ≤ t,

uR f ′(uR)t + 1 ≤ x ≤ 1 for t ≤ ˆ̂tsr

or σ(uL, uR)t + 1 ≤ x ≤ 1 for t > ˆ̂tsr,

uL, otherwise,

(4.17)

u14(x, t) =


u0 σ(uL, u0)t ≤ x ≤ f ′(u0)t + 1,

( f ′)−1
(

x − 1
t

)
, f ′(u0)t ≤ x ≤ 1 for X+(t) ≤ t,

uL, otherwise,

(4.18)

where (X++(t), t) is the shock curve defined as the solution of
dX++

dt
= σ

(
u(X++(t), t), uL

)
, f ′(u) =

X++ − 1
t

, f ′(u′L) ≤
X++ − 1

t
≤ f ′(uL),

X++(−1/ f ′(u′L)) = 0.

The seven cases are detailed as follows: In the first case, we consider (uL, u0, uR) ∈ S− i R− and
observe that u is defined by u3, given in (4.5). In the second case, we consider (uL, u0, uR) ∈ S− i R0

and note that u is given by u11 or u12, defined in (4.15) and (4.16). Similarly, we can deduce the other
five cases. If we select (uL, u0, uR) ∈ S0iR−, (S0iR0), S+iR−, S+iR0, and S+iR+, we see that u is
given by u13 with σ(uL, u0) = 0, u14 with σ(uL, u0) = 0, u13 with σ(uL, u0) > 0, u14 with σ(uL, u0) > 0,
and u5. We then deduce that

u(x, t) =



u3(x, t), (uL, u0, uR) ∈ S− i R−,
u5(x, t), (uL, u0, uR) ∈ S+ i R+,
u11(x, t), (uL, u0, uR) ∈ (S− i R0) ∩

{
(α, β, γ) ∈ R3 : α ≤ 0

}
,

u12(x, t), (uL, u0, uR) ∈ (S− i R0) ∩
{
(α, β, γ) ∈ R3 : α > 0

}
,

u13(x, t), (uL, u0, uR) ∈
[
(S0 i R0) ∪ (S+ i R0)

]
∩

{
(α, β, γ) ∈ R3 : σ(α, γ) ≥ 0

}
,

u14(x, t), (uL, u0, uR) ∈
[
(S0 i R0) ∪ (S+ i R0)

]
∩

{
(α, β, γ) ∈ R3 : σ(α, γ) > 0

}
,

(4.19)

is the entropy solution of the initial-boundary value problem (1.1)–(1.4) when (uL, u0, uR) ∈ Esr.
Case (iv). Let (uL, u0, uR) ∈ Ers. From (4.2), (3.22), or (3.23) and Table 4, similarly to Case (iii), we
have seven cases and the four functions u15, u16, u17, and u18, defined by

u15(x, t) =


( f ′)−1

( x
t

)
, 0 ≤ x ≤ f ′(u0)t for X−(t) ≤ t,

u0 f ′(u0)t ≤ x ≤ σ(u0, uR)t + 1,
uR, otherwise,

(4.20)

u16(x, t) =


( f ′)−1

( x
t

)
, 0 ≤ x ≤ f ′(u0)t for X−(t) ≤ t,

u0, f ′(u0)t ≤ x ≤ 1,
uR, otherwise,

when uR ≤ 0, (4.21)
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u17(x, t) =


( f ′)−1

( x
t

)
, 0 ≤ x ≤ f ′(u0)t for X−−(t) ≤ t,

u0, f ′(u0)t ≤ x ≤ 1,
uR, otherwise,

when uR > 0, (4.22)

u18(x, t) =


uL 0 ≤ x ≤ f ′(uL)t for t ≤ ˆ̂trs or 0 ≤ x ≤ σ(uL, uR)t for t > ˆ̂trs,

( f ′)−1
( x

t

)
, f ′(uL)t ≤ x ≤ f ′(u0)t for X−(t) ≤ t,

u0 f ′(u0)t ≤ x ≤ σ(uL, u0)t,
uR, otherwise,

(4.23)

where (X−−(t), t) is the shock curve defined by the solution of

dX−−

dt
= σ

(
u(X−−(t), t), uR

)
, f ′(u) =

X−−

t
, f ′(u′R) ≤

X−−

t
≤ f ′(uR),

X−−(1/ f ′(u′R)) = 0.

