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Abstract: This paper examines the dynamics of a three-dimensional system of difference equations
through mathematical transformations and computational analysis. By transforming the original
system into a bilinear form, we were able to simplify its structure and gain deeper insights into
its behavior. This transformation also allowed us to study an equivalent two-dimensional system.
The analysis revealed that the system possesses closed-form solutions under specific conditions,
particularly when examining the discriminant of the quadratic polynomial associated with the system.
We examined both cases of repeated and distinct characteristic roots, uncovering varying dynamical
behaviors such as oscillations, stability, and growth, depending on the parameters involved in the
analyzed examples. The model demonstrated its ability to capture various behaviors through extensive
simulations, suggesting its potential applicability in real-world systems, including neural networks
and other complex dynamic interactions. The findings highlight the model’s robustness in various
scenarios, making it a valuable tool for further theoretical and practical applications.
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1. Introduction

The study of difference equations has long been a cornerstone in the understanding of discrete
dynamical systems, with applications spanning fields as diverse as economics, biology, engineering,
and time series. Since the 18th century, significant progress has been made in deriving closed-form
solutions for certain classes of difference equations and systems (see [1, 2]). These early contributions
laid the foundation for the exploration of solvability in difference equations, a topic still prevalent in
modern research. Many classical texts dedicate chapters to the solvability of these systems (see [3–
5]), while recent advancements continue to extend the boundaries of this field (see [6, 7]). Despite
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substantial progress, solvable difference equations remain a narrow subset of the broader spectrum of
systems, prompting the use of alternative methods to analyze those that lack closed-form solutions
(see [4–13]).

The quest for solvability often revolves around deriving applicable closed-form formulas, though
these can sometimes become exceedingly complex. In such cases, qualitative analysis becomes a
more practical approach, providing insights into the system’s behavior when explicit solutions are
either cumbersome or impossible to obtain (see [14]). Nevertheless, when possible, having general
solution formulas for new classes of difference equations is invaluable. Many systems, including those
involving nonlinearities, can often be transformed into known solvable ones, thereby inheriting their
solvability properties. Notable examples include two-dimensional systems studied by Stević, where
mathematical transformations were applied to render the systems solvable. For instance, in the work
by Stević [15], the system of difference equations

∀m ≥ 0, pm =
δmqm−3

αm + βmqm−1 pm−2qm−3
, qm =

δ′m pm−3

α′m + β
′
m pm−1qm−2 pm−3

,

was transformed into a more manageable form, leading to its solvability. Similarly, in another
study [16], the system

∀m ≥ 0, pm =
pm−iqm− j

αm pm−i + βmqm−i− j
, qm =

qm−i pm− j

α′mqm−i + β′m pm−i− j
,

was also successfully transformed into a solvable form. Additionally, in a further study [17], a similar
approach was used for the system

∀m ≥ 0, pm+1 = pm
αpmqm + βpm−1qm−1

pm−1qm
, qm+1 =

pm−1q2
m

α′pmqm + β′pm−1qm−1
,

demonstrating how transformations could simplify the system’s structure and allow for deeper insights
into its dynamics. These examples underscore the continued relevance of transformation techniques
in the analysis of complex dynamic behaviors within difference systems. Such transformations not
only render the systems solvable but also provide a clearer understanding of the underlying patterns
governing their behavior.

As complex systems continue to emerge in various scientific domains, the need for robust
models capable of capturing both the linear and nonlinear behaviors of these systems has grown
significantly. Among the various classes of difference equations, three-dimensional systems present
a particularly rich area of investigation due to their potential to model real-world phenomena where
multiple interacting variables influence the system’s evolution. Recent advancements in the study of
three-dimensional difference equations have highlighted their critical role in understanding complex
dynamical behaviors, especially in systems with nonlinear feedback and interacting variables. For
instance, Elsayed et al. [18] investigated solutions for nonlinear rational systems, revealing intricate
behaviors governed by recursive relations. Similarly, Khaliq et al. [19] analyzed exponential difference
equations, uncovering stability properties and persistent dynamics in three-dimensional systems.
Additionally, Khaliq et al. [20] investigated the boundedness nature and persistence, global and local
behavior, and rate of convergence of positive solutions of a second-order system of exponential
difference equations in three-dimensional systems. Some examples are provided to support their
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theoretical results. These studies underscore the growing importance of developing analytical and
computational tools to tackle the challenges posed by such systems, particularly when closed-form
solutions are not readily available. Our paper builds on these contributions by introducing a bilinear
transformation approach, providing a novel perspective to study and simplify three-dimensional
systems. In this paper, we focus on a specific three-dimensional system of difference equations,

∀m ≥ 0, pm+1 = pm
αrm + βpm−1qm−1

pm−1qm
,

qm+1 =
pm−1q2

m

γrm + δpm−1qm−1
,

rm+1 = pmqm
εpmqm + λpm−1qm−1

τpmqm + σpm−1qm−1
,

(1.a)

where α, β, γ, δ, ε, λ, τ, σ ∈ R, α2 + β2 , 0, γ2 + δ2 , 0, ε2 + λ2 , 0, τ2 + σ2 , 0, and
p0, q0, p−1, q−1, r0 ∈ R. We employ advanced mathematical transformations and computational tools
to unlock a deeper understanding of its dynamics. One of the critical challenges in studying such
systems is the complexity of their solutions, especially when nonlinearities and feedback mechanisms
are involved. To address this, we introduce a bilinear transformation that simplifies the original system,
offering not only a clearer interpretation of its structure but also a more tractable equivalent two-
dimensional representation. This approach allows us to focus on essential properties like stability,
oscillations, and growth, and how these characteristics evolve under different parameter settings.

