
 

 

AIMS Mathematics, 10(2): 2958–2973. 

DOI: 10.3934/math.2025137 

Received: 21 September 2024 

Revised: 12 January 2025 

Accepted: 17 January 2025 

Published: 17 February 2025 

https://www.aimspress.com/journal/Math 

 

Research article 

Modeling default risk charge (DRC) with intensity probability theory 

Badreddine Slime1,2,* and Jaspreet Singh Sahni 3,* 

1 Applied Mathematics University of Technology of Compiègne Alliance Sorbonne University, 

Compiègne, France 
2 Market and Treasury Credit Risk Modeling and Analytics, Emirates National Bank of Dubai, 

Dubai, UAE 
3 Market and Treasury Credit Risk, Emirates National Bank of Dubai, Dubai, UAE 

* Correspondence: Email: BadreddineS@emiratesenbd.com, JaspreetSA@emiratesnbd.com. 

Abstract: The latest regulation [1] of the fundamental review of the trading book (FRTB) proposes 

replacing incremental risk charge (IRC) with default risk charge (DRC). Accordingly, many studies 

were implemented to analyze this change and its impact. Current modeling practices test several 

assumptions during conception and implementation. However, these assumptions impact model 

output and sometimes do not reflect market behavior. Two common assumptions used in DRC 

modeling in the literature are: (i) the default is implemented in a structural model (e.g., the Merton 

model) and (ii) correlations between issuers follow the Gaussian copula. Notably, the Merton model 

does not pick up defaults for positions with a very small probability of default or instant default. 

Therefore, the structural approach results in a model risk that is not conservative enough to cover the 

DRC risk. In this paper, we compared an intensity model (CreditRisk+) to a structural model (Merton) 

to assess their impact on DRC and quantify the risk generated by the first assumption. 
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1. Introduction 

The fundamental review of the trading book (FRTB) defines default risk charge (DRC) as a new 

measure of default to replace incremental risk charge (IRC) that considers only the default state and 
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equity scope. DRC measures risk as a one-year 99.9% value at risk computed weekly. Its capital 

requirement is represented as follows: 

𝐾𝐷𝑅𝐶 = max (
1

𝑁
∑ 𝐷𝑅𝐶𝑖

𝑁
𝑖=1 , 𝐷𝑅𝐶𝑁+1) ; 𝑁 = 12. 

The FRTB prescribes the standardized approach (SA) and internal model approach (IMA) for 

DRC computation. The SA calculates DRC by applying risk weights to jump to default (JTD) for 

each obligor by rating. However, the literature defines two approaches to implement the default 

model under IMA: 

• Structural approach: The Merton model [2] is the most used model in the banking industry. 

• Intensity approach: Financial institutions also use the CreditRisk+ model [3]. 

Four components need to be calibrated and modeled to evaluate DRC under IMA: 

• Obligor correlation: Initially, the FRTB allows the use of historical data related to credit 

spread or listed equity price. This historical data must span at least 10 years and a stressed 

period, as defined in the ES model, with a liquidity horizon of one year. However, equities 

have a minimum liquidity horizon of 60 days. Portfolios should have a high correlation that 

includes short and long positions. On the other hand, a low correlation is assigned to 

portfolios that contain only long exposures. Next, obligor default must be modeled using two 

types of systematic factors to deduce model correlation. Finally, correlation measurement 

must be done on a one-year liquidity horizon. 

• Probability of default (PD): The FRTB defines some conditions and priorities for PD 

estimation. The first two conditions are: (1) market PDs are not allowed, and (2) all default 

probabilities are floored to 0.03%. When the model is validated, internal ratings-based (IRB) 

PDs are the obvious choice. Otherwise, a conformity method in line with the IRB approach 

has to be developed. Market PD data should not be included in the calibration process; 

instead, a historical default from a 5-year observation must be used as a minimum for the 

calibration period. Banks could also use external ratings provided by rating agencies (e.g., 

S&P, Fitch, or Moody’s) to estimate PDs. In this case, banks must define a priority ranking 

for the choice of PDs used for modeling. 

• Loss given default (LGD) model: The LGD model must capture the correlation between 

recovery and systematic factors. If the institution already has a homologated model, the 

model has to be calibrated with IRB data, and historical data should be relevant for accurate 

estimates. All LGDs must be floored to zero, and external LGDs can also be used, respective 

to some defined ranking choice. 

• Jump to default (JTD) model: The JTD model must catch each obligor’s long and short 

positions. Set assets must contain credit (i.e., sovereign and corporate credit) and equity 

exposures. This measure can be defined as a function of LGD and exposure at the default 

(EAD) for credit assets. However, it must measure equity P&L when the default occurs since 

the LGD equals 100% for equity assets. The model must also include the valuation of equity 

derivatives with zero value of the spot price. The JTD of non-linear products must integrate 

the multi-default obligors in the case of the derivative products with multiple underlyings. A 

linear approach, like the sensitivities approach, could be used for these products based solely 

on obligor default subject to supervisor approval. 

