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Abstract: The information measure of interval-valued intuitionistic fuzzy sets holds extensive
application value in decision-making and pattern recognition. The primary contribution of this
paper lied in presenting a functional model for assessing the information content of interval-valued
intuitionistic fuzzy sets. Initially, we introduced the concept of closest crisp set associated with
interval-valued intuitionistic fuzzy set and explored its pertinent properties. Subsequently, taking into
account the distance between interval-valued intuitionistic fuzzy set and its closest crisp set, we derived
a comprehensive expression for functions pertaining to similarity measures, knowledge measures
and entropy on interval-valued intuitionistic fuzzy set that adhered to specific criteria. Furthermore,
we explored the interconversion between these three measures. The advantage of these functional
expressions and transformation relationships lied in their ability to generate numerous formulas for
defining information measures. Finally, we demonstrated the practical application of knowledge
measure in investment case. The practicality of the proposed measures were corroborated through
sensitivity analysis and comparative analysis.
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1. Introduction

Since Zadeh introduced fuzzy set theory, extensive research and extension related to fuzzy sets
have been pursued. Among the various generalized forms that have been proposed, Atanassov [1]
introduced the definition of intuitionistic fuzzy sets (IFSs). This was a broader concept of fuzzy
sets designed to address uncertain information. It offered a more precise characterization of such
information through the triad of degree of membership, degree of nonmembership, and degree of
hesitation. As an extension of IFS, Atanassov [2] presented an alternative definition of interval-valued
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intuitionistic fuzzy sets (IVIFSs), wherein the degree of membership, nonmembership, and hesitation
are represented by subintervals within the range of [0, 1]. As a result, it can precisely capture the
dynamic features. Furthermore, Xu [3] examined certain attributes and average operators of IVIFSs.
Currently, IVIFSs have been extensively utilized in diverse areas, including quality evaluation, venture
capital, and medical diagnosis [4–7], owing to their remarkable flexibility in managing uncertainty or
ambiguity.

Information measures pertaining to IFSs and IVIFSs have garnered escalating attention due to
their exceptional performance in addressing practical applications. Interested readers can to [8–
10]. Axiomatic definitions of distance measures on IFSs and IVIFSs were respectively provided
in [11, 12]. Furthermore, a novel distance measure for IFSs was introduced through the utilization
of line integrals [13]. Drawing from the relationship between distance measure and similarity
measure, similarity measure has also been paid attention to by a considerable number of researchers,
and numerous scholars investigated the similarity measure for IVIFSs on the basis of distance
measures [14–16, 29–32]. Fuzzy entropy was initially introduced by Zadeh, and in recent years, there
has been a growing interest among scholars in exploring this concept. Interested readers are encouraged
to consult references [17–19] for further details. An entropy on IVIFSs constructed based on a distance
measure was proposed by Zhang et al. [20], and the relationship between similarity measure and
entropy was investigated in the paper. Che et al. [21] presented a method for constructing an entropy on
IVIFSs in terms of the distance function. The cross-entropy approach, originating from the information
theory presented by Shannon [22], was later applied to decision-making problems by Ye [23] who
developed the fuzzy cross-entropy of IVIFSs using an analogy with the intuitionistic fuzzy cross-
entropy. In recent years, there has been a notable surge in the interest surrounding knowledge measures
within the frameworks of IFSs and IVIFSs, as clearly demonstrated by the references [24–26]. Das et
al. [27] employed the knowledge measures under IFSs and IVIFSs to compute the criterion weights
in the decision problem, and Guo [28] considered both aspects of knowledge related to IVIFSs, i.e.,
information content and information clarity to construct a model of knowledge measure and apply it
to a decision-making problem under unknown weights. In addition, some scholars have also extended
IVIFS [33, 34].

The structure of this paper is as follows: Section 2 delves into several definitions and axioms that
will be utilized in the subsequent research outlined in this paper. Section 3 centers on the construction
of similarity measures, knowledge measures, and entropy, all grounded in the axiomatic definition of
the closest crisp set and the distance measure. Furthermore, it explores the intricate transformation
relationships among these three constructs. Subsequently, we present a range of formulas for
information measures, each utilizing distinct functions. In Section 4, we demonstrate the efficacy and
versatility of our newly introduced methodologies by applying the proposed knowledge measure to
tackle a decision-making problem and the similarity measure to address a pattern recognition problem.
Lastly, in Section 5, we offer some concluding remarks on the contents of this paper.

2. Preliminaries

In this section, we will briefly introduce some of fuzzy set theories and concepts which should be
used in this paper. The X in the following text is represented as: X = (x1, x2, · · · , xn). Let N denote the
set of natural numbers.
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Definition 2.1. ([2]) An IVIFS Ã on a finite set X can be defined as the following form:

Ã = {< x, µÃ(x), νÃ(x) > |x ∈ X},

where µÃ(x) = [µL
Ã
(x), µU

Ã
(x)] ⊆ [0, 1] and νÃ(x) = [νL

Ã
(x), νU

Ã
(x)] ⊆ [0, 1], which satisfies 0 ≤ µU

Ã
(x) +

νU
Ã

(x) ≤ 1, for any x ∈ X. For the interval hesitation margin πÃ(x) = [πL
Ã
(x), πU

Ã
(x)] ⊆ [0, 1], we have

πL
Ã
(x) = 1 − µU

Ã
(x) − νU

Ã
(x) and πU

Ã
(x) = 1 − µL

Ã
(x) − νL

Ã
(x).

Specifically, if µL
Ã
(x) = µU

Ã
(x) and νL

Ã
(x) = νU

Ã
(x), then the IVIFS is reduced to an intuitionistic

fuzzy set.
From the interval representation of membership degree and nonmembership degree of IVIFSs, it is

not difficult to see that the geometric meaning of IVIFSs at a certain point is a rectangle, as shown in
Figure 1. The three vertices of the triangle are denoted as (0, 0), (1, 0), (0, 1), and the two sides of the
triangle represent the degree of membership µÃ(x) and nonmembership νÃ(x), so that (0, 0) expresses
the case if πÃ(x) = 1. (1, 0) and (0, 1) mean the two cases of the crisp sets. For the hypotenuse of the
triangle, that is, the segment from (1, 0) to (0, 1), it corresponds to νÃ(x) = 1 − µÃ(x). Moreover, there
is 0 ≤ µÃ(x) + νÃ(x) ≤ 1 for an IVIFS, which also means that none of the individual vertices of the
rectangle in Figure 1 can extend beyond the hypotenuse of the triangle.

Figure 1. Graphicalization of IVIFS.

For convenience, let IVIFS (X) express the set of IVIFSs on X. Besides, we use P(X) to denote the
set of all crisp sets defined on X.