The restrictions in the seven cases are detailed as follows. In the first case, we see that (uL, u0, uR) ∈
R− i S− and observe that u is defined by u2, given in (4.4). Second, for (uL, u0, uR) ∈ R0 i S−, we see
that u is given by u15 with σ(u0, uR) < 0. Similarly, we can deduce the other five cases. To summarize,
we deduce that

u(x, t) =



u2(x, t), (uL, u0, uR) ∈ R− i S−,
u7(x, t), (uL, u0, uR) ∈ R+ i S+,
u15(x, t), (uL, u0, uR) ∈

[
(R0 i S−) ∪ (R0 i S0)

]
∩

{
(α, β, γ) ∈ R3 : σ(α, γ) ≥ 0

}
,

u16(x, t), (uL, u0, uR) ∈ (R0 i S+) ∩
{
(uL, u0, uR) ∈ R3 : uR ≤ 0

}
,

u17(x, t), (uL, u0, uR) ∈ (R0 i S+) ∩
{
(uL, u0, uR) ∈ R3 : uR > 0

}
,

u18(x, t), (uL, u0, uR) ∈
[
(R0 i S−) ∪ (R0 i S0)

]
∩

{
(α, β, γ) ∈ R3 : σ(α, γ) ≥ 0

}
,

(4.24)

is the entropy solution of the problem (1.1)–(1.4) when (uL, u0, uR) ∈ Ers.
Case (v). Let (uL, u0, uR) ∈ Err. From (4.2), (3.24), Table 5, and a simple restriction to x ∈ [0, 1], we
find that

u(x, t) =



u1(x, t), (uL, u0, uR) ∈ R0 i R0,

u3(x, t), (uL, u0, uR) ∈ R− i R−,
u4(x, t), (uL, u0, uR) ∈ R− i R0,

u6(x, t), (uL, u0, uR) ∈ R0 i R+,

u7(x, t), (uL, u0, uR) ∈ R+ i R+,

(4.25)

is the entropy solution of the initial-boundary value problem (1.1)–(1.4) when (uL, u0, uR) ∈ Err.
From (4.10), (4.14), (4.19), (4.24), and (4.25), we can construct Table 6 to summarize all possible

forms of the entropy solution for (1.1)–(1.4) (see also Figures 3–5). Furthermore, we observe that we
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can define the sets

T1 = (C i C) ∪ (C i S0) ∪ (C i S+) ∪ (C i R+) ∪ (S+ i C)
∪(S0 i C) ∪ (R− i C) ∪ (R0 i R0),

T2 = (C i S−) ∪ (S− i S0) ∪ (S0 i S−) ∪ (R− i S−),
T3 = (C i R−) ∪ (S− i R−) ∪ (R− i R−),
T4 = (C i R0) ∪ (R− i R0), T5 = S

+ i C ∪ (S+ i S0) ∪ (S+ i S+) ∪ (S+ i R+),
T6 = (R0 i C) ∪ (R0 i R+), T7 = (R+ i C) ∪ (R+ i S+) ∪ (R0 i R+),
T8 = (S+ i S−) ∩

{
(α, β, γ) ∈ R3 : σ(α, γ) < 0

}
,

T9 = (S+ i S−) ∩
{
(α, β, γ) ∈ R3 : σ(α, γ) = 0

}
,

T10 = (S+ i S−) ∩
{
(α, β, γ) ∈ R3 : σ(α, γ) > 0

}
,

T11 = (S− i R0) ∩
{
(α, β, γ) ∈ R3 : α ≤ 0

}
,

T12 = (S− i R0) ∩
{
(α, β, γ) ∈ R3 : α > 0

}
,

T13 =
[
(S0 i R0) ∪ (S+ i R0)

]
∩

{
(α, β, γ) ∈ R3 : σ(α, γ) ≥ 0

}
,

T14 =
[
(S0 i R0) ∪ (S+ i R0)

]
∩

{
(α, β, γ) ∈ R3 : σ(α, γ) > 0

}
,

T15 =
[
(R0 i S−) ∪ (R0 i S0)

]
∩

{
(α, β, γ) ∈ R3 : σ(α, γ) ≥ 0

}
,

T16 = (R0 i S+) ∩
{
(uL, u0, uR) ∈ R3 : uR ≤ 0

}
,

T17 = (R0 i S+) ∩
{
(uL, u0, uR) ∈ R3 : uR > 0

}
,

T18 =
[
(R0 i S−) ∪ (R0 i S0)

]
,



(4.26)

we obtain the following theorem:

Theorem 4.1. Consider the partition
{
T1, . . . ,T18

}
of R3 given in (4.26). In this case,

u(x, t) = u j(x, t), (x, t) ∈ [0, 1] × R, (uL, u0, uR) ∈ T j, j = 1, . . . , 18,

defines the entropy solution of the initial-boundary value problem (1.1)–(1.4).

Table 6. Summary of possible solutions to the initial-boundary value problem (1.1)–(1.4) in
terms of (uL, u0, uR) ∈ R3 using the partition (2.11).