Various papers in the literature suggest DRC modeling. For instance, Laurent, Sestier, and 
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Thomas (2016) [4] use the Hoeffding decomposition to explain the loss function. Other examples 

include Wilkens and Predescu (2017) [5,6], who proposed a complete framework to build the DRC 

model, and Angelo (2023) [7], who proposed DRC modeling on emerging markets. All of these 

works use the Merton model in a multi-factor setting with a structural approach. This model 

assumption could induce some obligor default on the loss distribution tail, especially for those with a 

good rating. In fact, obligors having a very good rating, with PDs floored to 0.03% per the regulation, 

have a higher chance of appearing in the extreme end of the Merton model’s loss distribution tail 

under the Monte Carlo simulation. The DRC may not catch this since the quantile fixed for the VaR 

is 99.9%. Furthermore, the literature could be expended to other models using machine and deep 

learning for default modeling that was used in the banking book context. Indeed, Mestiri (2024) [8] 

suggested many approaches for default modeling like support vector machines (SVM) and deep 

neural networks (DNN). On the other hand, Pourkermani (2024) [9] proposed to use BRV (binary 

response VaR method) to estimate the VaR. Hence, this approach could also be used to compute 

DRC as an alternative approach. However, we will focus only on the intensity models in this paper 

and others could be subject to upcoming research works. 

Some issuers could default instantly, even with a good rating. This is especially possible in 

emerging markets like the Gulf Cooperation Council (GCC), which includes the UAE. They will not 

appear in the Merton model’s loss distribution tail. On the other hand, intensity models can resolve 

this issue and catch these extreme events. In this paper, we will use CreditRisk+ as an intensity 

model and compare it to the Merton model. The following section describes the two models and their 

differences. 

2. DRC framework modeling 

2.1. Merton and CreditRisk+ 

The literature defines two approaches for modeling obligor default: the structural approach and 

the intensity approach. The most widely used structural model is the Merton model, which defines 

default at maturity when the asset value is less than the value of the liability. This condition allows 

writing the default variable for an obligor as 𝐷 = 𝟙{𝑋<Φ−1(𝑃𝐷)}, where 𝑃𝐷 represents the obligor’s 

non-conditional probability of default. The obligor’s PD depends on its rating and reflects its 

financial situation. 𝑋 defines the asset return value following a Gaussian distribution. Alternatively, 

we have the CreditRisk+ intensity model, which defines the default variable as 𝐷 = 𝟙{𝑁≥1}, with 𝑁 

being the default frequency following a Poisson distribution. Based on the definition of default, the 

first difference between the two models is the type of variable used for default simulation. The 

Merton model does not catch defaults for obligors with a high rating because the 𝑃𝐷 is very close to 

zero and defaults occur rarely when the Monte Carlo simulation is used. However, defaults appear 

frequently in the CreditRisk+ model because the rating is not used as a variable to generate them. 

We also have the same behavior for low-maturity obligors. Specifically, we can use the distance 

to the default formula for this conclusion, which results in the following by (2.1): 
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{
lim
𝑇→0

𝑃(𝜏≤𝑇)

𝑇
= 0 𝑀𝑒𝑟𝑡𝑜𝑛 𝑚𝑜𝑑𝑒𝑙                    

lim
𝑇→0

𝑃(𝜏≤𝑇)

𝑇
= 𝜆 > 0 𝐶𝑟𝑒𝑑𝑖𝑡 𝑅𝑖𝑠𝑘 + 𝑚𝑜𝑑𝑒𝑙

,    (2.1) 

where 𝜏 represents the default time, and 𝜆 is the default intensity. 

Proof for Merton model. The Merton model defines the obligor asset value 𝑉𝑡 using geometric 

brownian motion (GBM): 

𝑑𝑉𝑡

𝑉𝑡
= (𝑟 − 𝑘)𝑑𝑡 + 𝜎𝑑𝑊𝑡, 

where 𝑟 is the risk-free rate, 𝑘 is the payout ratio, 𝜎 is the volatility of the asset, and 𝑊𝑡 defines 

the Brownian motion. 

The solution of this stochastic differential equation (SDE) at maturity is: 

ln (
𝑉(𝑇)

𝑉(0)
) = (𝑟 − 𝑘 −

𝜎2

2
) × 𝑇 + 𝜎𝑊(𝑇). 

The strong assumption of a default event in the Merton model could happen only at maturity 

under the following condition: 

{𝑉(𝑇) ≤ 𝐿} = {ln(𝑉(𝑇)) ≤ ln(𝐿)}.      (2.2) 

As the logarithm is an increasing function and 𝐿 defines the obligor’s liability. Hence, we 

obtain the following default condition by replacing the value of ln(𝑉(𝑇)) in (2.1): 

{ln(𝑉(𝑇)) ≤ ln(𝐿)} = {ln(𝑉(0)) + (𝑟 − 𝑘 −
𝜎2

2
) × 𝑇 + 𝜎𝑊(𝑇) ≤ ln(𝐿)}   

= {𝑊(𝑇) ≤
ln(𝐿)−ln(𝑉(0))−(𝑟−𝑘−

𝜎2

2
)×𝑇

𝜎
}.       

Given that 𝑊(𝑇)~𝑁(0, 𝑇), we have the following result: 

𝑃({ln(𝑉(𝑇)) ≤ ln(𝐿)}) = 𝑃(𝜏 ≤ 𝑇) = Φ (
ln(

𝐿

𝑉(0)
)−(𝑟−𝑘−

𝜎2

2
)×𝑇

𝜎×√𝑇
). 