Definition 2.2. ([3]) For any Ã, B̃ ∈ IVIFS (X), the following relations can be defined:
(1) Ã ⊆ B̃ if µL

Ã
(x) ≤ µL

B̃
(x), µU

Ã
(x) ≤ µU

B̃
(x) and νL

Ã
(x) ≥ νL

B̃
(x), νU

Ã
(x) ≥ νU

B̃
(x) for any x ∈ X;

(2) Ã = B̃ if Ã ⊆ B̃ and Ã ⊇ B̃;
(3) The complement set Ãc = {〈x, νÃ(x), µÃ(x)〉|x ∈ X}.
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Definition 2.3. ([12]) For any Ã, B̃, C̃ ∈ IVIFS (X), a mapping D:IVIFS (X)
× IVIFS (X)→ [0, 1] is called a distance measure on IVIFSs, and it satisfies the following properties:
(D1) 0 ≤ D(Ã, B̃) ≤ 1;
(D2) D(Ã, B̃) = 0 if Ã = B̃;
(D3) D(Ã, B̃) = D(B̃, Ã);
(D4) D(Ã, C̃) ≤ D(Ã, B̃) + D(B̃, C̃);
(D5) I f Ã ⊆ B̃ ⊆ C̃, then D

(
Ã, C̃

)
≥ max

{
D

(
Ã, B̃

)
,D

(
B̃, C̃

)}
.

Consider Ã, B̃ ∈ IVIFS (X), where Ã = {〈x, [µL
Ã
(x), µU

Ã
(x)], [νL

Ã
(x), νU

Ã
(x)]〉

|x ∈ X}, B̃ = {〈x, [µL
B̃
(x), µU

B̃
(x)], [νL

B̃
(x), νU

B̃
(x)]〉|x ∈ X}.

For convenience, we denote:∣∣∣µL
Ã(xi) − µL

B̃(xi)
∣∣∣ = αi,

∣∣∣µU
Ã (xi) − µU

B̃ (xi)
∣∣∣ = βi,∣∣∣νL

Ã(xi) − νL
B̃(xi)

∣∣∣ = γi,
∣∣∣νU

Ã (xi) − νU
B̃ (xi)

∣∣∣ = δi.

For arbitrary p, the distance measure between Ã and B̃ is presented in the following form:

Dp(Ã, B̃) =
( 1
qn

n∑
i=1

(αp
i ∗ β

p
i ? γ

p
i ∗ δ

p
i )
) 1

p , (2.1)

where the parameter q is determined by the two operations “∗” and “?”.
When p assumes different values, various distance measures can be obtained, as demonstrated in

Table 1.

Table 1. Different distance measures.

∗ = +

? = +
Minkovsky q=4

p = 1 DH(Ã, B̃) =
( 1

4n

∑n
i=1(αi + βi + γi + δi)

)
p = 2 DE(Ã, B̃) =

( 1
4n

∑n
i=1(α2

i + β2
i + γ2

i + δ2
i )
) 1

2

p = 3 DM(Ã, B̃) =
( 1

4n

∑n
i=1(α3

i + β3
i + γ3

i + δ3
i )
) 1

3

∗ = ∨, ? = +
p = 1

q=2 Hamming-Hausdorff DHH(Ã, B̃) =
( 1

2n

∑n
i=1(αi ∨ βi + γi ∨ δi)

)
∗ = ∨, ? = ∨ q=1 Hausdorff Dh(Ã, B̃) =

(1
n

∑n
i=1(αi ∨ βi ∨ γi ∨ δi)

)
Definition 2.4. ( [28]) Let Ã, B̃ ∈ IVIFS (X), and a mapping K:IVIFS (X) → [0, 1] is called a
knowledge measure on IVIFS (X) if K satisfies the following conditions:
(K1) K(Ã) = 1 if Ã ∈ P(X);
(K2) K(Ã) = 0 if πÃ(x) = [1, 1] for any x ∈ X;
(K3) K(Ã) ≥ K(B̃) if Ã is less fuzzy than B̃, i.e., Ã ⊆ B̃ for µL

B̃
(x) ≤ νL

B̃
(x) and µU

B̃
(x) ≤ νU

B̃
(x) or Ã ⊇ B̃

for µL
B̃
(x) ≥ νL

B̃
(x) and µU

B̃
(x) ≥ νU

B̃
(x), for any x ∈ X;

(K4) K(Ã) = K(Ãc).
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Definition 2.5. ([18]) Assume that the entropy is a function E:IVIFS (X)→ [0, 1], which satisfies the
nether four conditions:
(E1) E(Ã) = 0 if Ã ∈ P(X);
(E2) E(Ã) = 1 if µÃ(x) = νÃ(x) for any x ∈ X;
(E3) E(Ã) ≤ E(B̃) if Ã is less fuzzy than B̃, i.e., µÃ(x) ≤ µB̃(x) and νÃ(x) ≥ νB̃(x) for µB̃(x) ≤ νB̃(x) or
µÃ(x) ≥ µB̃(x) and νÃ(x) ≤ νB̃(x) for µB̃(x) ≥ νB̃(x);
(E4) E(Ã) = E(Ãc).

3. A series of information measures of IVIFSs

Furthermore, this paper introduces the definition of the closest crisp set within the realm of IVIFSs
and derives several equations pertaining to similarity measure, knowledge measure, and entropy, all
grounded in the distance measure. Additionally, it delves into the methodology for converting between
these measures.

3.1. Construct a new similarity measure on IVIFSs

The extent of resemblance between two comparable entities is frequently characterized or elucidated
through the utilization of similarity measure. Within this segment, we primarily introduce a novel
formulation of similarity measure pertaining to IVIFSs, which relies on distance measure and the
proximate crisp set denoted as CÃ.

To this end, inspired by the concept of the closest crisp set considering intuitionistic fuzzy sets
in [17], the notion of closest crisp set for IVIFSs is introduced.

Definition 3.1. Let Ã ∈ IVIFS (X), and the closest crisp set to Ã, which is denoted by CÃ, satisfies the
following condition: If µÃ(x) ≥ νÃ(x), then x ∈ CÃ; if µÃ(x) � νÃ(x), then x < CÃ .

Since any crisp set is an IVIFS with zero interval hesitation index, the closest crisp set of Ã can be
expressed as:

µL
CÃ

(x) = µU
CÃ

(x) =

1 if µL
Ã
(x) ≥ νL

Ã
(x), µU

Ã
(x) ≥ νU

Ã
(x),

0 otherwise,
(3.1)

νL
CÃ

(x) = νU
CÃ

(x) =

0 if µL
Ã

(x) ≥ νL
Ã

(x), µU
Ã

(x) ≥ νU
Ã

(x),
1 otherwise.

(3.2)

From Figure 2, it can be seen that in the left panel, µL
Ã
(x) > νL

Ã
(x), µU

Ã
(x) > νU

Ã
(x), so that there

is x ∈ CÃ, or µL
CÃ

(x) = µU
CÃ

(x) = 1, νL
CÃ

(x) = νU
CÃ

(x) = 0. The opposite is true for the right panel,
µL

Ã
(x) < νL

Ã
(x), µU

Ã
(x) < νU

Ã
(x); thus, there is x < CÃ, or µL

CÃ
(x) = µU

CÃ
(x) = 0, νL

CÃ
(x) = νU

CÃ
(x) = 1.

Next, a corollary is given below that presents practical properties of the closest crisp set.

Corollary 3.2. Assume that Ã ∈ IVIFS (X), and let CÃ be its closest crisp set. It has the following
properties:
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Figure 2. Examples of the closest crisp sets to IVIFSs Ã and B̃.

(1) Ã ∈ P(X) if, and only if, Ã = CÃ.
(2) If µL

Ã
(x) , νL

Ã
(x), µU

Ã
(x) , νU

Ã
(x), then Cc

Ã
(x) = CÃc(x) for any x ∈ X, where CÃc expresses the closest

crisp set to Ac.

