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Abstract: We consider the portfolio selection problem of maximizing a performance measure of
the terminal wealth faced by a manager with a stochastic benchmark. We transform the non-linear
fractional optimization problem into a non-fractional optimization problem based on the fractional
programming method. When the penalty and reward functions are both power functions, the stochastic
benchmark we consider allows us to derive the explicit form of the optimal investment strategy
by combining the linearization method, the martingale method, the change of measure, and the
concavification method. Theoretical and numerical results show that the optimal terminal relative
performance ends up with zero from a certain value of the price density, which reflects the moral
hazard problem.
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1. Introduction

The study of optimal allocation is the kernel part of financial economics since Markowitz’s
pioneering work [1]. In the existing literature, there are mainly two choices to formulate the
optimization rule. The first one is to study the expected utility maximization problem. Most early
literature on investment problems focuses on maximizing the expectation of a smooth utility of terminal
wealth. The main shortcoming of the optimization problem under a concave utility is that the decision-
makers do not distinguish the preferences for gains and losses. Loss aversion, first proposed by [2]
within the framework of prospect theory (PT), is defined over gains and losses in wealth relative to
a pre-defined reference point, rather than in terms of changes in the absolute level of total wealth
itself. Every investor has a reference point that defines relative ‘losses’ and ‘gains’. Tversky and
Kahneman [3] demonstrate the loss aversion and risk-seeking behavior by an asymmetric S-shaped
utility function, convex in the domain of losses and concave in the domain of gains. Recently, an
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increasing number of studies have focused on the optimization problem under an S-shaped utility;
see [4–9]. The concavification technique proposed by [10] allows to alternatively solve a concavified
version of the S-shaped utility maximization problem. This technique has been successfully adopted
to solve different non-concave utility maximization problems with and without constraints, see [7, 11,
12].

The second one is to follow the idea of Markowitz [1] to maximize the expected return for a given
level of risk. Under this optimization objective, it is very important to develop a performance measure
for a risky portfolio. The literature on portfolio performance evaluation is vast. The Sharpe ratio,
which is defined as the average return beyond the risk-free rate divided by the standard deviation of
its returns, first quantifies the trade-off between risk and reward by variance and mean, respectively.
However, it only considers the portfolio return’s first- and second-order moments but neglects higher-
order ones. Then, alternative performance measures are reward-to-risk ratios representing a fraction
where a measure of reward is divided by a measure of risk. Examples of such reward-to-risk ratios
include the Sortino ratio (see [13,14]), the Kappa ratios (see [15]) and the Omega ratio (see [16]). It
is well-documented that the Omega ratio, which is defined as the ratio between two expectations,
is deemed a better performance measurement than the Sharpe ratio and the Sortino ratio since
this measure effectively distinguishes between gains and losses relative to an externally specified
benchmark. Furthermore, its calculation captures both the upside and downside deviations from a
benchmark and has symmetric and asymmetric risk measures characteristics; see [5,17,18]. However,
as pointed out in [17], the maximization problem of the Omega ratio is ill-posed. Therefore, they add
additional constraints to make the maximization problem well-posed. Lin et al. [18] modify the Omega
ratio to include a utility function for over-performance and a penalty function for under-performance in
the definition of the performance ratio. They investigate the portfolio selection problem of maximizing
the extended Omega ratio. Based on the fractional programming method, they analyze the non-linear
fractional optimization problem by solving a family of related non-fractional optimization problems,
where the objective functions are the numerator of the original problem minus the denominator
multiplied by a penalty parameter. Since they work in a Black-Scholes market, the completeness
of the financial market allows them to solve the optimal problems by using the martingale method,
which consists of first finding the optimal terminal wealth by solving corresponding simplified static
optimization problems and then finding the replicating feasible trading strategies with the martingale
representation theorem; see [19–22].

Under the above-mentioned two optimization rules, one of the crucial norms is the choice of the
benchmark, which measures over-performance and under-performance. In [18], the benchmark is a
constant. Intuitively, every fund manager is deemed successful if he can beat the market. Therefore,
the fund manager might choose any market return, for example, an index, or the level of a portfolio, or
any economic indicator, as a benchmark. Lin et al. [18] set the benchmark to be a constant, which can
be interpreted as the money market benchmark. Another important benchmark is a value-weighted
portfolio with a fixed proportion invested in the risky asset, which implies the return rate of the
benchmark is a weighted average of the risk-free rate and the return of stock. Under this specific
benchmark, Basak et al. [23] investigate how the benchmark impacts the investment behaviors within
the framework of expected utility theory. Motivated by [18,23], we shall consider a performance
measure optimization problem with a stochastic benchmark, which is set to be a value-weighted
portfolio with a fixed proportion invested in the risky asset. In general, for a stochastic benchmark,
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it is difficult to derive the closed-form solution for the performance measure maximization problem.
However, when the penalty and reward functions are both power functions, the explicit expression for
the optimal investment strategy can be obtained by combining the linearization method, the martingale
method, the change of measure, and the concavification method.