The distance to default in the Merton model is given by: 

lim
𝑇→0

𝑃(𝜏≤𝑇)

𝑇
= lim

𝑇→0

Φ(
ln(

𝐿
𝑉(0)

)−(𝑟−𝑘−
𝜎2

2 )×𝑇

𝜎×√𝑇
)

𝑇
. 

The limit theorem of De L’Hopital is used to compute this limit: 

lim
𝑥→0

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→0

𝑓′(𝑥)

𝑔′(𝑥)
. 
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Let us define 𝑓(𝑥) = Φ (
ln(

𝐿

𝑉(0)
)−(𝑟−𝑘−

𝜎2

2
)×𝑥

𝜎×√𝑥
) and 𝑔(𝑥) = 𝑥. The derivatives of these two 

functions are: 

{
𝑓′(𝑥) = 𝜑 (

A

√𝑥
− 𝐵 × √𝑥) × (−

A

2𝑥√𝑥
+

𝐵

√𝑥
)

𝑔′(𝑥) = 1                                                            
,       

where 𝜑(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 , 𝐴 =
1

𝜎
ln (

𝐿

𝑉(0)
), 𝐵 =

(𝑟−𝑘−
𝜎2

2
)

𝜎
. 

If we set 𝑦 =
1

√𝑥
, the derivative in (1.2) becomes: 

𝑓′(𝑥) = 𝑓′ (
1

𝑦2) = 𝜑 (A × y − 𝐵 ×
1

𝑦
) × (−

A

2
× 𝑦3 + 𝐵 × 𝑦) =

(−
A

2
×𝑦3+𝐵×𝑦)

√2𝜋×𝑒

(A×y−𝐵×
1
𝑦)

2

2

. 

Then we reach the following result: 

𝑓′(𝑥) = 𝑓′ (
1

𝑦2) =
𝑒

(𝐴×𝐵−
𝐵2

2𝑦2)

√2𝜋
×

(−
A

2
×𝑦3+𝐵×𝑦)

𝑒
A2×y2

2

, 

when 𝑥 → 0 then 𝑦 → +∞ and lim
𝑦→+∞

𝑒
(𝐴×𝐵−

𝐵2

2𝑦2)

√2𝜋
=

𝑒(𝐴×𝐵)

√2𝜋
. 

Consequently, the limit becomes: 

lim
𝑥→0

𝑓′(𝑥) =
𝑒(𝐴×𝐵)

√2𝜋
× ( lim

𝑦→+∞

−
A

2
×𝑦3

𝑒
A2×y2

2

+ lim
𝑦→+∞

𝐵×𝑦

𝑒
A2×y2

2

) = 0. 

The first limit is equal to zero by applying the De L’Hopital theorem two times. The second one 

will also be zero by applying the same theorem once. Thus, we can conclude that the result of the 

distance to default of this model is lim
𝑇→0

𝑃(𝜏≤𝑇)

𝑇
= 0. 

Proof for CreditRisk+ model. The intensity model’s distance to default is defined as: 

𝑃(𝜏≤𝑇)

𝑇
=

1−𝑒−𝜆×𝑇

𝑇
. 

The result lim
𝑇→0

𝑃(𝜏≤𝑇)

𝑇
= lim

𝑇→0

1−𝑒−𝜆×𝑇

𝑇
= 𝜆,  is straightforward since the exponential first 

derivative is 𝑓(𝑇) = 𝑒−𝜆×𝑇 , 𝑓′(𝑇) = −𝜆 × 𝑒−𝜆×𝑇. Indeed, lim
𝑇→0

1−𝑒−𝜆×𝑇

𝑇
= −𝑓′(0) = 𝜆. 

Hence, the Merton model may not catch instant defaults, potentially leading to wrong 

conclusions for some obligors with good ratings that cannot survive extreme market conditions. 
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These cases are more observable in emerging markets like the UAE. 

The second difference comes from how the systematic factors are defined. The Merton model 

supposes these factors are independent and follow the Gaussian distribution. The asset return is given 

by (2.2): 

𝑋 = 𝛽𝑍′ + 𝜎 × 𝜀,         (2.3) 

where 𝛽  represents the implied correlation vector between the obligor and the systematic 

factors 𝑍~𝑁(0,1), 𝜎 = √1 − 𝛽𝛽′, 𝛽′ is the transposed vector, and 𝜀~𝑁(0,1) is the specific risk. 

However, the CreditRisk+ model considers that these factors are independent but follow the 

Gamma distribution. Default intensity is written as in (2.3): 

𝜆𝑌 = 𝜆 × ( 𝜔0 + 𝜔𝑌′),        (2.4) 

where 𝜆 > 0  gives the non-conditional obligor intensity, ∑ 𝜔𝑘
𝑘 = 1, 𝜔0 = 1 − ∑ 𝜔𝑘

𝑘≠0 , 

𝑌~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝜃, 𝛼 = 1
𝜃⁄ ), and 𝑌′ is the transposed vector. 

Default variables for both models are defined as follows by (2.4): 

{
𝐷 = 𝟙{𝑋<Φ−1(𝑃𝐷)} 𝑀𝑒𝑟𝑡𝑜𝑛 𝑚𝑜𝑑𝑒𝑙

𝐷 = 𝟙{𝑁≥1} 𝐶𝑟𝑒𝑑𝑖𝑡 𝑅𝑖𝑠𝑘 + 𝑚𝑜𝑑𝑒𝑙 
,      (2.5) 

where 𝑁 is the number of defaults and follows the Poisson distribution. 