(uL, u0) in

(uL, u0) in
C S− S0 S+ R− R0 R+

C u1 u2 u1 u1 u3 u4 u1

S− u1 u2 u3 u11, u12

S0 u1 u2 u13 u14

S+ u5 u8, u9, u10 u5 u5 u13 u14 u5

R− u1 u2 u3 u4

R0 u6 u15 u15 u16, u17 u1 u6

R+ u7 u18 u18 u7 u7
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Figure 3. Characteristics for u1, u2, u3, u4, u5, u6, and u7, the possible entropy solution of the
elementary wave interaction problem (1.1)–(1.4) (see Table 6).
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Figure 4. Characteristics for u7, u8, u9, u10, u11, u12, u13, and u14, the possible entropy solution
of the elementary wave interaction problem (1.1)–(1.4) (see Table 6).
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Figure 5. Characteristics for u15, u16, u17, and u18, the possible entropy solution of the
elementary wave interaction problem (1.1)–(1.4) (see Table 6).
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5. Proof of Theorem 1.1

From Theorem 4.1 (see also Table 6 and Figures 3–5), we see that the entropy solution of (1.1)–(1.4)
is given by ui for i = 1, . . . , 18. We can then construct AT by analyzing the profiles of each case. We
only consider the cases of u1, u2, and u3 in detail, since the other cases can be followed analogously.
In the case of u1, we find that for any T > 0 the profiles are given by u(x,T ) is of the form given
in (1.11) with ρ =

(
u0, u0, u0, u0

)
, x =

(
0, 0, 1, 1

)
, and ψ(x) = u0. If the entropy solution is of the form

u2, we distinguish two types of profiles, both of the form given in (1.11). First, if T > −1/σ(u0, uR),
we observe that u(x,T ) is of the form (1.11) with ρ =

(
uR, uR, uR, uR

)
, x =

(
0, 0, 1, 1

)
, and ψ(x) = uR.

Second, if T < −1/σ(u0, uR), we find that u(x,T ) is of the form given in (1.11) with ρ =
(
u0, u0, uR, uR

)
,

x =
(
0, 0, σ(u0, uR

)
T + 1, 1

)
, and ψ(x) = u0. Meanwhile, if the entropy solution of (1.1)–(1.4) is given

by u2, we see that u(x,T ) is of the form given in (1.11) with the following information

if T > −
1

f ′(uR)
, ρ =

(
u0, u0, u0, u0

)
, x =

(
0, 0, 1, 1

)
, and ψ(x) = u0;

if T ∈
[
−

1
f ′(u0)

,−
1

f ′(uR)

]
, ρ =

(
u0, u0, uR, uR

)
, x =

(
0, 0, f ′(uR)T + 1, 1

)
, and ψ(x) =

(
f ′
)−1

(
x − 1

T

)
;

if T < −
1

f ′(u0)
, ρ =

(
u0, u0, uR, uR

)
, x =

(
0, 0, f ′(uR)T + 1, 1

)
, and ψ(x) =

(
f ′
)−1

(
x − 1

T

)
.

Analogously, we deduce the profiles for the other entropy solutions.

6. Application of Theorem 1.1 to the inverse problem of flux identification

In this section, we restrict our attention to the inverse problem of flux identification. We begin by
presenting the terminology used in the context of inverse problems theory.

1) Direct problem: Given T > 0, the initial, boundary, and flux functions satisfying (1.5), find the
entropy solution u(x,T ) of (1.6)–(1.9).

2) Inverse problem: Given uobs(x) at fixed time T > 0 and the initial and boundary functions, find the
flux function that belongs to Uad (see (1.5)), such that the entropy solution u(x,T ) of (1.6)–(1.9)
is “as close as possible” to uobs(x).

If we consider that uobs ∈ AT for almost every x ∈ [0, 1] or uobs = u f (·,T ) for some f ∈ Uad, from
the application of Theorem 1.1, we distinguish the cases of ill-posedness and local uniqueness of the
flux identification problem. More precisely, we have the following result:

Theorem 6.1. Assume that (uL, u0, uR) ∈ R3 and T > 0 are given and assume that uobs is an attainable
profile of a direct problem solution at a fixed time. Then the following two assertions are satisfied:

(i) If (uobs)′(x) = 0, almost everywhere in x ∈ [0, 1], the inverse problem is ill-posed.
(ii) If (uobs)′(x) > 0, for x ∈]x2, x3[⊆ [0, 1] the inverse problem is locally well-posed, in the sense that
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the flux function is uniquely defined by

f (u) =



1
T

x2 +

∫ u

uobs(x+2 )
(uobs)−1(s)ds

 , u0 > 0,

1
T

x2 + uobs(x+2 ) − u +
∫ u

uobs(x+2 )
(uobs)−1(s)ds

 , u0 < 0,

(6.1)

for u ∈ [uobs(x+2 ), uobs(x−3 )].

Proof. The proof is constructive and based on the characterization of AT given in Theorem 1.1;
equivalently, using the fact that uobs ∈ AT , we deduce that uobs is of the form given in (1.11) with
ψ being a constant or a strictly increasing function. If ψ is constant, we have Case (i), and when ψ is
strictly increasing, we have Case (ii). Equivalently, in a more extensive way, we see that uobs is one
of the profiles of entropy solution types ui, i = 1, . . . , 18, as detailed in Theorem 4.1. Hence, for the
convenience of presentation, we restrict our attention to the assertions in (i) and (ii).