The main contribution of this paper is that we consider a specific benchmark whose return rate is a
weighted average of the risk-free rate and the return of stock. This choice of the stochastic benchmark
allows for the derivation of a closed-form expression for the optimal solution to the optimization
problem based on performance measures. By making use of a static Lagrangian method in a complete
market setting, the optimal solution can be fully determined along with the existence and uniqueness of
the Lagrangian multipliers. This paper offers new insights into optimal investment using a performance
measure with a stochastic benchmark.

The rest of the paper is organized as follows. In Section 2 we formulate an optimal allocation
problem by maximizing a performance measure with a stochastic reference point. In Section 3 we
apply the linearization method, the martingale method, the change of measure, and the concavification
technique to solve the non-linear optimization problem and derive the optimal investment strategy. In
Section 4 we numerically investigate the impacts of some model parameters on the optimal investment
strategy. Section 5 concludes.

2. The model

Consider a finite investment time horizon [0,T ] with T > 0. Let (Ω,F ,F, P) be a filtered complete
probability space with the filtration F := {Ft|0 ≤ t ≤ T } being the natural filtration generated by a
standard Brownian motion {W(t)}0≤t≤T and satisfying the usual conditions. Investors can trade in the
financial market at any time, regardless of transaction costs and taxes. Consider a financial market that
consists of two tradable securities: a risk -free security B(t) and a risky asset S (t). The money market
account evolves as:

dB(t)
B(t)

= rdt, (2.1)

where r > 0 is a risk-free interest rate.
The price process of the risky asset is modeled by

dS (t) = S (t)(µdt + σdW(t)), (2.2)

where µ > r is the stock growth rate and σ > 0 is the volatility of S (t).
Suppose that the initial value of the fund account is x0 ⩾ 0. The fund manager invests in a risk-free

asset and a risky asset. Let π(t) be the proportion of wealth invested in the risky asset and 1 − π(t) be
the proportion of wealth invested in the risk-free cash bond. Then, the wealth process Xπ(t) satisfies

dXπ(t) = Xπ(t)(r + π(t)σς)dt + Xπ(t)π(t)σdW(t), Xπ(0) = x0 ≥ 0, (2.3)

where ς = µ−r
σ

is the market price of risk.
We next define the set of admissible trading strategies.

Definition 2.1. A portfolio strategy {π = π(t) : t ∈ [0,T ]} is said to be admissible if π(t) is an F -
progressively measurable process, with

∫ T

0
π2(t)dt < +∞, a.s., for all t ∈ [0,T ], and there exists a

unique strong solution Xπ(t) to (2.3). We denote the set of admissible portfolio strategies byA(x0).
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In the literature, there are many performance measures to evaluate the portfolio. The Markowitz
mean-variance criterion has been widely applied in portfolio selection. However, the variance cannot
distinguish the gains and losses. Furthermore, the returns are often supposed to be normally distributed
within the mean-variance framework, which often conflicts with the empirical evidence. In an attempt
to account for higher-order characteristics, Keating and Shadwick [16] introduce the Omega ratio.
Given a benchmark return level θ̃, the Omega for a random return R is defined as:

Ωθ̃(R) =
E[(R − θ̃)+]
E[(θ̃ − R)+]

, (2.4)

where (x)+ = max{x, 0} represents the positive part of x. In contrast to the mean-variance criterion
and Sharpe ratio, the Omega ratio distinguishes the gains over a benchmark θ̃ and losses below θ̃. In
addition, the Omega ratio captures all of the higher moments information in the return distribution.
The Omega ratio has been widely used in the evaluation of portfolios; see [24–26].

If we define the return of the portfolio with value process Xπ described by (2.3) as follows

R(Xπ(T )) =
Xπ(T )
Xπ(0)

− 1, (2.5)

then Ωθ(R) defined by (2.4) is equivalent to

Ωθ(Xπ(T )) =
E[(Xπ(T ) − θ)+]
E[(θ − Xπ(T ))+]

, (2.6)

where θ = (1 + θ̃)x0 is a benchmark level.
As shown in [17,18], the maximization problem of the Omega ratio is ill-posed. Following the

framework in [18] to make the optimization problem bounded, we introduce a weighting function
U(x) over gains and a weighting function D(x) over losses, respectively. Hence, U is called the reward
function, and D is called the penalty function. In order to ensure the well-posedness of the problem,
similar to [18], we consider U to be strictly concave. However, D is not required to be concave or
convex.

