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Abstract: Many cellular bases have been constructed for the cyclotomic Hecke algebras of G(`, 1, n).
For example, with dominance order on multipartitions, Dipper, James, and Mathas constructed a
cellular basis {mst} and Hu, Mathas constructed a graded cellular basis {ψst}. With θ-dominance order
on multipartitions, Bowman constructed integral cellular basis {cθ

st
}. Following Graham and Lehrer’s

cellular theory, different constructions of cellular basis may determine different parameterizations of
simple modules of the cyclotomic Hecke algebras of G(`, 1, n). To study the relationship between
these parameterizations, it is necessary to understand the relationship between dominance order and
θ-dominance order on multipartitions. In this paper, we define the weak θ-dominance order and give
a combinatorial description of the neighbors with weak θ-dominance order. Then we prove weak
θ-dominance order is equivalent to dominance order whenever the loading θ is strongly separated.
As a corollary, we give the relationship between weak θ-dominance order, θ-dominance order, and
dominance order on multipartitions.
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1. Introduction

The theory of cellular algebra was first introduced by Graham and Lehrer [1]. König and Xi [2]
later gave a more structural equivalent definition of cellular theory. Suppose K is a field and A is an
associative unital free K-algebra. In the sense of Graham and Lehrer, A is cellular if it has a K-basis
{cs,t|λ ∈ Λ, s, t ∈ T (λ)}, where (Λ,≥) is a poset (partially ordered set) and T (λ) are finite index sets,
such that

(i) The K-linear map ∗ : A −→ A defined by cst 7→ cts for all λ ∈ Λ, s, t ∈ T (λ) is an anti-
isomorphism of A.
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(ii) For any λ ∈ Λ, t ∈ T (λ), and a ∈ A, there exists ra
tv
∈ K such that for all s ∈ T (λ),

csta ≡
∑
v∈T (λ)

ra
tvcsv mod A>λ.

The basis {cst|λ ∈ Λ, s, t ∈ T (λ)} is the so called cellular basis. The existence of a cellular basis implies
rich information on representations of A. One of the main uses of a cellular basis is to give the complete
set of simple modules of A. According to Graham and Lehrer’s theory, the cellular basis determines
a cell filtration (a two-sided ideal filtration) A(λ1) ⊂ A(λ2) ⊂ · · · ⊂ A(λk) of A with respect to a total
ordering λ1, λ2, . . . , λk of the poset Λ. As an A-module, each quotient A(λi)/A(λi−1) of the filtration
is a direct sum of |T (λi)| copies of cell module C(λi). Moreover, for each λ ∈ Λ, the cellular basis
attaches C(λ) a bilinear form 〈, 〉λ such that C(λ)/ rad〈, 〉λ is either 0 or an irreducible module. Denote
by D(λ) the quotient C(λ)/ rad〈, 〉λ; all the nonzero D(λ)s consist of a complete set of non-isomorphic
simple A-modules. For a cellular algebra, it may possess different constructions of cellular bases.
By Graham and Lehrer’s theory, different cellular bases may determine different parameterizations
of simple modules. So the study of the relationship between different parameterizations of simple
modules becomes an interesting topic.

In this paper, we fix n as a natural number and ` a positive integer. The cyclotomic Hecke algebras
of G(`, 1, n) was introduced by Ariki, Koike [3] and Broué, Malle [4] independently. Many authors
have constructed different cellular bases of cyclotomic Hecke algebras of G(`, 1, n). For example,
Dipper, James, and Mathas [5] constructed the cellular basis {mst|λ ∈ P`n and s, t ∈ Std(λ)} with
respect to the poset (P`n,D), where P`n is the set of `-partitions of n and D is the dominance order
on P`n. Through the cellular basis mst, Ariki [6] proved that the simple modules of cyclotomic
Hecke algebras of G(`, 1, n) are paramaterized by Kleshchev multipartitons. By Brundan–Kleshchev’s
isomorphism [7], Hu and Mathas [8] constructed the graded cellular basis {ψst|λ ∈ P`n and s, t ∈ Std(λ)}
of cyclotomic Hecke algebras of G(`, 1, n) with respect to the poset (P`n,D). Different from mst and
ψst, Bowman [9] constructed an integral graded cellular basis {cθ

st
|λ ∈ P`n and s, t ∈ Stdθ(λ)} of

cyclotomic Hecke algebras of G(`, 1, n) with respect to the poset (P`n,Dθ), where Dθ is the θ-dominance
order on P`n . Corresponding to Bowman’s basis, the simple modules of cyclotomic Hecke algebra
of G(`, 1, n) are labeled by Uglov multipartitions. We want to study the relationship between these
different paramaterizations of simple modules of cyclotomic Hecke algebra of G(`, 1, n). To this aim,
it’s necessary for us to understand the relationship between dominance order and θ-dominance order
on P`n.

The content of this paper is organized as follows; In Section 2, we introduce some notations and
definitions. In Section 3, we give a combinatorial description of the neighbors with weak θ-dominance
order whenever the loading θ is strongly separated. In Section 4, we give the main results of this
paper: The relationship between weak θ-dominance order, θ-dominance order, and dominance order.
Throughout this paper, we denote by N the set of natural numbers and Z the set of integers.