Proof of (i). The assumption that (uobs)′(x) = 0, almost everywhere in x ∈ [0, 1] is equivalent to
considering that uobs is a constant or a piecewise constant function on [0, 1]. By observing the profiles
of ui, i = 1, . . . , 18, we can subdivide the analysis into two sub-cases:

(a) Let us consider that uobs is constant, i.e., uobs(x) = C for x ∈ [0, 1] with C ∈ {uL, u0, uR}. The
profiles of this form are attainable in most situations when T is large enough or, to be precise, in
all cases except u3, u4, u6, and u11. Moreover, this profile is attainable for any f ∈ Uad.

(b) Let us consider that uobs is piecewise constant. We distinguish two types of profiles. First, we
have the profiles where the constant states are separated by a single discontinuity, as given in u8,
u9, u10, u13, and u18. Second, two discontinuities are separating the constant states when T is
small in u8, u9, and u10. We observe that the profiles of this type are attainable for any f ∈ Uad.

Consequently, we note that these types of observation functions are obtained for any f ∈ Uad or, to
be more precise, the solution of the inverse problem can be stated as “either f is arbitrary and belongs
to Uad, or f belongs to a subset of Uad defined by a very weak restriction”. A weak restriction means an
algebraic restriction that does not imply uniqueness. For instance, if uobs(x) = uL and uL = u0 > 0 > uR,
is enough to consider that f satisfies f (uR) ≤ f (u0) = f (uL), where it is clear that f (u0) = f (uL) is
always true (since uL = u0), as well as the inequality f (uR) ≤ f (u0) is widely satisfied, we can check
that there is more than one solution to the inverse problem. Hence, to conclude Case (i), we see that
the inverse problem is ill-posed in uniqueness.

Proof of (ii). Let us assume that (uobs)′(x) > 0 for x ∈ [0, 1]. To be precise, in the analysis, we assume
the more simple case, given by the fact that uobs is a continuous function with a strictly increasing part.
For instance, when uobs(x) = u7(x,T ), as given in (4.9), uobs is of the following form:

uobs(x) :=


uL, 0 ≤ x ≤ f ′(uL)T,
( f ′)−1 (x/T ) , f ′(uL)T < x < f ′(u0)T,
u0, f ′(u0)T ≤ x ≤ 1.
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From the injectivity of uobs for x ∈ [ f ′(uL)T, f ′(u0)T ], we deduce that

f (u) = f (uL) +
1
T

∫ u

uL

(uobs)−1(s)ds, u ∈ [uL, u0]. (6.2)

Analogously, for uobs(x) = u3(x,T ) (see (4.5)), we have the following relation

uobs(x) :=


u0, 0 ≤ x ≤ f ′(u0)T + 1,
( f ′)−1

(
(x − 1)/T

)
, f ′(u0)T + 1 < x < f ′(uR)T + 1,

uR, f ′(uR)T + 1 ≤ x ≤ 1,

which implies that the flux function is given by

f (u) = f (u0) +
u0 − u

T
+

1
T

∫ u

u0

(uobs)−1(s)ds. u ∈ [u0, uR]. (6.3)

The other cases of uobs with a locally strictly increasing behavior are analyzed by similar arguments,
deducing the formula given in (6.1). Hence, in this case, we deduce the conclusion of local uniqueness
of the inverse problem. □

Example 6.1. Example of the application of Theorem 6.1 (i)

We begin by assuming that uL = 3, u0 = 2, and uR = 1. Then the entropy solution of the direct
problem (1.1)–(1.4) is of the form given by the type u5; to be precise

u(x, t) =
{

3, 0 ≤ x ≤ σ(3, 2)t
2, otherwise.

In the case of the inverse problem, we consider T = 1/2 and analyze two types of profile
observations. First, if we assume that uobs

1 (x) = 3 for x ∈ [0, 1], we deduce that uobs(x) = u f (x, 1/2)
for any f ∈ Uad satisfying the restriction f (3) ≥ f (2) + 2. We deduce the condition for f from the
intersection of the shock curve x = σ(3, 2)t, and the right boundary of the domain x = 1 is defined by
t∗ = 1/σ(3, 2). Then uobs

1 is attainable when the observation time T is such that T > t∗; equivalently
f (3) > f (2) + 2, since T = 1/2 and σ(3, 2) = f (3) − f (2) > 0. As a second type of observation, we
consider

uobs
2 (x) =

{
3, x ∈ [0, 1/2],
2, x ∈]1/2, 1].

By similar arguments, we deduce that the inverse problem is ill-posed, since uobs
2 (x) = u f (x, 1/2) for

any f ∈ Uad satisfying the restriction f (3) = f (2) + 1. In this case, the restriction for f is deduced
from the the shock curve x = σ(3, 2)T, the observation time T = 1/2, and the discontinuity location
x = 1/2.

Example 6.2. Example of the application of Theorem 6.1 (ii).
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We give two cases with applications of Theorem 6.1 (ii). First, we consider uL = 1, u0 = 2, uR = 2,
T = 1/2, and the observation given by

uobs
3 (x) =

{
1/4, x ∈ [0, 1/2],
x2, x ∈]1/2, 1].

