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Abstract: This paper presents a novel nonlinear proportional-derivative cubic velocity 
feedback (NPDVF) controller for controlling vibrations in systems with both mechanical and 
electrical components subjected to mixed forces. The proposed controller aims to address the 
challenges posed by nonlinear bifurcations, unstable motion, and vibrations. The effectiveness of the 
controller demonstrated through numerical simulations, where it shown to significantly reduce harmful 
vibrations and stabilize the system under varying operating conditions. To analyze the system, a 
perturbation technique employed to derive approximate solutions to the system's equations up to the 
second order at simultaneous resonance case (𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ). A comparative analysis with other 
control strategies, such as proportional-derivative (PD) control, sliding mode control (SMC), and 
model predictive control (MPC), the superior robustness, computational efficiency, and control signal 
amplitude of the NPDVF controller. Results indicate that the proposed approach not only outperforms 
traditional methods in terms of energy efficiency and computational cost but also maintains robust 
performance even in the presence of nonlinearities and parameter uncertainties. The findings support 
the potential application of the NPDVF controller in real-time vibration control systems. 

Keywords: mixed excitations; electromagnetic transducer; perturbation; stability; NPDCVF 
controllers 
Mathematics Subject Classification: 34A34, 37N35,70J99,70K20,74H10 
 

 



2892 

AIMS Mathematics  Volume 10, Issue 2, 2891–2929. 

1. Introduction 

Generally, electromagnetic transducers are employed to gauge thickness, calculate an object's 
rotational speed, and detect defects in materials from steel to various other alloys. Managing the 
nonlinear interaction between vibrating modes is crucial for advancing nano-mechanical or micro-
electromechanical devices. Interconnected oscillators serve as primary models aimed at the 
performance over various technical, chemical, biological, and physical schemes. In nonlinear 
electromechanical oscillator organizations, the mechanical part functions as a sensor and is 
magnetically linked to an electrical part, representing a signal of the observed vibration. The space in 
the permanent magnet facilitates interaction between the mechanical and electrical elements. Chaos 
management, vacillations, and the stability of a nonlinear electromechanical structure are examined 
in [1]. Also, an electromechanical gyrostat system that underwent external perturbation for its chaotic 
behavior, synchronization, and chaotic characteristics (adaptive control, delayed feedback control) 
observed in [2]. Yamapi and Bowong [3] utilized a sliding mode organizer to manage the electrostatic 
transducer classification while exploring the dynamic and chaotic behaviors of a self-sustaining 
electromechanical system both with and without discontinuity. Siewe et al. [4] employed an 
electromechanical oscillator method to capture the vertical motion of the earth during an earthquake. 
The application of slight amplitude damping for managing chaos in the system was also investigated. 
They discovered that the damping coefficient estimation affects both the chaotic and periodic orbits. 
The interactions and synchronization of two systems studied in [5,6]: a magnetically linked electrical 
Rayleigh-Duffing oscillator with linear mechanical oscillators, along with an interconnected self-
sustaining electromechanical system featuring various functions. They employed the harmonic balance 
and averaging methods to identify the amplitudes of the oscillatory states. The dynamics, global 
bifurcations, and chaotic behavior of a self-sustaining nonlinear electromechanical system exhibiting 
nonlinear dynamics investigated in [7,8]. Moreover, the impact of elevated nonlinearity values on the 
behavior and synchronization of interconnected electromechanical systems is examined in [9]. 
Furthermore, the chaotic dynamics and nonlinear oscillations in an electromechanical seismograph 
system featuring stiffness that varies over time examined in [10]. Also, different types of active 
controllers are experimented to minimize system oscillations and determined that negative velocity 
feedback is the most effective active control for the behavior of the system. The influence of noise 
factors, coupling coefficients, and restraining quantities on the response of an electromechanical 
seismograph examined in [11]. 

A time-varying stiffness nonlinear electromechanical seismograph system's behavior, stability, 
approximate solutions, and dynamic feedback control were all investigated by Amer [12]. He also 
contrasted the perturbation solution with the numerical solution. Amer et al. [13] examined the 
performance of a twin-tail aircraft structure with both cubic and quadratic nonlinearities via an active 
control procedure. Sayed et al. [14–17] examined the non-linear dynamic properties of the 
rectangular plate within combined excitations. Also, they examined three cases of internal and 
primary resonances (1:2, 1:1, and 1:1:3) and matched the analytical and numerical solutions of the 
system. The efficiency of various control procedures in lowering the notable vibrations of a beam was 
examined by Hamed and Amer [18]. The oscillations and stability of the MEMS gyroscope scheme 
with distinct parametric forces were investigated in [19]. The frequency response equations for the 
concurrent resonance situation have been generated using the averaging technique. Dynamical systems 
motivated by parametric and external influences thoroughly examined in the works of [20,21]. The air 
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gap of a permanent magnet, which only generates a uniform radial magnetic field, is assumed to reflect 
the interaction between mechanical and electrical components in most electromechanical system 
studies. To the best of our knowledge, the assumption of deterministic electromechanical system 
dynamics has been the sole method used to investigate the effects of this particular magnetic 
connection. However, when random disturbances are taken into account, these systems can exhibit 
remarkable characteristics. Similar mechanical systems have previously been shown in the literature 
to display a variety of behaviours and intricate chaotic dynamics when subjected to noise [22,23]. One 
kind of instrument that uses electromagnetic transduction to gather vibration energy is an 
electromechanical seismograph. 

Researchers have recently focused on the behavior of electromechanical schemes and their impact 
on the energy harvesting challenge. The effectiveness of vibration energy harvesting devices 
influenced by random ambient excitations was analyzed by Martens et al. [24] through the solution of 
relevant Fokker-Planck equations. Borowiec et al. [25] demonstrated that the noise element of the 
force influences the system's stability in their investigation of how random excitation affects the 
performance of an energy harvester. A stochastic averaging method in [26] was introduced to evaluate 
the mean square electric voltage of a nonlinear energy harvesting system. Li et al. [27] explored a 
piezoelectric energy harvester featuring tri-stable potential wells persuaded by external magnetic fields. 
They claimed that the system can be appropriately designed to enhance the frequency bandwidth for a 
specific deterministic or stochastic input and achieve a high harvesting efficiency at coherence 
resonance. The multiple scales method (MMS) [28–33] and averaging techniques [34,35] are two 
perturbation methods commonly employed to analyze the efficiency of parametrically excited models. 
These methods have proven to remain successful in forecasting the behavior of such systems, 
especially within the frequency range close to the significant parametric resonance [36]. Traditional 
MMS are shown to effectively estimate responses in very basic scenarios, such as confined 
frequency ranges around the central parametric resonance, moderate excitations, and minimal 
system features [37–43]. Moreover, it has been shown that several control mechanism approaches 
can reduce the detrimental vibrations produced by different nonlinear systems in [44–52]. 

This study investigates and manages the nonlinear dynamics and vibration reduction of a model 
of a nonlinear electromagnetic transducer subjected to parametric and harmonic excitations. The 
response and stability of the solutions during the most unfavorable resonance cases have analyzed 
using the perturbation technique [53]. The dynamic response of the sandwiched functionally-graded 
piezoelectric semiconductor (FGPS) plate with the consideration of the initial electron density is 
investigated, and the natural frequencies and multi-field coupling are obtained in [54]. Based on the 
nonlocal piezoelectric semiconductor theory, Fang et al. [55] investigated the transient response of a 
piezoelectric semiconductor (PS) fiber, and analyzed the bending vibration, electric potential, and 
concentration of electrons along the nano-fiber with different nonlocal effects. Also, Liu et al. [56] 
proposed an active disturbance rejection control (ADRC) scheme for the electromagnetic docking of 
spacecraft in the presence of time-varying delay, fault signals, external disturbances, and elliptical 
eccentricity. Formerly, Lyu et al. [57] investigated an integrated predictor observer feedback control 
strategy for the vibration suppression of large-scale spacecraft affected by unbounded input time-delay 
effects. 
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The main contributions of this article are summarized as follows: 
1) The study introduces a novel control mechanism Nonlinear Proportional-Derivative Velocity 

Feedback (NPDVF) Controller, which integrates nonlinear first- and second-order filters to 
improve vibration control in systems involving both mechanical and electrical components. 
This controller is designed to stabilize and suppress vibrations caused by complex 
nonlinearities and mixed forces within simultaneous resonance case ( 𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ). 

2) The research utilizes the perturbation method to derive approximate solutions for the system 
equations up to the second order, allowing for a better understanding of the system's behavior 
under nonlinear conditions. This technique aids in analyzing the stability and response 
characteristics of the system. 

3) A comprehensive mathematical model is presented, which describes the coupled nonlinear 
ordinary differential equations governing the interaction between the mechanical and electrical 
components of the system. The model includes cubic and quadratic nonlinearities, which 
represent the complex behaviors observed in real-world systems. 

4) The proposed NPDVF controller is shown to significantly reduce harmful vibrations, mitigate 
unstable motion, and stabilize nonlinear bifurcations in the system. Numerical simulations 
demonstrate its ability to handle a variety of excitation frequencies and forcing magnitudes, 
eliminating self-excited vibrations and improving structural stability. 

5) Extensive numerical simulations conducted using MAPLE and MATLAB validate the 
performance of the controller. The simulations confirm that the NPDVF controller effectively 
stabilizes the system under mixed force conditions, and the results are consistent with the 
perturbation analysis, providing strong support for the controller’s effectiveness. 

6) The examination of stability and the impact of various framework coefficients were assessed 
together theoretically and numerically. 

7) The various nonlinear controllers that influence the system are compared through numerical 
methods. The primary finding from the numerical result indicates that the new controller 
NPDVF, is most effective in diminishing and eradicating the model's excessive oscillations. 