2. Notations and definitions

A partition of n is a finite non-increasing sequence λ = (λ1, λ2, . . . ) of non-negative integers with
|λ| =

∑
i λi = n. If λ is a partition of n, we write λ ` n. Let Pn be the set of partitions of n. The Young

diagram of λ is a set
[λ] = {(i, j)|1 ≤ j ≤ λi,∀i ≥ 1}.
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The elements of [λ] are called the nodes of λ. The Young diagram can be identified with a tableau. For
example, λ = (3, 2, 1) is a partition of 6; its Young diagram

[λ] = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)},

it can be identified with the tableau

[λ] = ,

where (i, j) corresponds to the box in the i-th row and j-th column. For a partition λ, define its height
h(λ) = max{k ∈ N|λk , 0}.

A multipartition of n with ` components is an ordered sequence λ = (λ(1), . . . , λ(`)) of partitions such
that |λ(1)| + · · · + |λ(`)| = n. We denote by P`n the set of multipartitions of n with ` components. For
λ ∈ P`n, we write λ `` n and call λ an `-partition of n. When ` = 1, it is clear P1

n = Pn. The Young
diagram of λ is a set

[λ] = {(i, j, s)|1 ≤ s ≤ `, 1 ≤ j ≤ λ(s)
i ,∀i ≥ 1}.

The elements of [λ] are called the nodes of λ. The Young diagram [λ] can be identified with an ordered
sequence of tableaux. For example, λ = ((2, 1), ∅, (3, 2, 1)) is a 3-partition of 9, the Young diagram

[λ] = {(1, 1, 1), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 2, 3), (1, 3, 3), (2, 1, 3), (2, 2, 3), (3, 1, 3)},

it can be identified with the following ordered sequence of tableaux;

[λ] =

(
, ∅,

)
,

where (i, j, s) corresponds to the box in the i-th row and j-th column of the s-th tableau. For simplicity,
we identify λ with its Young diagram [λ].

Suppose λ ∈ P`n. If α ∈ [λ] and [λ] \ {α} is a Young diagram of `-partition of n − 1, then we call α a
removable node of λ. If β < [λ] and [λ] ∪ {β} is a Young diagram of `-partition of n + 1, then we call β
an addable node of λ.

Let λ = (λ(1), . . . , λ(`)),µ = (µ(1), . . . , µ(`)) be `-partitions of n; write µ D λ if

s−1∑
a=1

|µ(a)| +

t∑
i=1

µ(s)
j ≥

s−1∑
a=1

|λ(a)| +

t∑
i=1

λ(s)
j ∀ 1 ≤ s ≤ ` ∀ t ≥ 1.

If µ D λ and µ , λ, we write µ B λ. In particular, for λ, µ ∈ Pn, write µ D λ if
t∑

i=1

µi ≥

t∑
i=1

λi ∀ t ≥ 1.

We call D the dominance order.
Let N `

n = {(r, c, l)|r, c, l ∈ N≥1, r + c ≤ 2(n + 1), 1 ≤ l ≤ `}. The elements of N `
n are also called

nodes and the subsets of N `
n are called configurations of nodes. By definition, the Young diagrams of

`-partitions of n are configurations of nodes.
We fix e an element in N≥2 ∪ {∞} and I = Z/eZ, where I = Z whenever e = ∞. An e-multicharge is

a sequence (κ1, κ2, . . . , κ`) ∈ I`. For α = (r, c, l) ∈ N `
n , we define its residue to be res(α) = c− r + κl ∈ I.

A loading is a sequence of integers θ = (θ1, . . . , θ`) such that θi − θ j < `Z for i < j.
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Definition 2.1. [9, Definition 1.2] Let α = (r, c, l), α′ = (r′, c′, l′) ∈ N `
n . We write α′ <θ α if either

(i) θl + `(r − c) < θl′ + `(r′ − c′) or
(ii) θl + `(r − c) = θl′ + `(r′ − c′) and r + c < r′ + c′.

Moreover, if res(α) = res(α′), then we write α′ Cθ α.

Definition 2.2. [9, Definition 1.2] Let λ,µ ∈ P`n, we write µ Eθ λ if

|{β ∈ µ|γ Cθ β}| ≤ |{β ∈ λ|γ Cθ β}| ∀γ ∈ N
`
n .

We call Eθ the θ-dominance order.

Deleting the residue condition in the definition of θ-dominance order, we can get a weak version of
it.

Definition 2.3. Let λ,µ ∈ P`n, we write µ ≤θ λ if

|{β ∈ µ|γ <θ β}| ≤ |{β ∈ λ|γ <θ β}| ∀γ ∈ N
`
n .

We call ≤θ the weak θ-dominance order.

3. A combinatorial description of weak θ-dominance order on multipartitions

Fix a loading θ = (θ1, . . . , θ`), if θi+1 − θi > `n for each i = 1, 2, . . . , ` − 1, then we call θ a strongly
separated loading.