Our investigation reveals that this system exhibits rich dynamical behaviors, including oscillatory
and stable states, which are significantly influenced by the discriminant of the quadratic polynomial
that defines the system. By examining cases of repeated and distinct characteristic roots, we uncover
how subtle changes in system parameters can lead to dramatically different outcomes. This insight
is particularly valuable for applications in fields like neural networks, where the dynamic interactions
between neurons often mirror such complex behaviors.

In the pursuit of developing an advanced model for analyzing the complex interactions within neural
systems, we present a sophisticated mathematical framework that integrates recursive equations and
nonlinear dynamics. This system aims to explore the evolution of neural signals over time, focusing
on how different variables interact to influence overall system stability and activity patterns. By
constructing a model based on three critical variables—pm, representing the first neural activity signal,
qm, denoting the second neural response, and rm, reflecting the combined influence of both signals—we
investigate how fluctuations in these signals impact both short-term dynamics and long-term stability.
The recursive nature of the model enables us to track the dynamic behavior of these variables over time,
incorporating nonlinear terms to simulate feedback loops characteristic of neural systems. Parameters
of our models modulate interactions between the signals, with small constants introduced to ensure
numerical stability. Through simulations under varying initial conditions, the model demonstrates how
changes in parameter values can lead to markedly different outcomes, such as oscillatory or stable
states.

The use of visualizations such as time series, phase diagrams, and frequency analysis complements
the theoretical findings, offering insights into the system’s behavior across multiple dimensions. These
methods are particularly useful in identifying patterns like periodicity, bifurcations, or chaotic behavior,
which are critical in understanding how neural systems respond to external stimuli and internal
perturbations. This approach not only enhances our understanding of the underlying dynamics in
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neural networks but also provides a powerful tool for simulating real-world neural behavior. Through
this analysis, we aim to bridge the gap between theoretical models and practical applications, offering
insights relevant to fields such as neurobiology, artificial neural networks, and systems neuroscience.

The rest of the paper is organized as follows: In Section 2, we address the resolution of the equation
system in (1.a). Section 3 focuses on simulation, providing a dynamic analysis of neural activity and
system stability using recursive models. Finally, Section 4 concludes the paper with a discussion of the
findings and potential directions for future research.

2. Resolution of the equation system in (1.a)

In this section, we turn our attention to the systematic approach required to solve the difference
equations outlined in (1.a), subject to specific initial conditions. Consider the sequence (pm, qm, rm)
representing the solution to the system. It is important to highlight that the system may break down and
lose its definition if any initial values are zero. To maintain the viability and continuity of the solution,
the condition rm+1qm pm , 0 for m + 1 ≥ 0 must always hold. This ensures the solution is consistent
and free from singularities. From this stage onward, we adopt the assumption that r0q−k p−k , 0 for
k ∈ {0, 1}. This assumption plays a pivotal role in ensuring the continued existence of a well-defined
solution. By securing the integrity of the system through these conditions, we can delve deeper into its
dynamics and uncover potential behaviors that the system might exhibit over time.

To ease the analysis and provide a fresh perspective on the system (1.a), we introduce a strategic
change of variables. This redefinition aims to simplify the relationships between the variables and
allow for clearer insight into the nature of the system. The transformation is expressed as:

p̂m =
pmqm

pm−1qm−1
, r̂m =

rm

pm−1qm−1
for m ≥ 0. (2.a)

The primary objective of this redefinition is to restructure the system into a more manageable
form while retaining its key characteristics. By leveraging these new variables, we simplify the
interactions between components, enabling a more straightforward exploration of the system’s dynamic
behavior. This approach sets the stage for deriving essential properties of the model. To further this
simplification, we multiply the corresponding sides of the first and second equations in (1.a), obtaining:

∀m ≥ 0, pm+1qm+1 = pmqm
αrm + βpm−1qm−1

pm−1qm

pm−1qm

γrm + δpm−1qm−1
,

rm+1 = pmqm
εpmqm + λpm−1qm−1

τpmqm + σpm−1qm−1
.

Simplifying further, we express the system in terms of the transformed variables:

∀m ≥ 0,
pm+1qm+1

pmqm
=

α
rm

pm−1qm−1
+ β

γ
rm

pm−1qm−1
+ δ
,

rm+1

pmqm
=

ε
pmqm

pm−1qm−1
+ λ

τ
pmqm

pm−1qm−1
+ σ
.
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Through this process, the original system (1.a) is recast into the following bilinear form:

∀m ≥ 0, p̂m+1 =
α̂rm + β

γ̂rm + δ
, r̂m+1 =

εp̂m + λ

τ p̂m + σ
. (2.b)

This new system formulation presents a bilinear structure that simplifies its behavior and makes it easier
to analyze. By adopting this approach, we can better understand the interplay between the variables p̂m

and r̂m. Moreover, this transformation not only aids in solving the system but also provides valuable
insights into the long-term dynamics. The bilinear form allows us to examine specific cases where the
system may exhibit stability, periodicity, or chaotic behavior, depending on the chosen initial conditions
and parameter values.