From Theorem 6.1 (ii), the local inverse problem solution is given by

f (u) = 2
(
1
2
+

∫ u

1/4

√
sds

)
=

5 + 8u3/2

6
for u ∈ [1/4, 1].

This relation follows by an application of Theorem 6.1 (ii). Second, we assume that uL = −1, u0 = 2,
uR = 3, T = 1/2, and the observation defined by

uobs
4 (x) =


−1, x ∈ [0, 1/4[,
ex, x ∈ [1/4, 1/2[,
2, x ∈ [1/2, 3/4[,
3, x ∈ [3/4, 1].

Theorem 6.1 (ii) means that

f (u) = 2
(
1
4
+

∫ u

e1/4
ln sds

)
= 2u(ln u − 1) +

1
2

(3e1/4 + 1), u ∈ [e1/4, e1/2]

is the local flux identification of the flux.

7. Conclusions and future work

We have applied the characteristic method to solve the elementary wave interaction for a convex
scalar conservation law in a bounded domain. We have proved that the set of attainable profiles of the
entropy solution at a fixed time is defined by the union of the sets of piecewise constant functions on
the spatial bounded domain and locally increasing functions on the spatial bounded domain. Moreover,
we have introduced an application result for the flux identification problems from observations of the
direct problem solution profile at a fixed time. We have proved that when the observation function is
piecewise constant, the inverse problem is ill-posed, and when the observation function has a strictly
increasing part, the inverse problem is locally well-posed in uniqueness. Thus, the main contributions
of this paper are the characterization of the set of the attainable profiles of the elementary wave
interaction for a convex scalar conservation law and the application to define the appropriate framework
where we can analyze the uniqueness of the flux identification problem in scalar conservation laws.
Furthermore, we have introduced an analytical formula for the flux function identification problem.

Research into inverse and optimal control problems in partial differential equations is an active area
with increasing contributions in the last decade. However, several open questions are still part of the
challenges and can be formulated as improvements to the present work. At least we can indicate the
following issues that need more exploration:

(i) Applications to the study of real phenomena. The present work is reduced to the case of a
scalar convex flux function, which limits the industrial or laboratory applications of the results,
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since, in several applications, the flux function is a non-convex function. For instance, in
sedimentation [23], the flux function is a non-convex function with one or three inflection points,
and in flow through porous media [5,36,38,46], the flux function has one inflection point and has
a S-shape form. Therefore, improving the result to characterize the attainable set profiles in the
case of non-convex flux functions is a possible topic to research. Moreover, the analysis of the
uniqueness of the inverse problem in the case of non-convex flux functions is an open problem.

(ii) Generalization of the results to general flux functions. Another possible topic of research is
the characterization of the attainable set profile of an entropy solution of a scalar conservation
law with a more general flux function by applying the generalized characteristics method, as
developed in [39]. Other possible extensions of the results of this paper are the improvement of
the results to more general flux functions as developed recently in [40–44].

(iii) Applications to optimal control theory. In identifying flux from experimental observations, we
need to reformulate the inverse problem as an optimal control problem, where the cost function
compares the observation profile with the entropy solution profile of the direct problem. In this
sense, the characterization of the entropy solution profile can be used to define a second term
of the cost function, which incorporates regularization. Regularization can help to achieve the
convergence of numerical methods in the case of parameter identification problems.

Furthermore, advanced numerical methods for flux identification and control problems, in the case
of experimental data are required.
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19. A. Coronel, F. James, M. Sepúlveda, Numerical identification of parameters for a model
of sedimentation processes, Inverse Probl., 19 (2003), 951–972. https://doi.org/10.1088/0266-
5611/19/4/311

20. S. Berres, R. Bürger, A. Coronel, M. Sepúlveda, Numerical identification of
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https://doi.org/10.1007/978-3-0348-8629-1

35. C. M. Dafermos, Hyperbolic conservation laws in continuum physics, 3 Eds., Berlin: Springer,
2010. https://doi.org/10.1007/3-540-29089-3

36. S. E. Buckley, M. C. Leverett, Mechanism of fluid displacement in sands, Transactions of the
AIME, 146 (1942), 107–116. http://doi.org/10.2118/942107-G

37. J. Bear, Dynamics of fluids in porous media, Amsterdam: American Elsevier, 1972.

38. C. J. van Duijn, L. A. Peletier, I. S. Pop, A new class of entropy solutions of the Buckley–Leverett
equation, SIAM J. Math. Anal., 39 (2007), 507–536. https://doi.org/10.1137/05064518X

39. Adimurthi, S. S. Ghoshal, G. D. Veerappa, Finer regularity of an entropy solution for 1-d scalar
conservation laws with non uniform convex flux, Rend. Sem. Mat. Univ. Padova, 132 (2014), 1–24.
https://doi.org/10.4171/RSMUP/132-1

40. S. S. Ghoshal, S. Junca, A. Parmar, Higher regularity for entropy solutions of conservation laws
with geometrically constrained discontinuous flux, SIAM J. Math. Anal., 56 (2014), 6121–6136.
https://doi.org/10.1137/23M1604199