Let λ be a configuration of nodes. For i ∈ Z, we call {(r, c, l) ∈ λ|θl + `(r − c) = i} the i-diagonal
of λ and dλi = |{(r, c, l) ∈ λ|θl + `(r − c) = i}| the length of the i-diagonal. Let (r, c, l) be a node in the
i-diagonal of λ. We call (r, c, l) the terminal node (respectively, head node) in the i-diagonal of λ if
r′ + c′ ≤ r + c (respectively, r′ + c′ ≥ r + c) for each (r′, c′, l) in the i-diagonal of λ.

We give a rough description of the weak θ-dominance order by the length of diagonals.

Lemma 3.1. Let λ,µ ∈ P`n, then µ ≤θ λ if and only if

t∑
i=−∞

dλi ≥
t∑

i=−∞

dµi ∀t ∈ Z.

Proof. Firstly, let us prove the necessity. Assume t to be an integer such that

t∑
i=−∞

dλi <
t∑

i=−∞

dµi .

Since |λ| = |µ| = n, hence there exists an integer t′ > t such that

• the t′-diagonal of λ is non-empty, and
• ∀t < t′′ < t′, the t′′-diagonal of λ is empty.

AIMS Mathematics Volume 10, Issue 2, 2998–3012.
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Let α be the head node in the t′-diagonal of λ; then we have

|{β ∈ λ|α <θ β}| =
t∑

i=−∞

dλi <
t∑

i=−∞

dµi ≤ |{β ∈ µ|α <θ β}|.

This contradicts to λ ≥θ µ.
Next, let us prove the sufficiency. Suppose

∑t
i=−∞ dλi ≥

∑t
i=−∞ dµi for all t ∈ Z. Let γ = (r, c, l) be a

node in the t-diagonal of N `
n and (r′, c′, l′) be the head node in the t-diagonal of N `

n . If γ < λ ∪ µ, then

|{α ∈ λ|γ <θ α}| =
t∑

i=−∞

dλi ≥
t∑

i=−∞

dµi = |{β ∈ µ|γ <θ β}|.

If γ ∈ λ \ µ, then

|{α ∈ λ|γ <θ α}| = r − r′ +
t−1∑

i=−∞

dλi ≥ r − r′ +
t−1∑

i=−∞

dµi ≥ |{β ∈ µ|γ <θ β}|.

If γ ∈ µ \ λ, then

|{α ∈ λ|γ <θ α}| =
t∑

i=−∞

dλi ≥
t∑

i=−∞

dµi > r − r′ +
t−1∑

i=−∞

dµi = |{β ∈ µ|γ <θ β}|.

If γ ∈ λ ∩ µ, then

|{α ∈ λ|γ <θ α}| = r − r′ +
t−1∑

i=−∞

dλi ≥ r − r′ +
t−1∑

i=−∞

dµi = |{β ∈ µ|γ <θ β}|.

Therefore, λ ≥θ µ. �

Remark 3.2. Suppose θ = (θ1, . . . , θ`) are strongly separated and λ = (λ(1), . . . , λ(`)) ∈ P`n. Let
α = (r, c, s) be a node in the i-diagonal of λ and α′ = (r′, c′, s + 1) be a node in the i′-diagonal of λ.
Then i′ > i. In fact, λ is a multipartition of n, hence

i′ − i = θs+1 + `(r′ − c′) − (θs + `(r − c)) = (θs+1 − θs) + `(r′ + c − c′ − r) > `n + `(2 − n) = 2` > 0.

That is, the s-component λ(s) is completely separated from the (s + 1)-component λ(s+1).

For λ,µ ∈ P`n, we say that λ and µ are neighbors with the weak θ-dominance order if µ >θ λ and
there is no γ ∈ P`n such that µ >θ γ >θ λ.

In [ [10], Theorem 1.4.10], there is a characterization of partitions that are neighbors with the usual
dominance order. In the following lemma, let us prove a similar combinatorial description of neighbors
with weak θ-dominance order on partitions. Consequently, it will be clear that the weak θ-dominance
order coincides with the usual dominance order on partitions.

Lemma 3.3. Suppose λ, µ ∈ Pn and µ >θ λ, then λ, µ are neighbors with the weak θ-dominance order
if and only if there exist positive integers r < r′ such that one of the following (a) and (b) occurs, where

AIMS Mathematics Volume 10, Issue 2, 2998–3012.
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(a) r′ = r + 1, µr = λr + 1, µr+1 = λr+1 − 1 and µt = λt ∀t , r, r + 1,
(b) λr = λr′ , µr = λr + 1, µr′ = λr′ − 1 and µt = λt ∀t , r, r′.

Proof. Let ` = 1 and θ, θ′ ∈ Z be different integers. For α, α′ ∈ N `
n , we have α >θ α

′ if and only if
α >θ′ α

′. Therefore, for each λ, µ ∈ Pn, we have µ >θ λ if and only if µ >θ′ λ. Hence, for simplicity,
we assume θ = 0. By this assumption, node (a, b) lies in the (a − b)-diagonal.