The nonlinear two-dimensional system of difference equations described in (2.b) was originally
introduced by Stević and Tollu [17], who demonstrated that the system is solvable by providing
a comprehensive method for determining its general solution. Their analysis reveals that certain
constraints on the system’s parameters are necessary to ensure its solvability. For instance, when
γ = 0, the first equation in the system (2.b) can be substituted into the second equation, which results
in a system characterized by interlacing indices—a structure derived from a bilinear equation. This
special case is solvable due to the simplified form of the system. A similar outcome is observed when
τ = 0, which forms a dual case to the one where γ = 0. Given these observations, we will operate
under the assumption that neither γ nor τ is equal to zero, ensuring the system maintains its nonlinear
complexity. Furthermore, to avoid dealing with ill-defined solutions, additional conditions must be
met: specifically, we assume γ̂rm + δ , 0 and τ p̂m + σ , 0 for all m. These conditions guarantee that
the terms in the equations remain valid across iterations. With these assumptions in place, we present
the following lemma, as derived from the work of Stević and Tollu [17], which lays the groundwork
for further analysis of the system.

Lemma 2.1. Let α, β, γ, δ, ε, λ, τ, σ ∈ R, ensuring that the following condition holds:
γ
(
α2 + β2

)
τ
(
ε2 + λ2

)
, 0. Furthermore, let µ1 and µ2 represent the roots of the quadratic polynomial:

Q (µ) = µ2 − (αε + βτ + γλ + δσ) µ + (βγ − αδ) (λτ − εσ) .

Under these conditions, the system of difference equations given in (2.b) admits a closed-form solution.
The general solution to this system can be described in two distinct cases, depending on whether the
roots µ1 and µ2 coincide or differ.

i. Case 1: µ1 = µ2. In the case where the polynomial Q (µ) has a repeated root µ2, the general
solution to the system is given by:

τp̂2m + σ

τp̂0 + σ
=


τα εp̂0+λ

τ p̂0+σ
+β

γ
εp̂0+λ

τ p̂0+σ
+δ
+ σ

 (γ εp̂0+λ

τp̂0+σ
+ δ
)
− µ2

m + µ2((
τ p̂0 + σ

) (
γ εp̂0+λ

τp̂0+σ
+ δ
)
− µ2

)
m + µ2

,

(
γ̂r0 + δ

)
µ2

(
τp̂2m+1 + σ

)
=

((
τ α̂r0+β

γ̂r0+δ
+ σ
) (
γ̂r0 + δ

)
− µ2

)
(1 + m) + µ2(τ α̂r0+β

γ̂r0+δ
+ σ
) γ ε α̂r0+β

γ̂r0+δ
+λ

τ
α̂r0+β

γ̂r0+δ
+σ
+ δ

 − µ2

m + µ2

,
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γ̂r2m + δ

γ̂r0 + δ
=

(τ α̂r0+β

γ̂r0+δ
+ σ
) γ ε α̂r0+β

γ̂r0+δ
+λ

τ
α̂r0+β

γ̂r0+δ
+σ
+ δ

 − µ2

m + µ2((
τ α̂r0+β

γ̂r0+δ
+ σ
) (
γ̂r0 + δ

)
− µ2

)
m + µ2

,

(
τ p̂0 + σ

)
µ2

(
γ̂r2m+1 + δ

)
=

((
τ p̂0 + σ

) (
γ ε p̂0+λ

τ p̂0+σ
+ δ
)
− µ2

)
(1 + m) + µ2

τα εp̂0+λ

τ p̂0+σ
+β

γ
εp̂0+λ

τ p̂0+σ
+δ
+ σ

 (γ εp̂0+λ

τp̂0+σ
+ δ
)
− µ2

m + µ2

.

This solution highlights how the behavior of the system evolves in the case of a repeated root,
where the sequences

(
p̂m
)

and
(̂
rm
)

depend on both the initial values and the root µ2, with a linear
relationship to the index m.

ii. Case 2: µ1 , µ2.When the roots µ1 and µ2 are distinct, the general solution takes a different form,
reflecting the more complex interplay between the two roots:

τp̂2m + σ

τ p̂0 + σ
=

τα ε p̂0+λ

τ p̂0+σ
+β

γ
εp̂0+λ

τp̂0+σ
+δ
+ σ

 (γ εp̂0+λ

τ p̂0+σ
+ δ
) (
µm

1 − µ
m
2

)
+ µ1µ2

(
µm−1

2 − µm−1
1

)
(
τp̂0 + σ

) (
γ εp̂0+λ

τ p̂0+σ
+ δ
) (
µm

1 − µ
m
2

)
+ µ1µ2

(
µm−1

2 − µm−1
1

) ,

(
γ̂r0 + δ

) (
τp̂2m+1 + σ

)
=

(
τ α̂r0+β

γ̂r0+δ
+ σ
) (
γ̂r0 + δ

) (
µm+1

1 − µm+1
2

)
+ µ1µ2

(
µm

2 − µ
m
1

)
(
τ α̂r0+β

γ̂r0+δ
+ σ
) γ ε α̂r0+β

γ̂r0+δ
+λ

τ
α̂r0+β

γ̂r0+δ
+σ
+ δ

 (µm
1 − µ

m
2

)
+ µ1µ2

(
µm−1

2 − µm−1
1

) ,

γ̂r2m + δ

γ̂r0 + δ
=

(
τ α̂r0+β

γ̂r0+δ
+ σ
) γ ε α̂r0+β

γ̂r0+δ
+λ

τ
α̂r0+β

γ̂r0+δ
+σ
+ δ

 (µm
1 − µ

m
2

)
+ µ1µ2

(
µm−1

2 − µm−1
1

)
(
τ α̂r0+β

γ̂r0+δ
+ σ
) (
γ̂r0 + δ

) (
µm

1 − µ
m
2

)
+ µ1µ2

(
µm−1

2 − µm−1
1

) ,

(
τ p̂0 + σ

) (
γ̂r2m+1 + δ

)
=

(
τp̂0 + σ

) (
γ εp̂0+λ

τ p̂0+σ
+ δ
) (
µm+1

1 − µm+1
2

)
+ µ1µ2

(
µm

2 − µ
m
1

)
τα ε p̂0+λ

τ p̂0+σ
+β

γ
εp̂0+λ

τp̂0+σ
+δ
+ σ

 (γ εp̂0+λ

τ p̂0+σ
+ δ
) (
µm

1 − µ
m
2

)
+ µ1µ2

(
µm−1

2 − µm−1
1

) .

