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Abstract: Red blood cells play an extremely important role in human metabolism, and the study
of hematopoietic models is of great significance in biology and medicine. A kind of semi-discrete
hetmatopoietic model named Mackey-Glass Model was proposed and analyzed in this paper. The
existences, stabilities, and local dynamics of the fixed points were discussed. By using bifurcation
theory, we studied the Neimark-Sacker bifurcation, saddle-node bifurcation, and strong resonance
of 1:4. The numerical simulations were presented to illustrate the results of theoretical analysis
obtained in this paper, and complex dynamical behaviors were found such as invariant cycles,
heteroclinic cycles and Li-Yorke chaos. In addition, a new periodic bubbling phenomenon was
discovered in numerical simulations. These not only reflect the richer dynamical behaviors of the
semi-discrete models, but also some reflect the complex metabolic characteristics of the hematopoietic
system under environmental intervention.
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1. Introduction

Red blood cells (RBCs) are derived from stem cells in the bone marrow, and their main function is to
distribute oxygen in the human body. In a healthy human body, RBCs tend to a stable state, and if their
numbers suddenly decrease, it will stimulate the stem cells in the bone marrow to produce significant
excitement, thereby generating new cells that return to a stable state. There must be a period of time
between the moment RBCs decline and the moment they recover. Under normal circumstances, the
process of forming new cells takes approximately 5 to 7 days [1].

Currently, some diseases are known to cause the number of RBCs to gradually oscillate, which is
represented by a periodic function. If RBCs are insufficient for a period of time, the human body will
be unable to recover and die. To check the health status of the body, it can be achieved by detecting
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RBCs. In 1976, Lasota et al. [24] proposed the Lasota hematopoietic model, which perfectly described
the changes in RBCs in the human body. Later, Mackey and Glass [1] combined the respiratory system
to further characterize RBCs in the blood.

In 1976, Mackey and Glass introduced the following hetmatopoietic system

ξ′(t) = −δξ(t) +
pξk(t − τ)

1 + ξm(t − τ)
, (1.1)

where δ, p ∈ (0,+∞), k,m ∈ N. ξ(t) denotes the population of mature cells at time t, and the cells
disappear from cycle with the velocity δ, and the delay τ > 0 denotes the time of generating new RBCs.

EI Sheikh et al. [4] provided some sufficient and necessary conditions for the oscillation of
all positive solutions when k = 0, while Gopalsamy [17] provided some sufficient and necessary
conditions for the oscillation of all positive solutions and global attractiveness when k = 0 or 1.
Through numerical simulations of the system, Hela and Sternberg [18] found that the degree of
chaos increases with the increase of time delay τ. System (1.1) with k = 1 attracted many authors’
attentions [3,12,28,29,36]. While for the case k = 0 and k > 1, there were less researchers concerned.
Therefore, the paper deals with system (1.1) with k = 0 and k > 1.

Hematopoietic models are usually divided into two categories: Continuous models described
by differential equations, and discrete models obtained by discretizing continuous systems. These
mathematical methods include the Euler difference method, Adams Bashforth method [49], piecewise-
constant approximation method [22], the conformable derivatives [21], non-standard finite difference
scheme (NSFDS) of Mickens-type [32], and semi discrete method [17, 38, 39]. The main methods are
analyzed by using the Euler difference method and semi discrete method.

In recent years, the advantages of discrete models have become increasingly apparent in various
fields. To begin in scientific research, data is collected over a period of time, such as year,
month, day, etc. Therefore, considering a discrete hematopoietic model is more in line with practical
significance [38, 39].

Moreover, due to the fact that medical tests using RBC counting are often conducted at regular
intervals, and changes in the number of RBCs are difficult to observe continuously over a long period
of time, the discrete case is considered to be more appropriate to describle the real world sometimes,
and it is obtained in the literatures that discrete systems have richer dynamical behaviors. Various
of discrete-time models have been studied in detail recently [9, 19, 25, 31, 41, 48, 50]. There are a
series of results on the qualitativeness and bifurcations of discrete-time models like flip bifurcation and
Neimark-Sacker bifurcation [8, 10, 26, 31, 34, 41, 47].

In 2002, Tamas and Gabor [13] proposed a semi-discretization method to study the delayed system,
which is a simple and effective way to deal with the delayed term. Then, by using this method some new
semi-discrete models have been proposed and analyzed. For example, in [39], the authors proposed a
semi-discrete hematopoiesis model and discussed its dynamical behavior which included the stabilities
of the fixed points and the Neimark-Sacker bifurcation. For other studies for semi-discrete models,
one may see [9, 20] and the references therein. Moreover, Yao and Li [40] provided bifurcation
difference induced by different discrete methods in a discrete predator-prey model, which shows that it
is meaningful to investigate the model with different discretization methods.

When analyzing the semi-discrete Mackey-Glass model, we need to consider the situation where
multiple parameters change simultaneously. Complicated bifurcations likely occur when more than

AIMS Mathematics Volume 10, Issue 2, 2771–2807.



2773

one systemic parameter is varied at the same time [6]. Codimension-2 bifurcations in the discrete-
time systems will occur when the dimension of the center manifold is changed by the approximation
of extra multipliers to the unit circle, or some of the nondegeneracy conditions for the one-parameter
bifurcations are violated [44,45]. Kuznetzov derived explicit formulas for the normal form coefficients
to verify the nondegeneracy of codim-2 bifurcations of fixed points with 1 or 2 critical multipliers [45].
Li and He considered 1:2 and 1:4 resonances in a discrete-time Hindmarsh-Rose model [6], and Wu
and Zhao derived codimension-two bifurcations with 1:2 resonance in a discrete-time predator-prey
model [11]. Rana and Uddin analytically showed a flip-Neimark Sacker bifurcation of the discretized
Lü system [35]. More types of complicated bifurcations of discrete-time or continuous-time systems
have been studied in [2, 5–7, 11, 14, 15, 27, 30, 33, 35, 42–46]. Moreover, from the perspective of
numerical convergence, discrete systems can reflect the dynamical behaviors of the original continuous
system and generate richer dynamical phenomena [9, 25, 38, 39, 41, 48, 50].

In this paper, the semi-discrete hetmatopoietic Mackey-Glass model is analyzed. We discuss the
dynamical behaviors of system (1.1), including the existence of fixed points, local stability, and codim 1
and 2 bifurcations. We have found that with the parameters varying, there exist invariant curves when
the system is undergoing Neimark-Sacker bifurcation, period-4 saddle points, and heteroclinic cycle
composed by the separatrices of them when undergoing 1:4 resonance. The existence of Li-Yorke
chaos is proved in this case. In the case of 2 ≤ k ≤ m, the system undergoes saddle-node bifurcation.
In order to illustrate the correctness of theoretical analysis, numerical simulations are provided and
some other complex dynamical behaviors are reviewed.

The rest of paper is organized as follows: In Section 2, we discussed the existences and stabilities
of fixed points of the M-G model with k = 0 and theoretically verified the existence of Neimark-Sacker
bifurcations and 1:4 resonances. In Section 3, these theoretical results are supported by the numerical
simulations. Then, we consider the case of 1 < k ≤ m in Section 4. We analyzed the existences
and stabilities of fixed points and verified the existence of saddle-node bifurcations, Neimark-Sacker
bifurcations, and 1:4 resonances, which are more complex than the case in Section 2. In Section 5,
the numerical simulations are presented to support the theoretical results and show the impact of
negative feedback, mixed feedback, and positive feedback depending on the parameter k. Finally, a
brief conclusion is organized in Section 6 which provides more directions for future works.

2. M-G model with k = 0

In this section we discuss system (1.1) with k = 0 as follows:

ξ′(t) = −δξ(t) +
p

1 + ξm(t − τ)
, (2.1)

where δ, τ, p ∈ (0,+∞) and m ∈ N. Next, we establish the semi-discrete model for system (2.1). For
the sake of simplicity, intoducing the transformations s = t

h and N(t) = N(sτ) = η(s), (2.1) is then
changed to

d η
d s

= −δτη(s) +
pτ

1 + ηm(s − 1)
, s ≥ 0. (2.2)

For simplicity, resetting δ = δτ, p = pτ in the above equation, one gets

d η
d s

= −δη(s) +
p

1 + ηm(s − 1)
, s ≥ 0. (2.3)
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Through this transformation, the reduction of the time-delay parameter τ in the system is completed,
which makes the problem simple.

Let [s] denote the integer that is not bigger than s, and consider the semi-discrete model of (2.3)

d η
d s

= −δη([s]) +
p

1 + ηm([s − 1])
, s ≥ 0. (2.4)

It is easy to see that the right side of the Eq (2.4) is constant on the interval [n, n + 1). Obviously, the
following conclusions about Eq (2.4) are true.

Lemma 2.1. The solution η(s) of Eq (2.4) satisfies

1. η(s) is continuous on [0,+∞),

2. d η
d s exists on

+∞⋃
s=0

(s, s + 1),

3. Equation (2.4) is true on every interval [m,m + 1) for m = 0, 1, 2, . . . .

For any s ∈ [n, n + 1), we have [s] = n. Substituting it into Eq (2.4) we get

d η
d s

= −δη([n]) +
p

1 + ηm([n − 1])
, s ≥ 0, (2.5)

and then integrate the Eq (2.5) from n to s for any s ∈ [n, n+1) where n ∈ {0, 1, 2, 3, . . . }. The following
difference equation can be found for s ∈ [n, n + 1)

η(s) − η(n) =
(
− δη(n) +

p
1 + ηm([n − 1])

)
(s − n).

Let s→ (n+1)− in the above equation, and then the semi-discrete system with no delay for system (2.1)
will be obtained as follows:

η(n + 1) = (1 − δ)η(n) +
p

1 + ηm(n − 1)
,

which is a second-order difference equation. Take the normal transformationxn = η(n − 1),
yn = η(n),

and we may achieve the discrete planar dynmaical system of (2.1) as follows:xn+1 = yn,

yn+1 = (1 − δ)yn +
p

1+xm
n
,

(2.6)

where δ > 0, p > 0, x0, y0 ∈ (0,+∞). We shall discuss the dynamics on system (2.6) in detail.