First, let us prove the necessity. Assume µ >θ λ to be partitions of n and there exist no γ ∈ Pn

such that µ >θ γ >θ λ. Define i := min{k ∈ Z|dµk , dλk }. Then i is well defined since µ , λ. Define
i′ := min

{
k ∈ Z

∣∣∣ ∑k
t=−∞ dµt =

∑k
t=−∞ dλt , i < k

}
. Then i′ is well defined since |λ| = |µ| = n. By definition,

−n < i < i′ < n. Combining with Lemma 3.1, we derive

0 ≤ dλi < dµi , dµi−1 = dλi−1 (3.4)

and

dλi′ > dµi′ ≥ 0, dµi′+1 ≥ dλi′+1. (3.5)

We will give the proof of necessity in 3 steps:
Step 1. Let α = (r, c) be the terminal node in the i-diagonal of µ. Let us prove λr−1 ≥ λr + 1 and

(r, c) is the last node in the r-th row of µ.
If i ≤ 0, let us prove dµi−1 = dµi − 1. We should prove the i-diagonal and (i − 1)-diagonal of µ is like

µ ⊇

♣ ♠

♣ ♠

♣ ♠

α

,

where ♣ and α = (r, c) are the i-diagonal of µ and ♠ are the (i − 1)-diagonal of µ. If dµi−1 > dµi , then we
derive η = (r + 1, c + 2) ∈ µ, hence γ = (r + 1, c + 1) ∈ µ. Then the i-diagonal and (i − 1)-diagonal of µ
is like

µ ⊇

♣ ♠

♣ ♠

♣ ♠

α ♠
γ η

,

where ♣, α = (r, c) and γ = (r + 1, c + 1) are the i-diagonal of µ, while ♠ and η = (r + 1, c + 2) are the
(i−1)-diagonal of µ. This contradicts that α = (r, c) is the terminal node in the i-diagonal of µ; therefore,
dµi−1 ≤ dµi . Similarly, one can prove dλi−1 ≤ dλi . If dµi−1 = dµi , by (3.4), we have dλi−1 = dµi−1 = dµi > dλi ;
this contradicts dλi−1 ≤ dλi , hence dµi−1 < dµi . If dµi−1 < dµi − 1, then (r − 1, c) < µ. Then the i-diagonal and
(i − 1)-diagonal of µ are like

µ ⊇

♣ ♠

♣ ♠

♣

α

,

where ♣ and α = (r, c) are the i-diagonal of µ and ♠ are the (i − 1)-diagonal of µ. This contradicts to
α = (r, c) ∈ µ and µr−1 ≥ µr. Therefore, dµi−1 = dµi − 1. By (3.4), we have dλi−1 = dµi−1 = dµi − 1 > dλi − 1,
hence dλi = dλi−1 = dµi−1 = dµi − 1. So we derive α = (r, c) < λ and δ = (r − 1, c) ∈ λ. Hence, the
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i-diagonal and (i − 1)-diagonal of λ are like

λ ⊇

♣ ♠

♣ ♠

♣ δ
,

where ♣ are the i-diagonal of λ and ♠, δ = (r − 1, c) are the (i − 1)-diagonal of λ. The i-diagonal and
(i − 1)-diagonal of µ are like

µ ⊇

♣ ♠

♣ ♠

♣ ♠

α

,

where ♣, α = (r, c) are the i-diagonal of µ and ♠ are the (i − 1)-diagonal of µ. Therefore λr−1 ≥ λr + 1.
Moreover, (r, c) is the last node in the r-th row of µ.

For the case when i > 0, the discussion is tedious and similar to that of i ≤ 0, so we don’t show it
here again.

Step 2. Let β = (r′, c′) be the terminal node in the i′-diagonal of λ. Let us prove λr′ − 1 ≥ λr′+1 and
r′ > r.

If i′ ≥ 0, let us prove dλi′+1 = dλi′ − 1. We should prove the i′-diagonal and (i′ + 1)-diagonal of λ are
like

λ ⊇

♣

♠ ♣

♠ ♣

♠ β

,

where ♣ and β = (r′, c′) are the i′-diagonal of λ and ♠ are the (i′ + 1)-diagonal of λ. If dλi′+1 > dλi′ , then
η = (r′ + 2, c′ + 1) ∈ λ, hence γ = (r′ + 1, c′ + 1) ∈ λ. The i′-diagonal and (i′ + 1)-diagonal of λ are like

λ ⊇

♣

♠ ♣

♠ ♣

♠ β
♠ γ
η

,

where ♣, β = (r′, c′) and γ = (r′ + 1, c′ + 1) are the i′-diagonal of λ and ♠, η = (r′ + 2, c′ + 1) are
the (i′ + 1)-diagonal of λ. This contradicts that β = (r′, c′) is the terminal node in the i′-diagonal
of λ. Therefore, dλi′+1 ≤ dλi′ . Similarly, we can prove dµi′+1 ≤ dµi′ . If dλi′+1 = dλi′ , by (3.5), we have
dµi′+1 ≥ dλi′+1 = dλi′ > dµi′ . This contradicts to dµi′+1 ≤ dµi′ . If dλi′+1 < dλi′ − 1, then η = (r′, c′ − 1) < λ. Then
the i′-diagonal and (i′ + 1)-diagonal of λ are like