Therefore, the conditional default probability of the systematic factors has the following 

formula for each model by (2.5): 

{
𝑃𝐷(𝑍) = Φ (

Φ−1(𝑃𝐷)−𝛽𝑍′

𝜎
) 𝑀𝑒𝑟𝑡𝑜𝑛 𝑚𝑜𝑑𝑒𝑙        

𝑃𝐷(𝑌) = 1 − exp(− 𝜆𝑌) 𝐶𝑟𝑒𝑑𝑖𝑡 𝑅𝑖𝑠𝑘 + 𝑚𝑜𝑑𝑒𝑙
,    (2.6) 

where 𝑃𝐷 defines the non-conditional default probability linked to the obligor rating and 𝑍′ is the 

transposed vector of 𝑍. 

Proof for Merton Model. The conditional default probability of the systematic factors using the 

default variable is equal to: 

𝑃𝐷(𝑧) = ℙ(𝐷 = 1|𝑍 = 𝑧) = ℙ(𝛽𝑍′ + 𝜎 × 𝜀 ≤ Φ−1(𝑃𝐷)|𝑍 = 𝑧) 

= ℙ(𝛽𝑧 + 𝜎 × 𝜀 ≤ Φ−1(𝑃𝐷))            

= ℙ (𝜀 ≤
Φ−1(𝑃𝐷)−𝛽𝑧

𝜎
)              

= Φ (
Φ−1(𝑃𝐷)−𝛽𝑧

𝜎
),               

since 𝜀~𝑁(0,1). 

Proof for CreditRisk+ model. The conditional default probability of the systematic factors using the 

default variable is equal to: 
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𝑃𝐷(𝑦) = ℙ(𝐷 = 1|𝑌 = 𝑦) = ℙ(𝑁 ≥ 1|𝑌 = 𝑦). 

𝑁 follows the Poisson distribution with 𝜆𝑌 as intensity: 

ℙ(𝑁 = 𝑘|𝑌 = 𝑦) =
(𝜆𝑦)𝑘

𝑘!
exp(−𝜆𝑦) , 𝑘 = 0,1,2 … 

Then, we obtain the following result: 

𝑃𝐷(𝑦) = ℙ(𝑁 ≥ 1|𝑌 = 𝑦)           

= 1 − ℙ(𝑁 = 0|𝑌 = 𝑦)          

= 1 − exp(−𝜆𝑦).            

Consequently, the non-conditional default probability 𝑃𝐷 → 0 for obligors with high rating 

quality. However, the non-conditional intensity of default is still small but not zero. Indeed, ∃𝜖 >

0, when 𝑃𝐷 → 0 𝑡ℎ𝑒𝑛 𝜆 → 𝜖 𝑎𝑛𝑑 𝜆𝑌  → 𝜆𝜖
𝑌 ≠ 0. Hence, we have the following result in (2.6): 

lim
𝑃𝐷→0

𝑃𝐷(𝑧) = 0; lim
𝑃𝐷→0

𝑃𝐷(𝑦) = 𝜆𝜖
𝑌.       (2.7) 

Proof. 

lim
𝑃𝐷→0

𝑃𝐷(𝑧) = lim
𝑃𝐷→0

ℙ(𝐷 = 1|𝑍 = 𝑧) = lim
𝑃𝐷→0

Φ (
Φ−1(𝑃𝐷)−𝛽𝑧

𝜎
). 

We know that lim
𝑃𝐷→0

Φ−1(𝑃𝐷) = −∞ ⇒ lim
𝑃𝐷→0

Φ−1(𝑃𝐷)−𝛽𝑧

𝜎
= −∞  and Φ  is an increasing 

function. Thus, we deduce the result of lim
𝑃𝐷→0

Φ (
Φ−1(𝑃𝐷)−𝛽𝑧

𝜎
) = 0, 

lim
𝑃𝐷→0

𝑃𝐷(𝑦) = lim
𝜆→𝜖 

𝑃𝐷(𝑦)            

= lim
𝜆𝑌 →𝜆𝜖

𝑌
(1 − exp(− 𝜆𝑌))          

= 1 ≈ 1 − (1 −  𝜆𝜖
𝑌)           

= 𝜆𝜖
𝑌.              

Indeed, for a small value of 𝑥, we have the following approximation: 𝑒𝑥 ≈ 1 + 𝑥. 

This result proves that obligors with a high rating quality would not default in the Merton model. 

However, they could default under the CreditRisk+ model. 

The following section will focus more on the model definition of DRC in both the Merton and 

CreditRisk+ approaches. We will also try to prove that defaults for obligors with high rating quality 

could happen more frequently in the CreditRisk+ model than in the Merton model. 

2.2. Model definition 

The FRTB requires two types of systematic factors to simulate obligor default. We suggest 
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using the same configuration used in [10]. Therefore, we deem two types of factors: (1) global 

factors and (2) sectorial factors. The first set of factors is built by one global factor and two global 

asset types: (1) sovereign and (2) corporate. The second asset type contains regional and industrial 

factors. We denote these sets, respectively, by GA = {GS, GC}, R = {1 … r}, and I = {1 … s}. In [10], 

we have proposed a multi-factor Merton (1974) model as a framework, and we will keep the same 

for our study. Additionally, we build an intensity model based on CreditRisk+ to establish a 

comparison with the structural Merton model. 