2.1. Local dynamics for the fixed points

At the beginning of the discussion, we consider the existence of the fixed point of (2.1).

Theorem 2.1. The conclusions of the fixed point for system (2.6) are true:
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(i) there is a unique fixed point E∗(x∗, y∗) of system (2.6) satisfyingx∗ = y∗,

δx∗ =
p

1+xm
∗

;

(ii) x∗ is strictly increasing at p.

Proof. It is easy to see that the fixed point of system (2.6) satisfies the following equationsx∗ = y∗,

δx∗ =
p

1+xm
∗
.

Next, we show the existence and uniqueness of the fixed point. Set

F(x, p) = δxm+1 + δx − p,

so we may study its positive zero points.
Notice that

F′x(x, p) = δ(m + 1)xm + δ > 0, ∀x ∈ Dx = {x : x ≥ 0},

and

F(0+, p) = −p < 0, F(
p
δ
, p) =

pm+1

δm > 0.

Hence, there is a unique zero point of F(x, p) in Dx, and 0 < x∗ <
p
δ
.

(ii) Since F′x(x, p) > 0, the implicit function theorem shows that there exists a function x∗ = f (p) in
the field Dxp = {(x, p)

∣∣∣0 < x∗ <
p
δ
, p > 0} and

dx∗
dp

= −
Fp(x∗, p)
Fx(x∗, p)

=
1

δ(m + 1)xm
∗ + δ

> 0,

which means x∗ is strictly increasing in p. Next, we deal with the stability of the fixed point of
system (2.6). The Jacobian matrix of (2.6) at E∗ is

JE∗ =

 0 1
−

pmxm−1
∗

(1+xm
∗ )2 1 − δ

 =

 0 1
−
δmxm

∗

1+xm
∗

1 − δ

 ,
then Tr(JE∗) = 1 − δ, Det(JE∗) =

δmxm
∗

1+xm
∗

, and the corresponding characteristic equation is

F(λ) = λ2 − Tr(JE∗)λ + Det(JE∗),

hence,

F(1) = δ + Det(JE∗) > 0, F(−1) = 2 − 2δ + F(1) > 0.

Lemma 2.2. [39] Consider F(λ) = λ2 + Bλ + C with two constant real parameters B and C. Suppose
λ1 and λ2 are two zero points of F(λ). Then, the zero points of the equation are entirely determined by
both F(−1) and the parameters.
Case I. If F(1) > 0, then
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(1) |λ1| < 1 and |λ2| < 1 if, and only if, F(−1) > 0 and C < 1.
(2) |λ1| > 1 and |λ2| > 1 if, and only if, F(−1) > 0 and C > 1.
(3) |λ1| < 1 and |λ2| > 1 if, and only if, F(−1) < 0.
(4) There exist λ1 = −1 and λ2 , −1 if, and only if, F(−1) = 0 and B , 2.
(5) λ1 = λ2 = −1 if, and only if, F(−1) = 0 and B = 2.
(6) There exist a pair of conjugate complex roots with |λ1| = |λ2| = 1 if, and only if, −2 < B < 2 and

C = 1.

Case II. If F(1) = 0, i.e., λ1 = 1, then |λ2| > 1(resp., < 1) if, and only if, |C| > 1 (resp., < 1).
Case III. If F(1) < 0, then F(λ) = 0 has one root λ1 ∈ (1,+∞). Then, the following statements about
the other root λ2 hold.

(1) λ2 < (=) − 1 if, and only if, F(−1) < (=)0;
(2) −1 < λ2 < 1 if, and only if, F(−1) > 0.

Therefore, the following conclusions can be obtained.

Theorem 2.2. Let pNS = δ2m
δm−1

( 1
δm−1

) 1
m , then

(i) the fixed point E∗ of system (2.6) is a sink for δm ≤ 1 or δm > 1 and p < pNS ;
(ii) the fixed point E∗ of system (2.6) is a source for δm > 1 and p > pNS ;

(iii) system (2.6) may undergo Neimark-Sacker bifurcation at the fixed point E∗ for δm > 1 and p =

pNS .

Proof. Notice that Det(JE∗) =
δmxm

∗

1+xm
∗

; it is easy to derive that Det(JE∗) < 1 holds for δm ≤ 1.

Meanwhile, for δm > 1 and p = pNS , we have x∗ =
( 1
δm−1

) 1
m , which leads to Det(JE∗) = 1. Since

F(−1) > 0 and F(1) > 0, by Lemma 1, one may know that λ1,2 are a pair of conjugate complex roots;
moreover, |λ1,2| = 1. Hence, system (2.6) probably undergoes Neimark-Sacker bifurcation at E∗ (we
will give the theoretical proof in the next subsection).

Furthermore, we may see that Det(JE∗) is strictly increasing in x∗ in the field Dx. Combining the
results in Theorem 2.1 that x∗ is strictly increasing in p, which in turn leads to the fact Det(JE∗) is
strictly increasing in p, so for δm > 1 and p < pNS , one gets Det(JE∗) < 1 and |λ1,2| < 1, which implies
the fixed point E∗ of system (2.6) is a sink.

Whereas for δm > 1 and p > pNS , we have Det(JE∗) > 1 and |λ1,2| > 1, which shows that the fixed
point E∗ of system (2.6) is a source.

The proof is then completed.

2.2. Bifurcation analysis for M-G model with k = 0

2.2.1. Neimark-Sacker bifurcation

In this sbusection, we shall show the existence of Neimark-Sacker bifurcation and the stability of
the bifurcated invariant curve.

To start, we choose p as a bifurcation parameter, giving a perturbation p∗ of parameter pNS , then
we obtain the following pertubed system:x 7−→ y,

y 7−→ (1 − δ)y +
pNS +p∗
1+xm ,

(2.7)
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where |p∗| � 1.
Next, taking u = x − x∗, v = y − y∗, then the fixed point E∗ can be moved to the origin O(0, 0) and

system (2.7) becomes u 7−→ v,

v 7−→ (1 − δ)v +
pNS +p∗

1+(u+x∗)m − δy∗.
(2.8)

The characteristic function of the linearization of system (2.8) at its fixed point O is:

F(λ) = λ2 − a(p∗)λ + b(p∗),

where a(p∗) = 1 − δ, b(p∗) =
m(pNS +p∗)xm−1

∗

(1+xm
∗ )2 =

δmxm
∗ (p)

1+xm
∗ (p) . It is easy to see

λ1,2

∣∣∣∣
p∗=0

=
1
2

[(1 − δ) ± i
√

3 + 2δ − δ2]

is a pair of conjugate complex roots of F(λ) = 0. As we know, to guarantee the existence of Neimark-
Sacker bifurcation, the following conditions must be fufilled:

(C.1)
d|λ1,2|

dp∗

∣∣∣∣
p∗=0
, 0;

(C.2) λk
1,2 , 1, k = 1, 2, 3, 4.

Notice that a(p∗)
∣∣∣
p∗=0

= 1 − δ and b(p∗) =
m(pNS +p∗)xm−1

∗

(1+xm
∗ )2 =

δmxm
∗ (p)

1+xm
∗ (p) , so

λ1,2

∣∣∣∣
p∗=0

=
1
2

[(1 − δ) ± i
√

3 + 2δ − δ2],

which means the condition (C.2) is true. Furthermore, |λ1,2| =
√

b(p∗) =
√

Det(JE∗),

d|λ1,2|

dp∗

∣∣∣∣
p∗=0

=
1

2
√

Det(JE∗)

d Det(JE∗)
dx∗

dx∗
dp

dp
dp∗

∣∣∣∣
p∗=0

> 0,

which guarantees that the condition (C.1) holds. Therefore, system (2.6) undergoes Neimark-Sacker
Bifrucation as p∗ varies in the neighborhood of pNS .

In the following, we shall discuss the stability of the invariant curve by three steps.
The first step: Expand the right side of system (2.8) as Taylor series at (u, v) = (0, 0)

u 7−→ a10u + a01v + a20u2 + a11uv + a02v2 + a30u3

+a12uv2 + a21u2v + a03v3 + O
(
ρ4),

v 7−→ b10u + b01v + b20u2 + b11uv + b02v2 + b30u3

+b12uv2 + b21u2v + b03v3 + O
(
ρ4),

(2.9)

where ρ =
√
‖u‖2 + ‖v‖2,

a01 = 1, a10 = a20 = a11 = a02 = a30 = a21 = a12 = a03 = 0,
b10 = −1, b01 = 1 − δ, b11 = b02 = b12 = b21 = b03 = 0,

b20 =
2 + δ − δm

2δ

( 1
δm − 1

)− 1
m
,

b30 =
δ2(−m2 + 3m − 2) + 6δ(m − 1) − 6

6δ2

( 1
δm − 1

)− 2
m
.
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The second step: Take the matrix

T =

 0 1
√

3+2δ−δ2

2
1−δ

2

 ,
and it is not difficult to see

T−1 =

( δ−1
√

3+2δ−δ2
2

√
3+2δ−δ2

1 0

)
,

introduce the invertable transformation (u, v)T = T (X,Y)T , and the normal form of system (2.9) is
arrived as: X 7−→ 1−δ

2 X −
√

3+2δ−δ2

2 Y + F(X,Y) + O(ρ4),

Y 7−→
√

3+2δ−δ2

2 X + 1−δ
2 Y + G(X,Y) + O(ρ4),

(2.10)

where F(X,Y) = 2b20√
3+2δ−δ2

Y2 + 2b30√
3+2δ−δ2

Y3, G(X,Y) = 0, ρ =
√
|X|2 + |Y |2. By computation, we get

FXXX

∣∣∣
(0,0)

= FXXY

∣∣∣
(0,0)

= FXYY

∣∣∣
(0,0)

= 0,

FYY

∣∣∣
(0,0)

=
2γ0

√
3 + 2δ − δ2

, FYYY

∣∣∣
(0,0)

= −
2γ2

0
√

3 + 2δ − δ2
,

FXX

∣∣∣
(0,0)

= FXY

∣∣∣
(0,0)

= GXX

∣∣∣
(0,0)

= GXY

∣∣∣
(0,0)

= GYY

∣∣∣
(0,0)

= 0,

GXXX

∣∣∣
(0,0)

= GXXY

∣∣∣
(0,0)

= GXYY

∣∣∣
0,0

= GYYY

∣∣∣
(0,0)

= 0.