λ ⊇

♣

♠ ♣

♠ ♣

η β

\{ η }

where ♣ and β = (r′, c′) are the i′-diagonal of λ and ♠ are the (i′ + 1)-diagonal of λ. This contradicts to
β = (r′, c′) ∈ λ. Therefore, dλi′+1 = dλi′ − 1, by (3.5), we have dµi′+1 ≥ dλi′+1 = dλi′ − 1 > dµi′ − 1. Therefore,
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we derive dµi′ = dµi′+1 = dλi′+1 = dλi′ − 1. Hence, (r′ + 1, c′) < λ, β = (r′, c′) < µ. Then the i′-diagonal
and (i′ + 1)-diagonal of λ are like

λ ⊇

♣

♠ ♣

♠ ♣

♠ β

where ♣ and β = (r′, c′) are the i′-diagonal of λ and ♠ are the (i′ + 1)-diagonal of λ. The i′-diagonal
and (i′ + 1)-diagonal of µ are like

µ ⊇

♣

♠ ♣

♠ ♣

♠

,

where ♣ are the i′-diagonal of µ and ♠ are the (i′ + 1)-diagonal of µ. Therefore, we have λr′ − 1 ≥ λr′+1.
Next, let us prove r′ > r. If r′ = r, since (r′, c′) < µ and (r, c) is the last node in the r-th row of µ, so we
have c′ > c, hence i′ = r− c′ < r− c = i, this contradicts to i′ > i. If r′ < r, since r′− c′ = i′ > i = r− c,
then c′ + s < c, where s = r − r′ > 0. Since (r, c) is the last node in the r-th row of µ, so (r, c′ + s) ∈ µ.
Moreover, since r− (c′+ s) = r′−c′ = i′, so (r, c′+ s) lies in the i′-diagonal of µ and (r, c′+ s) <θ (r′, c′),
this contradicts to (r′, c′) < µ. Therefore, we derive r′ > r.

For the case when i < 0, the discussion is also tedious and similar to that of i ≥ 0, so we do not
show it here again.

Step 3. Now we have proved r′ > r, λr−1 ≥ λr + 1 and λr′ − 1 ≥ λr′+1. Hence

γ = (λ1, . . . , λr−1, λr + 1, λr+1, . . . , λr′−1, λr′ − 1, λr′+1, . . . )

is a partition of n. Let α′ = (r, λr + 1), β′ = (r′, λr′) and j = r − (λr + 1), j′ = r′ − λr′ . Then α′ is the
terminal node in the j-diagonal of γ, and β′ is the terminal node in the j′-diagonal of λ. We can obtain
γ from λ by removing β′ to α′. Since r′ > r, λr + 1 > λr′ , hence j′ = r′ − λr′ > r − (λr + 1) = j and
β′ = (r′, λr′) <θ (r, λr + 1) = α′. So we have γ >θ λ. Next, let us prove µ ≥θ γ. Since α = (r, c) < λ, so
λr + 1 ≤ c, hence j = r − (λr + 1) ≥ r − c = i and α′ = (r, λr + 1) ≤θ (r, c) = α. Since β = (r′, c′) ∈ λ, so
λr′ ≥ c′ and j′ = r′ − λr′ ≤ r′ − c′ = i′. Hence β = (r′, c′) ≤θ (r′, λr′) = β′. Therefore,

α = (r, c) ≥θ α′ = (r, λr + 1) >θ β′ = (r′, λr′) ≥θ β = (r′, c′) and i ≤ j < j′ ≤ i′.

Combining with the choice of i, i′ and Lemma 3.1, we derive µ ≥θ γ. Hence µ ≥θ γ >θ λ. Since λ and
µ are neighbors with ≥θ, so we have µ = γ.

Finally, let us prove r = r′−1 or λr = λr′ . Otherwise, suppose r , r′−1 and λr , λr′ , then r < r′−1
and λr > λr′ . Let t = 1 + min{k|λk > λk+1, r ≤ k < r′}. If t = r′, then λr = · · · = λr′−1 > λr′ > 0, let
ν = (λ1, . . . , λr−1, λr + 1, λr+1, . . . , λr′−2, λr′−1 − 1, λr′ , . . . ). Since (r′, λr′) <θ (r′ − 1, λr′−1) <θ (r, λr + 1),
henceµ >θ ν >θ λ, this contradicts that µ and λ are neighbors with ≥θ. If t < r′, then λr = · · · = λt−1 >

λt ≥ · · · ≥ λr′ > 0, let

η := (λ1, . . . , λt−1, λt + 1, . . . , λr′−1, λr′ − 1, λr′+1, . . . ).

Since (r′, λr′) <θ (t, λt + 1) <θ (r, λr + 1), then µ >θ η >θ λ, this contradicts that µ and λ are neighbors
with ≥θ. Therefore, r = r′ − 1 or λr = λr′ . Now we complete the proof of necessity.
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Next, let us prove the sufficiency. Suppose λ, µ ∈ Pn and there exist positive integers r < r′

satisfying

(a) r′ = r + 1, µr = λr + 1, µr+1 = λr+1 − 1 and µt = λt ∀t , r, r + 1, or
(b) λr = λr′ , µr = λr + 1, µr′ = λr′ − 1 and µt = λt ∀t , r, r′.

