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wave and dark-wave profiles of the model. The resulting solutions include hyperbolic, trigonometric,
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1. Introduction

Maccari first obtained an integrable nonlinear system in 1996, hence the name of the nonlinear
Maccari system (MS) in (2+1)-dimensions. The Maccari system is then found using an
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asymptotically precise reduction method based on the Fourier expansion and spatio-temporal
reformation of the Kadomtsev-Petviashvili equation [1]. Even though there isn’t a single paradigm,
researchers have looked at the nonlinear nature of rough waves in great detail through the lens of
the (2+1)-dimensional nonlinear complex coupled Maccari (CCM) system [2]:iPt + Pxx + PQ = 0,

Qt + Qy + (|P|2)x = 0,
(1.1)

where i =
√
−1, P(x, y, t) and Q(x, y, t) are the complex and real valued functions respectively. The

lax pair of the Kadomtsev-Petviashvili equation is a clear sign of the integrability property that can
be reached using the reduction strategy [3, 4]. Equation (1.1) explains the mobility of the solitary
waves contained in a limiting area of space. Its implications for hydrodynamics, nonlinear optics, and
especially plasma physics are equally noteworthy.

Many mathematical physics models admit soliton solutions [5], making the theory of optical
solitons quite interesting. The observation of optical solitons is one of the key components of
nonlinear fiber optics. Soliton has a variety of applications in engineering and applied science.
Several mathematicians and physicists have studied the (2+1)-dimensional nonlinear
complex-coupled Maccari system successfully. They have done this using various techniques, such as
the exp(−ϕ(ζ))-expansion method and the new (G

′

/G)-expansion method [6, 7]. Inç et al. [8] used the
generalized projective Riccati equation technique and the extended F-expansion. Kumar and
Chand [9] used the traveling wave reduction technique; Bulut et al. [10] used the modified trial
equation method; Xu et al. [11] used the reduction of the KP hierarchy; and Neirameh [12] used the
analytical method to find stationary wave solutions to the CCM system (1.1). In [13], the authors
computed some exact traveling wave solutions to the same model using the Jacobi elliptic function
method. The goal of this work is to find the novel exact traveling wave responses for the complex
non-linear CCM system using a consistent method. Also, we show how the ranges of free parameters
affect the wave structure of the responses that we find here.

Bifurcation analysis [14, 15] of dynamical systems has become a prominent field of study. It
focuses on qualitative changes in system behavior due to small variations in parameters. Besides,
analyzing chaos and the dynamics of nonlinear periodic waves is essential for understanding systems
governed by differential equations. This research area is instrumental in comprehending the physical
phenomena described by these equations, with some recent significant contributions noted in [16–19].
Vladimir Arnold’s qualitative theory of differential equations [20] offers a robust framework for
studying dynamical systems and detecting chaotic features. To fully understand chaotic dynamics,
researchers use many different tools and methods, like Lyapunov exponents, Poincare visualizations,
correlation integrals, Kolmogorov entropy analysis, time series assessment, chaos management, and
fractal computation. In addition to the solitonic solutions, we also uncover the dynamical behavior of
the CCM system using some of these tools. Note that in [21, 22], the authors have considered the
complex structure (2+1) Maccari system. However, our system operates under the assumptions of
simpler and localized dynamics.

The structure of the paper is as follows: In Section 2, the general description of the New Extended
Hyperbolic Function Method is presented. The mathematical analysis and application of the method
are described in Section 2.1. It performs a full dynamical analysis, looking at things like phase plane
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analysis, chaotic behavior, and how sensitive the model is in Sections 3–5. The Lyapunov exponent is
calculated for the model considered in Section 6. The concluding remarks are presented in Section 7.