Consider a stochastic benchmark that evolves dynamically according to the process as follows:

dθ(t) = θ(t) ((r + ησς)dt + ησdW(t)) , θ(0) = θ0 ≥ 0, (2.7)

where η is the fixed proportion of wealth invested in the stock at time t.
Consider the performance measure

R(Xπ(T ), θ(T )) =
E[U(Xπ(T ) − θ(T ))+]
E[D(θ(T ) − Xπ(T ))+]

, (2.8)

where the numerator E[U(Xπ(T )− θ(T ))+] measures the benefit from exceeding the benchmark wealth
θ(T ), while the denominator E[D(θ(T ) − Xπ(T ))+] penalizes shortfalls. The extended Omega ratio
in Eq (2.8) distinguishes the gains and losses by the benchmark θ(T ). The preferences over gains
and losses are represented by different functions U and D, respectively, which is consistent with the
prospect theory proposed by [2].

Note that if x0 ≥ θ0, then it may hold that Xπ(T ) ≥ θ(T ) only by letting π(t) = η for t ∈ [0,T ]. So
here we assume x0 < θ0, i.e., f0 < 1, which means the manager faces a challenging target.
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We formulate the manager’s portfolio selection problem as follows: max
π∈A(x0)

E[U(Xπ(T )−θ(T ))+]
E[D(θ(T )−Xπ(T ))+] ,

s.t.Xπ(t) satisfies (2.3).
(2.9)

Equation (2.9) distinguishes the gains and losses by the benchmark θ(T ). Other works including [6,9]
are also concerned with gains and losses of a portfolio by S-shaped utility with two different functions.
However, as pointed out by [5], the trade-off between gains and losses in the S-shaped utility is
subjective, while Eq (2.9) can provide more objective strategies for the manager by presenting the
ratio of two expectations, including a utility function and a penalty function.

Remark 2.1. In general, it is difficult to explicitly derive the optimal solution for the expected utility
maximization problem with a stochastic benchmark, let alone the optimization problem based on
performance measure. Nicolosi [27] solved the expected utility maximization problem when the
benchmark is modelled by (2.7) and the utility is a power function. However, it is a highly nontrivial
task to solve the optimization problem based on performance measure with a stochastic benchmark.

To explicitly solve the optimization problem (2.9) and to compare our optimal solution with that
within the framework of prospect theory, we use the power utilities to capture the preferences over
gains and losses, which are also used in [3,7,9,28]:

U(x) = xγ,D(x) = Axγ,

where 0 < γ < 1 measures the degree of risk aversion and risk seeking with respect to random gains
and losses, respectively. The parameter A > 1 measures the extent to which individuals are loss averse.

Define the relative performance with respect to the benchmark θ by

F(t) =
Xπ(t)
θ(t)

.

A simple application of Itó’s formula gives that

dF(t) = F(t)
(
δ(t)(µ − r − σ2η)dt + δ(t)σdW(t)

)
, t ≥ 0, F(0) = f0, (2.10)

where f0 =
x0
θ0
< 1 and δ(t) = π(t) − η denotes the tracking error.

We call δ = {δ(t) : t ∈ [0,T ]} admissible if the related π satisfied by π(t) = δ(t) + η is in A(x0).
Denote the admissible set of δ by Ã( f0). Then, the optimization problem (2.9) becomes max

δ∈Ã( f0)

E[θγ(T )(F(T )−1)γ+]
E[Aθγ(T )(1−F(T ))γ+] ,

s.t.F(t) satisfies (2.10).
(2.11)

Define a new measure Q by

dQ
dP
=

θγ(T )
E[θγ(T )]

= expηγσW(T )− 1
2 η

2γ2σ2T . (2.12)

From Girsanov’s theorem, we have that the process

W̃(t) = W(t) − γησt
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is a Q Brownian motion.
Therefore, (2.8) can be written as

R(X(T ), θ(T )) =
EQ[(Fπ(T ) − 1)γ+]
EQ[(1 − Fπ(T ))γ+]

, (2.13)

where EQ[.] is an expectation under measure Q, and the dynamics of F(t) under Q are given by

dF(t) = F(t)
(
δ(t)(µ − r − (1 − γ)σ2η)dt + δ(t)σdW̃(t)

)
, t ≥ 0, F(0) = f0. (2.14)

Since the market is complete, there exists a unique pricing kernel given by:

ξ(t) = e−
ϑ2
2 t−ϑW̃(t), ξ(0) = 1, 0 ≤ t ≤ T, (2.15)

where ϑ = ς − (1 − γ)ση.
The completeness of the market model under consideration allows us to solve the optimization

problem via the martingale approach. Then, following [19], we can transform the optimization
problem (2.11) into an equivalent one w.r.t. Z=̂F(T ) : max

Z∈M+

EQ[(Z−1)γ+]
EQ[A(1−Z)γ+] ,

s.t. EQ [ξ(T )Z
]
⩽ f0,

(2.16)

whereM+ denotes the set of nonnegative FT -measurable random variables.
We denote the feasible set of the optimization problem (2.16) by C( f0):

C( f0) = {Z ∈ M+ | EQ[ξ(T )Z] ≤ f0}. (2.17)

Problem (2.16) involves solving a terminal static optimization problem over the random variable Z ∈
M+. Once we obtain the optimal solution Z∗, we can identify the optimal tracking error δ∗ and the
optimal portfolio π∗.