The preceding Corollary 3.2(2) can be elucidated more intuitively by scrutinizing Figure 3, which
illustrates that the rectangular positions designated by Ã(x) and Ãc(x) are precisely as depicted in the
image when the conditions µL

Ã
(x) ≥ νL

Ã
(x) and µU

Ã
(x) ≥ νU

Ã
(x) are satisfied. Furthermore, it becomes

evident that CÃ(x) and CÃc(x) occupy opposing corners, thereby establishing the equality Cc
Ã
(x) =

CÃc(x). Note here that the conditional requirement of Corollary 3.2(2) is µL
Ã
(x) , νL

Ã
(x), µU

Ã
(x) , νU

Ã
(x),

the reason for which is that if µL
Ã
(x) = νL

Ã
(x), µU

Ã
(x) = νU

Ã
(x) , as shown in Figure 4, then Ã(x) and Ãc(x)

are coincident and their closest crisp sets are the same.

Figure 3. Graphical representation of
Corollary 3.2(2).

Figure 4. Graphical representation of
µL

Ã
(x) = νL

Ã
(x), µU

Ã
(x) = νU

Ã
(x).

Based on the proposed the closest crisp set, information measure functions are explored.

Definition 3.3. A function f : [0, 1]2 → [0, 1] is called a binary aggregation function, for any x, y ∈
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[0, 1], it satisfies the following conditions:
(1) f is component-wise increasing;
(2) f (0, 0) = 0;
(3) f (1, 1) = 1;
(4) f (x, y) = f (y, x).

Definition 3.4. ( [9]) Let Ã, B̃ ∈ IVIFS (X), and a mapping S : IVIFS (X) × IVIFS (X) → [0, 1] is
called a similarity measure on IVIFSs if S satisfies the following properties:
(S 1) Boundary: 0 ≤ S (Ã, B̃) ≤ 1;
(S 2) Symmetry: S (Ã, B̃) = S (B̃, Ã);
(S 3) Reflexivity: S (Ã, B̃) = 1 iff Ã = B̃;
(S 4) Complementarity: S (Ã, Ãc) = 0 iff Ã ∈ P(X).

Theorem 3.5. Let f : [0, 1] × [0, 1] → [0, 1] be a binary aggregation function and D be an
aforementioned distance in Definition 2.3 for IVIFSs. Then, for any Ã, B̃ ∈ IVIFS (X),

S (Ã, B̃) = f (D(Ã,CÃ),D(B̃,CB̃))

is a similarity measure for IVIFSs.

Proof. In the following, we will prove the proposed formula satisfies four conditions in Definition 3.4.
(S 1): It is clearly established.
(S 2): By the definition of function f , it can be clearly deduced that

S (Ã, B̃) = f (D(Ã,CÃ),D(B̃,CB̃)) = f (D(B̃,CB̃),D(Ã,CÃ)) = S (B̃, Ã).

(S 3): If S (Ã, B̃) = 1, according to the definition of f and the distance measure, we can get

f (D(Ã,CÃ),D(B̃,CB̃)) = 1⇔ D(Ã,CÃ) = D(B̃,CB̃) = 1,

thus, Ã = B̃.
(S 4): If S (Ã, Ãc) = 0, based on the definition of f and the distance measure,

f (D(Ã,CÃ),D(Ãc,CÃc)) = 0⇔ D(Ã,CÃ) = D(Ãc,CÃc) = 0

can be deduced. Then, Ã ∈ P(X).
With regards to Theorem 3.5, it is feasible to devise diverse formulations for calculating similarity

measures on IVIFSs, leveraging various binary aggregation functions f : [0, 1] × [0, 1] → [0, 1]. By
incorporating distinct functions f and distance measures D, a range of similarity measures can be
derived, as exemplified in Table 2.
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Table 2. Different similarity measures.

Distance measures Conversion functions Similarity measures

DH(Ã, B̃)

f1(x, y) =
x+y
2 S H1(Ã, B̃) =

DH (Ã,CÃ )+DH (B̃,CB̃)

2

f2(x, y) = sin (x+y)π
4 S H2(Ã, B̃) = sin

(
DH (Ã,CÃ )+DH (B̃,CB̃)

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) S H3(Ã, B̃) =

k
√

DH (Ã,CÃ)+DH (B̃,CB̃)

2 (k > 1)

f4(x, y) = logx+y+1
3 S H4(Ã, B̃) = log

(
DH (Ã,CÃ)+DH (B̃,CB̃)

)
3

f5(x, y) = 2xy − 1 S H5(Ã, B̃) = 2DH (Ã,CÃ)·DH (B̃,CB̃)
− 1

DE(Ã, B̃)

f1(x, y) =
x+y
2 S E1(Ã, B̃) =

DE (Ã,CÃ )+DE (B̃,CB̃)

2

f2(x, y) = sin (x+y)π
4 S E2(Ã, B̃) = sin

(
DE (Ã,CÃ )+DE (B̃,CB̃)

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) S E3(Ã, B̃) =

k
√

DE (Ã,CÃ)+DE (B̃,CB̃)

2 (k > 1)

f4(x, y) = logx+y+1
3 S E4(Ã, B̃) = log

(
DE (Ã,CÃ)+DE (B̃,CB̃)

)
3

f5(x, y) = 2xy − 1 S E5(Ã, B̃) = 2DE (Ã,CÃ)·DE (B̃,CB̃)
− 1

DM(Ã, B̃)

f1(x, y) =
x+y
2 S M1(Ã, B̃) =

DM (Ã,CÃ )+DM (B̃,CB̃)

2

f2(x, y) = sin (x+y)π
4 S M2(Ã, B̃) = sin

(
DM (Ã,CÃ)+DM (B̃,CB̃)

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) S M3(Ã, B̃) =

k
√

DM (Ã,CÃ )+DM (B̃,CB̃)

2 (k > 1)

f4(x, y) = logx+y+1
3 S M4(Ã, B̃) = log

(
DM (Ã,CÃ )+DM (B̃,CB̃)

)
3

f5(x, y) = 2xy − 1 S M5(Ã, B̃) = 2DM (Ã,CÃ )·DM (B̃,CB̃)
− 1

DHH(Ã, B̃)

f1(x, y) =
x+y
2 S HH1(Ã, B̃) =

DHH (Ã,CÃ)+DHH (B̃,CB̃)

2

f2(x, y) = sin (x+y)π
4 S HH2(Ã, B̃) = sin

(
DHH (Ã,CÃ )+DHH (B̃,CB̃)

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) S HH3(Ã, B̃) =

k
√

DHH (Ã,CÃ )+DHH (B̃,CB̃)

2 (k > 1)

f4(x, y) = logx+y+1
3 S HH4(Ã, B̃) = log

(
DHH (Ã,CÃ )+DHH (B̃,CB̃)

)
3

f5(x, y) = 2xy − 1 S HH5(Ã, B̃) = 2DHH (Ã,CÃ )·DHH (B̃,CB̃)
− 1

Dh(Ã, B̃)

f1(x, y) =
x+y
2 S h1(Ã, B̃) =

Dh(Ã,CÃ)+Dh (B̃,CB̃)

2

f2(x, y) = sin (x+y)π
4 S h2(Ã, B̃) = sin

(
Dh (Ã,CÃ )+Dh (B̃,CB̃)

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) S h3(Ã, B̃) =

k
√

Dh (Ã,CÃ )+Dh (B̃,CB̃)

2 (k > 1)

f4(x, y) = logx+y+1
3 S h4(Ã, B̃) = log

(
Dh (Ã,CÃ )+Dh (B̃,CB̃)

)
3

f5(x, y) = 2xy − 1 S h5(Ã, B̃) = 2Dh (Ã,CÃ )·Dh (B̃,CB̃)
− 1

3.2. Construct a new knowledge measure and entropy on IVIFSs

The knowledge content of IVIFSs is typically characterized through knowledge measures, with
entropy serving as a pivotal quantifying the uncertainty associated with fuzzy variables. In this section,
we established an approach of developing similarity measures to devise knowledge measures and
entropy for IVIFSs.