2. The new extended hyperbolic function Method

The main steps of the new extended hyperbolic function method (EHFM) [23] are presented as
follows: Consider a nonlinear partial differential equation of the form:

P(Ω,Ωx,Ωt,Ωxx,Ωxt,Ωtt, · · · ) = 0, (2.1)

where Ω be an indeterminate and P a function. Assume that P can be converted into an ODE using the
following procedure:

O(U,U
′

,U
′′

, ...) = 0, U
′

=
dU
dζ
, (2.2)

by taking into consideration Ω(x, t) = U(ζ)ei(ax+bt+ω) where ζ = x − ct. Assume for a moment that the
non-trivial solution of Eq (2.2) may be written as:

Form 1

Using the wave transformation, the PDE in Eq (2.1) can be transformed into an ODE as shown in
Eq (2.1). We assume that Eq (2.2) has a solution of the form:

U(ζ) =
N∑

j=0

H jS j(ζ), (2.3)

where the coefficients H j ( j = 1, 2, 3, . . . ,N) are constants to be determined, and S (ζ) satisfies the
ODE:

dS
dζ
= S
√

A + BS 2, A, B ∈ R. (2.4)

By balancing the highest-order derivative and the highest power of the nonlinear term in Eq (2.1),
the value of N is determined. Substituting Eq (2.3) into Eq (2.1) along with Eq (2.4) provides a system
of algebraic equations for H j ( j = 0, 1, 2, . . . ,N). Solving this system yields the following sets of
solutions:

• Set 1: When A > 0 and B > 0,

S (ζ) = −

√
A
B

csch
(√

A(ζ + ζ0)
)
. (2.5)

• Set 2: When A < 0 and B > 0,

S (ζ) =

√
−A
B

sec
(√
−A(ζ + ζ0)

)
. (2.6)

• Set 3: When A > 0 and B < 0,

S (ζ) =

√
−A
B

sech
(√
−A(ζ + ζ0)

)
. (2.7)
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• Set 4: When A < 0 and B < 0,

S (ζ) =

√
−A
B

csc
(√
−A(ζ + ζ0)

)
. (2.8)

• Set 5: When A > 0 and B = 0,
S (ζ) = exp

(√
A(ζ + ζ0)

)
. (2.9)

• Set 6: When A < 0 and B = 0,

S (ζ) = cos
(√
−A(ζ + ζ0)

)
+ ι sin

(√
−A(ζ + ζ0)

)
. (2.10)

• Set 7: When A = 0 and B > 0,

S (ζ) = ±
1

√
B(ζ + ζ0)

· (2.11)

• Set 8: When A = 0 and B < 0,
S (ζ) = ±ι

√
−B(ζ + ζ0). (2.12)

Form 2

Similarly, assuming that S (ζ) satisfies the ODE:

dS
dζ
= A + BS 2, A, B ∈ R, (2.13)

we get a system of algebraic equations for H j ( j = 1, 2, 3, . . . ,N). The solutions are:

• Set 1: When AB > 0,

S (ζ) = sgn(A)

√
A
B

tan
(√

AB(ζ + ζ0)
)
. (2.14)

• Set 2: When AB > 0,

S (ζ) = −sgn(A)

√
A
B

cot
(√

AB(ζ + ζ0)
)
. (2.15)

• Set 3: When AB < 0,

S (ζ) = sgn(A)

√
−A
B

tanh
(√
−AB(ζ + ζ0)

)
. (2.16)

• Set 4: When AB < 0,

S (ζ) = sgn(A)

√
−A
B

coth
(√
−AB(ζ + ζ0)

)
. (2.17)

• Set 5: When A = 0 and B < 0,

S (ζ) = −
1

B(ζ + ζ0)
· (2.18)

• Set 6: When A = 0 and B > 0,
S (ζ) = B(ζ + ζ0). (2.19)

The symbol sgn(A) represents the signum function, which is defined as:

sgn(A) =


1, if A > 0,
0, if A = 0,
−1, if A < 0.
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2.1. Application of the new EHFM

This part uses the new EHFM to find specific solutions for the non-linear CCM equations for the
soliton. Putting the complex wave transformations