Proposition 2.1. Assume that Z∗ is the optimal solution to problem (2.16). Then there exists a tracking
error δ∗ ∈ Ã( f0) such that F∗(T ) = Z∗, a.s..

Proof. As Z∗ is the optimal solution to problem (2.16), it is easy to verify that Z∗ should satisfy
EQ[ξ(T )Z∗] = f0. Otherwise, consider Z̃∗ = Z∗ + ( f0 − E

Q[ξ(T )Z∗]) would still be feasible and yields a
larger objective value.

Define the process
F∗(t) = ξ−1(t)EQ[ξ(T )F∗(T )|Ft], 0 ≤ t ≤ T. (2.18)

Then ξ(t)F∗(t) is an F−martingale. From the martingale representation theorem, there exists an F -
progressively measurable process ψ = {ψ(t), 0 ≤ t ≤ T } such that EQ[

∫ T

0
ψ2(t)dt] < ∞, a.s., and

ξ(t)F∗(t) = f0 +

∫ t

0
ψ(t)dW̃(t), 0 ≤ t ≤ T. (2.19)

Combining Eq (2.19) with Eqs (2.14) and (2.15), we can obtain that

δ∗(t) =
ψ(t)

σF∗(t)ξ(t)
+
ϑ

σ
. (2.20)

The proof is finished. □
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Theorem 2.1. Problem (2.11) and problem (2.16) have the same optimal value.

Proof. For any F(T ) ∈ {F(T ) : F(T ) ∈ M+,EQ[ξ(T )F(T )] ≤ f0}, from Proposition 2.1 we can
conclude that F(T ) ∈ {F(T ) : there exists a δ ∈ Ã( f0) such that Fπ(t) satisfies (2.14)}. Therefore,

max
F(T )∈M+

EQ[(F(T ) − 1)γ+]
EQ[A(1 − F(T ))γ+]

≤ max
δ∈Ã( f0)

EQ[(F(T ) − 1)γ+]
EQ[A(1 − F(T ))γ+]

.

On the other hand, for any F(T ) ∈ {F(T ) : Fπ(t) satisfies (2.14) with δ ∈ Ã( f0)}, it is easy to obtain
that F(T ) ∈ {F(T ) : F(T ) ∈ M+,EQ[ξ(T )F(T )] ≤ f0}, which implies

max
δ∈Ã( f0)

EQ[(F(T ) − 1)γ+]
EQ[A(1 − F(T ))γ+]

≤ max
F(T )∈M+

EQ[(F(T ) − 1)γ+]
EQ[A(1 − F(T ))γ+]

.

The proof is completed. □

Theorem 2.4 and Proposition 2.3 show that in order to solve problem (2.11), we only need to
investigate problem (2.16) first.

Since the maximization problem (2.16) is non-linear, it is difficult to solve directly. We
shall follow [18] to transform the non-linear fractional optimization problem into a non-fractional
optimization problem based on the fractional programming method. For any λ ≥ 0, consider a family
of optimization problems:

v(λ; f0) = sup
Z∈C( f0)

{EQ[(Z − 1)γ+] − λE
Q[A(1 − Z)γ+]}. (2.21)

Remark 2.2. Similar to the proof of Proposition 2.3, it is easy to verify that when problem (2.21)
attains the optimal value, the budget constraint is binding, that is

v(λ; f0) = sup
Z∈M+,EQ[ξ(T )Z]= f0

{EQ[(Z − 1)γ+] − λE
Q[A(1 − Z)γ+]}.

The following result shows that under some suitable conditions of v, the optimal solutions to
problems (2.21) and (2.16) are the same.

Theorem 2.2. Assume f0 < 1. For each λ ≥ 0, let Z∗λ be a solution to problem (2.21), and suppose
there exists a constant λ∗ ≥ 0 such that

λ∗ =
EQ[(Z∗λ∗ − 1)γ+]
EQ[A(1 − Z∗λ∗)

γ
+]
. (2.22)

Then Z∗ := Z∗λ∗ solves problem (2.16), and λ∗ is the optimal value.