(2.11)

The last step is to compute the first Lyapunuov coefficient by

a∗ = −Re
[ (1 − 2λ)λ

2

1 − λ
L11L20

]
−

1
2

∣∣∣L11

∣∣∣2 − ∣∣∣L02

∣∣∣2 + −Re(λL21), (2.12)

where
L20 =

1
8
[
(FXX − FYY + 2GXY) + i(GXX −GYY − 2FXY)

]
= −

b20

2
√

3 + 2δ − δ2
,

L11 =
1
4
[
(FXX + FYY) + i(GXX + GXY)

]
=

b20
√

3 + 2δ − δ2
,

L02 =
1
8
[
(FXX − FYY − 2GXY) + i(GXX −GYY + 2FXY)

]
= −

b20

2
√

3 + 2δ − δ2
,

L21 =
1

16
[
(FXXX + FXYY + GXXY + GYYY) + i(GXXX + GXYY − FXXY − FYYY)

]
= −

3b30

4
√

3 + 2δ − δ2
i .

Therefore, by computation and simplification, one may achieve

a∗ =
−[2b2

20(δ + 2) + 3b30(δ + 1)]
8(δ + 1)

=
−(δ3m − δ3 + δ2m2 − 2δ2 − 2δm + 2)

16δ2(δ + 1)

( 1
δm − 1

)− 2
m
.
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Next, we discuss the sign of a∗. Denote h(m) = −(δ3m − δ3 + δ2m2 − 2δ2 − 2δm + 2),

h′(m) = −δ(δ2 + 2δm − 2).

Obviously, h′(m) < 0 for δm > 1. Therefore, h(m) ≤ h(2) < 0 for δm > 1 (in fact, δm > 1 and m ∈ N+

means m ≥ 2). This leads to a∗ < 0 directly. Hence, the following theorem can be obtained.

Theorem 2.3. For δm > 1, the first Lyapunov coefficient a∗ < 0 is always true, which means when
p is varying in the sufficient small neighborhood of PNS , system (2.6) undergoes Neimark-Sacker
bifurcation at the fixed point E∗; moreover, the bifurcated invariant curve is stable.

2.2.2. Resonance 1:4 for the fixed point E∗

Now we choose p and δ as the bifurcation parameters. Since λ1,2 = ± i when p = pS N and δ = δ4

= 1, give a perturbation p∗ and δ∗ of parameter pNS and δ4 = 1. In order to ensure that the value of pNS

is meaningful, m is not equal to 1 in this case. Then, we obtain the following pertubed system:x 7−→ y,

y 7−→ (1 − δ4 − δ∗)y +
pNS +p∗
1+xm ,

(2.13)

where p = pNS + p∗, δ = δ4 + δ∗, |p∗|, |δ∗| � 1.
Next, taking u = x − x∗, v = y − y∗, then the fixed point E∗ can be moved to the origin O(0, 0) and

system (2.13) becomes: u 7−→ v,

v 7−→ (1 − δ4 − δ∗)v +
pNS +p∗

1+(u+x∗)m − δy∗.
(2.14)

The Jacobian of system (2.14) at its fixed point O is:

J(0, 0) =

 0 1

−
m(pNS +p∗)xm−1

∗

(1+xm
∗ )2 1 − δ4 − δ∗

 .
System (2.14) is expanded as the Taylor series at (u, v) = (0, 0)

u 7−→ v,

v 7−→ b10u + b01v + b20u2 + b11uv + b02v2 + b30u3

+b12uv2 + b21u2v + b03v3 + O
(
ρ4), (2.15)

where ρ =
√
‖u‖2 + ‖v‖2,

b10 = −
m(pNS + p∗)xm−1

∗

(1 + xm
∗ )2 , b01 = 1 − δ4 − δ∗,

b11 = b02 = b12 = b21 = b03 = 0,

b20 =
1
2
·

m(pNS + p∗)xm−2
∗

(1 + xm
∗ )3 (1 − m + xm

∗ + mxm
∗ ),

b30 = −
1
6
·

m(pNS + p∗)xm−3
∗

(1 + xm
∗ )4 (2 − 3m + m2 + 4xm

∗ − 4m2xm
∗ + 2x2m

∗ + 3mx2m
∗ + m2x2m

∗ ).
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If p∗ = δ∗ = 0, the Jacobian will be equivalent to

Λ0 = J(0, 0)|p∗=δ∗=0 =

(
0 1
−1 0

)
.

The characteristic value of the linearization of system (2.14) at its fixed point O is

λ1,2

∣∣∣∣
p∗=δ∗=0

= ± i,

and the eigenvectors are
q1 = (− i, 1)T , q2 = (i, 1)T .

The map (2.15) can be written as(
u
v

)
7→

(
0 1
−1 0

) (
u
v

)
+

(
0

b20u2 + b30v2 + O
(
ρ4)), (2.16)

where
b20 =

3 − m
2

( 1
m − 1

)− 1
m
,

b30 =
(−m2 + 3m − 2) + 6(m − 1) − 6

6

( 1
m − 1

)− 2
m
.

To analyze the bifurcation, we take any vector (u, v)T ∈ R2 in the form (u, v)T = zq1 + z̄q2, where z
is a complex variable which transforms the map (2.16) to the complex form

z 7→ i z + G(z, z̄), (2.17)

where

G(z, z̄) =
b20(−iz + iz̄)2 + b30(−iz + iz̄)3

2
+ O

(
ρ4) =

∑
k+l≥2

1
k!l!

gklzkz̄l,

with
g20 = g02 = −b20, g11 = b20,

g30 = g12 = 3ib30, g03 = g21 = −3ib30.
(2.18)

Take an invertible parameter-dependent change of complex coordinate

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2,

with

h20 =
g20

λ2
1 − λ1

=
1
2

g20(i−1), h11 =
g11

|λ1|
2 − λ1

=
1
2

g11(i +1), h02 =
g02

λ̄1
2
− λ1

=
1
2

g02(i−1).

Then, eliminate all the quadratic terms in (2.17), and transform it to

w 7→ i w +
∑

k+l≥3

1
k!l!

ρklzkz̄l, (2.19)
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with
ρ30 =3(1 − i)h20g20 − 3

(
i ḡ02 + (1 + i)h̄02

)
h11 + 3(1 − i)h2

20 + 3g11h̄02 + g30,

ρ21 =
(
iḡ02 + (1 + i)h̄02

)
h02 + (1 − 2 i)g11h20 + 2g11h̄11 + g02h̄02 + g21

+
(
(1 + 3 i)h20 − 2 i ḡ11 − 2(1 − i)h̄11 + (2 + i)g20

)
h11,

ρ12 =
(
2(1 + i)h11 + h̄20

)
g11 + g20h02 +

(
(1 − i)h20 + 2 i ḡ11 + 2(1 − i)h̄11

)
h02

− 2(1 + i)h2
11 −

(
i ḡ20 + (1 + i)h̄20

)
h11 + g12 − i h20g02 + 2g02h̄11,

ρ03 =g03 + 3g11h02 + 3
(
(i−1)h11 + i ḡ20 + (1 + i)h̄20

)
h02 + 3g02h̄20 + 3 i h11g02.

Then, by setting

h30 =
g30

λ3
1 − λ1

=
g30

i3
− i
, h21 =

g21

λ1 − λ1|λ1|
2 =

g21

i− i | i |2
,

h12 =
g12

λ̄1|λ1|
2 − λ̄1

=
g12

− i | i |2 + i
, h03 =

g03

λ̄1
3
− λ1

=
g03

ī3
− i

,

we take another invertible parameter-dependent change of complex coordinate

w = ζ +
1
6

h30ζ
3 +

1
2

h21ζ
2ζ̄ +

1
2

h12ζζ̄
2 +

1
6

h03ζ̄
3,

which changes the map (2.19) into

ζ 7→ Γ(ζ) = i ζ + Cζ |ζ |2 + Dζ̄3 + O
(
|ζ |4

)
, (2.20)

where gkl are given by (2.18) and

C =
1 + 3 i

4
g20g11 +

1 − i
2
|g11|

2
−

1 + i
4
|g02|

2 +
1
2

g21

= −
3
2

b2
20 −

3 i
2

b30

=
1
8

[
−3(−3 + m)2 + 2i(−7 + m)(−2 + m)

] ( 1
−1 + m

)−2/m

,

D =
i−1

4
g11g02 −

1 + i
4

g02ḡ20 +
1
6

g03

= −
i
2

b2
20 +

i
2

b30

= −
i

24
(−5 + m)(−11 + 5m)

(
1

−1 + m

)−2/m

.

When m , 5 (D , 0), the fourth iterate of Γ allows for approximation by a complex flow, and the
bifurcation of 1:4 resonance will be determined by

Ã =
C
|D|

=
9(m − 3)2 − 6 i(m − 7)(m − 2)

(m − 5)(5m − 11)
,
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and
[9(m − 3)2]2 + [6(m − 7)(m − 2)]2 − [(m − 5)(5m − 11)]2 > 0.

We have
|Ã| > 1.

By m ∈ N+, we have

Re Ã =
9(m − 3)2

(m − 5)(5m − 11)
, 0, f or m , 1, 2, 3, 5, 7,

Im Ã ,
1 + (Re Ã)2√
1 − (Re Ã)2

, f or m , 1, 2, 3, 5, 7.

When dealing with strong resonances, we will repeatedly use the approximation of maps near
their fixed points by shifts along the orbits of certain systems of autonomous ordinary differential
equations [6, 44].