Let ν ∈ P`n such that µ ≥θ ν >θ λ and λ, ν are neighbors with ≥θ. Let us prove µ = ν. Let i = r− (λr +1),
i′ = r′−λr′ , it is clear i < i′. By assumption, µ can be obtained from λ by removing (r′, λr′) to (r, λr +1).
By Lemma 3.1 and the the choice of ν, we have

dµt = dνt = dλt , for all t < i or t > i′. (3.6)

By the necessity of this lemma, there exist integers s < s′ such that

νs = λs + 1, νs′ = λs′ − 1, νt = λt ∀t , s, s′.

Let j = s − (λs + 1), j′ = s′ − λs′ , it is clear j < j′. In other words, ν can be obtained from λ by
removing (s′, λs′) to (s, λs + 1). Combining with (3.6), we know i ≤ j < j′ ≤ i′.

If (a) occurs, r = r′ − 1, the i-diagonal and i′-diagonal of λ are like

λ ⊇

♣ ♠

♣ ♠

♣

♣

where ♠ are the i-diagonal and ♣ are the i′-diagonal. The i-diagonal and i′-diagonal of µ are like

µ ⊇

♣ ♠

♣ ♠

♣ ♠

where ♠ are the i-diagonal and ♣ are the i′-diagonal. By the above arguments, we have s′ − λs′ = j′ =

i′ = r′ − λr′ , s− λs − 1 = j = i = r − λr − 1. Since the addable node and removable node are unique for
the i-diagonal and i′-diagonal of λ, respectively. Hence, s = r, s′ = r′ and µ = ν.

If (b) occurs, r < r′ − 1 and λr = λr+1 = · · · = λr′ , the i-diagonal and i′-diagonal of λ are like

λ ⊇

♠

♣ ♠

♣ ♠

♣

♣

♣

where ♠ are the i-diagonal and nodes ♣ are the i′-diagonal. The i-diagonal and i′-diagonal of λ are like

µ ⊇

♠

♣ ♠

♣ ♠

♣ ♠

♣

where ♠ are the i-diagonal and ♣ are the i′-diagonal. By the above arguments, we have s′ − λs′ = j′ =

i′ = r′ − λr′ , s − λs − 1 = j = i = r − λr − 1. Since the addable node and removable node are unique
for the i-diagonal and i′-diagonal of λ respectively. Hence, s = r, s′ = r′, and µ = ν. �
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Now we can give a combinatorial description of neighbors with weak θ-dominance order on
multipartitions.

Proposition 3.7. Suppose θ = (θ1, . . . , θ`) be strongly separated, λ = (λ(1), . . . , λ(`)) and µ =

(µ(1), . . . , µ(`)) be `-partitions of n with µ >θ λ. Then λ,µ are neighbors with the weak θ-dominance
order if and only if one of (a), (b), and (c) occurs, where

(a) there exists s < ` such that

µ(r) = λ(r) ∀r , s, s + 1

µ(s) = (λ(s)
1 , . . . , λ

(s)
ks
, 1) where ks = h(λ(s))

µ(s+1)
1 = λ(s+1)

1 − 1 and µ(s+1)
j = λ(s+1)

j ∀ j > 1.

(b) there exist s and i such that

µ(r) = λ(r) ∀r , s

µ(s)
j = λ(s)

j ∀ j , i, i + 1

µ(s)
i = λ(s)

i + 1 and µ(s)
i+1 = λ(s)

i+1 − 1.

(c) there exist s and i < i′ such that

µ(r) = λ(r) ∀r , s

µ(s)
j = λ(s)

j ∀ j , i, i′

µ(s)
i − 1 = µ(s)

i′ + 1 = λ(s)
i = λ(s)

i′ .

Proof. Let us prove the necessity. We assume λ = (λ(1), . . . , λ(`)) and µ = (µ(1), . . . , µ(`)) are `-partitions
of n with µ >θ λ and there exists no γ = (γ(1), . . . , γ(`)) ∈ P`n such that µ >θ γ >θ λ. Define

s := min{k|µ(k) , λ(k)},

then λ(s) , µ(s) and λ(r) = µ(r) for all r < s. Since µ >θ λ and θ is strongly separated, combining with
Lemma 3.1 and Remark 3.2, we have

t∑
k=1

|µ(k)| ≥

t∑
k=1

|λ(k)| ∀1 ≤ t ≤ `. (3.8)

Hence |µ(s)| ≥ |λ(s)|.
Suppose |µ(s)| > |λ(s)|, then s < `. Set ms = h(µ(s)), let us prove µ(s)

ms = 1. Otherwise, assume µ(s)
ms > 1.

Let γ = (γ(1), . . . , γ(s), . . . , γ(`)), where

γ(r) = µ(r) ∀r , s,

γ(s) = (µ(s)
1 , . . . , µ

(s)
ms−1, µ

(s)
ms
− 1, 1).