Proof. The proof is similar to the proof of Proposition 2.3 in [18]. As Z∗λ∗ is the solution to the
problem (2.21), for any Z ∈ C( f0), we have

0 = EQ[(Z∗λ∗ − 1)γ+] − λ
∗EQ[A(1 − Z∗λ∗)

γ
+]

≥ EQ[(Z − 1)γ+] − λ
∗EQ[A(1 − Z)γ+]

= EQ[(Z − 1)γ+] −
EQ[(Z∗λ∗ − 1)γ+]
EQ[A(1 − Z∗λ∗)

γ
+]
EQ[A(1 − Z)γ+].
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Furthermore, EQ[ξ(T )Z] ≤ f0 < 1 implies that Z < 1 holds with some positive probability; otherwise,
f0 ≥ E

Q[ξ(T )Z] ≥ EQ[ξ(T )] = 1, contradicting the assumption that f0 < 1. Thus, EQ[A(1 − Z)γ+] > 0
and

λ∗ =
EQ[(Z∗λ∗ − 1)γ+]
EQ[A(1 − Z∗λ∗)

γ
+]
≥
EQ[(Z − 1)γ+]
EQ[A(1 − Z)γ+]

,

which concludes the proof. □

Based on Theorem 2.6, it remains to prove the existence of the root of Eq v(.; f0) = 0 and solve
problem (2.21) after linearization. To prove the existence of λ∗, similar to [18], we need the following
results about v(.; f0).

Proposition 2.2. Suppose f0 < 1. Then the function v(λ; f0) has the following properties:
(a) 0 < v(0; f0) < ∞.
(b) v is non-increasing in λ.
(c) v(λ; f0) is convex in λ for each fixed 0 < f0 < 1.
(d) v(·; f0) is Lipschitz continuous.

Proof. The proof is similar to that of Proposition 2.4 in [18]. So we omit it here. □

The following result is useful for the proof of the existence and uniqueness of the root to Eq (2.22).

Lemma 2.1. Define M = sup
Z∈M+,EQ[ξT Z]= f0

EQ[(Z∗λ∗ − 1)γ+] and m = inf
Z∈M+,EQ[ξT Z]= f0

EQ[(1 − Z∗λ∗)
γ
+]. Then we

have M < ∞ and m > 0.

Proof. For the proof of M < ∞, we refer to [29]. We shall prove m > 0. It is obvious that m ≥ 0.
Suppose m = 0. Let {Zn} ∈ M+ with EQ[ξT Zn] = f0 be a sequence such that lim

n→∞
EQ[(1 − Zn)γ+] = 0.

Then (1 − Zn)γ+ converges to 0 in probability. Thus, (1 − Zn)+ also converges to 0 in probability. So
there is a subsequence (1 − Znm)+ which converges to 0 a.s, leading to (1 − Znm)+ also converging to 0
a.s. with respect to a new measure Q̃ defined by

dQ̃
dQ
= ξ(T ).

Note that 0 ≤ (1−Znm)+ ≤ 1. It follows from the dominated convergence theorem that EQ̃[(1−Znm)+]→
0, which implies that EQ[ξ(T )(1 − Znm)+] → 0, contradicting with the condition EQ̃[(1 − Znm)+] ≥
EQ̃[(1 − Znm)] = 1 − f0 > 0. Therefore, m = 0. □

From Proposition 2.2 and Lemma 2.8, we have the following theorem.

Theorem 2.3. There exists a unique λ∗ > 0 such that (2.22) holds.

Proof. Note that the budget constraint is binding at optimality. Thus,

v(λ; f0) = sup
Z∈M+,EQ[ξT Z]= f0

EQ[(Z∗λ∗ − 1)γ+] − λE
Q[A(1 − Z∗λ∗)

γ
+] ≤ M − λAm,

which yields that
lim
λ→∞

v(λ; f0) = −∞. (2.23)
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Combining (2.23) with Proposition 2.2 yields that there exists a λ∗ ≥ 0 such that (2.22) holds. Suppose
that 0 < λ∗1 < λ∗2 are both the roots to (2.22). Then there must exist a λ∗3 > λ∗2 such that v(λ∗3; f0) <
v(λ∗2; f0) = 0. On the other hand, as

λ∗2 =
λ∗2 − λ

∗
1

λ∗3 − λ
∗
1
λ∗3 +

λ∗3 − λ
∗
2

λ∗3 − λ
∗
1
λ∗1,

we have

0 = v(λ∗2; f0) >
λ∗2 − λ

∗
1

λ∗3 − λ
∗
1
v(λ∗3; f0) +

λ∗3 − λ
∗
2

λ∗3 − λ
∗
1
v(λ∗1; f0),

which contradicts with the convexity of v. Hence, the root to (2.22) is unique. □

The analysis in this section motivates us to focus on the linearized problem (2.21).

Remark 2.3. To compare the optimal investment strategies based on performance measure and based
on prospect theory, we formulate the S-shaped utility maximization problem (see [30]) as follows: max

π∈A(x0)
E[Ũ(Xπ(T ) − θ(T ))],

s.t.Xπ(t) satisfies (2.3),
(2.24)

where θ is modelled by (2.7) and

Ũ(x) =
{
−A(−x)γ, x < 0,
xγ, x ≥ 0.