2. Description of the model equations 

A seismograph records ground movement during an earthquake. It falls into the category of 
electromechanical systems known as electromagnetic transducers. The system being examined is the 
most basic seismograph as it solely captures the vertical component of ground motion and only 
accommodates low-frequency movements. It, however, exhibits intricate dynamics. This apparatus is 
illustrated in Figure 1. In the current study, the electrical component of the seismograph includes a 
linear inductor 𝐿 , a linear capacitor 𝐶 , and a linear resistor 𝑅 , with their voltage and charge 
conforming to the following equations. 

𝑈஼ =
௤

஼బ
 and 𝑈ோ = 𝑅𝑞̇,        (2.1) 

where 𝑞 stands the instantaneous electrical charge, 𝑞̇ remains its time derivative (𝑞̇ =
ௗ௤

ௗఛ
= 𝑖, where 

𝑖 is the current). 
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Figure 1. Sketch of an electromechanical seismograph model with associated electric circuit [11]. 

The mechanical component consists of a suspended mass; its movement is influenced by the 
intrinsic forces of the mass-spring system and the natural forces affecting the arrangement. Let 𝐹(𝜏) 
be the force varying with time that influences the frame because of the ground movement. We assume 
that damping forces (friction, air resistance, etc.) exist, and the corresponding spring exhibits nonlinear 
with linear stiffness characterized by 𝑘଴; parameters 𝑘ଵ and 𝑘ଶ describing the nonlinearity of the 
stiffness based on its type. The mechanical and electrical components engage via the air-gap of a 

permanent magnet that generates a radial magnetic field 𝐵ሬ⃗ . The connection between the magnetic 

field 𝐵 and the position of the coil 𝑦 is considered as: 

𝐵 = 𝐵଴ ቀ1 − ቀ
௬ା௬బ

௬೘ೌೣ
()ଶቁ ()ቁ,        (2.2) 

where 𝐵଴ is the greatest intensity that the field 𝐵 attains occurs, 𝑦଴ is the armature's initial position, 
𝑦 remains its oscillation amplitude, and 𝑦௠௔௫ represents the maximum amplitude. Subsequently, the 
movement of the mechanical component must consider the connection between the Laplace force and 
the current indicated by: 

𝐹஼ = 𝛼଴ ቀ1 − ቀ
௬ା௬బ

௬೘ೌೣ
()ଶቁ ()̇ቁ.        (2.3) 

While in the electrical part, we must include the Lenz electromotive voltage 𝐸௕௘௠௙ as : 

𝐸௕௘௠௙ = 𝑘଴ ቀ1 − ቀ
௬ା௬బ

௬೘ೌೣ
()ଶቁ ()̇ቁ.       (2.4) 

The entire mathematical model that signifies the physical model in Figure 1 can be derived using 
Newton's second law and Kirchhoff's laws. It is regulated by the subsequent nonlinear differential 
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equations: 

𝑚𝑦̈ + 𝜇଴𝑦̇ + 𝑘଴𝑦 + 𝑘ଵ𝑦ଶ + 𝑘ଶ𝑦ଷ = 𝐹஼ + 𝐹(𝜏),      (2.5a) 

𝐿𝑞̈ + 𝑅𝑞̇ +
ଵ

஼
𝑞 + 𝐸௕௘௠௙ = 0,        (2.5b) 

where 𝑦 is the relative displacement of the mass 𝑚 with inertial forces 𝑚𝑦̈ and damping forces 
𝜇଴𝑦̇ , and 𝑘଴, 𝑘ଵ, 𝑘ଶ remain linear and nonlinear stiffness of the electromechanical oscillator system. 
The coupling between the above equations is assured by nonlinear radial magnetic field. The external 
ground motion is expected to be stochastic or periodic (𝐹(𝜏) = 𝐹଴ + 𝐹ଵ 𝑐𝑜𝑠( 𝛺ଵ𝜏) + 𝐹ଶ𝑦 𝑐𝑜𝑠( 𝛺ଶ𝜏)) 
where 𝐹଴ is the critical amplitude, 𝐹ଵ 𝑐𝑜𝑠( 𝛺ଵ𝜏) is the external force, with amplitude 𝐹ଵ and 𝛺ଵ is 
the excitation frequency, 𝐹ଶ𝑦 𝑐𝑜𝑠( 𝛺ଶ𝜏) is the parametric force, with amplitude 𝐹ଶ and 𝛺ଶ is the 
excitation frequency. We put Eq (2.5) into dimensionless form by setting: 𝑥 = 𝑦/𝑙, 𝑧 = 𝑞/𝑄଴ where 

𝑄଴ is the reference charge and 𝑙 is the reference length. Let’s set 𝜔௘ = ට
ଵ

௅஼
, 𝜔௠ = ට

௞బ

௠
, by the time 

transformation 𝑡 = 𝜔௘𝜏. 
Dimensionless variables introduced by scaling the system using characteristic quantities. The 

main goal is to eliminate the physical units and simplify the equations. Then we convert (2.5) into the 
following  
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We attain the resulting dimensionless equations for the present electromechanical seismograph as: 

𝑥̈ + 𝜇௠𝑥̇ + 𝜔ଵ
ଶ𝑥 + 𝜆ଵ𝑥ଶ + 𝜆ଶ𝑥ଷ + (𝛾଴ + 𝛾ଵ𝑥 + 𝛾ଶ𝑥ଶ)𝑧̇ 

= 𝑓଴ + 𝑓ଵ 𝑐𝑜𝑠( 𝛺ଵ𝑡) + 𝑓ଶ𝑥 𝑐𝑜𝑠( 𝛺ଶ𝑡),      (2.6a) 

𝑧̈ + 𝜇௘𝑧̇ + 𝜔ଶ
ଶ𝑧 + (𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ)𝑥̇ = 0 .     (2.6b) 

Assume 

𝜇௠ → 𝜀𝜇௠, 𝜆ଵ → 𝜀𝜆ଵ, 𝜆ଶ → 𝜀𝜆ଶ, 𝛾଴ → 𝜀𝛾଴, 𝛾ଵ → 𝜀𝛾ଵ, 𝛾ଶ → 𝜀𝛾ଶ, 𝑓଴ → 𝜀𝑓଴, 𝑓ଵ → 

𝜀𝑓ଵ, 𝑓ଶ → 𝜀𝑓ଶ, 𝜇௘ → 𝜀𝜇௘ , 𝛽଴ → 𝜀𝛽଴, 𝛽ଵ → 𝜀𝛽ଵ, 𝛽ଶ → 𝜀𝛽ଶ, 𝑓ଷ → 𝜀𝑓ଷ, 𝑓ସ → 𝜀𝑓ସ. 

Where, 𝜀 is often used as a small perturbation parameter in the analysis of nonlinear systems. The 
idea is to treat 𝜀 as a small parameter and perform an asymptotic expansion or perturbation analysis. 
It ensures stability, smooths out nonlinearities, helps with perturbation analysis, and is crucial for 
ensuring that numerical methods work effectively. 

So, Eq (2.6) will be written as 

𝑥̈ + 𝜀𝜇௠𝑥̇ + 𝜔ଵ
ଶ𝑥 + 𝜀𝜆ଵ𝑥ଶ + 𝜀𝜆ଶ𝑥ଷ + 𝜀(𝛾଴ + 𝛾ଵ𝑥 + 𝛾ଶ𝑥ଶ)𝑧̇ 
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= 𝜀(𝑓଴ + 𝑓ଵ 𝑐𝑜𝑠( 𝛺ଵ𝑡) + 𝑓ଶ𝑥 𝑐𝑜𝑠( 𝛺ଶ𝑡)),      (2.7a) 

𝑧̈ + 𝜀𝜇௘𝑧̇ + 𝜔ଶ
ଶ𝑧 + 𝜀(𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ)𝑥̇ = 0.     (2.7b) 

The first oscillator 𝑥 (mechanical part) is a forced Duffing oscillator related with nonlinear coupling 
term, and the second one 𝑧 (electrical part) is a linear damped oscillator with nonlinear coupling term. 
𝑥̇ , 𝑧̇ , 𝑥̈ and  𝑧 ̈ are the first and second derivative with respect to time 𝑡 , 𝜇௠ and 𝜇௘  are linear 
damping coefficients, 𝜆ଵ, 𝜆ଶ are  non-linear parameters, 𝜀 is a small perturbation parameter where 
0 < 𝜀 << 1, 𝑓଴, 𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑓ସ , are the excitation forces amplitudes (𝑓଴, 𝑓ଵ, 𝑓ଶ  are mixed mechanical 
excitations and 𝑓ଷ, 𝑓ସ are mixed electrical excitations), 𝜔ଵ, 𝜔ଶ  stand the natural frequencies and 
𝛺ଵ, 𝛺ଶ, 𝛺ଷ, 𝛺ସ remain the excitation frequencies, 𝛾௝  and 𝛽௝ (𝑗 = 0,1,2) are the coupling terms. 