This form of the solution captures the intricate dynamics of the system when the two roots differ.
The system exhibits oscillatory or exponential behavior depending on the magnitude and sign of
µ1 and µ2, reflecting the underlying complexity of the difference equations.

Remark 2.1. In certain cases, when specific relationships hold among the parameters of the system,
simpler solutions can be derived. Specifically, if βγ = αδ or λτ = εσ, the system (2.b) can be
significantly simplified. When βγ = αδ, the system reduces to a straightforward form where the
sequences

(
p̂m
)

and
(̂
rm
)

stabilize to constant values. In this case, we have the following:

∀m ≥ 0, p̂m =


α

γ
if γ , 0

β

δ
if δ , 0

, r̂m =


αε + γλ

ατ + γσ
if γ , 0

βε + δλ

βτ + δσ
if δ , 0

.
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Similarly, if λτ = εσ, the sequences
(
p̂m
)

and
(̂
rm
)

are also reduced to constant expressions, but with a
different set of parameters governing their values:

∀m ≥ 0, p̂m =


εα + τβ

εγ + τδ
if τ , 0

λα + σβ

λγ + σδ
if σ , 0

, r̂m =


ε

τ
if τ , 0

λ

σ
if σ , 0

.

These simplified cases are particularly useful when certain parameter combinations lead to
degeneracies in the system, enabling us to derive constant sequences for

(
p̂m
)

and
(̂
rm
)
, which can

make further analysis much more manageable.

Remark 2.2. Additionally, from the quadratic polynomial Q (µ), a necessary and sufficient condition
for the system to have distinct roots µ1 and µ2 is that the following inequality holds:

(αε + βτ + γλ + δσ)2

(βγ − αδ) (λτ − εσ)
, 4. (2.c)

This condition ensures that the system avoids critical cases where the roots µ1 and µ2 coincide, thereby
maintaining the generality of the solution structure.

According to Lemma 2.1, we derive the closed-form expressions for the solutions of system (1.a).
From these solutions, we can formulate the following theorem.

Theorem 2.1. Let α, β, γ, δ, ε, λ, τ, σ ∈ R, where the condition γ
(
α2 + β2

)
τ
(
ε2 + λ2

)
, 0 holds. Under

these parameters, the system of difference equations presented in (2.b) admits a general closed-form
solution. The solution to this system is expressed in two distinct cases, based on whether the roots µ1

and µ2 are identical or distinct.
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i. Case 1: Under the assumption specified in (2.c), the general solution to the system is:

p2m+s = p0
αr0+βp−1q−1

p−1q0

m−1+s∏
l=1

q0
γ

α (γ r0
p−1q−1

+ δ
) (ταr0+βp−1q−1

γr0+δp−1q−1
+ σ
) γ εαr0+βp−1q−1

γr0+δp−1q−1
+λ

τ
αr0+βp−1q−1
γr0+δp−1q−1

+σ
+ δ


×
(
µl

1 − µ
l
2

)
+ µ1µ2

(
µl−1

2 − µ
l−1
1

)) ((
ταr0+βp−1q−1
γr0+δp−1q−1

+ σ
) (
γ r0

p−1q−1
+ δ
) (
µl

1 − µ
l
2

)
+ µ1µ2

(
µl−1

2 − µ
l−1
1

))−1
+ βγ − αδ

)}
×

 m∏
l=1

q0
γ

 α(
τ

p0q0
p−1q−1

+σ
) ((τ p0q0

p−1q−1
+ σ
)