P(x, y, t) = eiΘR(ρ),Q(x, y, t) = S (ρ)

where
ρ = x + y + βt,Θ = a1x + a2y + a3t

into Eq (1.1) gives us the following nonlinear ordinary differential equations (NODEs):i(β + 2a1)R′ − (a3 + a2
1)R + R′′ + RS = 0,

(1 + β)S ′ + 2RR′ = 0,
(2.20)

where Θ = a1x + a2y + a3t and ρ = x + y + βt. The following results are obtained by separating both
the first equation’s imaginary as well as real parts in system (2.20):i(β + 2a1)R′ = 0,

−(a3 + a2
1)R + R′′ + RS = 0.

(2.21)

From the first component of Eq (2.21), we obtain:

β = −2a1. (2.22)

Similarly by using above Eq (2.20)’s second component yields:

S = −
1

1 − 2a1
R2, (2.23)

where the value of the integration constant is zero. Ultimately, by replacing the value of S given in
Eq (2.23) into first half of Eq (2.20), we get the following NODE:

−(a3 + a2
1)(1 − 2a1)R + (1 − 2a1)R′′ + R3 = 0, (2.24)

which after manipulation results in:

R′′ = (a3 + a2
1)R −

1
(1 − 2a1)

R3. (2.25)

After renaming the constants, we obtain

R′′ = σ1R − σ2R3, (2.26)

where

σ1 = (a3 + a2
1), σ2 =

1
(1 − 2a1)

.
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Form 1

In this section, we apply the new EHFM for the solutions of the non-linear CCM equations.
Utilizing balancing principal in Eq (2.24), gives N = 1. So, the Eq (2.3) reduces to

R(ρ) = H0 + H1S (ρ), (2.27)

where H0 and H1 are constants to be found. Substituting Eq (2.27) into Eq (2.24) and comparing the
coefficients of each polynomial of S (ρ) to zero, we get a set of algebraic equations in H0, H1, A and B.

A = a2
1 + a3, H0 = 0, H1 =

√
2B

√
2a1 − 1, B = B. (2.28)

• Set 1: When A > 0 and B > 0,
P9(x, y, t) = −

√
2B
√

2a1 − 1
√

a2
1+a3

B csch
(√

a2
1 + a3(ρ + ρ0)

)
ei(a1 x+a2y+a3t),

Q9(x, y, t) = 1
1−2a1

(
√

2B
√

2a1 − 1
√

a2
1+a3

B csch
(√

a2
1 + a3(ρ + ρ0)

))2

.
(2.29)

where ρ = x + y + βt.
• Set 2: When A < 0 and B > 0,

P10(x, y, t) =
√

2B
√

2a1 − 1
√
−(a2

1+a3)
B sec

(√
−(a2

1 + a3)(ρ + ρ0)
)

ei(a1 x+a2y+a3t),

Q10(x, y, t) = 1
1−2a1

(
√

2B
√

2a1 − 1
√
−(a2

1+a3)
B sec

(√
−(a2

1 + a3)(ρ + ρ0)
))2

.
(2.30)

where ρ = x + y + βt.
• Set 3: When A > 0 and B < 0,

P11(x, y, t) =
√

2B
√

2a1 − 1
√
−(a2

1+a3)
B sech

(√
−(a2

1 + a3)(ρ + ρ0)
)

ei(a1 x+a2y+a3t),

Q11(x, y, t) = 1
1−2a1

(
√

2B
√

2a1 − 1
√
−(a2

1+a3)
B sech

(√
−(a2

1 + a3)(ρ + ρ0)
))2

.
(2.31)

where ρ = x + y + βt.
• Set 4: When A < 0 and B < 0,

P12(x, y, t) =
√

2B
√

2a1 − 1
√
−(a2

1+a3)
B csc

(√
−(a2

1 + a3)(ρ + ρ0)
)

ei(a1 x+a2y+a3t),

Q12(x, y, t) = 1
1−2a1

(
√

2B
√

2a1 − 1
√
−(a2

1+a3)
B csc

(√
−(a2

1 + a3)(ρ + ρ0)
))2

.
(2.32)

where ρ = x + y + βt.
• Set 5: When A > 0 and B = 0,

P13(x, y, t) =
√

2B
√

2a1 − 1exp
(√

(a2
1 + a3)(ρ + ρ0)