(2.25)

Similar to deriving (2.11), the optimization problem (2.24) can be transformed into max
δ∈Ã( f0)

E[θγ(T )(F(T ) − 1)γ+ − Aθγ(T )(1 − F(T ))γ+],

s.t.F(t) satisfies (2.10).
(2.26)

Following a similar argument as in deriving (2.16), problem (2.26) is equivalent to the following
problem:  max

Z∈M+
EQ[(Z − 1)γ+ − A(1 − Z)γ+],

s.t. EQ [ξ(T )Z
]
⩽ f0.

(2.27)

Note that, if λ = 1 in (2.21), then problem (2.27) is the same as problem (2.21). Therefore, we transform
the non-linear fractional optimization problem into a family of S-shaped utility maximization problems
based on the fractional programming method.

3. Optimal trading strategy

In this section, we shall use a Lagrangian duality method and a pointwise optimization procedure
to solve linearized problem (2.21).

For each λ ≥ 0, β > 0, consider the following optimization problem:

sup
Z∈M+

EQ[hλ(Z) − βξT Z], (3.1)
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where
hλ(x) := (x − 1)γ+ − λA(1 − x)γ+. (3.2)

We can solve problem (3.1) by resorting to a pointwise optimization procedure. Consider the following
related non-randomized version of problem (3.1) as follows: for each y > 0,

sup
x∈R+
{hλ(x) − yx}, (3.3)

where R+ denotes the set of nonnegative real numbers.
The following result reveals the relationships among the optimal solutions of problems (2.16), (3.1),

and (3.3).

Lemma 3.1. For all λ ≥ 0, we have the following properties:
(a) For all λ ≥ 0, y > 0, let x∗λ(y) be a Borel measurable function such that x∗λ(y) is an optimal solution
to problem (3.3). Then, Z∗λ,β := x∗λ(βξ(T )) solves problem (3.1).
(b) Assume that, given λ ≥ 0, if there exists a constant β∗ such that Z∗λ,β∗ ∈ M+ solves problem (3.1)
with EQ[ξ(T )Z∗λ,β∗] = f0. Then, Z∗λ := Z∗λ,β∗ solves problem (2.16).

Proof. We refer to Lemmas 3.1 and 3.2 in [7] for the proof. □

Since hλ is not concave, we shall use a concavification technique as in [9,10] to solve problem (3.3).
The concave envelope of a given function f with a domain G, denoted by f c, is defined as follows:

f c(x) := inf{g(x) | g : G → R is concave and g(t) ≥ f (t),∀t ∈ G}, x ∈ G. (3.4)

Then, based on Lemma 2.9 of [31], problem (3.3) is equivalent to the following concavified version
of (3.3):

sup
x∈R+
{hc

λ(x) − yx}. (3.5)

Proposition 3.1. The solution to the optimization problem (3.3) is

x∗λ (y) =


( y
γ
)

1
γ−1 + 1, 0 < y ≤ kλ,

0, y > kλ,
(3.6)

where
kλ = γ(̃zλ − 1)γ−1, (3.7)

z̃λ is the unique solution to
((1 − γ)x − 1) (x − 1)γ−1 + λA = 0. (3.8)

Proof. Let z̃λ be the tangent point of the straight line starting at (0,−Aλ) to the curve (x − 1)γ, x > 1.
It is easy to verify that there exists a unique solution z̃λ > 1 to Eq (3.8) and hλ (x) ≤ kλx − λA for
0 ≤ x < z̃λ. From Lemma A.1 of [9], the concave envelope of hλ is given by

hc
λ (x) =

kλx − λA, 0 < x ≤ z̃λ,

(x − 1)γ, x ≥ z̃λ.
(3.9)

Then we can find the point x∗λ (y) ∈ {x|hλ(x) = hc
λ(x)} solving (3.3) and (3.5) for which 0 is in the

superdifferential of hc
λ(x) − xy given by (3.6). □
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By Lemma 3.1, it remains to prove there exists the optimal multiplier β∗ with EQ[ξ(T )Z∗λ,β∗] = f0

such that Z∗λ := Z∗λ,β∗ solves problem (2.21).

Theorem 3.1. For each λ ≥ 0, there exists a unique constant β∗ > 0 such that Z∗λ := Z∗λ,β∗ = x∗λ(β
∗ξ(T ))

with EQ[ξ(T )Z∗λ,β∗] = f0, where x∗λ is given by (3.6).

Proof. Define
Rλ(β) = EQ[ξ(T )x∗λ(βξ(T ))]. (3.10)

It is easy to check that Rλ(β) < ∞. Because limβ→∞ x∗λ(βξ(T )) = 0 , limβ→0+ x∗λ(βξ(T )) = ∞
and x∗λ(βξ(T )) is non-negative, we have limβ→∞ Rλ(β) = 0, limβ→0+ Rλ(β) = ∞ from the monotonic
convergence theorem.