×
(
γ εp0q0+λp−1q−1
τp0q0+σp−1q−1

+ δ
) (
µl

1 − µ
l
2

)
+ µ1µ2

(
µl−1

2 − µ
l−1
1

)) τα εp0q0+λp−1q−1
τp0q0+σp−1q−1

+β

γ
εp0q0+λp−1q−1
τp0q0+σp−1q−1

+δ
+ σ


×
(
γ εp0q0+λp−1q−1
τp0q0+σp−1q−1

+ δ
) (
µl−1

1 − µ
l−1
2

)
+ µ1µ2

(
µl−2

2 − µ
l−2
1

))−1
− αδ + βγ

)}
×

2m+s∏
l=2




[ l
2 ]−1∏
k=1

(
γ r0

p−1q−1
+ δ
) (ταr0+βp−1q−1

γr0+δp−1q−1
+ σ
) γ εαr0+βp−1q−1

γr0+δp−1q−1
+λ

τ
αr0+βp−1q−1
γr0+δp−1q−1

+σ
+ δ

 (µk
1 − µ

k
2

)
+µ1µ2

(
µk−1

2 − µk−1
1

)) ((
ταr0+βp−1q−1
γr0+δp−1q−1

+ σ
) (
γ r0

p−1q−1
+ δ
) (
µk

1 − µ
k
2

)
+ µ1µ2

(
µm−1

2 − µk−1
1

))−1
}

×


[ l−1

2 ]∏
k=1

1(
τ p0q0

p−1q−1
+ σ
) ((τ p0q0

p−1q−1
+ σ
) (
γ εp0q0+λp−1q−1
τp0q0+σp−1q−1

+ δ
) (
µk

1 − µ
k
2

)
µ1µ2

(
µk−1

2 − µk−1
1

))
×

τα εp0q0+λp−1q−1
τp0q0+σp−1q−1

+β

γ
εp0q0+λp−1q−1
τp0q0+σp−1q−1

+δ
+ σ

 (γ εp0q0+λp−1q−1
τp0q0+σp−1q−1

+ δ
) (
µk−1

1 − µk−1
2

)
+ µ1µ2

(
µk−2

2 − µk−2
1

)−1
/

p−1q2
0

γr0+δp−1q−1

)
,

q2m+s = q0

(
p−1q2

0
γr0+δp−1q−1

)2m+s
/2m+s∏

l=1

q0


[ l−1

2 ]∏
k=1

(
γ r0

p−1q−1
+ δ
) ((
ταr0+βp−1q−1
γr0+δp−1q−1

+ σ
)

×

γ εαr0+βp−1q−1
γr0+δp−1q−1

+λ

τ
αr0+βp−1q−1
γr0+δp−1q−1

+σ
+ δ

 (µk
1 − µ

k
2

)
+ µ1µ2

(
µk−1

2 − µk−1
1

) ((ταr0+βp−1q−1
γr0+δp−1q−1

+ σ
) (
γ r0

p−1q−1
+ δ
)

×
(
µk

1 − µ
k
2

)
+ µ1µ2

(
µm−1

2 − µk−1
1

))−1
}
×


[ l

2 ]∏
k=1

1(
τ p0q0

p−1q−1
+ σ
) ((τ p0q0

p−1q−1
+ σ
)

×
(
γ εp0q0+λp−1q−1
τp0q0+σp−1q−1

+ δ
) (
µk

1 − µ
k
2

)
+ µ1µ2

(
µk−1

2 − µk−1
1

)) τα εp0q0+λp−1q−1
τp0q0+σp−1q−1

+β

γ
εp0q0+λp−1q−1
τp0q0+σp−1q−1

+δ
+ σ


×
(
γ εp0q0+λp−1q−1
τp0q0+σp−1q−1

+ δ
) (
µk−1

1 − µk−1
2

)
+ µ1µ2

(
µk−2

2 − µk−2
1

))−1
})
,

r2m = p2m−1q2m−1

( r0
p−1q−1

+ δ
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r2m+1 = p2mq2m
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,

for s ∈ {0, 1} , and m ≥ 0.
ii. Case 2: When the assumption in (2.c) is not satisfied, the general solution becomes:

p2m+s = p0
αr0+βp−1q−1

p−1q0
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r2m+1 = 1
γ

p2mq2m
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for s ∈ {0, 1} , and m ≥ 0.

Proof. To prove this, we first express the system (1.a) in a more suitable form by introducing the
following changes of variables:

∀m ≥ 0, pm+1 =
qm−1 pm

qm

(
α̂rm + β

)
,

qm+1

qm
=

qm

qm−1

(
γ̂rm + δ

)−1 .

From the second equation, we find:

∀m ≥ 0, qm = qm−1q1

/
q0

m−1∏
k=1

(
γ̂rk + δ

)
= q0qm

1

/ m∏
l=1

q0

l−1∏
k=1

(
γ̂rk + δ

) . (2.d)

Substituting this result into the first equation of the system yields:

∀m ≥ 2, pm = pm−1q0
(
α̂rm−1 + β

) m−2∏
k=1

(
γ̂rk + δ

)/
q1.

Thus, we obtain:

∀m ≥ 0, pm = p1

m∏
l=2

q0
(
α̂rl−1 + β

) l−2∏
k=1

(
γ̂rk + δ

)/
q1

 . (2.e)

Finally, using the expressions from (2.d) and (2.e) in the second change of variables from (2.a), we find
that rm = pm−1qm−1̂rm for m ≥ 0. Upon further decomposition, this results in the following expressions:
r2m = p2m−1q2m−1̂r2m and r2m+1 = p2mq2m̂r2m+1 for m ≥ 0.These equations highlight the recursive
structure of the system, where each term is expressed in terms of preceding variables and parameters,
reflecting the intricate interdependence of the system’s components under the applied transformations.

□

Remark 2.3. In our paper on the three-dimensional system of difference equations, we analyzed two
main cases for the roots of the characteristic polynomial: repeated roots and distinct roots. In the
case of repeated roots, the system’s behavior is characterized by stability or linear growth, where
the solutions depend on a linear relationship between the index m and the repeated root µ2. This
type of behavior reflects simpler dynamics with a strong dependence on the system’s initial values.
On the other hand, in the case of distinct roots, the solutions exhibit more complex dynamics due to
the interactions between the roots µ1 and µ2. In this scenario, the system may display oscillatory
behavior or exponential growth, depending on the magnitude and sign of the roots. Our analysis
highlights that these variations directly impact the system’s stability and dynamic nature. These
findings underscore the importance of the bilinear transformation in simplifying the three-dimensional
system, offering a novel framework for understanding complex dynamics and interpreting diverse
behaviors in differential systems.
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Example 2.1. In this example, we examine a system defined by three sequences: (pm), (qm), and (rm).
The evolution of these sequences is governed by the following recursive equations:

∀m ≥ 1, pm+1 = pm
0.7rm + 0.5pm−1qm−1

pm−1qm
,

qm+1 =
pm−1q2

m

0.4rm + 0.6pm−1qm−1
,

rm+1 = pmqm
0.8pmqm + 0.9pm−1qm−1

pmqm + 1.1pm−1qm−1
.