41. B. Guelmame, S. Junca, D. Clamond, Regularizing effect for conservation laws
with a Lipschitz convex flux, Commun. Math. Sci., 17 (2019), 2223–2238
https://doi.org/10.4310/CMS.2019.v17.n8.a6

42. S. S. Ghoshal, S. Junca, A. Parmar, Fractional regularity for conservation laws with discontinuous
flux, Nonlinear Anal.-Real, 75 (2014), 103960. https://doi.org/10.1016/j.nonrwa.2023.103960

43. C. Caginalp, Minimization solutions to conservation laws with non-smooth and non-strictly convex
flux, AIMS Mathematics, 3 (2018), 96–130. https://doi.org/10.3934/Math.2018.1.96

44. C. Caginalp, A minimization approach to conservation laws with random initial conditions
and non-smooth, non-strictly convex flux, AIMS Mathematics, 3 (2018), 148–182.
https://doi.org/10.3934/Math.2018.1.148

45. E. Godlewski, P. A. Raviart, Hyperbolic systems of conservation laws, Paris: Ellipses, 1991.

46. E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 3
Eds., Berlin, Heidelberg: Springer Science, 2009. https://doi.org/10.1007/b79761

AIMS Mathematics Volume 10, Issue 2, 3124–3159.

https://dx.doi.org/https://doi.org/10.1137/16M1085966
https://dx.doi.org/http://doi.org/10.4310/CMS.2015.v13.n1.a2
https://dx.doi.org/http://doi.org/10.1090/S0025-5718-2011-02465-8
https://dx.doi.org/https://doi.org/10.1016/j.physd.2023.133773
https://dx.doi.org/https://doi.org/10.2307/2008214
https://dx.doi.org/https://doi.org/10.1007/978-3-0348-8629-1
https://dx.doi.org/https://doi.org/10.1007/3-540-29089-3
https://dx.doi.org/http://doi.org/10.2118/942107-G
https://dx.doi.org/https://doi.org/10.1137/05064518X
https://dx.doi.org/https://doi.org/10.4171/RSMUP/132-1
https://dx.doi.org/https://doi.org/10.1137/23M1604199
https://dx.doi.org/https://doi.org/10.4310/CMS.2019.v17.n8.a6
https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2023.103960
https://dx.doi.org/https://doi.org/10.3934/Math.2018.1.96
https://dx.doi.org/https://doi.org/10.3934/Math.2018.1.148
https://dx.doi.org/https://doi.org/10.1007/b79761


3155

Appendix

A. Weak solution of partial differential equations: entropy solution in conservation laws

This section discusses the concept of entropy solutions in scalar conservation laws. Our presentation
is based mainly on the books [34, 45, 46].

Inherently, having a partial differential equation implies the aim of solving this partial differential
equation, but this challenge entails the first obstacle, which is to specify what is to be understood as
a solution. Considering the concept of solutions, the modern theory of partial differential equations
distinguishes between two large groups known as classical solutions and weak solutions. The concept
of the classical solution is defined as follows: A given function is a classical solution of a partial
differential equation when this function satisfies the differential equation, including its initial and
boundary conditions if this is the case. However, a weak solution cannot be defined as a single
concept for any partial differential equation and depends on many aspects, such as the type of
differential equation or the type of coefficients involved. Consequently, before beginning to analyze
weak solutions, defining the concept of weak solutions is essential. In particular, some types of
weak solutions have specific names, such as variational solutions, viscosity solutions, renormalized
solutions, entropy solutions, and mild solutions. The most extended concept of weak solutions is the
variational solution, which originated in the study of elliptic equations when the coefficients belong to
Sobolev spaces. However, the application of that concept cannot be used to analyze all types of partial
differential equations, since, in some cases, the uniqueness or the stability of solutions could be lost.
This will be specified below for the inviscid Burger equation, where the uniqueness of the variational
solutions is lost, motivating the concept of entropy solutions.

Let us consider the case of linear flux in the scalar conservation law (1.2): f (u) = au with a being a
constant. We omit the boundary conditions, as we are interested in the following Cauchy problem:

ut + aux = 0, (x, t) ∈ R × R+, (A.1)
u(x, 0) = u0(x), x ∈ R, (A.2)

where u0 : R→ R is a given function. Equation (A.1) is called the transport equation or the advection
equation and is analyzed by the characteristics method. The characteristic curve associated with (A.1)
is defined as the function X : R+ → R satisfying the ordinary differential equation

X′(t) = a, t ∈ R+, (A.3)
X(0) = x0, x0 ∈ R. (A.4)

We observe that the solution of (A.3)–(A.4) is given by X(t) = at + x0. If we differentiate u satisfying
(A.3)–(A.4) through the characteristic curve (X(t), t), we have

du
dt

(X(t), t) = ut(X(t), t) + ux(X(t), t)X′(t) = ut(X(t), t) + aux(X(t), t) = 0.