The Merton model defines the return variable for an obligor 𝑖 as in (2.8): 

𝑋𝑖 =  𝛽𝑖 × 𝑍𝐺 + 𝛽𝑖
𝑔

× 𝑍𝑔 + 𝛽𝑖
𝑗

× 𝑍𝑗
𝑅 + 𝛽𝑖

𝑙 × 𝑍𝑙
𝐼 + 𝜎𝑖𝜀𝑖,    (2.8) 

where 𝑍𝐺 , 𝑍𝑔, 𝑍𝑗
𝑅 , 𝑍𝑙

𝐼 are independent by set and follow 𝑁(0,1), with 𝑔 ∈ 𝐺𝐴, 𝑗 ∈ 𝑅, 𝑙 ∈ 𝐼. 𝛽 gives 

the correlation between obligors and systematic factors, whereas 𝜀𝑖~𝑁(0,1) represents the specific 

risk, and they are independent and identically distributed for 𝑖 ∈ {1 … 𝑁}, 𝑋𝑖~𝑁(0,1), and are 

independent from all systematic factors. Moreover, the following formula is used to 

keep 𝑋𝑖~𝑁(0,1): 

𝜎𝑖 = √1 − (𝛽𝑖
2 + 𝛽𝑖

𝑔2
+ 𝛽𝑖

𝑗2
+ 𝛽𝑖

𝑙2
). 

Therefore, the implied correlation between obligors can be deduced by: 

𝜌𝐼 = 𝛽 × 𝜌𝐹 × 𝛽′ + 𝜎2 × 𝐼, 

where 𝜌𝐼  represents the obligor implied correlation matrix, 𝑁 × 𝑁; 𝜌𝐹  is the systematic factor 

intra-correlation matrix, 𝐾 × 𝐾 and 𝐾 = (3 + 𝑟 + 𝑠); 𝛽 represents the correlation factors between 

the obligor matrix, 𝑁 × (3 + 𝑟 + 𝑠), and the systematic factors; 𝛽′  represents the transposed 

matrix; 𝜎2 is the vector of 𝜎𝑖
2; and 𝐼 is the identity matrix. 

The CreditRisk+ model uses the intensity default for default simulation as the default frequency 

follows the Poisson distribution. Therefore, we denote 𝑁𝑖 as the number of defaults for an obligor 𝑖. 

We keep the same structure of systematic factors and denote them 𝑌. We consider that the variables 

of the default numbers between obligors are idiosyncratically independent. The systematic part of 

these variables conditional on 𝑌, follows a Poisson distribution with the following intensity in (2.9): 

𝜆𝑖
𝑌 = 𝜆𝑖 × (𝜔𝑖

0 + 𝜔𝑖 × 𝑌𝐺 + 𝜔𝑖
𝑔

× 𝑌𝑔 + 𝜔𝑖
𝑗

× 𝑌𝑗
𝑅 + 𝜔𝑖

𝑙 × 𝑌𝑙
𝐼),   (2.9) 

where 𝑌𝐺 , 𝑌𝑔, 𝑌𝑗
𝑅, 𝑌𝑙

𝐼  are independent by set and are Gamma distributed given 

parameters (𝛼𝑌, 𝜃𝑌, 𝛼𝑌 = 1
𝜃𝑌⁄ ), with 𝑌 ∈ {𝑌𝐺 , 𝑌𝑔, 𝑌𝑗

𝑅 , 𝑌𝑙
𝐼} and 𝑔 ∈ 𝐺𝐴, 𝑗 ∈ 𝑅, 𝑙 ∈ 𝐼. 𝜔𝑖  verifies the 

following condition:  𝜔𝑖
0 + 𝜔𝑖 + 𝜔𝑖

𝑔
+ 𝜔𝑖

𝑗
+ 𝜔𝑖

𝑙 = 1 . Finally, 𝜆𝑖  represents the non-conditional 

intensity for the obligor 𝑖. 

The first result comes from normalization, and we have 𝔼[𝜆𝑖
𝑌] = 𝜆𝑖. The second one allows 

computing the expectation of 𝑁𝑖 , 𝑖 = 1 … 𝑁, conditionally to  𝑌 ,  𝔼[𝑁𝑖 |Y] = 𝜆𝑖
𝑌 . The covariance 
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between two obligors is given as: 

𝐶𝑂𝑉(𝑁𝑖 , 𝑁𝑗) = 𝔼[𝑁𝑖 × 𝑁𝑗] − 𝔼[𝑁𝑖] × 𝔼[𝑁𝑗]             

= 𝔼 [𝔼[𝑁𝑖 × 𝑁𝑗|𝑌]] − 𝔼[𝔼[𝑁𝑖|𝑌]] × 𝔼 [𝔼[𝑁𝑗|𝑌]]                             

= 𝔼 [𝐶𝑂𝑉(𝑁𝑖 , 𝑁𝑗|𝑌) + 𝔼[𝑁𝑖|𝑌] × 𝔼[𝑁𝑗|𝑌]] − 𝔼[𝔼[𝑁𝑖|𝑌]] × 𝔼 [𝔼[𝑁𝑗|𝑌]]    