Lemma 2.3. [44] The fourth iterate of the map (2.20) can be represented in the form

Γ4(ζ) = ϕ1ζ + O
(
|ζ |4

)
, (2.21)

where ϕt is the flow of a planar system

ζ̇ = −4iCζ |ζ |2 − 4iDζ̄3. (2.22)

Theorem 2.4. If m , 1, 2, 3, 5, 7 (means that pNS is meaningful, Re Ã , 0 and Im Ã , 0), and the
parameters (p, δ) vary in a small neighborhood of (pS N , 1), the system (2.6) undergoes a bifurcation
of 1:2 resonance around the fixed point E∗, and admits the following bifurcation curves:

• There is a Neimark-Sacker bifurcation curve at the fixed point E∗ of the system (2.6).
• There exist four saddle fixed points S k when |Ã| > 1, which are the corresponding period-4

points of (2.21). As the parameters (p, δ) in (2.6) varying in the neighborhood of (pNS , 1), these
nontrivial periodic points appear or disappear in the neighborhood of E∗.
• There is a square heteroclinic cycle around E∗ composed by the separatrices of S k, which is stable

from the inside.

3. Numerical simulation for M-G model with k = 0

3.1. Neimark-Sacker bifurcation

Select δ = 0.2, m = 10, and the initial point E0(1.5, 1.5). By the theoretical analysis in Section 2.1,
one has pNS = 0.4, and at this case the fixed point of system (2.6) is E∗(1, 1), a∗ = −0.5687. See
Figures 1–3 by numerical simulation.
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(a) p = 0.35 (b) p = 0.37 (c) p = 0.38

(d) p = 0.40 (e) p = 0.41 (f) p = 0.43

(g) p = 0.44 (h) p = 0.46 (i) p = 0.47

Figure 1. The Neimark-Sacker bifurcation as p is varying when m = 10, δ = 0.2, E0

= (1.5, 1.5).

Figure 2. The Neimark-Sacker bifurcation as p is varying when m = 10, δ = 0.2, E0

= (1.5, 1.5).
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Figures 1(a)–(c) show that the fixed point E∗ is a sink when p < 0.4; meanwhile for p = 0.41,
a stable invariant curve occurs, see the Figures 1(d),(f); it can be also shown in Figure 2 which is
consistent with the results in Theorem 2.3.

The Figure 3 shows the maximum Lyapunov exponent (MLE) varying with the parameter p, which
shows the MLE is always less than zero when p < 0.4; meanwhile for γ > 0.4, the MLE will fluctuate
below 0, which also means the oribit from the initial (1.5, 1.5) will be periodic. Also the MLE is not
greater than 0, which implies the chaos does not occour for system (2.6) at this time.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

M
LE

Figure 3. The MLE as γ varying for p = 2, δ = 0.5.

3.2. 1:4 resonance

Taking m = 4 as an example, the same applies to other situations.
Let δ vary form the neighborhood of δ4 = 1, while pNS = 1.0131, x∗(pNS ) = 11−1/4 and let p vary

in [pNS − 0.02, pNS + 0.2]. Thus, it follows from Theorem 4.6 that the fixed point E∗ of system (2.6) is
a 1:4 resonance point.

Figures 4(a),(b) show that there exists the invariant cycle around the fixed point when δ varies near
δ = 1. A nondegenerate Neimark-Sacker bifurcation curve when δ = 0.8 is illustrated in Figure 4(c),
and four period points when δ = 0.9 and δ = 1.01 are given in Figures 4(d),(e). Figures 4(b),(d) show
that a complex heteroclinic curve will occur near the Neimark-Sacker bifurcation curve or period points
when δ varies in the neighborhood of δ = 0.9 or 1.01. A possible chaotic phenomenon is shown in
Figure 4(f), and in fact, we have verified it through numerical simulations (see Figures 6(a) and 7(b)).

Figure 5 shows the phase portraits of system (2.6) corresponding to Figures 4(a)–(e). Since the
system undergoes Neimark-Sacker bifurcation, the fixed point E∗ changes from local asymptotically
stable to unstable and there occurs a stable closed invariant curve around it, which is shown in
Figures 5(a),(b)

From Figures 5(d)–(f), we observe that a heteroclinic curve consists of the separatrices of four
saddles; specially, Figure 5(f) shows the collision between the saddle points and the invariant circle.
By selecting δ = 1.685, p = 2.01311 (see Figures 6(a),(b)), we calculate that the max Lyapunov
exponent is L = 0.0715457 > 0, and the system has 3-period points, which implies chaos [37].

The 3-dimensional bifurcation diagrams of map (2.6) in (p, δ, y) and the maximium Lyapunov
exponents corresponding to δ and p are shown in Figure 7(a). The maximum Lyapunov exponents
corresponding to p and δ are calculated and plotted in Figure 7(b) that confirms the existence of the
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period orbits and chaotic regions near the 1:4 resonance point E∗ in the parametric space.

(a) δ = 0.8 (b) δ = 0.9 (c) δ = 1.0

(d) δ = 1.01 (e) δ = 1.2 (f) δ = 1.685

Figure 4. The 1:2 resonance as (p, δ) varying when k = 0,m = 4.
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(a) δ = 0.9, p = 0.96 (b) δ = 0.9, p = 0.99 (c) δ = 0.9, p = 1.2

(d) δ = 1.0, p = 1.01 (e) δ = 1.0, p = 1.05 (f) δ = 1.2, p = 1.085

Figure 5. Phase portraits corresponding to Figure 4(a)–(e): Supercritical Neimark-Sacker
bifurcation curve (5(b),(c)) and 1:4 resonance (5(d)–(f)).

(a) δ = 1.685, p = 2.01311 (b) The chaos phenomena near the 3-period
points

Figure 6. Phase portraits corresponding to Li-Yorke chaos (6(a),(b)).
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(a) The bifurcation diagrams of 1:4 resonance in (p, δ, y) (b) The maximium Lyapunov exponents corresponding to δ
and p

Figure 7. The bifurcation of 1:4 resonance of system (2.6) when k = 0.

4. M-G model with 1 < k ≤ m

In this section, we study the Makey-Glass model with 1 < k ≤ m.
We shall see in this section, that the model with 1 < k ≤ m exhibits more complex dynamics (saddle-

node bifurcation and chaos) than the model with k = 0 and k = 1.

ξ′(t) = −δξ(t) +
pξk(t − τ)

1 + ξm(t − τ)
, (4.1)

where δ, τ, p ∈ (0,+∞), m, k ∈ N+, 1 < k ≤ m. With the same way one can derive the semi-discrete
system of system (4.1):

η(n + 1) = (1 − δ)η(n) +
pηk(n − 1)

1 + ηm(n − 1)
. (4.2)

Taking the transfomations

xn = η(n − 1),
yn = η(n),

we can obtain the planar dynamical system

xn+1 = yn,

yn+1 = (1 − δ)yn +
pxk

n
1+xm

n
.

(4.3)

In the following, we discuss the dynamics of system (4.3). It is shown that the origin O(0, 0) is
always the fixed point of system (4.3), which is a trivial fixed point. With the increasing of parameter
p, the number and the stability of the fixed point will change.

When the parameter p meets the first critical value p0, there will exist a positive fixed point E∗, and
the system may undergo saddle-node bifurcation at E∗ for p = p0. Meanwhile, for p > p0, there are
two fixed points E1,2 bifurcated from E∗.
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4.1. The local dynamics of the fixed points

Suppose E(x, y) is the fixed point of system (4.3), and it must satisfy the following equationsx = y,

δy =
pxk

1+xm .

Denote f (x) = δxm+1 − pxk + δx. Obvilusly if x̄ is the root of f (x) = 0, then (x̄, x̄) is also the fixed
point of system (4.3). It is easy to see that x = 0 is always a root of f (x) = 0, then E0(0, 0) is the trivial
fixed point of (4.3).

To find the nonzero roots of f (x) = 0, take g(x) =
f (x)

x = δxm − pxk−1 + δ, and we may discuss the
positive solutions of g(x) = 0. Notice that

g′(x) = mδxm−1 − p(k − 1)xk−2

= xk−2[mδxm−k+1 − p(k − 1)
]
.

Since xm−k+1 is strictly increasing at x, g(x) will get to its minimum value at x =
m−k+1

√
p(k−1)

mδ , x0.

Let ρ1 =
p
δ
, ρ2 = k−1

m , then we have ρ1 > 1, ρ2 < 1; hence, x0 = (ρ1ρ2)
1

m−k+1 , and the minimum value of
g(x) is

g(x0) = δxm
0 + δ − pxk−1

0

= δ
[
(ρ1ρ2)

m
m−k+1 + 1 − ρ1(ρ1ρ2)

k−1
m−k+1

]
= δ

[
(ρ1ρ2)

1
1−ρ2 + 1 − ρ1(ρ1ρ2)

ρ2
1−ρ2

]
.

Theorem 4.1. Let pS N = δρ
−ρ2
2 (1 − ρ2)ρ2−1, x0 = (ρ1ρ2)

1
m−k+1 , then the following conclusions about the

fixed points of system (4.3) are true:
(i) when p < pS N , there is only one trivial fixed point E0(0, 0) of system (4.3);
(ii) when p = pS N , there are two fixed points of system (4.3), which are the trivial fixed point E0(0, 0)

and the positive fixed point E∗(x∗, y∗), x∗ = y∗ = x0;
(iii) when p > pS N , there are three fixed points of system (4.3), which are E0(0, 0),

E1(x1, y1), E2(x2, y2), where xi = yi statisfies δxm+1
i − pxk

i + δxi = 0, i = 1, 2.

Proof. It is not difficult to see that when p = pS N , ρ1 = ρ
−ρ2
2 (1 − ρ2)ρ2−1, the minimum value of

g(x) satisfies

g(x0) = δ
[
(ρ1ρ2)

1
1−ρ2 + 1 − ρ1(ρ1ρ2)

ρ2
1−ρ2

]
= δ

[ ρ2

1 − ρ2
+ 1 − ρ−ρ2

2 (1 − ρ2)ρ2−1( ρ2

1 − ρ2

)ρ2
]

= δ
[ 1
1 − ρ2

−
1

1 − ρ2

]
= 0,

which shows there is only one solution x0 of g(x) = 0.
Whereas for p < pS N , we have

∂g(x0)
∂p

=
1

1 − ρ2
ρ

ρ2
1−ρ2
1

(
ρ

1
1−ρ2
2 − ρ

ρ2
1−ρ2
2

)
< 0,
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that is to say, g(x0) is strictly decreasing at p for ρ1 > 1, 0 < ρ2 < 1. Hence, g(x0) > 0 for p < pS N ,
which means there is no positive solution of g(x) = 0; as to p > pS N , we have g(x0) < 0, combined
with the fact

lim
x→0+

g(x) = δ > 0, lim
x→+∞

g(x) = +∞,

which means there are only two solutions x1, x2 for g(x) = 0 and 0 < x1 < x0 < x2.
Notice that E0(0, 0) is always the fixed point of system (4.3), hence, we can finish the proof.
It is easy to see from the above theorem that system (4.3) probably undergoes saddle-

node bifurcation. In the next subsection we shall verify the existence of saddle-node
bifurcation theoretically.