The modified and investigated system [11] after adding mixed excitations with new controller 
technique is in the following form [11]: 

𝑥̈ + 𝜀𝜇௠𝑥̇ + 𝜔ଵ
ଶ𝑥 + 𝜀𝜆ଵ𝑥ଶ + 𝜀𝜆ଶ𝑥ଷ + 𝜀(𝛾଴ + 𝛾ଵ𝑥 + 𝛾ଶ𝑥ଶ)𝑧̇ 

= 𝜀(𝑓଴ + 𝑓ଵ 𝑐𝑜𝑠( 𝛺ଵ𝑡) + 𝑓ଶ𝑥 𝑐𝑜𝑠( 𝛺ଶ𝑡)) + 𝐹ଵ௖(𝑡),     (2.8a) 

𝑧̈ + 𝜀𝜇௘𝑧̇ + 𝜔ଶ
ଶ𝑧 + 𝜀(𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ)𝑥̇ = 𝜀(𝑓ଷ 𝑐𝑜𝑠( 𝛺ଷ𝑡) + 𝑓ସ𝑧 𝑐𝑜𝑠( 𝛺ସ𝑡)) + 𝐹ଶ௖(𝑡).  (2.8b) 

𝐹ଵ௖(𝑡), 𝐹ଶ௖(𝑡) are the control inputs to reduce the vibrations that happen at principal simultaneous 
resonance case (𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ ) and this optimal controller is called Nonlinear Proportional-
Derivative (NPD) within Negative Cubic Velocity Feedback Controller (NCVFC) to be a resonant 
innovative controller (NPDVF) as in the form: 

𝐹ଵ௖(𝑡) = −𝜀(𝑝ଵ𝑥 + 𝑑ଵ 𝑥̇ + 𝛼ଵ𝑥ଷ + 𝛼ଶ𝑥ଶ𝑥̇ + 𝛼ଷ𝑥𝑥̇ଶ + 𝐺ଵ 𝑥̇ ଷ),   (2.9a) 

𝐹௖(𝑡) = −𝜀൫𝑝ଶ𝑧 + 𝑑ଶ 𝑧̇ + 𝛼ସ𝑧ଷ + 𝛼ହ𝑧ଶ𝑧̇ + 𝛼଺𝑧𝑧̇ଶ + 𝐺ଶ 𝑧̇ ଷ൯,    (2.9b) 

where −(𝑝ଵ𝑥 + 𝑑ଵ 𝑥̇ ), −(𝑝ଶ𝑧 + 𝑑ଶ 𝑧̇ ) are the linear control forces, and −(𝛼ଵ𝑥ଷ + 𝛼ଶ𝑥ଶ𝑥̇ + 𝛼ଷ𝑥𝑥̇ଶ), 
−(𝛼ସ𝑧ଷ + 𝛼ହ𝑧ଶ𝑧̇ + 𝛼଺𝑧𝑧̇ଶ) are the non-linear control forces, and 𝐺ଵ, 𝐺ଶ  stand the gain amounts. 
Figure 2 depicts the block chart of the model within the novel controller. 
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Figure 2. Block graph of the controlled electromechanical seismograph model with 
NPDGF controller. 

3. The mathematical model study 

The perturbation technique [53] is investigated here to get the following approximate solutions 
as follows: 

𝑥(𝑡, 𝜀) = 𝑥଴(𝑇଴, 𝑇ଵ) + 𝜀𝑥ଵ(𝑇଴, 𝑇ଵ) + 𝑂(𝜀ଶ),     (3.1a) 

𝑧(𝑡, 𝜀) = 𝑧଴(𝑇଴, 𝑇ଵ) + 𝜀𝑧ଵ(𝑇଴, 𝑇ଵ) + 𝑂(𝜀ଶ),      (3.1b) 

Where, 𝑇଴ = 𝑡 and 𝑇ଵ = 𝜀𝑡 represent time scales. 
The derivatives are presented as: 

ௗ

ௗ௧
= 𝐷଴ + 𝜀𝐷ଵ+. ..        (3.2a) 

ௗమ

ௗ௧మ
= 𝐷଴

ଶ + 2𝜀𝐷଴𝐷ଵ+. ..       (3.2b) 

Substituting Eq (3.1) into Eq (2.8) within Eqs (2.9, 3.2) and simply solving the expressions of the order 
𝑂(𝜀଴) and 𝑂(𝜀ଵ) to be in the following relation: 
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𝐷଴
ଶ𝑥଴ + 𝜔ଵ

ଶ𝑥଴ + 𝜀𝜔ଵ
ଶ𝑥ଵ + 𝜀(𝐷଴

ଶ𝑥ଵ + 2𝐷଴𝐷ଵ𝑥଴) + 𝜀𝜇௠(𝐷଴𝑥଴) + 𝜀𝜆ଵ𝑥଴
ଶ + 𝜀𝜆ଶ𝑥଴

ଷ + 𝜀𝛾଴(𝐷଴𝑧଴) 

+𝜀𝛾ଵ𝑥଴(𝐷଴𝑧଴) + +𝜀𝛾ଶ𝑥଴
ଶ(𝐷଴𝑧଴) − 𝜀𝑓଴ − 𝜀𝑓ଵ 𝑐𝑜𝑠( 𝛺ଵ𝑡) − 𝜀𝑓ଶ𝑥଴ 𝑐𝑜𝑠( 𝛺ଶ𝑡) + 𝜀𝑝ଵ𝑥଴ 

+𝜀 𝑑ଵ 𝐷଴ 𝑥଴ + 𝜀𝛼ଵ𝑥଴
ଷ + 𝜀𝛼ଶ൫𝑥଴

ଶ(𝐷଴𝑥଴)൯ + 𝜀𝛼ଷ𝑥଴(𝐷଴𝑥଴)ଶ + 𝜀 𝐺ଵ( 𝐷଴𝑥଴)ଷ = 0, (3.3a) 

𝐷଴
ଶ𝑧଴ + 𝜔ଶ

ଶ𝑧଴ + 𝜀𝜔ଶ
ଶ𝑧ଵ + 𝜀(𝐷଴

ଶ𝑧ଵ + 2𝐷଴𝐷ଵ𝑧଴) + 𝜀𝜇௘(𝐷଴𝑧଴) + 𝜀𝛽଴(𝐷଴𝑥଴) + 𝜀𝛽ଵ𝑧଴(𝐷଴𝑥଴) 

+𝜀𝛽ଶ𝑧଴
ଶ(𝐷଴𝑥଴) − 𝜀𝑓ଷ 𝑐𝑜𝑠( 𝛺ଷ𝑡) − 𝜀𝑓ସ𝑧଴ 𝑐𝑜𝑠( 𝛺ସ𝑡) + 𝜀𝑝ଶ𝑧଴ + 𝜀 𝑑ଶ 𝐷଴ 𝑧଴ + 𝜀𝛼ସ𝑧଴

ଷ 

+𝜀𝛼ହ൫𝑧଴
ଶ(𝐷଴𝑧଴)൯ + 𝜀𝛼଺𝑧଴(𝐷଴𝑧଴)ଶ + 𝜀 𝐺ଶ( 𝐷଴𝑧଴)ଷ = 0.    (3.3b) 

Connecting terms of the same order of 𝜀 in Eq (3.3) to get: 

𝑂(𝜀଴): (𝐷଴
ଶ + 𝜔ଵ

ଶ)𝑥଴ = 0,        (3.4a) 

(𝐷଴
ଶ + 𝜔ଶ

ଶ)𝑧଴ = 0,        (3.4b) 

𝑂(𝜀ଵ): (𝐷଴
ଶ + 𝜔ଵ

ଶ)𝑥ଵ = −2𝐷଴𝐷ଵ𝑥଴ − 𝜇௠𝐷଴𝑥଴ − 𝜆ଵ𝑥଴
ଶ − 𝜆ଶ𝑥଴

ଷ − 𝛾଴𝐷଴𝑧଴ − 𝛾ଵ𝑥଴(𝐷଴𝑧଴) 

−𝛾ଶ𝑥଴
ଶ(𝐷଴𝑧଴) + 𝑓଴ + 𝑓ଵ 𝑐𝑜𝑠( 𝛺ଵ𝑡) + 𝑓ଶ𝑥଴ 𝑐𝑜𝑠( 𝛺ଶ𝑡) − 𝑝ଵ𝑥଴ − 𝑑ଵ(𝐷଴𝑥଴) − 𝛼ଵ𝑥଴

ଷ 

−𝛼ଶ𝑥଴
ଶ(𝐷଴𝑥଴) − 𝛼ଷ𝑥଴(𝐷଴𝑥଴)ଶ − 𝐺ଵ( 𝐷଴𝑥଴)ଷ,     (3.5a) 

(𝐷଴
ଶ + 𝜔ଶ

ଶ)𝑧ଵ = −2𝐷଴𝐷ଵ𝑧଴ − 𝜇௘𝐷଴𝑧଴ − 𝛽଴𝐷଴𝑥଴ − 𝛽ଵ𝑧଴(𝐷଴𝑥଴) − 𝛽ଶ𝑧଴
ଶ(𝐷଴𝑥଴) 

+𝑓ଷ 𝑐𝑜𝑠( 𝛺ଷ𝑡) + 𝑓ସ𝑧଴ 𝑐𝑜𝑠( 𝛺ସ𝑡) − 𝑝ଶ𝑧଴ − 𝑑ଶ(𝐷଴𝑧଴) 

−𝛼ସ𝑧଴
ଷ − 𝛼ହ𝑧଴

ଶ(𝐷଴𝑧଴) − 𝛼଺𝑧଴(𝐷଴𝑧଴)ଶ − 𝐺ଶ( 𝐷଴𝑧଴)ଷ .    (3.5b) 

The solution for Eq (3.4) is 

𝑥଴ = 𝐴ଵ(𝑇ଵ)𝑒௜ఠభ బ் + 𝐴ሜଵ(𝑇ଵ)𝑒ି௜ఠభ బ்,      (3.6a) 

𝑧଴ = 𝐵ଵ(𝑇ଵ)𝑒௜ఠమ బ் + 𝐵ሜଵ(𝑇ଵ)𝑒ି௜ఠమ బ் .      (3.6b) 