Theorem 3.6. Let f be a function defined in Definition 3.3 and D be an aforementioned distance in
Definition 2.3 for IVIFSs. For any Ã ∈ IVIFS (X),

K(Ã) = 1 − f (D(Ã,CÃ),D(Ãc,CÃc))

AIMS Mathematics Volume 10, Issue 2, 2974–2997.
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is a knowledge measure on IVIFS (X).

Proof. In the following we will show that the knowledge measure we construct satisfies the four
conditions in Definition 2.4.

(KD1): Let K(Ã) = 1, then consider the definition of the function f , that is, D(Ã,CÃ) =

D(Ãc,CÃc) = 0. Therefore, by Definition 2.3 and Corollary 3.2(1), it is easily obtained that Ã ∈ P(X).
(KD2): It is not difficult to see that if K(Ã) = 0, then D(Ã,CÃ) = D(Ãc,CÃc) = 1, and according to

the definition of the distance D,

µL
Ã(x) = µU

Ã (x) = νL
Ã(x) = νU

Ã (x) = 0,

can be obtained. Thus, πÃ(x) = [1, 1].
(KD3): Assume that Ã ⊆ B̃ for µL

B̃
(x) ≤ νL

B̃
(x) and µU

B̃
(x) ≤ νU

B̃
(x). It is certain that

µL
Ã(x) ≤ µL

B̃(x) ≤ νL
B̃(x) ≤ νL

Ã(x), µU
Ã (x) ≤ µU

B̃ (x) ≤ νU
B̃ (x) ≤ νU

Ã (x),

and from the notion of the closest crisp set, it can be derived that

µL
CÃ

(x) = µU
CÃ

(x) = µL
CB̃

(x) = µU
CB̃

(x) = 0,

νL
CÃ

(x) = νU
CÃ

(x) = νL
CB̃

(x) = νU
CB̃

(x) = 1.

Therefore, let Ñ =< [0, 0], [1, 1] >, and if Ñ ⊆ Ã ⊆ B̃, then

D(Ã, Ñ) = D([µL
Ã(x), µU

Ã (x)], [νL
Ã(x), νU

Ã (x)], [0, 0], [1, 1])

≤ D(B̃, Ñ) = D([µL
B̃(x), µU

B̃ (x)], [νL
B̃(x), νU

B̃ (x)], [0, 0], [1, 1]).

Similarly, it is obvious that D(Ãc,CÃc) ≤ D(B̃c,CB̃c). Then, by considering the function f to be
component-wise increasing, there is

f (D(Ã,CÃ),D(Ãc,CÃc)) ≤ f (D(B̃,CB̃),D(B̃c,CB̃c)).

Hence, it is easy to know that K(Ã) ≥ K(B̃). On the other hand, assume that Ã ⊇ B̃ for µL
B̃
(x) ≥ νL

B̃
(x)

and µU
B̃

(x) ≥ νU
B̃

(x). K(Ã) ≥ K(B̃) can also be obtained.
(KD4): In order to verify K(Ã) = K(Ãc), simply prove that

f (D(Ã,CÃ),D(Ãc,CÃc)) = f (D(Ãc,CÃc),D(Ã,CÃ)),

which is obvious from the definition of the function f .
Next, a series of knowledge measures can be obtained by using different distance measures and

different expressions of function f . They are shown in Table 3.
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Table 3. Different knowledge measures

Distance measures Conversion functions Knowledge measures

DH(Ã, B̃)

f1(x, y) =
x+y
2 KH1(Ã) = 1 −

DH (Ã,CÃ )+DH (Ãc ,CÃc )

2

f2(x, y) = sin (x+y)π
4 KH2(Ã) = 1 − sin

(
DH (Ã,CÃ)+DH (Ãc ,CÃc )

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) KH3(Ã) = 1 −

k
√

DH (Ã,CÃ )+DH (Ãc ,CÃc )

2 (k > 1)

f4(x, y) = logx+y+1
3 KH4(Ã) = 1 − log

(
DH (Ã,CÃ )+DH (Ãc ,CÃc )

)
3

f5(x, y) = 2xy − 1 KH5(Ã) = 2 − 2DH (Ã,CÃ )·DH (Ãc ,CÃc )

DE(Ã, B̃)

f1(x, y) =
x+y
2 KE1(Ã) = 1 −

DE (Ã,CÃ )+DE (Ãc ,CÃc )

2

f2(x, y) = sin (x+y)π
4 KE2(Ã) = 1 − sin

(
DE (Ã,CÃ)+DE (Ãc ,CÃc )

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) KE3(Ã) = 1 −

k
√

DE (Ã,CÃ )+DE (Ãc ,CÃc )

2 (k > 1)

f4(x, y) = logx+y+1
3 KE4(Ã) = 1 − log

(
DE (Ã,CÃ )+DE (Ãc ,CÃc )

)
3

f5(x, y) = 2xy − 1 KE5(Ã) = 2 − 2DE (Ã,CÃ )·DE (Ãc ,CÃc )

DM(Ã, B̃)

f1(x, y) =
x+y
2 KM1(Ã) = 1 −

DM (Ã,CÃ)+DM (Ãc ,CÃc )

2

f2(x, y) = sin (x+y)π
4 KM2(Ã) = 1 − sin

(
DM (Ã,CÃ )+DM (Ãc ,CÃc )

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) KM3(Ã) = 1 −

k
√

DM (Ã,CÃ )+DM (Ãc ,CÃc )

2 (k > 1)

f4(x, y) = logx+y+1
3 KM4(Ã) = 1 − log

(
DM (Ã,CÃ )+DM (Ãc ,CÃc )

)
3

f5(x, y) = 2xy − 1 KM5(Ã) = 2 − 2DM (Ã,CÃ )·DM (Ãc ,CÃc )

DHH(Ã, B̃)

f1(x, y) =
x+y
2 KHH1(Ã) = 1 −

DHH (Ã,CÃ )+DHH (Ãc ,CÃc )

2

f2(x, y) = sin (x+y)π
4 KHH2(Ã, B̃) = sin

(
DHH (Ã,CÃ )+DHH (B̃,CB̃)

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) KHH3(Ã, B̃) =

k
√

DHH (Ã,CÃ )+DHH (B̃,CB̃)

2 (k > 1)

f4(x, y) = logx+y+1
3 KHH4(Ã) = 1 − log

(
DHH (Ã,CÃ )+DHH (Ãc ,CÃc )