Theorem 4.2. Let p > pS N , E1(x1, y1), and E2(x2, y2) be the fixed points of system (4.3), then x1, x2,
and the parameter p satisfy that xi is strictly increasing with respect to p in (pS N ,+∞), i = 1, 2.

Proof. Denote D2 = {(xi, p)
∣∣∣ xi ∈ (x0,+∞), p ∈ (pS N ,+∞)}, and xi satisfies g(xi, p) = 0. Notice that

g′p(xi, p) = −xk−1
i , g′xi

(xi, p) = δmxm−1
i − p(k − 1)xk−2

i are continuous in D2, and

g′xi
(xi, p) = δmxm−1

i − p(k − 1)xk−2
i

= δmxk−2
1 (xm−k+1

i − ρ1ρ2) > 0.

The implicit theorem shows that there exists a function xi = xi(p) satisfying g(xi(p), p) = 0 when
p > pS N , and

dxi(p)
dp

=
xi

δm(xm−k+1
i − ρ1ρ2)

> 0,

then the proof is finished.
Next, we study the stabilities of the fixed points.
To begin, we discuss the stability of the fixed point E0(0, 0).
The Jocabian Matrix of system (4.3) at E0(0, 0) is

JO =

 0 1
p(k−m)xm+k−1+pkxk−1

(1+xm)2 1 − δ

 ∣∣∣∣∣∣
O

=

(
0 1
0 1 − δ

)
,

and the corresponding characteristic equation is

F(λ) = λ2 − (1 − δ)λ = 0,

hence, λ1 = 0, λ2 = 1 − δ < 1, which means the fixed point is a sink.
Next, we study the stability of E∗(x∗, y∗) for p = pS N . The Jacobian matrix of (4.3) at E∗(x∗, y∗) is

JE∗ =

 0 1
p(k−m)xm+k−1+pkxk−1

(1+xm)2 1 − δ

 ∣∣∣∣∣∣
E∗

=

 0 1
δ(k−m)xm

∗ +δk
1+xm

∗
1 − δ

 ,
so Tr(JE∗) = 1 − δ, Det(JE∗) = −

δ(k−m)xm
∗ +δk

1+xm
∗

, and the corresponding characteristic equation is

F(λ) = λ2 − Tr(JE∗)λ + Det(JE∗).
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It is not difficult to see
F(λ) = λ2 − Tr(JE∗)λ + Det(JE∗).

F(1) = δ + Det(JE∗)

= δ −
δ(k − m)xm

∗ + δk
1 + xm

∗

=
δ(k − 1)
1 + xm

∗

[( 1
ρ2
− 1

)
xm
∗ − 1

]
=
δ(k − 1)
1 + xm

∗

[1 − ρ2

ρ2
·

ρ2

1 − ρ2
− 1

]
= 0,

and C = Det(JE∗) = −δ, which means |C| < 1; Lemma 2.2 implies that λ1 = 1 and |λ2| < 1, that is to
say, E∗ is a nonhyperbolic fixed point.

Last, we discuss the stabilities of the fixed points E1(x1, y1) and E2(x2, y2) for p > pS N .

JE1 =

 0 1
δ(k−m)xm

1 +δk
1+xm

1
1 − δ

 ,
and the corresponding characteristic equation is

F(λ) = λ2 + Bλ + C,

where B = (δ − 1), C = −
δ(k−m)xm

2 +δk
1+xm

2
,

F(1) = δ −
δ(k − m)xm

1 + δk
1 + xm

1
, G(x1).

It is easy to see that G(x1) is increasing at x1, while x1 is decreasing at p; hence,

F(1) < G(x∗) = 0.

Combined with Theorem 4.2, we know that there is an eigenvalue λ1 > 1.
Notice F(−1) = 2 − 2δ + G(x1), which is decreasing at p, and

lim
x1→0+

F(−1) = 2 − δ − δk, lim
x→x−∗

F(−1) = 2 − 2δ.

So when 2 − δ − δk < 0, we have

p = pchange =
δ2m

δ(m − k) + (2 − δ)

( δk + δ − 2
δ(m − k) + (2 − δ)

) 1−k
m
.

such that F(−1) = 0. At this case, x1 =
(

δk+δ−2
δ(m−k)+(2−δ)

) 1
m , λ2 = −1. Moreover, when pS N < p < pchange,

F(−1) > 0, which implies |λ2| < 1; while for p > pchange, one has F(−1) < 0, and then |λ2| > 1.

Theorem 4.3. The conclusions of the fixed point E1 for system (4.3) are true:
(i) If δk + δ − 2 ≤ 0, then the fixed point E1 is a saddle;
(ii) if δk + δ − 2 > 0, then

(a) when pS N < p < pchange, E1 is a saddle;
(b) when p > pchange, E1 is a source, where pchange is given below.
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The theorem shows that pchange is a critical value. When the parameter p varies in the neighborhood,
the stability of the fixed point will be changed. So, the system may undergo bifurcation at E1, which
will be discussed in the next section.

With similar arguments, we may know that the characteristic equation of the Jacobian matrix for
system (4.3) at E2(x2, y2) is:

F(λ) = λ2 + Bλ + C,

where B = (δ − 1), C = −
δ(k−m)xm

2 +δk
1+xm

2
, denote

F(1) = δ −
δ(k − m)xm

2 + δk
1 + xm

2
, G(x2).

It is easy to verify that G(x2) is increasing at x2, and by Theorem 4.2, x2 is also increasing at p for
p > pS N . As a result, G(x2(p)) is increasing at p for p > pS N which leads to

F(1) = G(x2) > G(x0) = 0.

Notice that F(−1) = 2 − 2δ + F(1), then F(−1) > 0 holds. As we know, C(p) = G(x2(p)) − δ is
increasing at p, moreover,

lim
p→p+

S N

C(p) = −δ, lim
p→+∞

C(p) = δ(m − k),

so there exists a point

p = pNS :=
δ2m

δm − δk − 1
( δk + 1
δm − δk − 1

) 1−k
m ,

for δ(m − k) > 1, where x2 =
(

δk+1
δm−δk−1

) 1
m , such that C(pNS ) = 1. According to Lemma 2.2, we know

that the Jacobian matrix of system (4.3) at E1 has a pair of conjugate complex roots λ1,2 with |λ1,2| = 1.
When pS N < p < pNS , C < 1, |λ1,2| < 1; while for p > pNS , C > 1, |λ1,2| > 1. Hence, we get the
following results.

Theorem 4.4. The fixed point E2 of system (4.3) has the following properties:
(i) in the case of δ(m − k) ≤ 1, the fixed point E2 is a sink;
(ii) in the case of δ(m − k) > 1,

(a) if pS N < p < pNS , then the fixed point E2 is a sink;
(b) if p = pNS , then system (4.3) perhaps undergoes Neimark-Sacker bifurcation at E2;
(c) if p > pNS , then the fixed point E2 is a source.

4.2. Bifurcation analysis for M-G model with 1 < k ≤ m

4.2.1. Saddle-node bifurcation for the fixed point E∗

Theorem 4.2 shows that system (4.3) may undergo saddle-node bifurcation for p = pS N , and
Theorem 4.4 shows system (4.3) may undergo Neimark-Sacker bifurcation at E2 for p = pNS . In
this section, we shall verify the truth theoretically.
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To start, according to the analysis in the above section we know that for p = pS N , the eigenvalues
of Jacobian matrix for system (4.3) at E∗(x∗, y∗) (where x∗ = y∗ = (ρ1ρ2)

1
m−k+1 ) are λ1 = 1, λ2 = −δ. To

verify the existence of saddle-node bifurcation, the following conditions must be fulfilled:

(SN.1) WTGp(x∗, y∗; p∗) , 0;

(SN.2)
1
2

WT (D2G(x∗, y∗; p∗)(V,V)) , 0.

where W is the eigenvector of JT
E∗ (namely, the transverse of JE∗) corresponding to the eigenvalue λ = 1,

V is the eigencector of JE∗ corresponding to the eigenvalue λ = 1, and

G(x, y; p) =

(
y

(1 − δ)y +
pxk

1+xm

)
.

It is easy to compute

W =

(
δ

1

)
, V =

(
1
1

)
,

therefore

WTGp(x∗, y∗; p∗) =

(
δ

1

)T  0

ρ
k
m
2 (1 − ρ2)−

k+1
m

 = ρ
k
m
2 (1 − ρ2)−

k+1
m > 0,

which means (SN.1) is true.
D2G(x, y; p) is a double linear function, and

D2G(x, y; p) =
(
B1(x, y; p) B2(x, y; p) B3(x, y; p) B4(x, y; p))

)T
,

where

B j(x, y; p) =

2∑
k,l=1

∂2G j(ξ, 0)
∂ξk∂ξl

∣∣∣∣∣
ξ=0
ξkξl, j = 1, 2, 3, 4, ξ1 = x, ξ2 = y.