= 𝔼[𝐶𝑂𝑉(𝑁𝑖 , 𝑁𝑗|𝑌)] + (𝔼 [𝔼[𝑁𝑖|𝑌] × 𝔼[𝑁𝑗|𝑌]] − 𝔼[𝔼[𝑁𝑖|𝑌]] × 𝔼 [𝔼[𝑁𝑗|𝑌]])  

= 𝔼[𝐶𝑂𝑉(𝑁𝑖 , 𝑁𝑗|𝑌)] + 𝐶𝑂𝑉(𝔼[𝑁𝑖  |Y], 𝔼[𝑁𝑗  |Y])         

= 𝔼[𝟙{𝑖=𝑗} × 𝜆𝑖
𝑌] + 𝐶𝑂𝑉(𝜆𝑖

𝑌, 𝜆𝑗
𝑌)             

= 𝟙{𝑖=𝑗} × 𝜆𝑖 + 𝐶𝑂𝑉(𝜆𝑖
𝑌, 𝜆𝑗

𝑌).              

We can then write the implied covariance matrix of obligors as: 

𝐶𝐼 = 𝜔 × 𝐶𝐹 × 𝜔′ + 𝜆 × 𝐼, 

where  𝐶𝐼  represents the implied covariance matrix of obligors;  𝐶𝐹  is the systematic factor 

intra-covariance matrix; 𝜔 represents the matrix of 𝜔𝑖; 𝜔′ represents the transposed matrix; 𝜆 is 

the vector of 𝜆𝑖 , 𝑖 = 1 … 𝑁; and 𝐼 is the identity matrix, 𝑁 × 𝑁. 

Using these results, we can deduce the implied correlation between two obligors: 

𝜌𝑖,𝑗
𝐼 = {

𝐶𝑖,𝑗
𝐼

√𝜆𝑖×𝜆𝑗

 𝑖 ≠ 𝑗

1          𝑖 = 𝑗

. 

Therefore, the conditional default probability of the systematic factors in both models can be 

written as follows as defined in the previous section by (2.10): 

{
𝑃𝐷𝑖(𝑍) = Φ (

Φ−1(𝑃𝐷𝑖)−𝛽𝑖𝑍′

𝜎𝑖
)                       

𝑃𝐷𝑖(𝑌) = 1 − exp(− 𝜆𝑖 × ( 𝜔𝑖
0 + 𝜔𝑖𝑌′))

.     (2.10) 

Given that 𝛽𝑖 and 𝜔𝑖 are, respectively, the obligor lines of the 𝛽 and 𝜔 matrices, 𝑍′ and 

𝑌′  are the transposed systematic vectors defined as follows:  𝑍 =

(𝑍𝐺 , 𝑍𝐺𝑆, 𝑍𝐺𝐶 , 𝑍1
𝑅 , … , 𝑍𝑟

𝑅 , 𝑍1
𝐼 , … , 𝑍𝑠

𝐼);  𝑌 = (𝑌𝐺 , 𝑌𝐺𝑆, 𝑌𝐺𝐶 , 𝑌1
𝑅, … , 𝑌𝑟

𝑅, 𝑌1
𝐼 , … , 𝑌𝑠

𝐼). 

We keep the same model as in our first study [6] for the LGD and the JTD, and consider the 

following relationship between the LGD and the probability of default conditional on systematic 

factors in (2.11): 
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{
𝐿𝐺𝐷(𝑍) = 1 − 𝑏 × 𝑒−𝑎×𝑃𝐷(𝑍)

𝐿𝐺𝐷(𝑌) = 1 − 𝑏 × 𝑒−𝑎×𝑃𝐷(𝑌)
; 𝑎, 𝑏 ≥ 0,      (2.11) 

where 

{
𝑎 = −𝑙 𝑛 (

1−𝐿𝐺𝐷𝑚𝑎𝑥

1−𝐿𝐺𝐷𝑚𝑖𝑛
)

𝑏 = 1 − 𝐿𝐺𝐷𝑚𝑖𝑛       
. 

We use IRB data to calibrate 𝐿𝐺𝐷𝑚𝑖𝑛 and 𝐿𝐺𝐷𝑚𝑎𝑥 as outlined by the FRTB regulation. The 

calibration is done for both sovereign and corporate obligors, so we have to define 𝑎𝑠𝑜𝑣, 𝑏𝑠𝑜𝑣 for 

sovereign and 𝑎𝑐𝑜𝑟𝑝, 𝑏𝑐𝑜𝑟𝑝 for corporate obligors. Calibration can also be done by seniority. However, 

we keep the sovereign and corporate subdivisions in our case, taking the following values for calibration: 

{
𝐿𝐺𝐷𝑚𝑖𝑛(𝑆𝑂𝑉) = 0.0, 𝐿𝐺𝐷𝑚𝑎𝑥(𝑆𝑂𝑉) = 0.8        

𝐿𝐺𝐷𝑚𝑖𝑛(𝐶𝑂𝑅𝑃) = 0.6, 𝐿𝐺𝐷𝑚𝑎𝑥(𝐶𝑂𝑅𝑃) = 0.99
. 

Given these values, we find our parameters below: 

{
(𝑎𝑠𝑜𝑣, 𝑏𝑠𝑜𝑣) = (1.61, 1.0)    
(𝑎𝑐𝑜𝑟𝑝, 𝑏𝑐𝑜𝑟𝑝) = (19.8, 0.4)

. 