This means that u is constant throughout the characteristic curve (X(t), t) or, more explicitly

u(X(t), t) = u(X(0), 0) = u(x0, 0) = u0(x0) = u0(X(t) − at).
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Hence, we see that the function

u(x, t) = u0(x − at), (x, t) ∈ R × R+,

is the classical solution of (A.1)–(A.2) when u0 is a C1 function; otherwise, we need the definition of
the “weak solution”. However, we avoid that discussion by focusing our presentation on the definition
of the entropy solution associated with nonlinear conservation laws.

In the case of non-linear flux, we consider f (u) = u2/2 ∈ Uad (see (1.5)) and study the initial value
problem

ut + uux = 0, (x, t) ∈ R × R+, (A.5)
u(x, 0) = u0(x), x ∈ R, (A.6)

with u0 : R→ R being a given function. Equation (A.5) is called the Burger equation or sometimes the
inviscid Burger equation. Analogous to the advection equation, the analysis of (A.5) can be developed
by the characteristics method. We begin by defining the characteristic curve associated with (A.5) as
the solution of the ordinary differential equation

X′(t) = u(X(t), t), t ∈ R+, (A.7)
X(0) = x0, x0 ∈ R. (A.8)

A differentiation of the function u, defined by Eqs (A.5) and (A.6), through the characteristic curve
(X(t), t), we get

du
dt

(X(t), t) = ut(X(t), t) + ux(X(t), t)X′(t) = ut(X(t), t) + u(X(t), t)ux(X(t), t) = 0. (A.9)

Similar, to the advection case, we find that (A.9) implies that u, defined by (A.5)–(A.6), is constant
through the characteristic curves (X(t), t), i.e. u(X(t), t) = u(X(0), 0) = u(x0, 0) = u0(x0). The solution
of (A.7)–(A.8) is defined by X(t) = u0(x0)t + x0. However, unlike the case of the transport equation,
if we consider a general initial condition, we cannot find an explicit relation defining x0 in terms
of X(t) and t, since it is not always possible to find and explicit definition of x0 from the equation
X(t) = u0(x0)t + x0. A universal exception is the initial conditions, which are piecewise constant.

We consider the following concept of the classical solution.

Definition A.1. A function u is called a classic solution of the Cauchy problem (A.5)–(A.6) if u ∈
C1(R × R+) satisfies (A.5)–(A.6) for each (x, t) ∈ R × R+.

Let us discuss the possibility of the existence of discontinuities in a finite time, independently of the
regularity of the initial condition. Let us assume that u0 is given by

u0(x) =
{

1, x ≤ 0,
0, otherwise.

(A.10)

We observe that the characteristics curves are defined by

X(t) = u0(x0)t + x0 =

{
t + x0, x0 ≤ 0,
x0, otherwise.
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Figure 6. Characteristic curves to construct the weak solution of the Burger equation with
the initial condition (A.10).

We observe that in a plane t − x, the characteristics X(t) = t + ξ1 for ξ1 ≤ 0 and X(t) = ξ2 for
ξ2 > 0 have an intersection in A = (ξ2, ξ2 − ξ1); see Figure 6(a). If consider the fact that u is constant
through the characteristic curves. We see that in A is a multivalued function, since u(ξ2, ξ2 − ξ1) = 1
and u(ξ2, ξ2 − ξ1) = 0. It is not consistent with the physical meaning of u, since u models a conserved
quantity, like mass density or momentum, which are not multivalued functions. The solution in A must
be a discontinuous function and, consequently, a weak solution. In principle, we assume that the weak
solution is defined as the variational formulation.

Definition A.2. A function u is called a weak solution of the Cauchy problem (A.5)–(A.6) if∫
R+

∫
R

(
φtu + φx

u2

2

)
(x, t)dxdt +

∫
R

φ(x, 0)u0(x)dx = 0

holds for all functions φ ∈ C1
0(R × R).

It is well known that the weak solutions are characterized by the following result.

Proposition A.1. Let u be a piecewise C1(R × R+) function. In this case, u is a weak solution of
(A.5)-(A.6) if and only if the following two conditions are satisfied:

(i) u is a classical solution of (A.5)–(A.6) in the domains where it is C1.

(ii) If x = Σ(t) is a discontinuity curve of u, then the Rankine–Hugoniot jump condition

dΣ(t)
dt
=

u(Σ(t) − 0, t) + u(Σ(t) + 0, t)
2

is satisfied.