The initial values are specified as p1 = 0.5, p0 = −0.3, q1 = 0.2, q0 = −0.1, and r1 = −0.2. To illustrate
the behavior of these sequences, we plot {pm}, {qm}, and {rm} over multiple iterations, as shown in
Figure 1.
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Figure 1. Distinct behaviors of the sequences (pm), (qm), and (rm), and their even-and odd-
indexed subsequences.

In Figure 1, the plots of the sequences (pm), (qm), and (rm) display unique behaviors over several
iterations. The first plot (top left) shows the evolution of pm, where the values oscillate significantly
between positive and negative regions before stabilizing. In the second plot (top middle), the sequence
(qm) exhibits extreme fluctuations, with values reaching very high positive and negative magnitudes.
The third plot (top right) presents the sequence (rm), where the values remain close to zero, showing
only moderate fluctuations. The second row of Figure 1 highlights the behavior of these sequences
when observed for even and odd indices. The fourth plot displays p2m and p2m+1, revealing a slight
difference between even-and odd-indexed values, though both values maintain an oscillatory pattern.
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The fifth plot illustrates the behavior of q2m and q2m+1, showing extreme variations, with odd-indexed
values exhibiting larger magnitudes. Finally, the sixth plot presents r2m and r2m+1, where the values
remain relatively close to zero, with mild fluctuations between the even and odd sequences.

Example 2.2. In this example, we examine a system defined by three sequences: (pm), (qm), and (rm).
The evolution of these sequences is governed by the following recursive equations:

∀m ≥ 1, pm+1 = pm
0.2rm + 0.1pm−1qm−1

pm−1qm
,

qm+1 =
pm−1q2

m

0.1rm + 0.2pm−1qm−1
,

rm+1 = pmqm
2pmqm + 0.1pm−1qm−1

0.1pmqm + 0.2pm−1qm−1
.

The initial values are specified as p1 = 1.2, p0 = 1.5, q1 = 1.4, q0 = 1.5, and r1 = −0.5. To illustrate the
behavior of these sequences, we plot {pm}, {qm}, and {rm} over multiple iterations, as shown in Figure 2.
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Figure 2. Distinct behaviors of the sequences (pm), (qm), and (rm), and their even-and odd-
indexed subsequences.

In Figure 2, the sequences (pm), (qm), and (rm) evolve under different recursive equations and initial
conditions. The first plot (top left) shows the sequence (pm), which displays a smooth and continuous
increase without noticeable oscillations. The second plot (top middle) illustrates the sequence (qm),
where the values rise sharply with each iteration, reaching progressively higher magnitudes. Similarly,
the third plot (top right) presents the sequence (rm), which follows a comparable pattern to qm, with
steadily increasing values over time. The second row of Figure 2 highlights the behavior of these

AIMS Mathematics Volume 10, Issue 2, 2869–2890.



2881

sequences for even and odd indices. The fourth plot shows p2m and p2m+1, where there is a slight
divergence between even-and odd-indexed values, though both follow a smooth and increasing trend.
The fifth plot depicts q2m and q2m+1, revealing substantial growth, with larger values observed for the
odd indices. Finally, the sixth plot illustrates the sequences (r2m) and (r2m+1), both of which follow a
similar upward trend, with odd-indexed values growing more rapidly.

3. Simulation: dynamic analysis of neural activity and system stability using recursive models

In the pursuit of developing an advanced model for analyzing the complex interactions within neural
systems, we present a sophisticated mathematical framework that integrates recursive equations with
nonlinear dynamics. This system aims to explore the evolution of neural signals over time, focusing
on how various variables interact to influence overall system stability and activity patterns. The model
is designed to investigate how fluctuations in neural activity impact both short-term dynamics and
long-term stability under varying conditions.

The system revolves around three critical variables: pm, representing the first neural activity signal;
qm, denoting the second neural response; and rm, which reflects the combined influence of both neural
signals on system stability. These variables evolve based on several key parameters: α, which affects
the influence of the external signal on the first neural activity, is set at 0.7; β, which modulates
the interaction between the neural signals, is set at 0.5; γ, impacting the internal feedback on the
second neural response, is 0.4; and δ, governing the influence of the first neural signal on overall
system dynamics, is set at 0.6. Additional parameters, such as ε and λ, further regulate complex
interdependencies within the system.

The model employs recursive iterations to track the dynamic behavior of these variables over time,
carefully incorporating nonlinear terms to capture the complex feedback loops characteristic of neural
systems. Small constants are introduced to avoid singularities and ensure numerical stability. Various
plots, including time series of neural activity, phase diagrams, and heatmaps of signal distributions,
are used to visualize how changes in system parameters affect overall behavior. The analysis also
includes frequency domain investigations and topological maps to illustrate connectivity and functional
relationships within the neural network.

Figure 3 presents the time series of the three primary variables pm, qm, and rm, which represent
different aspects of neural activity. Each variable is tracked over time, providing an initial
understanding of how the system evolves. The time series reveals fluctuations, possible stability
points, or oscillations in the variables, which can indicate periodic behavior or instability in the neural
system. By visualizing the individual trajectories of these variables, we obtain a clearer understanding
of their temporal evolution. However, while this plot offers insight into the independent dynamics
of each variable, it does not reveal how these variables interact with one another. To gain a deeper
understanding of the relationships between these variables, we transition to the phase plot in Figure 4,
which allows for the exploration of the dynamic interplay between pm and qm.
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Figure 3. Time series of neural activity variables pm, qm, and rm.
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Figure 4. Phase plot between pm and qm.