The JTD for the obligor 𝑖 = 1 … 𝑁 is given by (2.12): 

{
𝐽𝑇𝐷𝑖(𝑍) = 𝐿𝐺𝐷𝑖(𝑍) × 𝐸𝐴𝐷𝑖

𝐶𝑟𝑒𝑑𝑖𝑡 + 𝐸𝐴𝐷𝑖
𝐸𝑞𝑢𝑖𝑡𝑦

𝐽𝑇𝐷𝑖(𝑌) = 𝐿𝐺𝐷𝑖(𝑌) × 𝐸𝐴𝐷𝑖
𝐶𝑟𝑒𝑑𝑖𝑡 + 𝐸𝐴𝐷𝑖

𝐸𝑞𝑢𝑖𝑡𝑦
,     (2.12) 

with EADi
Credit and EADi

Equity
 representing the credit and the equity exposure at default for the 

given obligor 𝑖, respectively. 

The following equations give the loss function for each model in (2.13): 

{
𝐿 = ∑ 𝐽𝑇𝐷𝑖(𝑍) × 𝟙{𝑋𝑖<Φ−1(𝑃𝐷𝑖)}

𝑁
𝑖=1   𝑀𝑒𝑟𝑡𝑜𝑛 𝑚𝑜𝑑𝑒𝑙        

𝐿 = ∑ 𝐽𝑇𝐷𝑖(𝑌) × 𝟙{𝑁𝑖≥1}
𝑁
𝑖=1             𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑖𝑠𝑘 + 𝑚𝑜𝑑𝑒𝑙

.    (2.13) 

The loss induced by systematic factors for each model is defined as follows in (2.14): 

{
𝐿𝑍 = 𝔼[𝐿|𝑍] = ∑ 𝐽𝑇𝐷𝑖(𝑍) × 𝑃𝐷𝑖(𝑍)𝑁

𝑖=1

𝐿𝑌 = 𝔼[𝐿|𝑌] = ∑ 𝐽𝑇𝐷𝑖(𝑌) × 𝑃𝐷𝑖(𝑌)𝑁
𝑖=1

.      (2.14) 

We obtain the following result in case of constant 𝐿𝐺𝐷 in (2.15) when all obligors have high 

rating quality ∀𝑖, ∃𝜖𝑖 , 𝑃𝐷𝑖 → 0 𝑡ℎ𝑒𝑛 𝜆𝑖 → 𝜖𝑖 𝑎𝑛𝑑 𝜆𝑖
𝑦

→ 𝜆𝜖𝑖
𝑌 ≠ 0: 

{
lim

𝑃𝐷→0
𝐿𝑍 = 0                                

lim
𝑃𝐷→0

𝐿𝑌 = ∑ 𝐽𝑇𝐷𝑖 × 𝜆𝜖𝑖
𝑌𝑁

𝑖=1 ≠ 0
.       (2.15) 
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Proof. We have under the assumption of constant LGD, ∀𝑖, 𝐽𝑇𝐷𝑖(𝑍) = 𝐽𝑇𝐷𝑖(𝑌) = 𝐽𝑇𝐷𝑖. We also 

have proof that lim
𝑃𝐷𝑖→0

𝑃𝐷𝑖(𝑍) = 0 and lim
𝑃𝐷𝑖→0

𝑃𝐷𝑖(𝑌) = 𝐽𝑇𝐷𝑖 × 𝜆𝜖𝑖
𝑌  in the previous section’s Eq (2.6). 

Based on this, we obtain: 

lim
𝑃𝐷→0

𝐿𝑍 = ∑ 𝐽𝑇𝐷𝑖 × lim
𝑃𝐷𝑖→0

𝑃𝐷𝑖(𝑍)𝑁
𝑖=1 = 0  

and 

lim
𝑃𝐷→0

𝐿𝑌 = ∑ 𝐽𝑇𝐷𝑖 × lim
𝑃𝐷𝑖→0

𝑃𝐷𝑖(𝑌)𝑁
𝑖=1 = ∑ 𝐽𝑇𝐷𝑖 × 𝜆𝜖𝑖

𝑌𝑁
𝑖=1 . 

Consequently, we proved that losses would occur more in the CreditRisk+ model than the 

Merton model under the assumption of constant LGD and a high-quality rating. However, proving 

this in the general case where LGD is stochastic and obligor ratings are not all high quality is not 

straightforward. The next section presents the results of model calibration. We use a numerical 

approach based on the Monte Carlo simulation to compare the DRC values for the two models in the 

general case. The results of this approach will allow us to draw conclusions regarding model choice. 

3. Numerical approach 

We deem a set of 1,342 issuers within a 10-year historical spread with monthly observation for 

the Merton model and intensity for CreditRisk+ linked to 6 regions and 11 industries (input data 

linked to the paper gives names for these regions and industries). Our population includes 115 

obligors with very small PDs that equal 0.03%, which also means that their defaults appear in the 

Merton model rarely. However, these obligors have a default intensity that could bring them to 

default frequently under the Poisson distribution. Additionally, the total exposure summing the long 

and short positions for these obligors is equal to half a million euros so we can assess the difference 

in magnitude between the two models. Figure 1 gives the exposure density of the portfolio used in 

this paper: 

 

Figure 1. EAD density. 
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Thereafter, we compute the implied correlation for the two models, comparing it with the 

historical correlation using the following plots: 

 

Figure 2. Correlation densities for the Merton model. 