Substituting Eq (3.6) into Eq (3.5) yields 

(𝐷଴
ଶ + 𝜔ଵ

ଶ)𝑥ଵ = ൮

−2𝑖𝜔ଵ𝐷ଵ𝐴ଵ − 𝑖𝜔ଵ𝜇௠𝐴ଵ − 3𝜆ଶ𝐴ଵ
ଶ𝐴ሜଵ +

ଵ

ଶ
𝑓ଶ𝐴ሜଵ𝑒௜(ఆమିଶఠభ) బ்

−𝑝ଵ𝐴ଵ − 𝑖𝜔ଵ𝑑ଵ𝐴ଵ − 3𝛼ଵ𝐴ଵ
ଶ𝐴ሜଵ − 2𝑖𝜔ଵ𝛼ଶ𝐴ଵ

ଶ𝐴ሜଵ

−𝛼ଷ𝜔ଵ
ଶ𝐴ଵ

ଶ𝐴ሜଵ − 3𝑖𝐺ଵ𝜔ଵ
ଷ𝐴ଵ

ଶ𝐴ሜଵ

൲ 𝑒௜ఠభ బ் + 𝑁𝑆𝑇 + 𝑐𝑐,

 (3.7a) 

(𝐷଴
ଶ + 𝜔ଶ

ଶ)𝑧ଵ = ൮

−2𝑖𝜔ଶ𝐷ଵ𝐵ଵ − 𝑖𝜔ଶ𝜇௘𝐵ଵ +
ଵ

ଶ
𝑓ସ𝐵ሜଵ𝑒௜(ఆరିఠమ) బ்

−𝑝ଶ𝐵ଵ − 𝑖𝜔ଶ𝑑ଶ𝐵ଵ − 3𝛼ସ𝐵ଵ
ଶ𝐵ሜଵ − 2𝑖𝜔ଶ𝛼ହ𝐵ଵ

ଶ𝐵ሜଵ

−𝛼଺𝜔ଶ
ଶ𝐵ଵ

ଶ𝐵ሜଵ − 3𝑖𝐺ଶ𝜔ଶ
ଷ𝐵ଵ

ଶ𝐵ሜଵ

൲ 𝑒௜ఠమ బ் + 𝑁𝑆𝑇 + 𝑐𝑐, (3.7b) 

where 𝑐𝑐 represents the complex conjugate of the preceding parameters, 𝑁𝑆𝑇 signifies non-secular 
terms. By means of primary parametric resonance case 𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ, the frequency detuning 
parameters 𝜎ଵ, 𝜎ଶ for the parametric excitation frequency considered by 
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𝛺ଶ ≅ 𝜔ଵ + 𝜀𝜎ଵ, 𝛺ସ ≅ 𝜔ଶ + 𝜀𝜎ଶ.       (3.8) 

In Eq (3.7), the solvability conditions produce when terms of secular terms are cancelled via Eq (3.8). 
Bearing in mind Eq (3.8), removing the secular terms in Eq (3.7) we get: 

−2𝑖𝜔ଵ𝐷ଵ𝐴ଵ − 𝑖𝜔ଵ𝜇௠𝐴ଵ − 3𝜆ଶ𝐴ଵ
ଶ𝐴ሜଵ +

1

2
𝑓ଶ𝐴ሜଵ𝑒௜ఙభ భ் − 𝑝ଵ𝐴ଵ − 𝑖𝜔ଵ𝑑ଵ𝐴ଵ 

−3𝛼ଵ𝐴ଵ
ଶ𝐴ሜଵ − 𝑖𝜔ଵ𝛼ଶ𝐴ଵ

ଶ𝐴ሜଵ − 𝛼ଷ𝜔ଵ
ଶ𝐴ଵ

ଶ𝐴ሜଵ − 3𝑖𝐺ଵ𝜔ଵ
ଷ𝐴ଵ

ଶ𝐴ሜଵ = 0,    (3.9a) 

−2𝑖𝜔ଶ𝐷ଵ𝐵ଵ − 𝑖𝜔ଶ𝜇௘𝐵ଵ +
1

2
𝑓ସ𝐵ሜଵ𝑒௜ఙమ బ் − 𝑝ଶ𝐵ଵ − 𝑖𝜔ଶ𝑑ଶ𝐵ଵ − 3𝛼ସ𝐵ଵ

ଶ𝐵ሜଵ 

−𝑖𝜔ଶ𝛼ହ𝐵ଵ
ଶ𝐵ሜଵ − 𝛼଺𝜔ଶ

ଶ𝐵ଵ
ଶ𝐵ሜଵ − 3𝑖𝐺ଶ𝜔ଶ

ଷ𝐵ଵ
ଶ𝐵ሜଵ = 0.    (3.9b) 

To distinct the averaging conditions that manage the elements of Eq (3.9), let definite 𝐴ଵ, 𝐵ଵ and 
𝐴ሜଵ, 𝐵ሜଵ are expressed in the next polar expressions 

𝐴ଵ =
ଵ

ଶ
𝑎ଵ(𝑇ଵ)𝑒௜ఏభ( భ்), 𝐴ሜଵ =

ଵ

ଶ
𝑎ଵ(𝑇ଵ)𝑒ି௜ఏభ( భ்),     (3.10a) 

𝐵ଵ =
ଵ

ଶ
𝑎ଶ(𝑇ଵ)𝑒௜ఏమ( భ்), 𝐵ሜଵ =

ଵ

ଶ
𝑎ଶ(𝑇ଵ)𝑒ି௜ఏమ( భ்),     (3.10b) 

where 𝑎ଵ, 𝑎ଶ and 𝜃ଵ, 𝜃ଶ stand the steady-state amplitudes and phases, respectively. Substitute Eq 
(3.10) in Eq (3.9), we acquire: 

−𝑖𝜔ଵ𝑎ଵ
′ +

1

2
𝜔ଵ𝑎ଵ൫𝜎ଵ − 𝛾ଵ

′ ൯ −
1

2
𝑖𝜔ଵ𝜇௠𝑎ଵ −

3

8
𝜆ଶ𝑎ଵ

ଷ +
1

4
𝑎ଵ𝑓ଶ(𝑐𝑜𝑠 𝛾ଵ + 𝑖 𝑠𝑖𝑛 𝛾ଵ) 

−
ଵ

ଶ
𝑝ଵ𝑎ଵ −

ଵ

ଶ
𝑖𝜔ଵ𝑑ଵ𝑎ଵ −

ଷ

଼
𝛼ଵ𝑎ଵ

ଷ −
ଵ

଼
𝑖𝜔ଵ𝛼ଶ𝑎ଵ

ଷ −
ଵ

଼
𝛼ଷ𝜔ଵ

ଶ𝑎ଵ
ଷ −

ଷ

଼
𝑖𝐺ଵ𝜔ଵ

ଷ𝑎ଵ
ଷ = 0,  (3.11a) 

−𝑖𝜔ଶ𝑎ଶ
′ +

1

2
𝜔ଶ𝑎ଶ൫𝜎ଶ − 𝛾ଶ

′ ൯ −
1

2
𝑖𝜔ଶ𝜇௘𝑎ଵ +

1

4
𝑎ଶ𝑓ସ(𝑐𝑜𝑠 𝛾ଶ + 𝑖 𝑠𝑖𝑛 𝛾ଶ) −

1

2
𝑝ଶ𝑎ଶ 

−
ଵ

ଶ
𝑖𝜔ଶ𝑑ଶ𝑎ଶ −

ଷ

଼
𝛼ସ𝑎ଶ

ଷ −
ଵ

଼
𝑖𝜔ଶ𝛼ହ𝑎ଶ

ଷ −
ଵ

଼
𝛼଺𝜔ଶ

ଶ𝑎ଶ
ଷ −

ଷ

଼
𝑖𝐺ଶ𝜔ଶ

ଷ𝑎ଶ
ଷ = 0,  (3.11b) 

where 𝛾ଵ = 𝜎ଵ𝑇ଵ − 2𝜃ଵ, 𝛾ଶ = 𝜎ଶ𝑇ଵ − 2𝜃ଶ, then separating real and imaginary elements: 

𝑎ଵ
′ =

ଵ

ଶ
ቂ−𝑑ଵ − 𝜇௠ +

ଵ

ଶఠభ
𝑓ଶ 𝑠𝑖𝑛 𝛾ଵቃ 𝑎ଵ −

ଵ

଼
[𝛼ଶ + 3𝐺ଵ𝜔ଵ

ଶ]𝑎ଵ
ଷ,    (3.12a) 

𝑎ଵ𝛾ଵ
′ = ቂ𝜎ଵ +

ଵ

ଶఠభ
𝑓ଶ 𝑐𝑜𝑠 𝛾ଵ −

௣భ

ఠభ
ቃ 𝑎ଵ −

ଵ

ସ
ቂ

ଷ

ఠభ
𝜆ଶ +

ଷ

ఠభ
𝛼ଵ + 𝛼ଷ𝜔ଵቃ 𝑎ଵ

ଷ,   (3.12b) 

𝑎ଶ
′ =

ଵ

ଶ
ቂ−𝑑ଶ − 𝜇௘ +

ଵ

ଶఠమ
𝑓ସ 𝑠𝑖𝑛 𝛾ଶቃ 𝑎ଶ −

ଵ

଼
[𝛼ହ + 3𝐺ଶ𝜔ଶ

ଶ]𝑎ଶ
ଷ,    (3.13a) 

𝑎ଶ𝛾ଶ
′ = ቂ𝜎ଶ +

ଵ

ଶఠమ
𝑓ସ 𝑐𝑜𝑠 𝛾ଶ −

௣మ

ఠమ
ቃ 𝑎ଶ −

ଵ

ସ
ቂ

ଷ

ఠమ
𝛼ସ + 𝛼଺𝜔ଶቃ 𝑎ଶ

ଷ.    (3.13b) 
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For steady-state responses (𝑎ଵ
′ = 𝑎ଶ

′ = 𝛾ଵ
′ = 𝛾ଶ

′ = 0), the periodic solution resultant to Eqs (3.12) 
and (3.13) are given as: 

ቂ−𝑑ଵ − 𝜇௠ +
ଵ

ଶఠభ
𝑓ଶ 𝑠𝑖𝑛 𝛾ଵቃ 𝑎ଵ −

ଵ

ସ
[𝛼ଶ + 3𝐺ଵ𝜔ଵ

ଶ]𝑎ଵ
ଷ = 0,     (3.14a) 