Furthermore, Rλ(β) is continuous and strictly decreasing in β. Therefore, there exists a unique β∗ > 0
such that EQ[ξ(T )Z∗λ,β∗] = f0. □

As such, based on Theorems 2.6, 2.9, and 3.3, Lemma 3.1, and Proposition 3.2, we can obtain the
optimal solution of the original optimization problem (2.11) by the following procedures:

Step 1: Use the result presented in Proposition 3.2 to obtain the optimal solution x∗λ to the non-
random problem (3.3).

Step 2: For the optimal solution x∗λ to the non-random problem (3.3), make use of Lemma 3.1 and
Theorem 3.3 to find the unique solution β∗ satisfying EQ[ξ(T )x∗λ(β

∗ξ(T ))] = f0 and set Z∗λ = x∗λ(β
∗ξ(T )).

Step 3: Using Theorem 2.6 and Theorem 2.9 to get λ∗ by solving (2.22) and obtain the
corresponding optimal solution Z∗λ∗ to problem (2.16).

In what follows, we shall follow the above steps to derive the optimal solution. Set

Z∗λ := Z∗λ,β∗λ ≡ x∗λ(β
∗
λξ(T )) =

[
(
β∗λξ(T )
γ

)
1
γ−1 + 1

]
1
{ξ(T )≤ kλ

β∗
λ
}
, (3.11)

where kλ is defined by (3.7) and β∗λ is determined by Eq EQ[ξ(T )Z∗λ,β∗λ] = f0 for each λ ≥ 0.

Remark 3.1. The optimal solution to the S-shaped utility maximization problem (2.27) is given
by (3.11) just by letting λ = 1. However, for the problem (2.16), it remains to determine the optimal λ∗

by solving (2.22).

In order to derive the optimal λ∗, we define

f1(λ) := EQ[(Z∗λ − 1)γ+], f2(λ) = EQ[A(1 − Z∗λ)
γ
+].

Using (3.11) yields that

f1(λ) = EQ

[
(
β∗λξ(T )
γ

)
γ
γ−1 1

{ξ(T )≤ kλ
β∗
λ
}

]
= (

β∗λ
γ

)
γ
γ−1 e

γ

2(γ−1)2
ϑ2T
Φ(d3(kλ, β∗λ, 0)), (3.12)

and

f2(λ) = EQ[A1
{ξT>

kλ
β∗
λ
}
]
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= A(1 − Φ(d2(kλ, β∗λ, 0)), (3.13)

where Φ denotes the standard normal cumulative distribution function,

d1(x, y, t) = [ln(x/y) −
ϑ2

2
(T − t)]/(ϑ

√
T − t),

d2(x, y, t) = d1(x, y, t) + ϑ
√

T − t, d3(x, y, t) = d1(x, y, t) +
ϑ
√

T − t
1 − γ

.

Based on Theorem 2.9, with the above expressions for f1 and f2, we can determine a λ∗ > 0 satisfying

f1(λ∗) − λ∗ f2(λ∗) = 0. (3.14)

Given λ∗ > 0, we can derive the optimal solution for the portfolio optimization problem (2.9).

Proposition 3.2. Let λ∗ > 0 be a constant determined by (3.14). Let kλ∗ and z̃λ∗ be defined by (3.7)
and (3.8) with λ replaced by λ∗. Then the optimal terminal relative performance, the optimal relative
performance at time t, and the optimal trading strategy at time t are given as follows:
(a) The optimal terminal relative performance is

F∗(T ) =
[
(
β∗λ∗ξ(T )
γ

)
1
γ−1 + 1

]
1
{ξ(T )≤

kλ∗
β∗
λ∗
}
, (3.15)

where β∗λ∗ satisfies EQ[ξ(T )F∗(T )] = f0.
(b) The optimal relative performance at time t, 0 ≤ t < T, is given by

F∗(t) = (
β∗λ∗ξ(t)
γ

)
1
γ−1 e

γ

2(γ−1)2
ϑ2(T−t)

Φ(d3(kλ∗ , β∗λ∗ξ(t), t)) + Φ(d1(kλ∗ , β∗λ∗ξ(t), t)). (3.16)

(c) The optimal portfolio of wealth invested in the risky asset at time t, 0 ≤ t < T, is given by:

π∗(t) =
ϑ

F∗(t)σ

(
(
β∗λ∗ξ(t)
γ

)
1
γ−1 e

γ

2(γ−1)2
ϑ2(T−t)(

ϕ(d3(kλ∗ , β∗λ∗ξ(t), t))

ϑ
√

T − t
−
Φ(d3(kλ∗ , β∗λ∗ξ(t), t))

γ − 1
)

+
1

ϑ
√

T − t
ϕ(d1(kλ∗ , β∗λ∗ξ(t), t))

)
+ η.