)
3

f5(x, y) = 2xy − 1 KHH5(Ã) = 2 − 2DHH (Ã,CÃ)·DHH (Ãc ,CÃc )

Dh(Ã, B̃)

f1(x, y) =
x+y
2 Kh1(Ã) = 1 −

Dh (Ã,CÃ )+Dh(Ãc ,CÃc )

2

f2(x, y) = sin (x+y)π
4 Kh2(Ã) = 1 − sin

(
Dh (Ã,CÃ )+Dh (Ãc ,CÃc )

)
π

4

f3(x, y) = k
√

x+y
2 (k > 1) Kh3(Ã) = 1 −

k
√

Dh(Ã,CÃ)+Dh (Ãc ,CÃc )

2 (k > 1)

f4(x, y) = logx+y+1
3 Kh4(Ã) = 1 − log

(
Dh(Ã,CÃ)+Dh (Ãc ,CÃc )

)
3

f5(x, y) = 2xy − 1 Kh5(Ã) = 2 − 2Dh (Ã,CÃ )·Dh (Ãc ,CÃc )

Subsequently, entropy from the perspective of knowledge measures for IVIFSs will be explored.

Corollary 3.7. Let K be a knowledge measure induced by the aforementioned function f for IVIFSs,
then for any Ã ∈ IVIFS (X),

E(Ã) = 1 − K(Ã)

is an entropy for IVIFSs.

Based on Corollary 3.7, it is straightforward to deduce the existence of a distinct numerical
correlation between entropy and the newly devised knowledge metric. Put simply, within the context
of an IVIFS, a system with a lower entropy value may consistently possess a greater quantity of
knowledge, provided that it adheres to the prescribed axioms.
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By carefully examining the intricate relationship between the recently introduced knowledge
measure and entropy, we can effortlessly deduce certain entropies.

Upon scrutinizing the information measures previously discussed for IVIFSs, it becomes evident
that they share certain linkages, which we shall subsequently elaborate in the form of corollaries.

Corollary 3.8. Let S be an aforementioned similarity measure in Theorem 3.5 for IVIFSs, and for any
Ã ∈ IVIFS (X),

K(Ã) = 1 − S (Ã, Ãc)

is a knowledge measure for IVIFSs.

Corollary 3.9. Let S be an aforementioned similarity measure in Theorem 3.5 for IVIFSs; assuming
that Ã ∈ IVIFS (X),

E(Ã) = S (Ã, Ãc)

is an entropy for IVIFSs.

Regarding the construction method and transformation relationship of information measures, there
are some important issues to be further discussed below, and these discussions pave the way for the
subsequent research.

(1) Drawing upon the axiomatic definition of IVIFSs, the intricate relationship among similarity
measures, knowledge measures, and the entropy of IVIFSs is comprehensively formulated in general
terms, accompanied by explicit expressions. Notably, several key findings are presented in the form of
theorems, which underscore the existence of a profound connection between the information measures
associated with IVIFSs.

(2) Among these theorems, through the axiomatic definition of IVIFS, we can easily convert the
above information measures, i.e., similarity measure, knowledge measure, and entropy, to each other.
Specifically, we consider that the similarity measure and knowledge measure of IVIFS can be converted
to each other, and, finally, based on the general relationship between knowledge measure and entropy,
the entropy is constructed with the similarity measure, so that the larger the similarity measure, the less
the amount of knowledge it contains, and the larger the entropy.

(3) The result of Corollary 3.7 in this paper shows that there is a dyadic relationship between entropy
and knowledge measure, which paves the way for continuing to explore whether there is a dyadic
relationship between entropy and knowledge measure for fuzzy sets and their extended forms.

4. The applications of knowledge and similarity measures

This section employs the recently proposed knowledge measure to tackle multi-attribute decision-
making (MADM) problems under conditions of unknown weights, while utilizing the novel similarity
measure to address pattern recognition issues within the framework of IVIFSs. The derived outcomes
are subsequently contrasted with several established measures for comprehensive analysis.

4.1. The application of knowledge measure in investment decision

4.1.1. An evaluation approach of MADM based on knowledge measure

In the complex process of MADM, where the weights of individual attributes remain elusive,
this subsection introduces a methodology for determining these weights through the utilization of
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knowledge measures techniques.
Construct an MADM process that examines m alternatives Ã = {Ã1, Ã2, . . . , Ãm} using n attributes

C = {C1,C2, . . . ,Cn}. Suppose that w = (w1,w2, . . . ,wn)T is the weight vector of attributes, where
0 ≤ w j ≤ 1 and

∑n
j=1 w j = 1, j = 1, 2, . . . , n.

The MADM problem of IVIFSs can be described in the matrix form below:

R =



C1 C2 · · · Cn

Ã1 ã11 ã12 · · · ã1n

Ã2 ã21 ã22 · · · ã2n
...

...
...

. . .
...

Ãm ãm1 ãm2 · · · ãmn

, (4.1)

where ãi j = 〈(x, [µi j
ãL(x), µi j

ãU(x)], [νi j
ãL(x), νi j

ãU(x)])|x ∈ X〉(i = 1, 2, . . . ,m; j = 1, 2, . . . , n) indicates
the assessment of an expert corresponding to attribute C j( j = 1, 2, . . . , n) to evaluate the alternative
Ãi(i = 1, 2, . . . ,m).

Step 1. By defining the knowledge measure of IVIFSs using KH1, the knowledge measure based
decision matrix Q = (k̃i j)m×n is generated from the decision matrix R above. The matrix Q = (k̃i j)m×n is
shown below.

Q =



C1 C2 · · · Cn

Ã1 k̃11 k̃12 · · · k̃1n

Ã2 k̃21 k̃22 · · · k̃2n
...

...
...

. . .
...

Ãm k̃m1 k̃m2 · · · k̃mn

, (4.2)

where k̃i j is the knowledge measure corresponding to each ãi j.
Step 2. The following formula can be used to construct the attribute weights based on the knowledge

measure when the attribute weights w j are completely unknown:

w j =

∑m
i=1 k̃i j∑n

j=1
∑m

i=1 k̃i j
, (4.3)

where 0 ≤ w j ≤ 1 and
∑n

j=1 w j = 1.
Step 3. In an interval-valued intuitionistic fuzzy environment, the interval-valued intuitionistic

fuzzy arithmetic mean operator [3] is used to calculate the weighted aggregation value of each
alternative Ãi after the weights of each attribute have been determined and the operator is expressed as
follows:

Zi =〈[µL
i , µ

U
i ], [νL

i , ν
U
i ]〉

=〈[1 −
n∏

j=1

(
1 − µi j

ãL(x)
)w j

, 1 −
n∏

j=1

(
1 − µi j

ãU(x)
)w j

],

[
n∏

j=1

(
ν

i j
ãL(x)

)w j
,

n∏
j=1

(
ν

i j
ãU(x)

)w j
]〉,

(4.4)

where i = 1, 2, . . . ,m; j = 1, 2, . . . , n. The calculated Zi is an IVIFS.
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Step 4. In order to differentiate between the alternatives, the alternatives will be ranked below by
calculating a score function for each alternative, with the following equation:

φ (Zi) =
λ(µL

i + µU
i )

(1 − λ)(νL
i + νU

i )
, i = 1, 2, ...,m, λ ∈ (0, 1). (4.5)

Subsequently, arrange the alternatives in a nonincreasing sequence of score function, the larger the
score function of the alternative, the better the alternative is. In order to realize the whole decision-
making process, Figure 5 describes a framework.