The phase plot in Figure 4 illustrates the dynamic relationship between pm and qm by plotting their
values against each other in a two-dimensional space. This type of plot provides a clear view of how
these two variables interact over time, revealing potential cycles, attractors, or chaotic behavior. Phase
plots are particularly useful for identifying recurring patterns that may not be visible in the time series
data. By examining this plot, we can discern whether the system exhibits periodic behavior, remains
stable, or shows signs of chaos. The next logical step is to examine the frequency components of these
variables, as understanding the oscillations at different frequencies provides further insight into the
system’s behavior. This leads us to the frequency analysis in Figure 5.

Figure 5 shows the frequency analysis of the variables pm and qm using Fourier transforms.
This analysis decomposes the time-domain signals into their frequency components, highlighting the
dominant frequencies or oscillatory patterns that govern the system’s dynamics. Peaks in the frequency
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spectrum indicate the presence of strong periodic components, while a spread of frequencies may point
to chaotic or broadband behavior. This frequency analysis complements the time series and phase plot
by identifying the key frequencies at which the system oscillates. By isolating these frequencies, we
can better understand the neural system’s stability and rhythmic behavior. Having examined both the
time-domain and frequency-domain characteristics, the next step is to explore how the system responds
to external stimuli, as illustrated in Figure 6.
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Figure 5. Frequency analysis of pm and qm.
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Figure 6. Neural response graph to external stimuli.

Figure 6 examines the system’s response to external neural stimuli, illustrating how the variables
pm, qm, and rm react when subjected to an external perturbation. The response graph emphasizes
the system’s adaptability, illustrating how quickly and effectively the neural signals stabilize or
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oscillate following a stimulus. Understanding the system’s responsiveness is essential for evaluating its
robustness and ability to maintain stability under varying conditions. This analysis identifies whether
the system can recover from disturbances or if it transitions into a new behavioral state. To further
investigate the system’s internal structure, we now proceed to Figure 7, which depicts the functional
connectivity within the system.

Figure 7 illustrates a functional connectivity map, depicting the relationships and interactions
between different components of the neural system. Each node in the map represents a variable, and the
edges indicate the strength and direction of their interactions. This visualization helps uncover how the
neural variables influence each other, highlighting key nodes that drive system behavior. By examining
this map, we can identify densely connected regions within the system, which may be critical for
maintaining overall stability or contributing to instability. The next figure builds upon this analysis by
investigating the structural organization of the neural system using topological maps.

Figure 7. Functional connectivity map.

Figure 8 presents a topological brain map, a spatial representation of the neural network’s structure.
The topological map demonstrates how neural components are organized and interconnected, providing
insights into the system’s overall architecture. Clusters of nodes or regions with strong connectivity
highlight functional modules that contribute to specific behaviors or functions. Through topological
analysis, we gain a better understanding of the neural system’s resilience and efficiency in processing
information. By visualizing the layout and connections, we develop a deeper appreciation of how the
network is structured to support stability and adaptability. From here, we progress to Figure 9, which
offers a detailed view of the neural network graph, elaborating on its structural complexity.

AIMS Mathematics Volume 10, Issue 2, 2869–2890.



2885

Figure 8. Topological brain map.

Figure 9. Neural network graph.

Figure 9 illustrates the neural network graph, depicting the detailed interconnections between nodes
in the system. The graph emphasizes the relationships between individual neural components, showing
how they are linked to form a cohesive network. This representation is critical for understanding how
information is transmitted through the network and how the overall system behaves under different
conditions. By analyzing the graph, we can pinpoint key nodes and pathways that play a significant
role in determining the system’s overall stability and performance. The structural insights gained
here are further enhanced by the following figure, which provides a three-dimensional visualization of
neural activity across time and space.

In Figure 10, we see a three-dimensional visualization of neural activity across the three key
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variables pm, qm, and rm. This plot offers a spatial and temporal overview of how these variables evolve
together, providing a richer, more dynamic understanding of the system’s behavior. The 3D perspective
allows for the identification of complex patterns, such as oscillations or chaotic behavior, that may not
be easily observed in two-dimensional plots. The 3D plot in Figure 10 provides an overall impression
of how the variables interact in space and time, but it may overlook finer details about how each
variable, such as pm, behaves over specific ranges or regions. The transition to the heatmap facilitates
a clearer, more focused visualization of pm alone, highlighting areas of concentration, clustering, or
anomalies that may not be obvious in a 3D plot.

Figure 10. 3D visualization of neural activity.

Figure 11. Heatmap of pm values.

Figure 11 displays a heatmap of the pm values, offering a visual representation of the distribution
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and variation of pm across the simulation. The heatmap uses color gradients to indicate the intensity
of pm at different points in the data, enabling us to quickly identify regions of high or low activity.
Areas with more intense colors correspond to higher values of pm, while lighter areas indicate lower
values. Heatmaps are particularly useful for detecting spatial patterns or clusters of activity within the
data that might not be evident from the time series or phase plots. This visualization provides a more
comprehensive view of the data by mapping the values onto a two-dimensional grid, making it easier
to spot regions of interest or anomalies in the system’s behavior.