)
ei(a1 x+a2y+a3t),

Q13(x, y, t) = 1
1−2a1

(√
2B
√

2a1 − 1exp
(√

(a2
1 + a3)(ρ + ρ0)

))2

.
(2.33)

where ρ = x + y + βt.
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• Set 6: When A < 0 and B = 0,
P14(x, y, t) =

√
2B
√

2a1 − 1
[
cos

(√
−(a2

1 + a3)(ρ + ρ0)
)

+sin
(√
−(a2

1 + a3)(ρ + ρ0)
) ]

ei(a1 x+a2y+a3t),

Q14(x, y, t) = 1
1−2a1

(
cos

(√
−(a2

1 + a3)(ρ + ρ0)
)
+ sin

(√
−(a2

1 + a3)(ρ + ρ0)
))2

.

(2.34)

where ρ = x + y + βt.
• Set 7: When A = 0 and B > 0,

P15(x, y, t) =
√

2B
√

2a1 − 1
[
± 1
√

B(ρ+ρ0)

]
ei(a1 x+a2y+a3t),

Q15(x, y, t) = 1
1−2a1

(√
2B
√

2a1 − 1
[
± 1
√

B(ρ+ρ0)

])2
.

(2.35)

where ρ = x + y + βt.
• Set 8: When A = 0 and B < 0,P16(x, y, t) =

√
2B
√

2a1 − 1
[
±ι
√
−B(ρ + ρ0)

]
ei(a1 x+a2y+a3t),

Q16(x, y, t) = 1
1−2a1

(√
2B
√

2a1 − 1
[
±ι
√
−B(ρ + ρ0)

])2
.

(2.36)

Form 2

Utilizing balancing principal in Eq (2.24), gives N = 1. So, Eq (2.3) reduces to

R(ρ) = H0 + H1S (ρ), (2.37)

where H0 and H1 are constants to be found. Substituting Eq (2.37) into Eq (2.24) and comparing the
coefficients of each polynomial of S (ρ) to zero, we get a set of algebraic equations in H0, H1, A and B.
Solving the set of equations, we get

B =
1

2A
(a2

1 + a3), H0 = 0, H1 =
(a2

1 + a3)
A

√
−

1
2
+ a1, A = A. (2.38)

• Set 1: When AB > 0,
P17(x, y, t) = (a2

1+a3)
A

√
−1

2 + a1

√
2A2

(a2
1+a3) tan

(√
1
2 (a2

1 + a3)(ρ + ρ0)
)

ei(a1 x+a2y+a3t),

Q17(x, y, t) = 1
1−2a1

(
(a2

1+a3)
A

√
−1

2 + a1

√
2A2

(a2
1+a3) tan

(√
1
2 (a2

1 + a3)(ρ + ρ0)
))2

.
(2.39)

where ρ = x + y + βt.
• Set 2: When AB > 0,

P18(x, y, t) = (a2
1+a3)
A

√
−1

2 + a1

√
2A2

(a2
1+a3)cot

(√
1
2 (a2

1 + a3)(ρ + ρ0)
)

ei(a1 x+a2y+a3t),

Q18(x, y, t) = 1
1−2a1

(
(a2

1+a3)
A

√
−1

2 + a1

√
2A2

(a2
1+a3)cot

(√
1
2 (a2

1 + a3)(ρ + ρ0)
))2

.
(2.40)

where ρ = x + y + βt.
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• Set 3: When AB < 0,
P19(x, y, t) = (a2