Since (ms, µ
(s)
ms , s) >θ (ms + 1, 1, s), so µ >θ γ. Let us prove γ >θ λ. Let

u = θs + `(1 − µ(s)
1 ), p = θs + `(ms − µ

(s)
ms

), q = θs + `(ms + 1 − 1) = θs + `ms.
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Where u ≤ p < q. Define

F := (1, µ(s)
1 , s) is the unique node in the u-diagonal of µ

♣ := (ms, µ
(s)
ms
, s) is the terminal node in the p-diagonal of µ

♠ := (ms + 1, 1, s) is the unique node in the q-diagonal of γ.

γ can be obtained from µ by removing ♣ to ♠. The Young diagrams of µ(s) and γ(s) are like

µ(s) =
F

♣

γ(s) =

F

♠

By the construction of γ, we have dµt = dγt for all t , p, q. By Remark 3.2 and the choice of s, we have

u−1∑
t=−∞

dγt =

u−1∑
t=−∞

dµt =

s−1∑
t=1

|µ(t)| =

s−1∑
t=1

|λ(t)| =

u−1∑
t=−∞

dλt .

By Lemma 3.1, we derive

k∑
t=u

dγt =

k∑
t=u

dµt ≥
k∑

t=u

dλt ∀u ≤ k < p (3.9)

1 +

k∑
t=u

dγt =

k∑
t=u

dµt ≥
k∑

t=u

dλt ∀p ≤ k < q (3.10)

and
k∑

t=−∞

dγt =

k∑
t=−∞

dµt ≥
k∑

t=−∞

dλt ∀k ≥ q.

If γ �θ λ, then there exists p ≤ ε < q such that

ε−1∑
t=u

dγt ≥
ε−1∑
t=u

dλt ,
ε∑

t=u

dγt <
ε∑

t=u

dλt . (3.11)

If ε = p, by (3.9)–(3.11), we have

p−1∑
t=u

dγt =

p−1∑
t=u

dµt ≥
p−1∑
t=u

dλt and 1 +

p∑
t=u

dγt =

p∑
t=u

dµt =

p∑
t=u

dλt ,

hence dλp ≥ dµp. So ♣ = (ms, µ
(s)
ms , s) ∈ λ(s) and hence |λ(s)| ≥ |µ(s)|, this contradicts to |µ(s)| > |λ(s)|. If

p < ε < q, by (3.9)–(3.11), we have

ε−1∑
t=u

dµt >
ε−1∑
t=u

dγt ≥
ε−1∑
t=u

dλt ,
ε∑

t=u

dµt = 1 +

ε∑
t=u

dγt =

ε∑
t=u

dλt
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then dλε > dµε and |λ(s)| > |µ(s)|; this contradicts to |µ(s)| > |λ(s)|. Therefore γ ≥θ λ. Since |γ(s)| = |µ(s)| >

|λ(s)|, hence γ , λ. So we derive
µ >θ γ >θ λ.

This contradicts that λ and µ are neighbors with ≥θ. So we have µ(s)
ms = 1.

Let ν := (ν(1), . . . , ν(s), ν(s+1), . . . , ν(`)), where

ν(r) = µ(r) ∀r , s, s + 1,

ν(s) = (µ(s)
1 , . . . , µ

(s)
ms−1)

and ν(s+1) = (ν(s+1)
1 , ν(s+1)

2 . . . ), where

ν(s+1)
1 = µ(s+1)

1 + 1, ν(s+1)
t = µ(s+1)

t t > 1.

Let
♣ := (ms, 1, s), ♠ := (1, ν(s+1)

1 , s + 1)

and

u′ : = θs + `(ms − 1),

q′ : = θs+1 + `(1 − ν(s+1)
1 ),

p′ : = θs+1 + `(1 − λ(s+1)
1 ).

Let r′ := min{q′, p′}, by Remark 3.2, we have u′ < r′. Since µ(s)
ms = 1, so ♣ is the unique node in the

u′-diagonal of µ and ♠ is the unique node in the q′-diagonal of ν. That is, ν can be obtained from µ by
removing the node ♣ to ♠. From the point of Young’s diagram

(µ(s), µ(s+1)) =

(
♣

,
)

(ν(s), ν(s+1)) =

(
, ♠

)
.

By Lemma 3.1, we have µ >θ ν. Next, let us prove ν ≥θ λ. By Lemma 3.1, we have

k∑
t=−∞

dνt =

k∑
t=−∞

dµt ≥
k∑

t=−∞

dλt where k < u′ or k ≥ q′.

Moreover, by (3.8) and the assumption |µ(s)| > |λ(s)|, we have
s∑

t=1

|µ(t)| >

s∑
t=1

|λ(t)|.

Combining with Remark 3.2 and the definition of u′, r′, we derive

k∑
t=−∞

dνt =

k∑
t=−∞

dµt − 1 =

s∑
t=1

|µ(t)| − 1 ≥
s∑

t=1

|λ(t)| ≥

k∑
t=−∞

dλt

where u′ ≤ k < r′. If r′ = q′, then we have proved

k∑
t=−∞

dνt ≥
k∑

t=−∞

dλt ∀k ∈ Z.
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Therefore, ν ≥θ λ. If r′ = p′ < q′, suppose ν �θ λ, there exists some r′ ≤ ε′ < q′ such that

ε′∑
t=−∞

dνt <
ε′∑

t=−∞

dλt ,
ε′+1∑

t=−∞

dνt ≥
ε′+1∑

t=−∞

dλt .