Analysis of the simulation results clearly reveals a strong agreement with theoretical predictions,
significantly enhancing the model’s credibility and robustness in representing the complex dynamics
of neural systems. Overall, the results demonstrate the model’s ability to provide accurate predictions
about the interactions between the key variables pm, qm, and rm, while explaining the periodic
fluctuations and chaotic behaviors that are an essential part of neural systems. These results are
consistent with the scenarios assumed in the theoretical design, thus supporting the theory on which
the model is based. In terms of temporal analysis, the graphs show that the system exhibits periodic
behavior under certain conditions, with the variables moving between relative stability and mild
fluctuations, aligning with theoretical expectations about the stability of neural systems under normal
conditions. The phase diagrams also show the presence of periodic attractors, which supports the
hypothesis that the system can reach a state of dynamic equilibrium, where the variables interact in
a balanced manner over time. These results represent an important step toward verifying the validity
of the theoretical framework on which the model is based. On the other hand, in cases where radical
parameter changes were introduced (such as modifying the parameters α, β, γ, and δ), unexpected
behaviors appeared, indicating that the patterns evolved into chaotic behaviors or that new attractors
appeared. This reflects the complexity of the system, as these cases show that the system does not
behave in a stable manner under all conditions. Such sudden changes in behavior highlight the system’s
flexibility and its responsiveness to parameter variations, which calls for further analysis to understand
the exact mechanisms leading to these unexpected behaviors. Regarding the frequency analysis, the
results of the frequency analysis using Fourier transforms showed that the system is characterized by
strong peaks at certain frequencies, while inhomogeneous frequency components appear in chaotic
cases. This suggests that the dominant frequencies can provide stable signals under certain conditions,
while frequency dispersion appears in cases of disorder or chaos, which helps in determining the
behavior of the system in response to parameter changes.

Overall, this analysis underscores the strength of the model in simulating neural systems across
a wide range of different scenarios, which enhances the credibility of the research. The model not
only simulates the expected interactions but also uncovers new possibilities in representing unexpected
patterns or chaotic behaviors, thereby opening up new avenues for understanding complex neural
systems. These unexpected behaviors may prompt us to consider more complex models or include
additional factors that may contribute to distinguishing these phenomena. In addition, this analysis
demonstrates the flexibility and adaptability of the model to changes, strengthening its position as
an effective tool for analyzing neural systems under a variety of conditions. These results open new
avenues for future research on how to manage stability in neural systems under changing influences,
and may help in designing strategies to predict or control the behavior of complex neural systems in
medical applications or advanced scientific research.
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4. Conclusions

In this paper, we thoroughly analyzed the system of difference equations represented by (2.b),
aiming to gain a deeper understanding of its dynamic properties through advanced mathematical
transformations and computational techniques. The successful application of a transformation that
simplified the original system (1.a) into a bilinear form (2.b) was pivotal. This approach not only
clarified the system’s underlying behavior but also facilitated the direct derivation of key properties.
By transforming the system, we obtained a clearer perspective on its dynamics, allowing for a more
comprehensive exploration of its structural features.

Our analysis, outlined in Lemma 2.1, revealed that the system of difference equations possesses
a closed-form solution under the condition γ

(
α2 + β2

)
τ
(
ε2 + λ2

)
, 0. This result is crucial, as it

ensures the system’s solvability while shedding light on the relationship between the solutions and
the parameters defined by the discriminant of the quadratic polynomial Q(µ). By distinguishing
between cases with repeated and distinct roots of the characteristic polynomial, we observed two
distinctly different dynamical behaviors. In Case 1, where the roots are repeated, the solutions were
characterized by simpler linear dependencies on the index m. On the other hand, Case 2, with distinct
roots, showcased more complex dynamics, including oscillatory and exponential behaviors. This
differentiation is significant as it underscores how varying parameter values can drastically influence
the system’s evolution, leading to different qualitative behaviors.

The simulations performed under diverse initial conditions and parameter values further
demonstrated the model’s versatility in capturing a wide range of dynamical behaviors such as
oscillations, stability, and growth patterns. These findings highlight the model’s potential for real-
world applications, especially in the analysis of neural system dynamics, population models, and other
complex interactions. The ability of the model to adapt to various dynamic regimes makes it a valuable
tool for practical implementation in a range of scientific fields.

The results of this paper offer several exciting avenues for future research. Expanding the model
to higher-dimensional systems is a logical next step, as it could provide a more comprehensive
understanding of multi-variable dynamic interactions. Additionally, the incorporation of additional
nonlinearities would further enhance the realism of the model, allowing it to capture more intricate
behaviors. Another promising direction is optimizing computational methods to handle singularities,
ensuring greater efficiency in solving more complex systems. By refining these aspects, future research
could build on this foundational work, offering deeper insights into the behavior of dynamical systems
and broadening the scope of applications in fields such as neural science, population biology, and
ecological modeling.

In conclusion, this paper makes significant contributions to the understanding of systems of
difference equations and their dynamic behaviors, while also paving the way for further advancements
in both theoretical analysis and practical applications. The proposed directions for future research will
undoubtedly enrich the field, providing new perspectives and opportunities for further exploration.
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16. S. Stević, J. Diblik, B. Iric̆anin, Z. S̆marda, On a third-order system of difference
equations with variable coefficients, Abstr. Appl. Anal., 2012 (2012), 508523.
https://doi.org/10.1155/2012/508523

AIMS Mathematics Volume 10, Issue 2, 2869–2890.

http://dx.doi.org/http://doi.org/10.1515/ms-2017-0210
http://dx.doi.org/https://doi.org/10.3934/era.2023338
http://dx.doi.org/http://doi.org/10.5269/bspm.v31i1.14432
http://dx.doi.org/https://doi.org/10.4208/eajam.140219.070519
http://dx.doi.org/https://doi.org/10.5937/MatMor2101081G
http://dx.doi.org/https://doi.org/10.1007/s12190-019-01276-9
http://dx.doi.org/https://doi.org/10.1006/jmaa.1997.5667
http://dx.doi.org/https://doi.org/10.1016/j.amc.2012.10.092
http://dx.doi.org/https://doi.org/10.1155/2012/508523


2890
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