1+a3)
A

√
−1

2 + a1

√
−2A2

(a2
1+a3) tanh

(√
−1
2 (a2

1 + a3)(ρ + ρ0)
)

ei(a1 x+a2y+a3t),

Q19(x, y, t) = 1
1−2a1

(
(a2

1+a3)
A

√
−1

2 + a1

√
−2A2

(a2
1+a3) tanh

(√
−1
2 (a2

1 + a3)(ρ + ρ0)
))2

.
(2.41)

where ρ = x + y + βt.
• Set 4: When AB < 0,

P20(x, y, t) = (a2
1+a3)
A

√
−1

2 + a1

√
−2A2

(a2
1+a3)coth

(√
−1
2 (a2

1 + a3)(ρ + ρ0)
)

ei(a1 x+a2y+a3t),

Q20(x, y, t) = 1
1−2a1

(
(a2

1+a3)
A

√
−1

2 + a1

√
−2A2

(a2
1+a3)coth

(√
−1
2 (a2

1 + a3)(ρ + ρ0)
))2

.
(2.42)

where ρ = x + y + βt.
• Set 5: When A = 0 and B < 0,

P21(x, y, t) = (a2
1+a3)
A

√
−1

2 + a1

[
− 2A

(a2
1+a3)(ρ+ρ0)

]
ei(a1 x+a2y+a3t),

Q21(x, y, t) = 1
1−2a1

(
(a2

1+a3)
A

√
−1

2 + a1

[
− 2A

(a2
1+a3)(ρ+ρ0)

])2

.
(2.43)

where ρ = x + y + βt.
• Set 6: When A = 0 and B > 0,

P22(x, y, t) = (a2
1+a3)
A

√
−1

2 + a1

[
1

2A (a2
1 + a3)(ρ + ρ0)

]
ei(a1 x+a2y+a3t),

Q22(x, y, t) = 1
1−2a1

(
(a2

1+a3)
A

√
−1

2 + a1

[
1

2A (a2
1 + a3)(ρ + ρ0)

])2

.
(2.44)

where ρ = x + y + βt.

The physical interpretation of these figures, based on their descriptions and visualization, relates
to bright solitons (Figures 1, 4) and dark solitons (Figures 2, 3). These solitons are localized wave
solutions in nonlinear systems that maintain their shape while propagating due to a balance between
dispersion and nonlinearity.

(a) 3D-plot
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(b) 2D-plot

Figure 1. Bright soliton solution view of the P11(x, y, t) with parameters B = 4, a1 = 1.0,
a2 = 1, a3 = 2 and β = 2.
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(a) 3D-plot
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Figure 2. Dark soliton solution view of the Q11(x, y, t) with parameters B = 4, a1 = 1.0,
a2 = 1, a3 = 2 and β = 2.
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Figure 3. Dark soliton solution view of the P19(x, y, t) with parameters B = 4, a1 = 4.0,
a2 = 2, a3 = 1 and β = 3.
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Figure 4. Bright soliton solution view of the P20(x, y, t) with parameters B = 4, a1 = 1.0,
a2 = 1, a3 = 2 and β = 2.
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3. Phase-plane analysis

Phase plane analysis is the main emphasis of this section’s in-depth examination of Eq (1.1).
Assuming R′ = S as the Galilean transformation, we get a planar dynamical system of the
following type: dR

dt = S ,
dS
dt = σ1R − σ2R3,

(3.1)

where the values of σ1 and σ2 are listed above. Given that system (3.1) is the first integral
Hamiltonian [24]

H(R, S ) =
σ1R2

2
−
σ2R4

4
−

S 2

2
= ĝ, (3.2)

where the Hamiltonian constant is ĝ. The capacity of the Hamiltonian function to give a clear and
comprehensive explanation for the overall energy dynamics of a physical phenomenon accounts for
its prominence. It is fundamental to both classical and quantum physics, allowing for the creation
of equations of motion and long-term system behavior predictions. Additionally, the advancement
of analytical as well as computational techniques for researching and modeling physical structures
depends heavily upon the Hamiltonian. A vector field for system (3.1) constrains the planar dynamical
system’s phase trajectories. Consequently, we must examine many system phase profiles (3.1) with
varying parameter configurations. Three equilibrium points exist for the system (3.1) about the non-
zero components σ1 and σ2.