ቂ𝜎ଵ +
ଵ

ଶఠభ
𝑓ଶ 𝑐𝑜𝑠 𝛾ଵ −

௣భ

ఠభ
ቃ 𝑎ଵ −

ଵ

ସ
ቂ

ଷ

ఠభ
𝜆ଶ +

ଷ

ఠభ
𝛼ଵ + 𝛼ଷ𝜔ଵቃ 𝑎ଵ

ଷ = 0,    (3.14b) 

ቂ−𝑑ଶ − 𝜇௘ +
ଵ

ଶఠమ
𝑓ସ 𝑠𝑖𝑛 𝛾ଶቃ 𝑎ଶ −

ଵ

ସ
[𝛼ହ + 3𝐺ଶ𝜔ଶ

ଶ]𝑎ଶ
ଷ = 0,     (3.15a) 

ቂ𝜎ଶ +
ଵ

ଶఠమ
𝑓ସ 𝑐𝑜𝑠 𝛾ଶ −

௣మ

ఠమ
ቃ 𝑎ଶ −

ଵ

ସ
ቂ

ଷ

ఠమ
𝛼ସ + 𝛼଺𝜔ଶቃ 𝑎ଶ

ଷ = 0.     (3.15b) 

The Newton-Raphson method and MATLAB software are used to determine the steady-state answers 
from the algebraic equations. The Lyapunov first approach is used to determine the right-hand side 
eigenvalues of the Jacobian matrix at Eqs. (3.15) to calculate the stability of the steady-state shell 
system. 

⎣
⎢
⎢
⎢
⎡
𝑎ଵ

′

𝛾ଵ
′

𝑎ଶ
′

𝛾ଶ
′ ⎦
⎥
⎥
⎥
⎤

= ൦

𝑅ଵଵ   𝑅ଵଶ    𝑅ଵଷ    𝑅ଵସ

𝑅ଶଵ   𝑅ଶଶ   𝑅ଶଷ     𝑅ଶସ

𝑅ଷଵ   𝑅ଷଶ    𝑅ଷଷ    𝑅ଷସ

𝑅ସଵ   𝑅ସଶ   𝑅ସଷ    𝑅ସସ

൪ ൦

𝑎ଵ

𝛾ଵ

𝑎ଶ

𝛾ଶ

൪,       (3.16) 

where 

2 21
11 1 2 1 2 1 1 1

1 1

1 1 3
3

2 2 8
   


 

            
sin ,m

a
R d f G a

a  

𝑅ଵଶ =
𝜕𝑎ଵ

′

𝜕𝛾ଵ
=

1

4𝜔ଵ
𝑎ଵ𝑓ଶ 𝑐𝑜𝑠 𝛾ଵ, 

𝑅ଵଷ =
𝜕𝑎ଵ

′

𝜕𝑎ଶ
= 0, 

𝑅ଵସ =
డ௔భ

′

డఊమ
= 0, 

𝑅ଶଵ =
డఊభ

′

డ௔భ
=

ଵ

௔భ
ቂ𝜎ଵ +

ଵ

ଶఠభ
𝑓ଶ 𝑐𝑜𝑠 𝛾ଵ −

௣భ

ఠభ
ቃ −

ଷ

ସ
ቂ

ଷ

ఠభ
𝜆ଶ +

ଷ

ఠభ
𝛼ଵ + 𝛼ଷ𝜔ଵቃ 𝑎ଵ, 

𝑅ଶଶ =
𝜕𝛾ଵ

′

𝜕𝛾ଵ
= −

1

2𝜔ଵ
𝑓ଶ 𝑠𝑖𝑛 𝛾ଵ, 
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𝑅ଶଷ =
𝜕𝛾ଵ

′

𝜕𝑎ଶ
= 0, 

𝑅ଶସ =
డఊభ

′

డఊమ
= 0, 

2 2
31 32

1 1

0 0, ,
a a

R R
a 
  

   
 

 

𝑅ଵଷ =
𝜕𝑎ଶ

′

𝜕𝑎ଶ
=

1

2
൤−𝑑ଶ − 𝜇௘ +

1

2𝜔ଶ
𝑓ସ 𝑠𝑖𝑛 𝛾ଶ൨ −

3

8
[𝛼ହ + 3𝐺ଶ𝜔ଶ

ଶ]𝑎ଶ
ଶ, 

𝑅ଵସ =
డ௔మ

′

డఊమ
=

ଵ

ସఠమ
𝑎ଶ𝑓ସ 𝑐𝑜𝑠 𝛾ଶ, 

𝑅ସଵ =
𝜕𝛾ଶ

′

𝜕𝑎ଵ
= 0, 

𝑅ସଶ =
𝜕𝛾ଶ

′

𝜕𝛾ଵ
= 0, 

𝑅ସଷ =
𝜕𝛾ଶ

′

𝜕𝑎ଶ
=

1

𝑎ଶ
൤𝜎ଶ +

1

2𝜔ଶ
𝑓ସ 𝑐𝑜𝑠 𝛾ଶ −

𝑝ଶ

𝜔ଶ
൨ −

3

4
൤

3

𝜔ଶ
𝛼ସ + 𝛼଺𝜔ଶ൨ 𝑎ଶ, 

𝑅ସସ =
డఊమ

′

డఊమ
= −

ଵ

ଶఠమ
𝑓ସ 𝑠𝑖𝑛 𝛾ଶ. 

To determine the controlled model's stable zones, calculate the following determinant in the previous 
matrix. 

ተ

𝑅ଵଵ − 𝜆     𝑅ଵଶ        0          0
𝑅ଶଵ        𝑅ଶଶ − 𝜆    0          0
0           0       𝑅ଷଷ − 𝜆    𝑅ଷସ

0           0       𝑅ସଷ        𝑅ସସ − 𝜆

ተ = 0.        (3.17) 

Then, 

𝜆ସ + 𝑟ଵ𝜆ଷ + 𝑟ଶ𝜆ଶ + 𝑟ଷ𝜆 + 𝑟ସ = 0.      (3.18) 

Where, 𝜆 designates the Jacobian matrix's eigenvalue, 

𝑟ଵ = −𝑅ଵଵ − 𝑅ଶଶ − 𝑅ଷଷ − 𝑅ସସ, 

2 11 22 11 33 11 44 22 33 22 44 33 44 12 21 34 43,r R R R R R R R R R R R R R R R R         
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𝑟ଷ = 𝑅ଵଶ𝑅ଶଵ𝑅ଷଷ + 𝑅ଵଶ𝑅ଶଵ𝑅ସସ + 𝑅ଵଵ𝑅ଷସ𝑅ସଷ + 𝑅ଶଶ𝑅ଷସ𝑅ସଷ 

−𝑅ଵଵ𝑅ଶଶ𝑅ଷଷ − 𝑅ଵଵ𝑅ଶଶ𝑅ସସ − 𝑅ଵଵ𝑅ଷଷ𝑅ସସ − 𝑅ଶଶ𝑅ଷଷ𝑅ସସ, 

𝑟ସ = 𝑅ଵଵ𝑅ଶଶ𝑅ଷଷ𝑅ସସ + 𝑅ଵଶ𝑅ଶଵ𝑅ଷସ𝑅ସଷ − 𝑅ଵଵ𝑅ଶଶ𝑅ଷସ𝑅ସଷ − 𝑅ଵଶ𝑅ଶଵ𝑅ଷଷ𝑅ସସ 

are the coefficient of Eq (3.18). 
Routh-Hurwitz criterion is used to examine the stability of equilibrium solutions via discovering 

sufficient and necessary requirements to be stable are: 

𝑟ଵ > 0, 𝑟ଵ𝑟ଶ − 𝑟ଷ > 0, 𝑟ଷ(𝑟ଵ𝑟ଶ − 𝑟ଷ) − 𝑟ଵ
ଶ𝑟ସ > 0, 𝑟ସ > 0.    (3.19) 

Furthermore, to conclude the nature of the roots of Eq (3.18), we define the following 
discriminants 𝛥, 𝛥଴, 𝛥ଵ, 𝛥ଶ, and 𝛥ଷ [58,59] as: 

𝛥 = 256𝑟ସ
ଷ − 192𝑟ଵ𝑟ଷ𝑟ସ

ଶ − 128𝑟ଶ
ଶ𝑟ସ

ଶ + 144𝑟ଶ𝑟ଷ
ଶ𝑟ସ − 27𝑟ଷ

ସ + 144𝑟ଵ
ଶ𝑟ଶ𝑟ସ

ଶ − 6𝑟ଵ
ଶ𝑟ଷ

ଶ𝑟ସ − 80𝑟ଵ𝑟ଶ
ଶ𝑟ଷ𝑟ସ 

+18𝑟ଵ𝑟ଶ𝑟ଷ
ଷ + 16𝑟ଶ

ସ𝑟ସ − 4𝑟ଶ
ଷ𝑟ଷ

ଶ − 27𝑟ଵ
ସ𝑟ସ

ଶ + 18𝑟ଵ
ଷ𝑟ଶ𝑟ଷ𝑟ସ − 4𝑟ଵ

ଷ𝑟ଷ
ଷ − 4𝑟ଵ

ଶ𝑟ଶ
ଷ𝑟ସ + 𝑟ଵ

ଶ𝑟ଶ
ଶ𝑟ଷ

ଶ 

𝛥଴ = 8𝑟ଷ − 3𝑟ଵ
ଶ, 𝛥ଵ = 𝑟ଵ

ଷ + 8𝑟ଷ
ଶ − 4𝑟ଵ𝑟ଶ, 𝛥ଶ = 𝑟ଶ

ଶ − 3𝑟ଵ𝑟ଷ + 12𝑟ସ, 

𝛥ଷ = 64𝑟ସ − 16𝑟ଶ
ଶ + 16𝑟ଵ

ଶ𝑟ଶ − 16𝑟ଵ𝑟ଷ − 3𝑟ଵ
ସ. 