Hence, we have

1
2

WT (D2G(x∗, y∗; p∗)(V,V)) =
1
2

(
δ

1

)T  0
δ2 xk
∗b1

2pS N (m−k+1)


=

δ2xk
∗b1

2pS N (m − k + 1)
< 0,

where
b1 = (m − k)(k − 1)(2k − 2 − 2m) − k(k − 1)m,

namely, (SN.2) is fulfilled. So, system (4.3) undergoes saddle-node bifurcation when p varies in the
neiborhood of pS N , and the semi-stable fixed point E∗ is bifurcated to a sink E2 and a saddle E1.
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4.2.2. Neimark-Sacker bifurcation for the fixed point E2

Next, we shall illustrate that system (4.3) undergoes Neimark-Sacker bifurcation. Similar to the
proof in Section 2.2, to guarantee the existence of Neimark-Sacker bifurcation, we need to verify
the transversal condition (C.1) and the nondegenerate condition (C.2). By virtue of arguements in
Section 4.2, we know that Det(JE2) = 1 when

pNS =
δ2m

δm − δk − 1
( δk + 1
δm − δk − 1

) 1−k
m ,

and the Jacobian matrix of the perturbed system to system (4.3) at E2 is

JE2 =

 0 1
(k−m)(pNS +p∗)xm+k−1

2 +k(pNS +p∗)xk−1
2

(1+xm
2 )2 1 − δ

 ,
where x2 =

( δk+1
δm−δk−1

) 1
m . It is easy to compute the eigenvalues

λ1,2

∣∣∣∣
p∗=0

=
(1 − δ) ±

√
(3 − δ)(1 + δ) i
2

,

which satisfy the nondegereate condition (C.2).
Notice that

b(p∗) = Det(JE2) =
(m − k)(pNS + p∗)xm+k−1

2 − k(pNS + p∗)xk−1
2

(1 + xm
2 )2

=
δ(k − m)xm

2 + δk
1 + xm

2
,

and |λ1,2| =
√

b(p∗). Combining with Theorem 4.2, we have

d|λ1,2|

dp

∣∣∣∣
p∗=0

=
δmxm

2

(xm
2 + 1)2(δmxm−k+1

2 − pNS (k − 1))
> 0,

which verifies the transversal condition (C.1). As a result, there will be an invariant curve bifurcated
from the fixed point E2 of system (4.3).

What we need to do is to determine the stability of the invariant curve bifurcated from the fixed
point E2 of system (4.3). With the similar arguments in Section 3.2, we need to compute the first
Lyapunov coefficient

a∗ =
−[2b2

20(δ + 2) + 3b30(δ + 1)]
8(δ + 1)

,

where

b20 =
δ2k2 − δ2km + 2δk − δm + δ + 2

2δ

( δk + 1
δm − δk − 1

)− 1
m
,

b30 =
δ3k(k2 − 3k + 2) + 6δ(δk + 1)2(k + m − 1) − 6(δk + 1)3

6δ3

( δk + 1
δm − δk − 1

)− 2
m

−
δ2(δk + 1)(3k2 + 3km − 6k + m2 − 3m + 2)

6δ2

( δk + 1
δm − δk − 1

)− 2
m
.

As a result, we obtain the following theorem.
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Theorem 4.5. There are no k and m satisfying a∗ = 0, so a∗ , 0, moreover,

(i) if a∗ < 0, then the fixed point E2 of system (4.3) is a sink for p < pNS , while for p > pNS , there
exists a stable invariant curve for system (4.3) and the fixed point E2 is a source;

(ii) if a∗ > 0, then the fixed point E2 of system (4.3) is a source for p > pNS , while for p < pNS , there
exists an unstable invariant curve for system (4.3) and the fixed point E2 is a sink.

4.2.3. Resonance 1:4 for the fixed point E2

We still choose p and δ as the bifurcation parameters of (4.3), Now, consider the case of a
perturbation p∗ and δ∗ of parameter pNS and δ4 = 1. In order to ensure that the value of pNS is
meaningful, take m − k , 1 in this case. Then, we obtain the following pertubed system:x 7−→ y,

y 7−→ (1 − δ4 − δ∗)y +
pNS +p∗
1+xm xk,

(4.4)

where p = pNS + p∗, δ = δ4 + δ∗, |p∗|, |δ∗| � 1.
Next, taking u = x − x2, v = y − y2, then the fixed point E2 can be moved to the origin O(0, 0) and

system (4.4) becomes u 7−→ v,

v 7−→ (1 − δ4 − δ∗)v +
pNS +p∗

1+(u+x2)m (u + x2)k − δy2.
(4.5)

The Jacobian of system (4.5) at its fixed point O is:

J(0, 0) =

 0 1
(k−m)(pNS +p∗)xm+k−1

2 +k(pNS +p∗)xk−1
2

(1+xm
2 )2 1 − δ4 − δ∗

 .
Expand the right of system (4.5) as Taylor series at (u, v) = (0, 0)

u 7−→ v,

v 7−→ b10u + b01v + b20u2 + b11uv + b02v2 + b30u3

+b12uv2 + b21u2v + b03v3 + O
(
ρ4), (4.6)

where ρ =
√
‖u‖2 + ‖v‖2,

b10 =
(k − m)(pNS + p∗)xm+k−1

2 + k(pNS + p∗)xk−1
2

(1 + xm
2 )2 , b01 = 1 − δ4 − δ∗,

b11 = b02 = b12 = b21 = b03 = 0,

b20 = (pNS + p∗)

 mxm+k−2
2

2(1 + xm
2 )3 (1 − m + xm

2 + mxm
2 ) −

kmx−2+k+m
2(

1 + xm
2

)2 +
(−1 + k)kx−2+k

2

2
(
1 + xm

2

)
 ,

b30 = (pNS + p∗)[−
mxm+k−3

2

6(1 + xm
2 )4 (2 − 3m + m2 + 4xm

2 − 4m2xm
2 + 2x2m

2 + 3mx2m
2 + m2x2m

2 )

+
kmx−3+k+m

2

(
1 − m + xm

2 + mxm
2

)
2
(
1 + xm

2

)3 −
(−1 + k)kmx−3+k+m

2

2
(
1 + xm

2

)2 +
(−2 + k)(−1 + k)kx−3+k

2

6
(
1 + xm

2

) .
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Substituting p∗ = δ∗ = 0 and δ4 = 1 into (4.6), we have(
u
v

)
7→ A0

(
u
v

)
+

(
0

b20u2 + b30v2 + O
(
ρ4)), (4.7)

with
b10 = −1, b01 = 0,

b20 =
k2 − km + 2k − m + 3

2

( k + 1
m − k − 1

)− 1
m
,

b30 =
k(k2 − 3k + 2) + 6(k + 1)2(k + m − 1) − 6(k + 1)3

6

( k + 1
m − k − 1

)− 2
m

−
(k + 1)(3k2 + 3km − 6k + m2 − 3m + 2)

6

( k + 1
m − k − 1

)− 2
m
,

and

A0 = J(0, 0)|p∗=δ∗=0 =

(
0 1
−1 0

)
.

The characteristic value of the linearization of system (4.3) at its fixed point O is

λ1,2

∣∣∣∣
p∗=δ∗=0

= ±i,

and the corresponding eigenvectors are

q1 = (−i, 1)T, q2 = (i, 1)T.

Use the same discussion in Section 2.2.2. We take any vector (u, v)T ∈ R2 in the form (u, v)T =

zq1 + z̄q2, where z is a complex variable which transforms the map (4.7) to the complex form

z 7→ iz + G(z, z̄), (4.8)

where

G(z, z̄) =
b20(−iz + iz̄)2 + b30(−iz + iz̄)3

2
+ O

(
ρ4) =

∑
k+l≥2

1
k!l!

gklzkz̄l,

with
g20 = g02 = −b20, g11 = b20,

g30 = g12 = 3ib30, g03 = g21 = −3ib30.
(4.9)

Take the invertible parameter-dependent change of complex coordinate the same as Section 2.2.3:

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2,

by setting
h20 =

g20

λ2
1 − λ1

, h11 =
g11

|λ1|
2 − λ1

, h02 =
g02

λ̄1
2
− λ1

,

and
w = ζ +

1
6

h30ζ
3 +

1
2

h21ζ
2ζ̄ +

1
2

h12ζζ̄
2 +

1
6

h03ζ̄
3,
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by setting

h30 =
g30

λ3
1 − λ1

, h21 =
g21

λ1 − λ̄1|λ1|
2
, h12 =

g12

λ̄1|λ1|
2 − λ1

, h03 =
g03

λ̄1
3
− λ1

,

with λ1 = i. The map (4.8) is changed into

ζ 7→ Γ(ζ) = i ζ + Cζ |ζ |2 + Dζ̄3 + O
(
|ζ |4

)
, (4.10)

where gkl are given by (4.9) and

C =
1 + 3i

4
g20g11 +

1 − i
2
|g11|

2
−

1 + i
4
|g02|

2 +
1
2

g21

= −
3
2

b2
20 −

3i
2

b30,

D =
i − 1

4
g11g02 −

1 + i
4

g02ḡ20 +
1
6

g03

= −
i
2

b2
20 +

i
2

b30,

which is determined by the coefficients in (4.7).
Then, we have

C =
1
8

(
1 + k
−1 + m

) −2
m

× [−3
(
3 + 2k + k2 − (1 + k)m

)2

+ 2i
(
2(7 + k(11 + k(6 + k))) − 3(1 + k)(3 + k)m + (1 + k)m2

)
],

D =
i

24

(
1 + k
−1 + m

) −2
m

× [−(1 + k)(5 + 3k)m2

+ 6(1 + k)(6 + k(3 + k))m − k(80 + k(54 + k(16 + 3k))) − 55].

When 1 < k ≤ m, there is no k ∈ N+ and m ∈ N+ satisfying C = 0 or D = 0, so we have that C , 0
and D , 0 holds. Then, the fourth iterate of Γ allows for approximation by a complex flow, and the
bifurcation of 1:4 resonance will be determined by

Ã =
C
|D|

,

and by 1 < k ≤ m , k,m ∈ N+, and m − k , 1, we have

|Ã| < 1,

Re Ã , 1,

Im Ã ,
1 + (Re Ã)2√
1 − (Re Ã)2

.
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Lemma 4.1. [44] The fourth iterate of the map (4.10) can be represented in the form

Γ4(ζ) = ϕ1ζ + O
(
|ζ |4

)
, (4.11)

where ϕt is the flow of a planar system

ζ̇ = −4iCζ |ζ |2 − 4iDζ̄3. (4.12)

Theorem 4.6. Let m − k , 1. When the parameters (p, δ) vary in a small neighborhood of (pNS , 1),
the system (4.3) undergoes a bifurcation of 1:4 resonance around the fixed point E2 and admits the
following bifurcation curves:

• There is a Neimark-Sacker bifurcation curve at the fixed point E∗ of system (4.3).
• Besides E1, there exist four saddle fixed points S k of (4.12) around E2 when |Ã| < 1, which are

the corresponding period-4 points of (4.3). As the parameters (p, δ) vary in the neighborhood
of (pNS , 1), these nontrivial periodic points appear or disappear in the neighborhood of E2.
• There is a square heteroclinic cycle around E2 composed by the separatrices of S k which is stable

from the inside.