On the other hand, by the definition of p′ and q′, we have

ε′+1∑
t=−∞

dνt ≤ 1 +

ε′∑
t=−∞

dνt < 1 +

ε′∑
t=−∞

dλt ≤
ε′+1∑

t=−∞

dλt ,

this contradicts to the choice of ε′.
So we derive ν ≥θ λ, then µ >θ ν ≥θ λ. Since λ,µ are neighbors with ≥θ, we derive ν = λ. That is, λ

and µ satisfy (a).
Suppose |λ(s)| = |µ(s)|. Let ν = (µ(1), . . . , µ(s), λ(s+1), . . . , λ(`)), then µ ≥θ ν >θ λ, so ν = µ since

λ and µ are neighbors with ≥θ. Hence µ(r) = λ(r),∀r , s. Let m := |λ(s)| = |µ(s)|, then µ(s) and
λ(s) are partitions of m with µ(s) >θ λ

(s). If there exist partition η of m with µ(s) >θ η >θ λ
(s), then

η = (λ(1), . . . , λ(s−1), η, λ(s+1), . . . , λ(`)), satisfy µ >θ η >θ λ, this contradicts that λ and µ are neighbors
with ≥θ. So µ(s) and λ(s) are neighbors with ≥θ. Applying the necessity of Lemma 3.3 to λ(s) and µ(s),
we derive that λ and µ satisfy either (b) or (c).

Next, let us prove the sufficiency. Suppose µ and λ are `-partitions of n with µ >θ λ and one of
(a), (b), (c) holds. Suppose ν be a `-partition of n with µ ≥θ ν >θ λ and λ, ν are neighbors with ≥θ. Now
let us prove µ = ν.

If (a) holds, let p = θs + `(ks + 1 − 1) = θs + `ks and q = θs+1 + `(1 − λ(s+1)
1 ). We have dµp = dλq = 1.

Moreover, by Remark 3.2, Lemma 3.1, and the choice of ν, we derive

dµt = dλt = dνt t < p or t > q

dµt′ = dλt′′ = 0 p < t′ ≤ q, p ≤ t′′ < q.

Therefore, ∑
p≤t≤q

dνt =
∑

p≤t≤q

dµt =
∑

p≤t≤q

dλt = 1. (3.12)

We claim dνt = 0 for all q < t < p; otherwise, there must be dν
(s)

p , 0 or dν
(s+1)

q , 0, this contradicts (3.12).
If dνq = 1, then dν

(s+1)

q = 1 and ν = λ; this contradicts λ , ν. Therefore dνp = 1, hence dν
(s)

p = 1, and
µ = ν.

If (b) or (c) holds. Combining with the choice of ν, we have

µ(r) = ν(r) = λ(r) where r , s,

µ(s) ≥θ ν
(s) >θ λ

(s).

Apply the sufficiency of Lemma 3.3 to µ(s) and λ(s); we derive µ(s) and λ(s) are neighbors with ≥θ; hence,
µ(s) = ν(s) and µ = ν. �
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4. Main results

Now we can give the relationship between dominance order and weak θ-dominance order on
multipartitions.

Theorem 4.1. Suppose λ,µ ∈ P`n and θ = (θ1, . . . , θ`) are strongly separated. Then µ D λ if and only if
µ ≥θ λ.

Proof. The conclusion is clear by Proposition 3.7 and [11, Lemma 6.3]. �

For λ ∈ P`n, we define res(λ) = {res(α)|α ∈ λ} to be a multi-set. According to Definitions 2.2
and 2.3, by a trivial discussion, one can prove µ ≥θ λ and res(µ) = res(λ) whenever µ Dθ λ. Finally,
as a corollary of Theorem 4.1, we obtain the relationship between dominance order and θ-dominance
order.

Theorem 4.2. Suppose λ,µ ∈ P`n and θ = (θ1, . . . , θ`) be strongly separated. If λ Eθ µ, then λ E µ and
res(λ) = res(µ).

We point out that the inverse of Theorem 4.2 is not true. We can give a counterexample as follows:

Example 4.3. Let ` = 2, n = 6, (σ1, σ2) = (0, 1), θ = (0, 25), θ is strongly separated. Let λ =

((2, 1), (2, 1)), µ = ((3), (3)), the Young diagrams with residue are as follows:

µ =
(

0 1 0 , 1 0 1
)

λ =
(

0 1
1

, 1 0
0

)
.

On one hand, µ B λ and res(λ) = res(µ). On another hand, let γ = (3, 2, 1); we have res(γ) = 1 and

|{α ∈ λ|γ Cθ α}| = |{(1, 2, 1), (2, 1, 1)}| > |{β ∈ µ|γ Cθ β}| = |{(1, 2, 1)}|

hence µ 7θ λ.

5. Conclusions

In this paper, we prove that the weak θ-dominance order coincides with the dominance order on
multipartitions, whenever the loading θ is strongly separated. As a corollary, we prove that the θ-
dominance order is stronger than the usual dominance order on multipartitions, whenever the loading
θ is strongly separated.
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