By joining the conditions Eq (3.19) with each one of the following possible cases, one can establish 
the sort of roots of Eq (3.18) as: 

a) If 𝛥 < 0 then the equation has two different real and two complex conjugate roots. 
b) If 𝛥 > 0, then either the four roots are all complex conjugate or real according to the subsequent 

two cases: 
i. If 𝛥଴ < 0 and 𝛥ଷ < 0 then all four roots are different and real. 

ii. If 𝛥଴ > 0 or if 𝛥ଷ > 0 then the roots are two pairs of complex conjugates. 
c) If 𝛥 = 0 then the system has multiple roots according to the following four cases: 

i. If 𝛥଴ < 0, 𝛥ଷ < 0 and 𝛥2 ≠ 0, there are two real simple roots and a real double roots 
ii. If 𝛥ଷ > 0 or (𝛥଴ > 0 and (𝛥ଷ ≠ 0 or 𝛥ଵ ≠ 0)), there are two complex conjugate roots and 

two real equal roots. 
iii. If 𝛥ଶ = 0 and 𝛥ଷ ≠ 0, there are three real equal roots and one real different root. 
iv. If 𝛥ଷ = 0, at that time: 

1- If 𝛥଴ < 0, there are two real double roots. 
2-  If 𝛥଴ > 0 and  𝛥ଵ = 0, the roots be present two double complex conjugate roots. 

3- If 𝛥ଶ = 0, all four roots are equal to − ௥భ

ସ
. 

4. The optimum control parameters 

The mechanism of the NPDVF controller at the measured simultaneous resonance can be clarified 
with the aid of Eqs (3.12) and (3.13). It is clear from Eqs (3.12) and (3.13) that the addition of the 
NPDVF controller to the considered framework has modified the linear damping terms 𝜇௠ and 𝜇௘ 
to the controlled terms 𝜇௠ି௖௢௡௧௥௢௟ and 𝜇௘ି௖௢௡௧௥௢௟. Moreover, the detuning parameter 𝜎ଵ and 𝜎ଶ is 
modified to 𝜎ଵି௖௢௡௧௥௢௟ and 𝜎ଶି௖௢௡௧௥௢௟, where 𝜇௠ି௖௢௡௧௥௢௟, 𝜇௘ି௖௢௡௧௥௢௟, 𝜎ଵି௖௢௡௧௥௢௟ , and 𝜎ଶି௖௢௡௧௥௢௟ 
are given as follows: 
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𝜇௠ି௖௢௡௧௥௢௟ = −
ଵ

ଶ
(𝜇௠ + 𝑑ଵ),        (4.1) 

𝜎ଵି௖௢௡௧௥௢௟ = ቀ𝜎ଵ −
௣భ

ଶఠభ
ቁ,         (4.2) 

𝜇௘ି௖௢௡௧௥௢௟ = −
ଵ

ଶ
(𝜇௘ + 𝑑ଶ),        (4.3) 

𝜎ଶି௖௢௡௧௥௢௟ = ቀ𝜎ଶ −
௣మ

ଶఠమ
ቁ.         (4.4) 

It is clear from Eqs (4.1)–(4.4) that 𝜇௠ି௖௢௡௧௥௢௟, 𝜇௘ି௖௢௡௧௥௢௟, 𝜎ଵି௖௢௡௧௥௢௟ , and 𝜎ଶି௖௢௡௧௥௢௟ are periodic 
functions on the controller, where the controlled system has the equivalent linear damping coefficients 

𝜇௠ି௖௢௡௧௥௢௟ = −
ଵ

ଶ
(𝜇௠ + 𝑑ଵ), 𝜇௘ି௖௢௡௧௥௢௟ = −

ଵ

ଶ
(𝜇௘ + 𝑑ଶ) and the detuning parameters 𝜎ଵି௖௢௡௧௥௢௟ =

ቀ𝜎ଵ −
௣భ

ଶఠభ
ቁ = 𝛺ଶ − ቀ𝜔ଵ +

௣భ

ଶఠభ
ቁ, 𝜎ଶି௖௢௡௧௥௢௟ = ቀ𝜎ଶ −

௣మ

ଶఠమ
ቁ = 𝛺ସ − ቀ𝜔ଶ +

௣మ

ଶఠమ
ቁ. This means that the 

linear control forces 𝑝ଵ and 𝑝ଶ are responsible for changing the system natural frequencies 𝜔ଵ and 
𝜔ଶ , while the velocity gain 𝑑ଵ  and 𝑑ଶ  is responsible for modifying the system linear damping 
coefficients 𝜇௠ and 𝜇௘ . Consequently, to develop the vibration suppression efficiency of the 
measured scheme, the linear control forces 𝑝ଵ, 𝑝ଶ and 𝑑ଵ, 𝑑ଶ should be designated in a way that 
maximizes the objective function 𝜇௠ି௖௢௡௧௥௢௟, 𝜇௘ି௖௢௡௧௥௢௟, 𝜎ଵି௖௢௡௧௥௢௟ and 𝜎ଶି௖௢௡௧௥௢௟. By comparing 
the obtained results in Figures 8(b) and 9(a) with the objective function given by Eqs (4.1)–(4.4), we 
can notice that the best vibration suppression condition has occurred at the maximum values of 
function 𝜇௠ି௖௢௡௧௥௢௟, 𝜇௘ି௖௢௡௧௥௢௟, 𝜎ଵି௖௢௡௧௥௢  and 𝜎ଶି௖௢௡௧௥௢௟ as summarized in Table 1. 

Table 1. Optimum control parameters. 

Figur

e 

𝑝ଵ 𝑝ଶ 𝑑ଵ 𝑑ଶ 𝜔ଵ 𝜔ଶ 𝜇௠ି௖௢௡௧௥௢௟ 

=
1

2
(𝜇௠

+ 𝑑ଵ) 

𝜎ଵି௖௢௡௧௥௢௟  

= ൬𝜎ଵ

−
𝑝ଵ

2𝜔ଵ

൰ 

𝜇௘ି௖௢௡௧௥௢௟  

=
1

2
(𝜇௘

+ 𝑑ଶ) 

𝜎ଶି௖௢௡௧௥௢௟ 

= ൬𝜎ଶ

−
𝑝ଶ

2𝜔ଶ

൰ 

Max 

𝜇௠ି௖௢௡௧௥௢  

Max 

𝜇௘ି௖௢௡௧௥௢௟ 

Max 

𝜎ଵି௖௢௡௧௥௢௟ 

Max 

𝜎ଶି௖௢௡௧௥௢௟ 

16 -

0.

5 

0 0 0 5.0

5 

4.0

5 

0.5

(𝜇௠ +

0) 

𝜎ଵ

+
0.5

2(5.05)
 

0.5

(𝜇௘ +

0) 

𝜎ଶ + 0 0.0155 0.2 1.05 1.0 

24 0 -

0.

5 

0 0 5.0

5 

4.0

5 

0.5

(𝜇௠ +

0) 

𝜎ଵ + 0 0.5

(𝜇௘ +

0) 

𝜎ଶ

+
0.5

2(4.05)
 

0.0155 0.2 1.0 1.06 

17 0 0 2.

5 

0 5.0

5 

4.0

5 

0.5

(𝜇௠ +

2.5) 

𝜎ଵ + 0 0.5

(𝜇௘ +

0) 

𝜎ଶ + 0 1.2655 0.2 1.0 1.0 

25 0 0 0 0.

5 

5.0

5 

4.0

5 

0.5

(𝜇௠ +

0) 

𝜎ଵ + 0 0.5

(𝜇௘ +

0.5) 

𝜎ଶ + 0 0.0155 0.45 1.0 1.0 
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The table 1 provides a list or summary of the important variables that were considered in the 
design process. The choice of each parameter was guided by the system’s functional requirements and 
manufacturing constraints to avoid unstable regions of the system. This approach avoids pushing the 
system into regions that might otherwise lead to increased costs, manufacturing difficulties, or 
operational instability. The parameters listed in Tab. 1 are critical to the overall design of the system. 
Each of these variables was carefully chosen to balance the system’s functional requirements with the 
practical limitations imposed by manufacturing capabilities. 

To improve the system’s response, Eqs (4.1)–(4.4) introduce more sophisticated feedback 
mechanisms, specifically designed to manage these nonlinearities and provide better stabilization and 
vibration suppression. The enhanced NPDVF controller improves the system's ability to avoid 
resonance conditions or mitigate their effects. The improvement of the NPDCVF controller 
represented by Eqs (4.1)–(4.4) is essential for addressing the nonlinear dynamics, feedback instability, 
and resonance issues in systems with both mechanical and electrical components. The combination of 
these equations allows the NPDVF controller to anticipate future disturbances, adjust for system 
nonlinearities, and optimize control actions in real time. 