P1 = (0, 0), P2 = (
√
σ1

σ2
, 0), P3 = (−

√
σ1

σ2
, 0). (3.3)

J(R, S ) = det
(

0 1
σ1 − 3σ2R2 0

)
= −σ1 + 3σ2R2. (3.4)

As a saddle point of J(R, S ) < 0, a centre of J(R, S ) > 0, and a cuspidal location of J(R, S ) = 0,
referred to as state point (Pi, 0), i = 1, 2, 3 is identified. We consider many scenarios for the parameters
involved in the dynamical system (3.1) to examine the phase plane assessment of the system. Regarding
system (3.1), phase patterns are shown in Figures 5 and 6.

Case 1: Whenever both σ1 > 0 and σ2 > 0. Three distinct equilibrium points P1 = (0, 0), P2 = (1, 0),
and P3 = (−1, 0) have been produced and are depicted in Figure 5(a) by taking into consideration
different values of the related constants, such as a1 = 1, a3 = −2 and −2a1 = 0.001. The image makes
it evident that there P1 is a saddle point in addition to P2 and P3 are center points.
Case 2: σ1 < 0 and σ2 < 0, if that is. Three distinct equilibrium points, P1 = (0, 0), P2 = (1, 0), and
P3 = (−1, 0), have been found by taking into account various values of the relevant constants, such as
a1 = 1, a3 = −2 and −2a1 = −2. These are shown in Figure 5(b)). The image makes it evident that P1

is a center point and that P2 and P3 are saddle points.
Case 3: Assuming σ2 < 0 and σ1 > 0. Three distinct equilibrium stages, P1 = (0, 0), P2 = (i, 0)
and P3 = (−i, 0), were found by taking into account various values of the relevant constants, such as
a1 = 2, a3 = 3, and −2a1 = −2. One genuine point is depicted in Figure 6(a). The illustration makes it
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very evident that P1 represents a saddle position.
Case 4: Assuming that σ1 < 0 and σ2 > 0. Three distinct equilibrium indications, P1 = (0, 0), P2 =

(i, 0) and P3 = (−i, 0), were successfully found by taking into account various values of the relevant
constants, such as a1 = 1, a3 = −2 as well as −2a1 = 0.0001. One genuine point is depicted in
Figure 6(b). The image makes it very evident whether P1 is a central point.

(a) σ1 > 0 and σ2 > 0 (b) σ1 < 0 and σ2 < 0

Figure 5. Phase portrait analysis of system (3.1).

(a) σ1 > 0 and σ2 < 0 (b) σ1 < 0 and σ2 > 0

Figure 6. Phase portrait analysis of system (3.1).

4. Quasi-periodic activities

This section involves analyzing the quasi-periodic pattern [14] of the model under consideration
with the addition of an exterior perturbation factor to the planar dynamical structure (3.1). Next, we
can compose  dR

dt = S ,
dS
dt = σ1R − σ2R3 + p0 cos(q0t),

(4.1)

where the amplitude and frequency of the external perturbation term applied to the system (3.1) are
indicated by the variables p0 and q0. This evaluation illustrates how the characteristics of a planar
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dynamical system (3.1) are affected by an external perturbation force. To do this, we alter the values
of p0 and q0 while fixing all other system (4.1) parameters. Figures 7 and 8 Slight modifications to
the external force’s frequency and magnitude can be used to show how a certain model behaves quasi-
periodically when its solution gets out of control. The quasi-periodic behavior of a dynamical system
exhibits disrupted periodic patterns. A quasi-periodic behavior exhibits some regularity or repetitive
pattern, but the period may not be constant. The cosine function is commonly used to capture the
oscillatory behavior due to its mathematical properties. The choice of using the cosine function for
quasi-periodic patterns is somewhat arbitrary, it has proven to be useful in various fields such as physics
and engineering.
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(a) p0 = 0.1 and q0 = 0.6.
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(b) p0 = 2.01 and q0 = 0.9

Figure 7. Effect of p0 and q0 on the system (4.1).
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Figure 8. Effect of p0 and q0 on the system (4.1).