Hence, in the case of u0, as given in (A.10), we can construct the weak solution as follows.
Applying, Proposition (A.1) and using the fact that Σ(0) = 0, we deduce that the curve’s discontinuity
is given by Σ(t) = t/2, since σ(1, 0) = 1/2. In this case, the weak solution of the initial value problem
(A.5)–(A.10) is defined by

u0(x) =
{

1, x ≤ t/2,
0, otherwise,
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which is known as a shock wave; see Figure 6(b). We remark that the formation of shocks appears
even in the case of a smooth initial condition. For instance, let us assume that X(t) = x0 + u0(x0)t and
X(t) = x1 + u0(x1)t are the characteristics through (x1, 0) and (x2, 0) with x1 < x2, and also assume that
u ∈ C∞(R) satisfies u0(x1) > u0(x2). It is easy to deduce that

t∗ =
x2 − x1

u0(x1) − u0(x2)
x∗ =

x2u0(x1) − x1u0(x2)
u0(x1) − u0(x2)

is the intersection of both characteristic curves, implying that there are not a classical solution for t ≥ t∗.
In order to introduce the definition of the entropy solution, we present two situations that make it

clear that the Definition (A.2) and the Rankine–Hugoniot condition are not enough to guarantee the
uniqueness of the solution. First, it is observed that if, for example, if the initial condition is given by

u0(x) = 0,

we find that u(x, t) = 0 is a classical solution, and it is observed that an infinite number of weak
solutions in the form

u(x, t) =


0, x < −pt,

−2p, −pt < x < 0,
2p, 0 < x < pt,

0, pt < x,

for each p ∈ R, (A.11)

can be constructed by the application of Proposition (A.1). A second case is that manipulating weak
solutions can change the velocity of the shock curve defined by the Rankine–Hugoniot jump condition.
Multiplying Eq (A.5) by 2u gives

(u2)t + (
2
3

u3)x = 0, (A.12)

which is a conservation law for u2 and not for u and its flux function f (u) = 2u3/2/3. Equation (A.12)
has the same classical solutions as Eq (A.5), but not the same weak solutions. To fix our ideas, if we
consider the initial condition (A.10), we find that the shock wave velocities for (A.5) and (A.12) are
given by σ1(1, 0) = 1/2 and σ1(1, 0) = 2/3, respectively. Therefore, the weak solutions of (A.12) and
of (A.5) are different. These behaviors for weak solutions make it clear that an additional condition
is required to select the unique weak solution that makes relevant physical sense. This condition is
known as the entropy condition.

There are different versions of the definition for entropy conditions, among which, the best known
are the Lax entropy condition and Oleinik’s entropy condition. Let us consider a discontinuity of the
weak solution propagating with velocity σ given by the Rankine–Hugoniot jump condition. The Lax
entropy condition condition is given by the inequality

f ′(u(Σ(t) − 0, t)) > σ > f ′(u(Σ(t) + 0, t)). (A.13)

Meanwhile, the Oleynik entropy condition is given by the inequality

f (u) − f (Σ(t) − 0, t)
u − u(Σ(t) − 0, t)

≥ σ ≥
f (u) − f (Σ(t) + 0, t)

u − u(Σ(t) + 0, t)
, ∀u ∈ I, (A.14)
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with I = [min(u(Σ(t)− 0, t), u(Σ(t)+ 0, t)),max(u(Σ(t)− 0, t), u(Σ(t)+ 0, t))]. Nowadays, there are other
entropy conditions for low-regularity flux functions, but the most widely used in the scalar case is the
Kružkov’s condition, which is formulated as the inequality"

QT

[
φtE(u) + φxF(u)]dxdt +

∫
R

φ(x, 0)u0(x)dx ≥ 0, ∀φ ≥ 0 in C∞0 (QT ), (A.15)

for every convex entropy function E and its respective entropy flux F, i.e., F′ = E′ f ′. The function
E is called the entropy function, and the function F is called the entropy flux. The origin of these
names comes from the theory of gas dynamics, where a physical quantity called entropy exists that has
the property of being constant along smooth-flowing particle paths and jumps to increasingly higher
values at the moment of crossing a shock wave. We note that all entropy conditions (A.13), (A.14), and
(A.15) are equivalent in the case that f ∈ Uad. Hence, we present the definition only for the condition
(A.15).

Definition A.3. A function u(x, t) is an entropy solution of he Cauchy problem (A.5)–(A.6) if satisfies
the entropy condition (A.15).

In the case of the weak solution (A.11), we observe that the discontinuity curve (0, t) satisfies the
entropy condition (A.13) when −2p > 0 > 2p, which is impossible for any p ∈ R. In this case, (A.11)
is not an entropy solution. Moreover, in the case of the conservation laws (A.5) and (A.12), we can
prove that both conservation laws have the same entropy solution. Let us consider the convex function
E(u) = u2. The entropy flux is given by F′(u) = E′(u) f ′(u) = (u2)′(u2/2)′ = 2u2. Thus, the entropy
condition (A.15) can be written as follows:"

QT

(
φtu2 + φx

2u3

3

)
(x, t)dxdt +

∫
R

φ(x, 0)u0(x)dx ≥ 0, ∀φ ∈ C∞0 (QT ),

which corresponds to the variational formulation of

(u2)t +

(
2
3

u3
)

x
≤ 0, u(x, 0) = u0(x).

Consequently, the relation (A.12), which is deduced for smooth solutions, holds as an inequality in the
variational sense for entropic solutions.

On the other hand, to conclude, we remark that the entropy solution in the sense of Definition A.3
allows us to select the only weak solution with a physical sense in the context of conservation laws.
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