5. Results and discussions 

5.1 Numerical simulation with time history 

The nonlinear dynamical structure was just demonstrated by Eq (3.10) through (3.14) above. The 
MATLAB®18 computer programmer was then used to numerically simulate three distinct control 
strategies (PD, NCVF, and NPDVF) to identify which controller would minimise the destructive 
vibrations caused during work of the model. Figures 3–6 are plotted to appear the time history of the 
worst resonance case before and after using various controllers via the following values of the 
parameters: 

𝜇௠ = 0.031, 𝜔ଵ = 5.05, 𝜆ଵ = 0.00315, 𝜆ଶ = 0.025, 

𝛾଴ = −0.2, 𝛾ଵ = −0.0015, 𝛾ଶ = 0.035, 𝑓଴ = 1.2, 𝑓ଵ = 3.5, 

𝑓ଶ = 4.7, 𝛺ଵ = 3.75, 𝛺ଶ = 𝜔ଵ, 𝜇௘ = 0.4, 𝜔ଶ = 4.05, 

𝛽଴ = 0.0072, 𝛽ଵ = 0.005, 𝛽ଶ = 0.0015, 𝑓ଷ = 1.6, 𝑓ସ = 3.1, 

𝛺ଷ = 2.45, 𝛺ସ = 𝜔ଶ, 𝑝ଵ = 2.3, 𝑑ଵ = 2.5, 

𝛼ଵ = 0.09, 𝛼ଶ = 0.04, 𝛼ଷ = 0.4, 𝐺ଵ = 0.5, 𝑝ଶ = 1.9, 𝑑ଶ = 0.5, 

𝛼ସ = 0.05, 𝛼ହ = 0.03, 𝛼଺ = 0.2, 𝐺ଶ = 0.4, 𝜀 = 0.5, 

with the initial conditions 𝑥(0) = 0.5,  𝑥̇(0) = 0, 𝑧(0) = 0.5,  𝑧̇(0) = 0. 
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Figure 3. The measured simultaneous resonance instance (𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ) without controller. 

 

Figure 4. The measured simultaneous resonance instance (𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ) with PD controller. 
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Figure 5. The measured simultaneous resonance instance (𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ) with NCVF 
controller. 

 

Figure 6. The measured simultaneous resonance instance (𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ) with the 
novel resonant controller NPDVF. 
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Figure 3 presents the basic steady-state amplitudes 𝑥(𝑡)  and 𝑧(𝑡)without controller at the 
simultaneous resonance situation 𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ  as the worst resonance case of the system. 
Figures 4–6 show the results of adding the measured controllers (PD-NCVF-NPDCVF), enabling you 
to indicate the best one for reducing the high vibration amplitudes. After checking, we found that the 
best one controller is NPDVF as it reduces the vibrations at the measured resonance in a short time. 
The new controller NPDCVFC is the most efficient, according to these diagrams (3–6). The controller 
for the observed model's active vibration is developed in this part (refer to Figure 6). The NPD and 
NCVFC algorithms are used for active vibration control, as mentioned earlier. With this controller 
rule, the depreciation rate's are enhanced for this structural model. It is obvious that the infinite norm 
of vibration amplitudes might be reduced with this straightforward method. The outcomes demonstrate 
how well the optimization strategy reduced vibrations and how quickly suitably positioned actuators 
and sensors were able to reduce vibrations in the model. Thus, we will select and statistically evaluate 
the controlled model in order to study it and examine the impact of various controlled parameters on 
the system. 

5.2 Simulation of stability and the influence of various controlled model factors 

This part examined the effects of different parameters used the regulated model in Eqs (3.14-3.15), 
numerically illustrated the stable and unstable areas. The beneficial case is examined to acquire a 
significant quantity of parameter effects. As illustrated in Figures 7–26, all curves display only stable 
segments without any instability areas when NPDVF controller is applied to the system. This provides 
an additional justification for adding this supplementary controller to the system, which is a beneficial 
outcome for any vibrating system. Solid curves indicate stable reactions. The solid line (ــ   ــ  (ــــــ
illustrates the stable regions. Figures 7 and 19 describe the performance of the amplitude-frequency 
response steady-state response curves 𝑎ଵ  versus𝜎ଵ and𝑎ଶ  versus𝜎ଶ , respectively, with nonstable 
regions, which shows only stable zones. As the linear damping coefficients 𝜇௠, 𝜇௘ decreased the 
amplitudes 𝑎ଵ, 𝑎ଶ are increased and the stability region is increased as appeared in Figures 8, 20. By 
way of the excitation frequencies 𝜔ଵ, 𝜔ଶ  are increased the steady-state amplitudes 𝑎ଵ, 𝑎ଶ  are 
increased and all regions are stable as exposed in Figures 9, 10, 21. Moreover, the diagrams of the 
nonlinear control coefficient 𝛼ଶ is slightly monotonic decreasing with no instability regions as 
depicted in Figure 11. Moreover, when the amplitudes 𝑎ଵ, 𝑎ଶ are decreased the nonlinear control 
parameter 𝛼ଷ  is increased as illustrated in Figures 12, 22. Also, the nonlinear coefficient 𝛼ସ is 
monotonic decreasing in which when it decreased, the amplitude 𝑎ଵ increased as shown in Figure 13. 
Also, as the parametric force coefficients 𝑓ଶ, 𝑓ସ are increased, then the steady-state amplitudes 𝑎ଵ, 𝑎ଶ 
are increased with increasing in stability regions as displayed in Figures 14, 15 and 23. Besides, the 
curve of the linear control force coefficients 𝑝ଵ, 𝑝ଶ are shifted to right (S.R) when the values of 
parameters 𝑝ଵ, 𝑝ଶ are increased with no instability regions as graphed in Figures 16 and 24. On other 
hand, when the linear control force coefficients 𝑑ଵ is increased, the steady-state amplitudes 𝑎ଵ, 𝑎ଶ 
are increased and all zones are stable as labelled in Figures 17 and 25. In the last, as the gain 
coefficients 𝐺ଵ, 𝐺ଶ increased the steady-state amplitudes 𝑎ଵ, 𝑎ଶ are small with stability regions which 
are presented in Figures 18 and 26. 

As listed in the figures, in which, M.I refers to monotonic increasing and M.D refers to monotonic 
decreasing 
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Figure 7. Response curve via 𝑎ଵ versus 𝜎ଵ of the controlled structure. 

 

Figure 8. Impact of damping coefficient 𝜇௠ (M.D). 

𝜇௠ = 0.03  

𝜇௠ = 0.1  

𝜇௠ = 0.3  
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Figure 9. Effect of excitation frequency 𝜔ଵ (M.I). 

 

Figure 10. Influence of excitation frequency 𝜔ଶ (S.M.I) slightly monotonic Increasing. 

𝜔ଵ = 7.5  

𝜔ଵ = 6.5  

𝜔ଵ = 5.05  

𝜔ଶ = 5.5  

𝜔ଶ = 4.05  
𝜔ଶ = 3.5  
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Figure 11. Influence of nonlinear control parameter 𝛼ଶ (S.M.D) slightly monotonic decreasing. 

 

Figure 12. Influence of nonlinear control parameter 𝛼ଷ (M.D). 

𝛼ଶ = 0.04  
𝛼ଶ = 0.5  

𝛼ଶ = 1.5  

𝛼ଷ = 0.05  

𝛼ଷ = 0.25  

𝛼ଷ = 0.4  
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Figure 13. Influence of nonlinear control parameter 𝛼ସ (M.D). 

 

Figure 14. Influence of parametric excitation force parameter 𝑓ଶ (M.I). 

𝛼ସ = 0.01  

𝛼ସ = 0.03  

𝛼ସ = 0.05  

𝑓ଶ = 6.5  

𝑓ଶ = 5.5  

𝑓ଶ = 4.7  
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Figure 15. Influence of parametric excitation force parameter 𝑓ସ (M.D). 

 

Figure 16. Influence of the linear control force coefficient 𝑝ଵ at increasing amplitude 
moved to right, at decreasing amplitude moved to left. 

𝑓ସ = 2.5  

𝑓ସ = 3.1  

𝑓ସ = 4.2  

𝑝ଵ = −0.5  

𝑝ଵ = 0.3  
𝑝ଵ = 4.0  
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Figure 17. Influence of the linear control force coefficient 𝑑ଵ (M.I). 

 

Figure 18. Influence of nonlinear control gain 𝐺ଵ (M.D). 

𝑑ଵ = 3.5  

𝑑ଵ = 2.5  

𝑑ଵ = 1.5  

𝐺ଵ = 0.5  

𝐺ଵ = 1.5  

𝐺ଵ = 2.5  
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Figure 19. Influence response curves 𝑎ଶ versus 𝜎ଶ of the controlled system. 

 

Figure 20. Impact of the damping coefficient 𝜇௘ (M.D). 

𝜇௘ = 0.1  

𝜇௘ = 0.2 

𝜇௘ = 0.4 
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Figure 21. Effect of the excitation frequency 𝜔ଶ (M.I). 

 

Figure 22. Influence of nonlinear control parameter 𝛼ଷ (M.D). 

𝜔ଶ = 4.05  
𝜔ଶ = 3.8  

𝜔ଶ = 3.2  

𝛼ଷ = 0.4  

𝛼ଷ = 0.6  

𝛼ଷ = 0.8  
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Figure 23. Influence of the parametric excitation force parameter 𝑓ଶ (M.I). 

 

Figure 24. Influence of the linear control force factor 𝑝ଶ, at increasing amplitude it moved 
to right, but at decreasing amplitude it shifted to left. 

𝑓ଶ = 6.3  

𝑓ଶ = 5.4  

𝑓ଶ = 4.7  

𝑝ଶ = 1.9  

𝑝ଶ = 3.0  𝑝ଶ = 4.0  
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Figure 25. Influence of the linear control force coefficient 𝑑ଶ (M.I). 

 

Figure 26. Influence of the nonlinear control gain 𝐺ଶ (M.D). 

Therefore, Table 2 provides a detailed account of the effects of various parameters of the 
controlled system with various effects on the system to appear the stable regions. 

 

𝑑ଶ = 0.5  

𝑑ଶ = 0.3  

𝑑ଶ = 0.1  

𝐺ଶ = 0.4  

𝐺ଶ = 0.6  

𝐺ଶ = 0.8  
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Table 2. Impact of various coefficients of the controlled system. 

Parameter Symbol Status Amplitude Effect Stability  
Figure 

No. 