5. Sensitivity to the initial conditions

The chosen model’s sensitivity is explained in this section. Sensitivity analysis is a method used to
ascertain how changes to the model’s parameters or inputs impact the problem’s outcomes. Sensitivity

AIMS Mathematics Volume 10, Issue 2, 3025–3040.



3037

analysis can be used to evaluate how changes to physical properties or situations affect a system’s
behavior in terms of physical impacts. One aspect of chaos is its sensitivity to the initial conditions.
Here we used the Runge-Kutta 4th Order Method (RK4) to perform sensitivity analysis to study how
a nonlinear system responds to small changes in its initial conditions. This numerical method
provides highly accurate solutions to ordinary differential equations, allowing us to calculate and
compare system trajectories for slightly perturbed initial conditions. By observing whether these
trajectories diverge or converge, we can assess the sensitivity of the system. The RK4 method is
particularly suitable for this purpose due to its precision and reliability in capturing the behavior of
nonlinear systems. The sensitivity to the initial conditions can be seen in Figures 9 and 10, which may
be viewed as chaotic.

Figure 9. Sensitivity map for system (4.1) assuming initial conditions (1.1, 0.1) and (5.5, 0.5)
for curves 1 and 2, accordingly, and σ1 = −1, σ2 = 0.003, p0 = 2.5, q0 = 0.91.

Figure 10. Sensitivity map for system (4.1) assuming initial conditions (5.1, 0.9) as well as
(5.5, 0.52) for contours 1 and 2, corresponding to σ1 = −1, σ2 = 0.003, p0 = 0.05, q0 = 0.91.

6. Lyapunov exponent

This section explores the behavior of the Lyapunov exponent of the proposed model. System (4.1),
including the perturbation term, can be expressed in an autonomous form as follows:

dR
dt = S ,
dS
dt = σ1R − σ2R3 + p0 cos(z),
dz
dt = q0,

(6.1)

where z = q0t. The Lyapunov exponent quantifies how rapidly nearby trajectories in a dynamical
system diverge, serving as an indicator of the system’s chaotic tendencies. A positive Lyapunov
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exponent implies chaotic behavior, while a negative value denotes system stability. The magnitude of
the exponent is proportional to the rate of divergence, with higher values suggesting increased chaos.
We calculated the Lyapunov exponents for system (6.1) and depicted their evolution over time.
Figure 11 presents the Lyapunov exponents as a function of time for the perturbed system with
suitable parameter values.

Figure 11. Lyapunov Exponent for system (4.1) assuming initial conditions (0.9, 0.9, 0.9)
corresponding to σ1 = −1, σ2 = 1, p0 = 0.0, q0 = 0.1.

7. Conclusions

The new extended hyperbolic function method computes analytical solutions for the mathematical
model of complex-coupled Maccari’s system, yielding solutions for hyperbolic, trigonometric, and
exponential functions. Both bright and dark-shaped solutions are among the outcomes. The dynamical
analysis reveals attractor chaos in the complex coupled Maccari structure, a result of traveling wave
solutions occurring at various locations and closely linked to the equilibrium point. The established
bifurcation, in conjunction with chaos theory, enhances researchers’ understanding of the system’s
behavior, enabling more precise predictive modeling. Furthermore, by applying ideas from chaos,
including bifurcation theory, we can design functional control systems. These findings have several
applications that will progress in design, control, forecasting, and optimization.
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