Figure 5. A methodological framework for solving MADM problems with unknown weights
based on knowledge measures.

4.1.2. Investment case

In this section, a practical case study, adapted from [5], will be presented to demonstrate the
application of the newly introduced knowledge measure in addressing MADM problems involving
unknown weights.

An investment company is about to make an investment, and the four possible choices for the
investment capital are (1) Ã1, a car company; (2) Ã2, a food company; (3) Ã3, a computer company;
and (4) Ã4, a branch office. The investment firm is trying to decide which of these is the best option.
The following four attributes must also be taken into consideration by the investment company when
making its choice: C1: Risk analysis; C2: Growth analysis; C3: Environmental impact analysis; and
C4: Social and political impact analysis.

Let w = (w1,w2,w3,w4)T be the weight vector of the attributes, which is completely unknown.
Additionally, the ratings of the alternatives over the attributes are listed in the following Table 4.
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Table 4. Rating of alternatives in terms of attributes.

C1 C2 C3 C4

Ã1 〈[0.1, 0.2], [0.1, 0.2]〉 〈[0.25, 0.5], [0.25, 0.5]〉 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.5, 0.5], [0.5, 0.5]〉

Ã2 〈[0.5, 0.6], [0.2, 0.3]〉 〈[0.2, 0.5], [0.2, 0.5]〉 〈[0.0, 0.0], [0.25, 0.75]〉 〈[0.3, 0.4], [0.4, 0.6]〉

Ã3 〈[0.25, 0.5], [0.25, 0.5]〉 〈[0.2, 0.4], [0.2, 0.4]〉 〈[0.2, 0.3], [0.4, 0.7]〉 〈[0.2, 0.3], [0.5, 0.6]〉

Ã4 〈[0.2, 0.3], [0.6, 0.7]〉 〈[0.4, 0.7], [0.2, 0.3]〉 〈[0.2, 0.5], [0.2, 0.5]〉 〈[0.5, 0.7], [0.1, 0.3]〉

Step 1. Based on KH1, the knowledge measure matrix is calculated as follows:

Q =


C1 C2 C3 C4

Ã1 0.5 0.5 0.475 0.5
Ã2 0.65 0.5 0.75 0.575
Ã3 0.5 0.5 0.65 0.65
Ã4 0.7 0.65 0.5 0.7

. (4.6)

Step 2. Next, the weight of attributes are calculated by applying Eq (4.3):

w1 = 0.2527,w2 = 0.2312,w3 = 0.2554,w4 = 0.2608.

Step 3. The interval-valued intuitionistic fuzzy weighted average operator can be computed by
utilizing the formula presented in Eq (4.4). As a result, the combined results of the schemes are
obtained as follows:

Z1 = 〈[0.3326, 0.4370], [0.2486, 0.3966]〉; Z2 = 〈[0.2737, 0.4085], [0.2536, 0.5111]〉;

Z3 = 〈[0.2129, 0.3796], [0.3207, 0.5426]〉; Z4 = 〈[0.3379, 0.5766], [0.2203, 0.4234]〉.

Step 4. The scoring values of the alternatives are calculated with Eq (4.5) when λ = 1
2 as follows:

φ(Z1) = 1.1922, φ(Z2) = 0.8921, φ(Z3) = 0.6863, φ(Z4) = 1.4207.

Therefore, the sorting order is Ã4 � Ã1 � Ã2 � Ã3, and the optimal alternative is Ã4. Furthermore,
to underscore the practicality of the newly introduced knowledge measure in addressing the MADM
problem, we contrast the derived outcomes with diverse entropy and knowledge measures. Evidently,
the majority of the ranking outcomes closely align with our findings, as evident from the subsequent
Table 5 and Figure 6. Notably, Ã4 emerges as the optimal solution.

Table 5. Comparison results of methods.

Methods Weighting vector Alternatives ranking

EJPCZ(E1) [29] w = (0.2274, 0.2860, 0.2370, 0.2496)T Ã4 � Ã1 � Ã2 � Ã3

ELZX(E2) [30] w = (0.2274, 0.2860, 0.2370, 0.2496)T Ã4 � Ã1 � Ã2 � Ã3

EWWZ(E3) [31] w = (0.2274, 0.2860, 0.2370, 0.2496)T Ã4 � Ã1 � Ã2 � Ã3

EZJJL(E4) [32] w = (0.2366, 0.3159, 0.1859, 0.2616)T Ã4 � Ã1 � Ã2 � Ã3

Das et al. [27] w = (0.2506, 0.2211, 0.2472, 0.2811)T Ã4 � Ã1 � Ã2 � Ã3

Proposed method w = (0.2527, 0.2312, 0.2554, 0.2608)T Ã4 � Ã1 � Ã2 � Ã3
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Figure 6. Comparison results of methods.

The aforementioned examples demonstrate the remarkable effectiveness of applying knowledge
measures to tackle MADM problems that involve unknown weights. Additionally, they underscore the
usefulness and practical applicability of the newly introduced knowledge measures in our daily lives.

4.1.3. Sensitivity analysis

It is evident that the parameter λ in Eq (4.5) can be interpreted as the weight of membership degree,
and its magnitude significantly impacts the ultimate ranking of alternatives. Sensitivity analysis is
performed by selecting various λ values. Table 6 presents the score function values φ(Zi) and the
rankings of each alternative, which are calculated based on different λ values.

We randomly select 9 values for λ within the interval (0, 1), and it is evident that regardless of
how λ varies, the ranking of alternatives remains consistent throughout Table 6. Additionally, we will
visualize the data in Figure 7, which illustrates that the ultimate ranking remains unaltered despite
changes in λ. As evident from Table 6, when λ > 0.5, the score function values of the alternative
solutions exhibit a substantial increase, primarily due to a greater preference for membership degree
under such conditions.
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Table 6. The score function value φ(Zi) and alternatives order.

φ(Z1) φ(Z2) φ(Z3) φ(Z4) Alternatives order

λ = 0.1 0.1325 0.0991 0.0763 0.1579 Ã4 � Ã1 � Ã2 � Ã3

λ = 0.2 0.2980 0.2230 0.1716 0.3552 Ã4 � Ã1 � Ã2 � Ã3

λ = 0.3 0.5109 0.3823 0.2941 0.6089 Ã4 � Ã1 � Ã2 � Ã3

λ = 0.4 0.7948 0.5947 0.4576 0.9472 Ã4 � Ã1 � Ã2 � Ã3

λ = 0.5 1.1922 0.8920 0.6863 1.4207 Ã4 � Ã1 � Ã2 � Ã3

λ = 0.6 1.7882 1.3380 1.0295 2.1311 Ã4 � Ã1 � Ã2 � Ã3

λ = 0.7 2.7817 2.0813 1.6015 3.3150 Ã4 � Ã1 � Ã2 � Ã3

λ = 0.8 4.7686 3.5680 2.7454 5.6829 Ã4 � Ã1 � Ã2 � Ã3

λ = 0.9 10.7295 8.0280 6.1771 12.7865 Ã4 � Ã1 � Ã2 � Ã3

Figure 7. The change of the score function of the alternatives under different λ values.