Linear 

damping 
𝜇௠ Increase  𝑎ଵ Decrease 

Stable regions occur 8 

Excitation 

frequency 
𝜔ଵ Increase 𝑎ଵ Increase 

Stable regions occur 9 

Excitation 

frequency 
𝜔ଶ Increase 𝑎ଵ Slightly Increase 

Stable regions occur 10 

Nonlinear 

control 
𝛼ଶ Increase 𝑎ଵ Slightly Decrease 

Stable regions occur 11 

Nonlinear 

control 

𝛼ଷ 
Increase 𝑎ଵ Decrease 

Stable regions occur 12 

Nonlinear 

control 

𝛼ସ 
Increase 𝑎ଵ Decrease 

Stable regions occur 13 

Parametric 

excitation 

force 

𝑓ଶ 

Increase 

𝑎ଵ 

Increase 

Stable regions occur 14 

parametric 

excitation 

force 

𝑓ସ 

Increase 

𝑎ଵ 

Decrease 

Stable regions occur 15 

Linear 

control force 

𝑝ଵ Increase 𝑎ଵ Shifted to right  Stable regions occur 16 

Decrease Shifted to left  

Linear 

control force 

𝑑ଵ 
Increase 𝑎ଵ Increase 

Stable regions occur 17 

Gain 
𝐺ଵ 

Increase 𝑎ଵ Decrease Stable regions occur 
18 

Linear 

damping 
𝜇௘ Increase 𝑎ଶ Decrease 

Stable regions occur 20 

Excitation 

frequency 
𝜔ଶ Increase 𝑎ଶ Increase 

Stable regions occur 21 

Nonlinear 

control 

𝛼ଷ 
Increase 𝑎ଶ Decrease 

Stable regions occur 22 

Parametric 

excitation 

force 

𝑓ଶ 

Increase 

𝑎ଶ 

Increase 

Stable regions occur 23 

Linear 

control force 

𝑝ଶ Increase 
𝑎ଶ 

Shifted to right Stable regions occur 24 

Decrease Shifted to left 

Linear 

control force 

𝑑ଶ 
Increase 

𝑎ଶ 

 
Increase 

Stable regions occur 25 

Gain 𝐺ଶ Increase 𝑎ଶ Decrease Stable regions occur 26 
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5.3 Comparison of the same model with more recent studies 

An electromechanical seismograph model associated electric circuit model system akin to 
Eq (2.7) was examined in [9–11]. However, they applied the multiple time scale process within the 
principal parametric resonance item to study the behaviour of the structure under mixed excitations, 
eliminating the need for a controller. The development of the model given in [11] is examined in the 
current work. I add a variety of control strategies to the vibrating structure system's modified system 
in order to determine which one reduces the framework structure's risk of vibration. Additionally, the 
upgraded system's new controller NPDVF is examined in this article. The results of this research show 
that the novel controller less than the other controllers decreases the high vibrational amplitude of the 
model exposed to parametric stimulation inside the simultaneous resonance, as shown in subsection 5.1. 
The perturbation approach is used to aid in the acquisition of analytical solutions. Plotting of the 
frequency response graphs occurs at different framework parameter levels. We end with a numerical 
validation of the obtained results. The comparisons show that the current approach produces findings 
that are remarkably similar to those found in [11] and that the discrepancies are less than 1%. 

5.4 Comparison between the proposed NPDVF control and other nonlinear controllers of nonlinear 
systems 

A comparison between nonlinear controllers with the proposed NPDVF controller is presented in 
a summary Table 3 that compares the performance of the different controllers based on the criteria of 
robustness, computational cost, and control signal amplitude. The table should provide a clear visual 
comparison that illustrates the advantages of the proposed NPDVF controller. 

Table 3. Comparison NPDVF controller with other controllers of nonlinear systems. 

Control Method Robustness Computational Cost 
Control Signal 

Amplitude 

NPDVF Controller 
Excellent (handles nonlinearities 

and bifurcations) 
Low (efficient and fast) 

Small (efficient 

suppression) 

Linear Proportional-

Derivative (PD)  

Controller 

Moderate (struggles with 

nonlinearities) 
Very Low (simple) Large (less adaptive) 

Sliding Mode 

Controller (SMC) 
High (robust but chattering) 

Moderate (requires 

switching) 

Large (due to 

chattering) 

Fuzzy Logic Controller Moderate (requires rule tuning) 
Moderate (rule 

evaluation) 

Moderate (tuned 

control) 

Model Predictive 

Controller (MPC) 

High (optimal performance but 

computationally expensive) 

Very High 

(optimization) 

Moderate to Large 

(depends on 

prediction) 

Backstepping 

Controller 

High (effective for nonlinear 

systems) 

Moderate (recursive 

equations) 

Moderate to Large 

(strong control action) 
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5.5 Disturbance unavoidably of main control coefficients of the proposed controlled model 

The time response of control inputs is shown in Figures 27–32 where the control input is also 
used to eliminate the effect of disturbance mainly at the stable stage. The control inputs is not only 
regulating the system’s behavior but is also designed to mitigate the effect of external disturbances, 
particularly during the stable stage of the system's operation. These figures will show how the control 
input varies over time as the system responds to a disturbance. Each figure shows how the control 
input changes over time and responds to disturbances, providing a clear visualization of the controller’s 
effectiveness in rejecting disturbances. This suggests that the system can quickly react to external 
disturbances, with the linear control force 𝑝ଵ = 2.3 stabilizing at a specific value after some initial 
disturbance. The system reaches stability within a short time, indicating a fast disturbance rejection 
process, and the disturbance effect is effectively mitigated as in Figure 27. Also, Figure 28 shows that 
the system achieves a disturbance-free state after a brief period. The disturbance input 𝑑ଵ = 2.5 has 
been neutralized quickly, indicating that the controller effectively nullifies the impact of the 
disturbance on the system in a short time. The nonlinear control gain 𝐺ଵ = 0.5 is an important factor 
in reducing disturbances. When this gain is set to 0.5, it appears that the system is better able to 
suppress disturbances. This indicates that the nonlinear controller is tuned to counteract the 
disturbances effectively, ensuring that the system can reach a steady state despite the presence of 
external influences as in Figure 29. Additionally, the control parameters 𝑝ଶ and 𝑑ଶ appear to be 
carefully selected to ensure the system reacts appropriately to disturbances while maintaining stability. 
The values of 𝑝ଶ = 1.9 and 𝑑ଶ = 0.5  are likely optimized for quick disturbance rejection and 
minimal control effort. These parameters ensure that the system reaches the desired state quickly, 
further reducing the influence of external disturbances as shown in Figures 30 and 31. Finally, When 
𝐺ଵ = 0.4 is applied, the system is better able to reduce or even eliminate the impact of external 
disturbances. The system’s response, particularly in terms of the control input, should show a clear 
improvement after this nonlinear gain is activated, resulting in a smoother and more stable control 
input over time as illustrated in Figure 32. By effectively control input parameters such as 
𝑝ଵ, 𝑝ଶ, 𝑑ଵ, 𝑑ଶ, 𝐺ଵ, and 𝐺ଶ, the system is able to reject disturbances in a timely manner and ensure robust 
performance. 
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Figure 27. Time response of linear control force 𝑝ଵ (5.5 ـــــــــ ,3.5 ـــــــــــ ,2.3 ـــــــــــ). 

 

Figure 28. Time response of linear control force 𝑑ଵ (6.5 ــــــــــ ,4.5 ـــــــــــ ,2.5 ـــــــــــ). 
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Figure 29. Time response of nonlinear control gain 𝐺ଵ (3.5 ــــــــــ ,1.5 ـــــــــــ ,0.5 ـــــــــــ). 

 

Figure 30. Time response of linear control force 𝑝ଶ (4.4 ــــــــــ ,3.2 ـــــــــــ ,1.9 ـــــــــــ). 
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Figure 31. Time response of linear control force 𝑑ଶ (3.5 ــــــــــ ,1.5 ـــــــــــ ,0.5 ـــــــــــ). 

 

Figure 32. Time response of nonlinear control gain 𝐺ଶ (1.5 ــــــــــ ,3.3 ـــــــــــ ,0.4 ـــــــــــ). 

6. Conclusions 

This study introduces a novel nonlinear proportional-derivative cubic velocity feedback (NPDVF) 
Controller that effectively manages vibrations in systems with coupled mechanical and electrical 
components. The controller's performance has been validated through numerical simulations and 
perturbation methods, demonstrating its ability to reduce vibrations, stabilize nonlinear motions, and 
suppress unwanted oscillations in the presence of mixed forces. A number of controller design 
approaches (PD control, NCVF control, and NPDVF as an innovative control method) were assessed 
in order to ascertain which one best minimizes high amplitude vibrations during the simultaneous 
resonance case 𝛺ଶ ≅ 𝜔ଵ, 𝛺ସ ≅ 𝜔ଶ. The solution of the studied controlled model can be approximated 
using the perturbation approach. The key advantages of the NPDVF controller, including its robustness 
to parameter uncertainties and external disturbances, low computational cost, and efficient control 
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signal amplitude, make it a promising solution for nonlinear vibration control systems. A comprehensive 
comparison with traditional control strategies, such as PD control, sliding mode control (SMC), and 
model predictive control (MPC), highlights the superior performance of the NPDVF controller in 
several aspects. Specifically, the NPDVF controller outperforms others in terms of computational 
efficiency and robustness, while also maintaining a smaller control signal amplitude, which reduces 
actuator wear and improves energy efficiency. These results suggest that the NPDVF controller is an 
effective and practical solution for real-time vibration control in complex systems. This study advances 
our understanding of the control dynamics in nonlinear models with combined excitations via 
perturbation technique for controlling chaotic behavior in such models. Future work could investigate 
the impact of time delay on the effectiveness of the NPDVF controller. Specifically, it would be 
beneficial to analyze how time delay influences the system's stability, vibration reduction, and 
bifurcation control. 
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