 

Figure 3. Correlation densities for the Credit Rsik+ model. 

Figure 2 represents the Merton model’s correlation density, and Figure 3 gives the CreditRisk+ 

model’s correlation density. We observe that the Merton model’s correlation fits better than the 

CreditRisk+ model’s correlation, resulting in another modeling risk at this stage. However, we will 

not explore this risk in this paper. 

As we see, the systematic factors 𝑌 follow the Gamma distribution with parameters (𝛼,
1

𝛼
). 
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Hence, we should calibrate the factor α for each one using maximum likelihood estimation (MLE). 

We consider 𝑛 observations of 𝑌 = (𝑦1 … 𝑦𝑛), and the likelihood function is defined by (3.1): 

𝑙(𝑥, 𝛼) = ∏
𝛼𝛼

𝛤(𝛼)
𝑒−𝛼𝑦𝑖𝑦𝑖

𝛼−1𝑛
𝑖=1 = (

𝛼𝛼

𝛤(𝛼)
)

𝑛

× 𝑒−𝛼 ∑ 𝑦𝑖
𝑛
𝑖=1 × ∏ 𝑦𝑖

𝛼−1.𝑛
𝑖=1     (3.1) 

Let's calculate the first derivative of the logarithmic function (3.1) with respect to alpha in (3.2): 

𝐿(𝑥, 𝛼) = 𝑛 × (𝛼 × 𝑙𝑛(𝛼) − 𝑙𝑛(𝛤(𝛼))) + 𝛼 × (∑ (𝑙𝑛(𝑦𝑖) − 𝑦𝑖)𝑛
𝑖=1 ) − ∑ 𝑙𝑛(𝑦𝑖).𝑛

𝑖=1  (3.2) 

What remains at this point is to develop the first-order derivative on (3.2) to find the maximum. 

The calculation yields the following results in (3.3): 

𝜕𝐿(𝑥,𝛼)

𝜕𝛼
= 0 ⇒ 𝑙𝑛(�̂�) + 1 −

𝛤′(�̂�)

𝛤(�̂�)
=

1

𝑛
× (∑ (𝑦𝑖 − 𝑙𝑛(𝑦𝑖))𝑛

𝑖=1 ).    (3.3) 

To solve this equation, we use the Stirling approximation: 

𝑙𝑛(𝛤(𝛼)) ≈ (𝛼 −
1

2
) × 𝑙𝑛(𝛼) − 𝛼 − 𝑙 𝑛(√2𝜋) ⇒

𝜕 𝑙𝑛(𝛤(𝛼))

𝜕𝛼
=

𝛤′(𝛼)

𝛤(𝛼)
≈ 𝑙𝑛(𝛼) −

1

2×𝛼
. 

We obtain the estimated parameter by replacing in Eq (3.3): 

�̂� =
𝑛

2
× (∑ ((𝑦𝑖 − 𝑙𝑛(𝑦𝑖)) − 1)𝑛

𝑖=1 )
−1

. 

Once the calibration is completed, we launch the computations using the Monte Carlo approach 

with one million simulations to draw the loss densities for both models. The results are plotted in the 

following figures: 

 

Figure 4. Loss densities for the Merton model. 
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Figure 5. Loss densities for the CreditRisk+ model. 

Figures 4 and 5 represent the loss density of the Merton and CreditRisk+ models, respectively. 

The DRC values equal 7,396,194 for the Merton model and 7,527,208 for CreditRisk+. The value 

of the relative difference is 1.77% which seems small because of the small number of obligors with 

small PDs. However, in practice, we could obtain more significant differences between the two 

models when we can yield important model risk consequences that arise from the model choice 

assumption. Specially, if we add the impact of environmental, social, and governance (ESG) as  a 𝑞 

variable for default modeling as suggested by Mengze and Dejun (2024) [11], and Orlando, Bufalo, 

Penikas and Zurlo (2022) [12], then it will reduce the default in the Merton model. The difference 

of 1.77% could serve as a provision to cover model risk raised from the  model choice assumption. 

4. Conclusions 

The literature shows that DRC modeling uses a structural approach via the Merton model. 

However, this approach is based on two assumptions that may carry risks. The assumptions are 

that (1) we are in a Merton environment, and (2) the Gaussian copula is used.  

This study showed the model risk that could arise from the first assumption. The first section 

introduced the DRC under IMA, FRTB guidelines. The second section compared the Merton and 

CreditRisk+ models. We then defined our framework model, followed by an implementation to 

explain the results. The Merton model is considered a structural approach and, theoretically, does not 

capture defaults when default probabilities are very small. However, the CreditRisk+ model is an 

intensity model that captures obligor defaults even if they have very small PDs. Moreover, this 

model can capture instant defaults for obligors in emerging markets like the UAE. The results of the 

implementation led to the same conclusion as the theoretical results since we found that the DRC of 

the CreditRisk+ model was more punitive than the Merton model, which could lead to model risk. 

Model risk always remains an issue for all internal model approaches, and we have to challenge 
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these models since there are always assumptions that could lead to non-conservative risk 

measurement as was used in Bhattacharya, Biswas and Mandal (2023) [13]. Therefore, we suggest 

using other copulas, like the student or Gumbel copula, to study the impact of the second assumption 

on the obtained results. This could be an open area for future research on DRC modeling. 
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