To clearly demonstrate the disparities among alternative solutions as λ escalates, consider the
following definitions: T1 = φ(Z4) − φ(Z1),T2 = φ(Z1) − φ(Z2),T3 = φ(Z2) − φ(Z3). It can be found that
with the increase of λ, the discrimination between the alternatives increases in Table 7 and Figure 8.
That is to say, with the increase of λ, the score function φ(Zi) can better distinguish the alternatives.
Therefore, the ranking results should be minimally influenced by subjective factors, which further
demonstrates the stability of the method proposed in this paper.
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Table 7. Discrimination between alternatives.

T1 T2 T3

λ = 0.1 0.0254 0.0334 0.0229
λ = 0.2 0.0571 0.0750 0.0514
λ = 0.3 0.0980 0.1286 0.0881
λ = 0.4 0.1524 0.2001 0.1371
λ = 0.5 0.2286 0.3002 0.2057
λ = 0.6 0.3428 0.4502 0.3085
λ = 0.7 0.5333 0.7004 0.4799
λ = 0.8 0.9143 1.2007 0.8226
λ = 0.9 2.0571 2.7015 1.8509

Figure 8. Discrimination between alternatives under different λ values.

4.1.4. Interval-valued intuitionistic fuzzy decision support system with application to COVID-19
healthcare facilities

Novel coronavirus pneumonia (COVID-19) is an acute respiratory infectious disease caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since its outbreak in Pakistan, the
COVID-19 situation there has garnered widespread attention. The epidemic’s spread in Pakistan has
exhibited certain fluctuations, with a gradual rise in confirmed cases, exerting a profound impact on
public health, socioeconomic conditions, and the daily lives of citizens.

This paper refers to the example of healthcare facilities in Khyber Pakhtunkhwa, Pakistan in [33].
There is currently a review panel comprising three experts, e1, e2, and e3, tasked with evaluating
four hospitals Al(l = 1, 2, 3, 4) in Khyber Pakhtunkhwa based on four attributes: c1: Reverse
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Transcription-Polymerase Chain Reaction Facilities (RT-PCR), c2: Personal protective equipment
(PPE), c3: Shortage of Isolation Ward (SIW), c4: Hight Qualified Staff (HQS).

Next, the specific steps of the decision-making method are as follows.
Step 1. We construct interval valued intuitionistic fuzzy decision matrices, as shown in Tables 8–10.

Table 8. Interval-valued intuitionistic fuzzy decision matrix of e1.

c1 c2 c3 c4

A1 〈[0.3, 0.4], [0.1, 0.3]〉 〈[0.2, 0.5], [0.2, 0.3]〉 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.1, 0.3], [0.3, 0.5]〉

A2 〈[0.1, 0.3], [0.3, 0.4]〉 〈[0.3, 0.4], [0.1, 0.4]〉 〈[0.2, 0.4], [0.1, 0.2]〉 〈[0.3, 0.4], [0.1, 0.2]〉

A3 〈[0.3, 0.4], [0.1, 0.2]〉 〈[0.2, 0.4], [0.1, 0.2]〉 〈[0.3, 0.4], [0.1, 0.4]〉 〈[0.1, 0.3], [0.3, 0.4]〉

A4 〈[0.1, 0.3], [0.3, 0.5]〉 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.2, 0.5], [0.2, 0.3]〉 〈[0.3, 0.4], [0.1, 0.3]〉

Table 9. Interval-valued intuitionistic fuzzy decision matrix of e2.

c1 c2 c3 c4

A1 〈[0.1, 0.3], [0.3, 0.5]〉 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.2, 0.5], [0.2, 0.3]〉 〈[0.2, 0.5], [0.2, 0.3]〉

A2 〈[0.3, 0.4], [0.1, 0.2]〉 〈[0.2, 0.4], [0.1, 0.2]〉 〈[0.3, 0.4], [0.1, 0.4]〉 〈[0.3, 0.4], [0.1, 0.4]〉

A3 〈[0.1, 0.3], [0.3, 0.4]〉 〈[0.3, 0.4], [0.1, 0.4]〉 〈[0.2, 0.4], [0.1, 0.2]〉 〈[0.2, 0.4], [0.1, 0.2]〉

A4 〈[0.3, 0.4], [0.1, 0.3]〉 〈[0.2, 0.5], [0.2, 0.3]〉 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.4, 0.5], [0.3, 0.5]〉

Table 10. Interval-valued intuitionistic fuzzy decision matrix of e3.

c1 c2 c3 c4

A1 〈[0.2, 0.5], [0.2, 0.3]〉 〈[0.3, 0.5], [0.2, 0.3]〉 〈[0.1, 0.3], [0.3, 0.5]〉 〈[0.4, 0.5], [0.3, 0.5]〉

A2 〈[0.3, 0.4], [0.1, 0.4]〉 〈[0.1, 0.4], [0.2, 0.4]〉 〈[0.3, 0.4], [0.1, 0.2]〉 〈[0.2, 0.4], [0.1, 0.2]〉

A3 〈[0.2, 0.4], [0.1, 0.2]〉 〈[0.3, 0.4], [0.1, 0.2]〉 〈[0.1, 0.3], [0.3, 0.4]〉 〈[0.3, 0.4], [0.1, 0.4]〉

A4 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.1, 0.5], [0.2, 0.5]〉 〈[0.3, 0.4], [0.1, 0.3]〉 〈[0.2, 0.5], [0.2, 0.3]〉

Step 2. By utilizing Kh1 to define the knowledge measure of IVIFSs, a decision matrix Qk(k =

1, 2, 3), grounded in this knowledge measure, is derived from the decision matrix. The matrix Qk(k =

1, 2, 3) is presented as follows.

Q1 =


c1 c2 c3 c4

A1 0.6 0.8 0.6 0.7
A2 0.7 0.7 0.8 0.7
A3 0.7 0.8 0.7 0.7
A4 0.7 0.6 0.8 0.7

.
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Q2 =


c1 c2 c3 c4

A1 0.7 0.6 0.8 0.8
A2 0.7 0.8 0.7 0.7
A3 0.7 0.7 0.8 0.8
A4 0.7 0.8 0.6 0.6

.

Q3 =


c1 c2 c3 c4

A1 0.8 0.7 0.7 0.6
A2 0.7 0.8 0.7 0.8
A3 0.8 0.7 0.7 0.7
A4 0.6 0.9 0.7 0.8

.
Step 3. We assign equal weights to the three experts and aggregate their knowledge measure

decision matrices into one using the formula below:

Q̄ =
Q1 + Q2 + Q3

3
. (4.7)

Obtain the following knowledge measure aggregation matrix Q̄:

Q̄ =


c1 c2 c3 c4

A1 0.7 0.7 0.7 0.7
A2 0.7 0.77 0.73 0.73
A3 0.73 0.73 0.73 0.73
A4 0.67 0.77 0.7 0.7

.
Step 4. Determine attribute weights by applying Eq (4.3).

w1 = 0.2437,w2 = 0.2585,w3 = 0.2489,w4 = 0.2489.