5. Numerical simulation for M −G model with 1 < k ≤ m

5.1. Codim 1 bifurcations

To illustrate the theoretical results, we present some numerical simulations by virtue of the
Python program.

Choose parameters δ = 0.2, k = 5, m = 10. At this case, pS N = 0.39. Let p vary in a neighborhood
of pS N = 0.39, and we obtain the following figure.

Figure 8 shows that when p < pS N = 0.39, there is only one fixed point O(0, 0) of (4.3) (see
Figure 8(a)); when p = pS N = 0.39, there are two fixed points O(0, 0) and E∗(see Figure 8 (b));
meanwhile for p > pS N = 0.39, there are three fixed points O, E1, and E2 (see Figures 8(c),(d)). It is in
accordance with Theorem 4.1.

Figure 8. The fixed point of system (4.3) for δ = 0.2, k = 5, m = 10.

Choose the parameters δ = 0.433, m = 10, k = 4. At this case pNS = 0.9989 and pchange = 1.18. Take
the initial value E0 = (1.063, 1.063), and p varies in the neighborhood of pNS . We get the following
figures (see Figure 9). Figure 9 shows that when p < pNS = 0.9989, the fixed point E2 of system (4.3)
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is a sink, the orbits from E0(1.063, 1.063) are all convergent to E2 (see the first four sub-fiures of
Figure 9). Meanwhile for p > pNS = 0.9989, there will occur a stable invariant curve (see the last four
sub-figures of Figure 9), which is in accordance with Theorem 4.2.

(a) (b) (c)

(d) (e) (f)

Figure 9. Neimark-Sacker bifurcation.

To illustrate the existence chaos more clearly, we present the following figures, which show the
change of maximum Lypunuov exponent with p. The figure exhibits that when p < 1.32, the MLE is
not greater than 0, while for p > 1.32, the MLE is greater than 0, which means that there exists chaos
for the system when p > 1.32. The results are in accordance with Figure 10.
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(a) Neimark-Sacker Bifurcation

0.9 1.0 1.1 1.2 1.3 1.4 1.5
p

-0.4

-0.3

-0.2

-0.1

0.0

0.1

ML
E

(b) Maximium Lyapunuov Exponent

Figure 10. Neimark-Sacker bifurcation and the maximium Lyapunuov exponent.

5.2. 1:4 resonance

Select m = 10, k = 4, and let δ vary from the neighborhood of δ4 = 1, while pNS = 2, and let
p vary in [pNS − 0.02, pNS + 0.2]. By Theorem 4.6, the fixed point x2 is a 1:4 resonance point. The
phenomenon is similar to the case of k = 0.

Figures 11 and 12 show the complex bifurcation phenomena when k = 4, m = 10, δ = 1.02 and
p vary. The invariant cycle induced by a Neimark-Sacker bifurcation is shown in the Figures 11(a)–(c).

As the parameter p changes, further 4-period saddle points and heteroclinic cycles are generated
by undergoing 1:4 resonance, showed in the Figures 12(a)–(c). A similar period-doubling phenomena
occurs, and then the system enters chaos. See the Figures 13(a),(b).
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(a) δ = 1.02, p = 2.000 (b) δ = 1.02, p = 2.035 (c) δ = 1.02, p = 2.037

Figure 11. Phase portraits corresponding to Figure 14(c): Supercritical Neimark-Sacker
bifurcation curve (Figures 11(a)–(c)).

(a) δ = 1.02, p = 2.042 (b) δ = 1.02, p = 2.47 (c) δ = 1.02, p = 2.120

Figure 12. Phase portraits corresponding to Figure 14(c): Heteroclinic loop
and 4-period saddles induced by 1:4 resonance (Figures 12(a),(b)) period-doubling
phenomena (Figure 12(c)).

(a) δ = 1.02, p = 2.145 (b) δ = 1.02, p = 2.150

Figure 13. Phase portraits corresponding to Figure 14(c): Chaos induced by the “period
bubbling” phenomena (Figures 13(a),(b)).
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It is worth noting that from Figure 14(b) and Figures 15(a)–(d), we can observe that there are period-
doubling phenomena from the period-4 orbits occuring by undergoing the bifurcation of 1:4 resonance
to chaos, which is different from the case of k = 0. From Figure 14(a), there are “period bubbling”
phenomena when δ varies less than the critical value (the combination of period-doubling and inverse
period-doubling [6, 16, 23]).

It should be noted that although there is a phenomenon of period doubling, there is no conventional
flip bifurcation here, since multipliers of the fixed point are not equal to –1. This does not comply
with the conventional flip bifurcation conditions. The phenomenon of doubling the period is a complex
bifurcation phenomenon caused by a strong resonance of 1:4, similar phenomena have been mentioned
in [6].

To describe the bifurcation of 1:4 resonance more clearly, Figure 14(d) is given to show the three-
dimensional bifurcation diagrams of map (4.3) in (p, δ, y) space, respectively. Moreover, by calculating
the maximium Lyapunov exponent corresponding to the system (for example, δ, similarly p), we
see that there exist both positive and negative maximium Lyapunov exponents via the changes of
parameters from Figures 16(a),(b), so there exist stable fixed point or stable period windows in the
chaotic region [6]. In general, the existences of the positive maximium Lyapunov exponents are always
considered as characteristics of chaos.

(a) δ = 0.98 (b) δ = 1.0

(c) δ = 1.02 (d) The 1:4 resonance as (p, δ) is varying

Figure 14. The 1:4 resonance as (p, δ) varies when k = 4,m = 10.
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(a) p = 2.000, fixed point (b) p = 2.050, period-4

(c) p = 2.100, period-8 (d) p = 2.110, period-16

Figure 15. The “period bubbling” phenomena when δ = 1 and p varying when k = 4,m = 10.

(a) The maximium Lyapunov exponent corresponding
to δ when p = pNS

(b) The maximium Lyapunov exponent corresponding
to δ and p

Figure 16. The 1:4 resonance as (p, δ) is varying when k = 4,m = 10.
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6. Conclusions

In this paper, the dynamical behaviors of the semi-discrete M-G model with k = 0 and 1 < k ≤
m are analyzed. The local dynamical behaviors of fixed points are theoretically discussd by using
qualitative theory, and the possible bifurcations of the system are theoretically revealed, which are
verified by numerical simulations, too. We find that when the value of k is different, the system exhibits
different dynamic behaviors. When 1 < k < m, and comparing with k = 0, the system produces more
complex phenomena.

When k = 0 and certain parameter conditions are satisfied, the system will produce Neimark-
Sacker bifurcation and 1:4 resonance. By calculating the maximum Lyapunov exponent, we find that
the system will generate chaos during the process of Neimark-Sacker bifurcation. The existence of
invariant cycles ending heteroclinic loops means that the metabolic level of RBCs will be in a stable
state, which is beneficial for human health. The bifurcation of 1:4 resonance proves that, in certain
regions, invariant circles may bifurcate from the period-2 orbits, which means that the number of
RBCs exhibit periodic oscillations, but overall remain in a stable metabolic state.

Compared to the case of k = 0, we find that the Neimark-Saker bifurcation and the 1:4 resonance
still exist in the case of 1 < k ≤ m. However, more complex dynamical behaviors will occur. The
system with k , 0 undergoes saddle-node bifurcation before the Neimark-Sacker bifurcation, and
there are periodic bubbling phenomena induced by the bifurcation of 1:4 resonance.

The Neimark-Sacker bifurcation and the 1:4 strong resonance of the system induce the existence of
chaos, but we are still unclear about the types of chaotic attractors that exist in the system. Theoretical
verification and explanation of different types of chaotic attractors will be one of our main works in
the next stage. Some symmetric phenomena from the presented phase portraits and the coressponding
bifurcation diagrams can be observed, which is a topic worth further exploration in the future.

In addition, we have not yet demonstrated the impact of memory effect and hereditary properties.
Whether the memory effect and hereditary properties can be used to improve the adequacy of the model
is also a question worth considering.
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17. K. Gopalsamy, M. Kulenović, G. Ladas, Oscillations and global attractivity in models of
hematopoiesis, J. Dyn. Differ. Equ., 2 (1990), 117–132. http://dx.doi.org/10.1007/BF01057415

18. K. J. Hale, N. Sternberg, Onset of chaos in differential delay equations, J. Comput. Phys., 77
(1988), 221–239. https://doi.org/10.1016/0021-9991(88)90164-7

19. L. Cheng, H. Cao, Bifurcation analysis of a discrete-time ratio-dependent predator-
prey model with Allee Effect, Commun. Nonlinear Sci., 38 (2016), 288–302.
https://doi.org/10.1016/j.cnsns.2016.02.038

20. L. Lv, X. Li, Stability and bifurcation analysis in a discrete predator-prey system of Leslie type with
radio-dependent simplified Holling Type IV functionalresponse, Mathematics, 12 (2024), 1803.
http://dx.doi.org/10.3390/math12121803

21. M. B. Almatrafia, M. Berkal, Stability and bifurcation analysis of predator-prey model with
Allee effect using conformable derivatives, J. Math. Comput. Sci., 36 (2025), 299–316.
http://dx.doi.org/10.22436/jmcs.036.03.05

22. M. Berkal, M. B. Almatrafi, Bifurcation and stability of two-dimensional activator-
inhibitor model with fractional-order derivative, Fractal Fract., 7 (2023), 1–18.
http://dx.doi.org/10.3390/fractalfract7050344