Step 5. Employ Eq (4.4) to apply weights and aggregate the attributes of the alternative (Table 11).

Table 11. Weighted aggregation of alternative attributes.

e1 e2 e3

z1 〈[0.2577, 0.4316], [0.2067, 0.3869]〉 〈[0.2357, 0.4573], [0.2352, 0.3877]〉 〈[0.2591, 0.4563], [0.2447, 0.3869]〉

z2 〈[0.2306, 0.3770], [0.1307, 0.2833]〉 〈[0.2754, 0.4000], [0.1000, 0.2824]〉 〈[0.2278, 0.4000], [0.1196, 0.2833]〉

z3 〈[0.2286, 0.3765], [0.1314, 0.2824]〉 〈[0.2046, 0.3770], [0.1307, 0.2833]〉 〈[0.2302, 0.3765], [0.1314, 0.2824]〉

z4 〈[0.2607, 0.4321], [0.2063, 0.3877]〉 〈[0.3289, 0.4773], [0.2067, 0.3869]〉 〈[0.2562, 0.4768], [0.1858, 0.3877]〉

Step 6. When λ = 1
2 , the score values by each expert to the alternative are calculated using Eq (4.5)

as shown in Table 12.
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Table 12. The score values by each expert

ϕ1 ϕ2 ϕ3 ϕ4

e1 1.1613 1.4679 1.4623 1.1662

e2 1.0949 1.7662 1.4051 1.3583

e3 1.1328 1.5581 1.4660 1.2781

Step 7. Aggregate the score values of three experts to obtain the final ranking of alternative
solutions.

ϕ̄1 = 1.1297, ϕ̄2 = 1.5974, ϕ̄3 = 1.4445, ϕ̄4 = 1.2675.

It is not hard to observe that ϕ̄2 > ϕ̄3 > ϕ̄4 > ϕ̄1. Thus, yielding the alternative ranking result:
A2 � A3 � A4 � A1. This is consistent with the result in [33], which also demonstrates the effectiveness
and practicality of the method proposed in this paper.

4.2. Application of similarity measure in pattern recognition

4.2.1. The method of pattern recognition

Suppose X is a finite universe of discourse. There are m patterns which are denoted by IVIFSs

M̃ j ={〈x1, [µL
M̃ j

(x1), µU
M̃ j

(x1)], [νL
M̃ j

(x1), νU
M̃ j

(x1)]〉, ...,

〈xn, [µL
M̃ j

(xn), µU
M̃ j

(xn)], [νL
M̃ j

(xn), νU
M̃ j

(xn)]〉 | x ∈ X} ( j = 1, 2, ...,m)

and a test sample that needs to be categorized exists, which is denoted by IVIFS

B̃ ={〈x1, [µL
B̃(x1), µU

B̃ (x1)], [νL
B̃(x1), νU

B̃ (x1)]〉, ...,

〈xn, [µL
B̃(xn), µU

B̃ (xn)], [νL
B̃(xn), νU

B̃ (xn)]〉 | x ∈ X}.

The following is the recognition process:
(a) Compute the similarity measure S (M̃ j, B̃) between M̃ j( j = 1, ...,m) and B̃ with S H1 and S h1.
(b) Sort S (M̃ j, B̃) in ascending order, where a larger value of S (M̃ j, B̃) indicates a closer proximity

of B̃ to category M̃ j.

4.2.2. Tackling medical diagnosis with pattern recognition methods

A diverse array of scholars have proposed numerous approaches to tackle medical diagnosis from
varying perspectives. In this section, we employ pattern recognition techniques to address the medical
diagnosis challenge: the collection of symptoms serves as the discourse universe, the patient functions
as an unidentified test specimen, and the various diseases correspond to multiple modalities. The
objective is to categorize patients into distinct groups based on their respective diseases.

Suppose X = {x1(Temperature), x2(Cough), x3(Headache), x4(Stomach pain)} is a group of
symptoms and M̃ = {M̃1(Viral fever), M̃2(Typhoid), M̃3(Pneumonia), M̃4(Stomach problem)} is a
group of the diseases. Then, the disease-symptom matrix expressed by IVIFSs is shown in Table 13
and data is derived from [16].
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Table 13. The disease-symptom matrix.

x1(Temperature) x2(Cough) x3(Headache) x4(Stomach pain)

M̃1 〈[0.8, 0.9], [0.0, 0.1]〉 〈[0.7, 0.8], [0.1, 0.2]〉 〈[0.5, 0.6], [0.2, 0.3]〉 〈[0.6, 0.8], [0.1, 0.2]〉

M̃2 〈[0.5, 0.6], [0.1, 0.3]〉 〈[0.8, 0.9], [0.0, 0.1]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0.4, 0.6], [0.1, 0.2]〉

M̃3 〈[0.7, 0.8], [0.1, 0.2]〉 〈[0.7, 0.9], [0.0, 0.1]〉 〈[0.4, 0.6], [0.2, 0.4]〉 〈[0.3, 0.5], [0.2, 0.4]〉

M̃4 〈[0.8, 0.9], [0.0, 0.1]〉 〈[0.7, 0.8], [0.1, 0.2]〉 〈[0.7, 0.9], [0.0, 0.1]〉 〈[0.8, 0.9], [0.0, 0.1]〉

Let the patient B be expressed as:

B ={〈x1, [0.4, 0.5], [0.1, 0.2]〉, 〈x2, [0.7, 0.8], [0.1, 0.2]〉,
〈x3, [0.9, 0.9], [0.0, 0.1]〉, 〈x4, [0.3, 0.5], [0.2, 0.4]〉}.

The aim is to categorize patient B into one of diseases M̃1, M̃2, M̃3, M̃4. We can then obtain the
following results on IVIFSs , as shown in Table 14.

Table 14. Comparison of results with different similarity measures.

S (M̃1, B) S (M̃2, B) S (M̃3, B) S (M̃4, B) Recognition Result

S 1 [11] 0.73 0.80 0.78 0.73 M̃2

S D [6] 0.82 0.91 0.86 0.84 M̃2

S H1 0.32 0.36 0.33 0.28 M̃2

S h1 0.38 0.45 0.43 0.34 M̃2

We may determine that there is the most similarity between M̃2 and B by taking into account the
pattern recognition principle of IVIFSs, but the similarity measure S 1 is unable to determine which of
M̃1 and M̃4 is greater. Furthermore, the newly suggested similarity measures are more practical and
capable of resolving this point. In addition, by using the similarity measures S H1 and S h1 proposed in
this paper, the same recognition results can be obtained. Hence, based on the recognition principle,
we can classify patient B as suffering from disease M̃2, thereby conclusively diagnosing them with
typhoid illness.

5. Conclusions

This paper introduces the axiomatic definition of the closest crisp set for IVIFSs, along with its
pertinent properties. Subsequently, leveraging the distance measure to the closest crisp set, a novel
knowledge measure and entropy for IVIFSs are presented. Furthermore, several theorems are proven,
and the interplay between knowledge measures and entropy is examined. Ultimately, the efficacy of the
proposed method is validated through two concrete examples: The application of knowledge measures
in MADM and similarity measures in pattern recognition.

In the future, we will persist in exploring the application of IVIFS information measures in other
domains and strive to develop superior and more rational models for the mutual conversion of these
information measures.
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