23. M. S. Peng, Multiple bifurcations and periodic “bubbling” in a delay population model, Chaos
Soliton. Fract., 25(2005), 1123–1130. https://doi.org/10.1016/j.chaos.2004.11.087

24. M. Wazewsa, A. Lasota, Mathematical problems of the dynamics of a system of red blood cells,
Math. Stosowana, 6 (1976), 23–40. http://dx.doi.org/10.14708/ma.v4i6.1173

25. M. Zhao, Y. Du, Stability and bifurcation analysis of an amensalism system with allee effect, Adv.
Differ. Equ., 1 (2020), 1–13. http://dx.doi.org/10.1186/s13662-020-02804-9

26. M. Zhao, C. Li, J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, J.
Appl. Anal. Comput., 7 (2017), 478–500. http://dx.doi.org/10.11948/2017030

27. N. Yi, Q. L. Zhang, P. Liu, Y. P. Lin, Codimension-two bifurcations analysis and tracking
control on a discrete epidemic model, J. Syst. Sci. Complex., 24 (2011), 1033–1056.
http://dx.doi.org/10.1007/s11424-011-9041-0

28. P. Amil, C. Cabeza, C. Masoller, A. C. Martı́, Organization and identification of solutions in the
time-delayed Mackey-Glass model, Chaos Interd. J. Nonlinear Sci., 25 (2015), 035202–035204.
http://dx.doi.org/10.1063/1.4918593

29. P. Amil, C. Cabeza, A. C. Marti, Exact discrete-time implementation of the Mackey-Glass delayed
model, IEEE T. Circuits-II, 62 (2015), 681–685. http://dx.doi.org/10.1109/TCSII.2015.2415651

AIMS Mathematics Volume 10, Issue 2, 2771–2807.

https://dx.doi.org/https://doi.org/10.1016/j.chaos.2013.12.007
https://dx.doi.org/http://dx.doi.org/10.1137/0515001
https://dx.doi.org/https://doi.org/10.1016/S0304-3800(96)00046-4
https://dx.doi.org/http://dx.doi.org/10.1007/BF01057415
https://dx.doi.org/https://doi.org/10.1016/0021-9991(88)90164-7
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2016.02.038
https://dx.doi.org/http://dx.doi.org/10.3390/math12121803
https://dx.doi.org/http://dx.doi.org/10.22436/jmcs.036.03.05
https://dx.doi.org/http://dx.doi.org/10.3390/fractalfract7050344
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2004.11.087
https://dx.doi.org/http://dx.doi.org/10.14708/ma.v4i6.1173
https://dx.doi.org/http://dx.doi.org/10.1186/s13662-020-02804-9
https://dx.doi.org/http://dx.doi.org/10.11948/2017030
https://dx.doi.org/http://dx.doi.org/10.1007/s11424-011-9041-0
https://dx.doi.org/http://dx.doi.org/10.1063/1.4918593
https://dx.doi.org/http://dx.doi.org/10.1109/TCSII.2015.2415651


2806

30. Q. L. Chen, Z. D. Teng, L. Wang, H. Jiang, The existence of codimension-two bifurcation
in a discrete SIS epidemic model with standard incidence, Nonlinear Dyn. 71 (2013), 55–73.
http://dx.doi.org/10.1007/s11071-012-0641-6

31. R. Ma, Y. Bai, F. Wang, Dynamical behavior of a two-dimensional discrete predator-prey
model with prey refuse and fear factor, J. Appl. Anal. Comput., 10 (2020), 1683–1697.
http://dx.doi.org/10.11948/20190426

32. S. Akhtar, R. Ahmed, M. Batool, N. A. Shah, J. D. Chung, Stability, bifurcation and chaos
control of a discretized Leslie prey-predator model, Chaos Soliton. Fract., 152 (2021), 1–10.
https://doi.org/10.1016/j.chaos.2021.111345

33. S. G. Ruan, D. M. Xiao, Global analysis in a predator-prey system with
nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445–1472.
http://dx.doi.org/10.1137/S0036139999361896

34. S. S. Rana, Bifurcations and chaos control in a discrete-time predator-prey system of Leslie type,
J. Appl. Anal. Comput., 9 (2019), 31–44. http://dx.doi.org/10.11948/2019.31

35. S. S. Rana, M. Uddin, Dynamics of a discrete-time chaotic lü system, Pan-Am. J. Math., 1 (2022),
1–7. http://dx.doi.org/10.28919/cpr-pajm/1-7

36. S. L. Badjate, S. V. Dudul, Prediction of Mackey-Glass chaotic time series with effect of
superimposed noise using FTLRNN model, New York, 2008. Available from: https://api.
semanticscholar.org/CorpusID:59747728.

37. T. Y. Li, J. A. Yorke, Period three implies chaos, Am. Math. Mon., 82 (1975), 985–992. Available
from: https://www.jstor.org/stable/2318254.

38. W. Cheng, X. Li, Stability and Neimark-Sacker bifurcation of a semi-discrete population model, J.
Appl. Anal. Comput., 4 (2014), 419–435. http://dx.doi.org/10.11948/2014024

39. 10.11948/2018.1679] W. Li, X. Li, Neimark-Sacker bifurcation of a semi-discrete hematopoiesis
model, J. Appl. Anal. Comput., 8 (2018), 1679–1693. http://dx.doi.org/10.11948/2018.1679

40. W. Yao, X. Li, Bifurcation difference induced by different discrete methods in a discrete predator-
prey model, J. Nonlinear Model. Anal., 4 (2022), 64–79. http://dx.doi.org/10.12150/jnma.2022.64

41. X. Jin, X. Li, Dynamics of a discrete two-species competitive model with Michaelis-
Menten type harvesting in the first species, J. Nonlinear Model. Anal., 5 (2023), 494–523.
http://dx.doi.org/10.12150/jnma.2023.494

42. X. L. Liu, D. M. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos
Soliton. Fract., 32 (2007), 80–94. https://doi.org/10.1016/j.chaos.2005.10.081

43. X. L. Liu, S. Q. Liu, Codimension-two bifurcations analysis in two-dimensional Hindmarsh-Rose
model, Nonlinear Dyn., 67 (2012), 847–857. http://dx.doi.org/10.1007/s11071-011-0030-6

44. Y. A. Kuznetsov, Elements of applied bifurcation theory, 4 Eds., Springer, 2023.
http://dx.doi.org/10.1007/978-3-031-22007-4

45. Y. A. Kuznetsov, H. Meijer, Numerical normal forms for codim 2 bifurcations of fixed
points with at most two critical eigenvalues, SIAM J. Sci. Comput., 26 (2005), 1932–1954.
http://dx.doi.org/10.1137/030601508

AIMS Mathematics Volume 10, Issue 2, 2771–2807.

https://dx.doi.org/http://dx.doi.org/10.1007/s11071-012-0641-6
https://dx.doi.org/http://dx.doi.org/10.11948/20190426
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111345
https://dx.doi.org/http://dx.doi.org/10.1137/S0036139999361896
https://dx.doi.org/http://dx.doi.org/10.11948/2019.31
https://dx.doi.org/http://dx.doi.org/10.28919/cpr-pajm/1-7
https://api.semanticscholar.org/CorpusID:59747728.
https://api.semanticscholar.org/CorpusID:59747728.
https://www.jstor.org/stable/2318254.
https://dx.doi.org/http://dx.doi.org/10.11948/2014024
https://dx.doi.org/http://dx.doi.org/10.11948/2018.1679
https://dx.doi.org/http://dx.doi.org/10.12150/jnma.2022.64
https://dx.doi.org/http://dx.doi.org/10.12150/jnma.2023.494
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2005.10.081
https://dx.doi.org/http://dx.doi.org/10.1007/s11071-011-0030-6
https://dx.doi.org/http://dx.doi.org/10.1007/978-3-031-22007-4
https://dx.doi.org/http://dx.doi.org/10.1137/030601508


2807

46. Y. L. Li, D. M. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos
Soliton. Fract., 34 (2007), 606–620. https://doi.org/10.1016/j.chaos.2006.03.068

47. Y. Hong, Global dynamics of a diffusive phytoplankton-zooplankton model with toxic substances
effect and delay, Math. Biosci. Eng., 19 (2022), 6712–6730. https://doi.org/10.3934/mbe.2022316

48. Y. Li, H. Cao, Bifurcation and comparison of a discrete-time Hindmarsh-Rose model, J. Appl.
Anal. Comput., 13 (2023), 34–56. http://dx.doi.org/10.11948/20210204

49. Z. Jing, J. Yang, Bifurcation and chaos in discrete-time predator–prey system, Chaos Soliton.
Fract., 27 (2006), 259–277.https://doi.org/10.1016/j.chaos.2005.03.040

50. Z. Wei, Y. Xia, T. Zhang, Stability and bifurcation analysis of an amensalism model with weak allee
effect, Qual. Theor. Dyn. Syst., 19 (2020), 1–15. https://doi.org/10.1007/s12346-020-00341-0

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 2, 2771–2807.

https://dx.doi.org/https://doi.org/10.1016/j.chaos.2006.03.068
https://dx.doi.org/https://doi.org/10.3934/mbe.2022316
https://dx.doi.org/http://dx.doi.org/10.11948/20210204
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2005.03.040
https://dx.doi.org/https://doi.org/10.1007/s12346-020-00341-0
https://creativecommons.org/licenses/by/4.0

	Introduction
	M-G model with k=0
	Local dynamics for the fixed points
	Bifurcation analysis for M-G model with k = 0
	Neimark-Sacker bifurcation
	Resonance 1:4 for the fixed point E*


	Numerical simulation for M-G model with k=0
	Neimark-Sacker bifurcation
	1:4 resonance

	M-G model with 1<km
	The local dynamics of the fixed points
	Bifurcation analysis for M-G model with 1<km
	Saddle-node bifurcation for the fixed point E*
	Neimark-Sacker bifurcation for the fixed point E2
	Resonance 1:4 for the fixed point E2


	Numerical simulation for M-G model with 1<km
	Codim 1 bifurcations
	1:4 resonance

	Conclusions