Proof. The optimal terminal relative performance is a direct consequence of Lemma 3.1,
Proposition 3.2, and Theorem 3.3. Then, substituting the expression for F∗(T ) into (2.18), we can
easily obtain the formula for F∗(t) by some straightforward calculations.

Based on Proposition 2.3, we let F∗(t) = A(ξ(t), t). Then applying Ito’s formula to ξ(t)F∗(t) and
using (2.19), (2.20) gives the explicit formula for δ∗(t). The equality π∗(t) = δ∗(t) + η yields the result.

□

Remark 3.2. From (3.15), we see that F∗(T ) takes a two-region form and is a decreasing function
of ξ(T ) for different η. When the state price density ξ(T ) is relatively low, F∗(T ) is similar to the
smooth utility; when ξ(T ) increases above a critical value of the price density, F∗(T ) drops to 0 since
the loss aversion states a risk-seeking preference in the loss domain. This reflects that, as in the S-
shaped expected utility optimization problem (see [30]), there is still a moral hazard problem based on
performance measures that the manager does not have an incentive to keep the terminal wealth above a
minimal positive guarantee. Therefore, to protect the investor’s benefits, it is better to incorporate some
risk constraints into the optimization problems, which will lead to a much more complex optimization
problem. We leave this problem for future research.
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4. Numerical analysis

In this section, we aim to carry out some numerical calculations to investigate the impacts of
the model parameters on the optimal investment strategy. We also compare the optimal investment
strategy for the non-linear fractional optimization (2.9) with that for the S-shaped utility maximization
problem (2.24).

We assume A = 2.25 and γ = 0.88 as estimated by [3]. For the underlying asset, we pick the CSI 500
index, which is mostly used as the underlying in Chinese OTC markets. According to the empirical
data on the financial market, parameter values are chosen as: r = 0.03, µ = 0.07, σ = 0.3. Assume that
the investment horizon is T = 5 years, the initial wealth and the initial value of the benchmark process
are x0 = 100 and θ0 = 150, respectively, and the fixed proportion of wealth invested in the risky asset
is η = 0.5.

Figures 1 and 2 present the optimal terminal relative performance F∗(T ) versus ξ(T ) for
problems (2.9) and (2.24), respectively. It can be seen from Figures 1 and 2 that for each optimization
problem, F∗(T ) ends up with zero from a certain value of the price density ξ(T ), which reflects the
moral hazard problem that the manager does not have an incentive to ensure that there is any capital
in case of the worst economic states. We can see that the optimal terminal relative performance in the
good-states region based on performance measure is higher than that based on prospect theory. We can
also observe that the states with the optimal terminal relative performance of 0 for problem (2.9) are
much more than those for problem (2.24). Note that, comparing problem (2.21) with problem (2.27),
for a fixed λ, problem (2.21) is equivalent to an S-shaped utility maximization problem with utility
given by U = xγ1{x≥0} − λA(−x)γ1{x<0}, where λA is the loss aversion degree, and it measures the
extent to which individuals are loss averse. For problem (2.9), the optimal λ∗ determined by (2.22)
is about 0.4, which implies that the loss aversion degree based on performance measure is lower than
that based on prospect theory. Therefore, the manager, based on performance measure, shall invest
more wealth in the risky asset, which leads to a better optimal terminal relative performance in the
good-states region and a higher tail risk in the bad-states region.
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Figure 1. F∗(T ) versus ξ(T ) based on performance measure.
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Figure 2. F∗(T ) versus ξ(T ) based on prospect theory.

Figures 3–12 illustrate the effects of some model parameters on the optimal proportion π∗(0). We
can conclude from them that when the parameters are fixed, π∗(0) corresponding to problem (2.9)
is much higher than that corresponding to problem (2.24), which confirms the result presented in
Figures 1 and 2: the manager based on performance measure invests more wealth in the risky asset.

Figures 3 and 4 show the optimal proportion π∗(0) versus η for problem (2.9) and problem (2.24),
respectively. We can observe from them that π∗(0) is an increasing function of η; this is due to the fact
that as the proportion of wealth invested in the risky asset, η, increases, the benchmark becomes more
aggressive, and the manager shall decrease the tracking error and invest more in the risky asset to beat
the benchmark.

Figures 5 and 6 graph π∗(0) versus µ for problem (2.9) and problem (2.24), respectively. We can
observe from them that for each optimization problem, π∗(0) is an increasing function of µ. The reason
is that when the stock growth rate µ increases, the market price of the risk, ς = µ−r

σ
, increases, which

leads to more investment in the risky asset, consistent with economic intuition.
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Figure 3. π∗(0) versus η based on performance measure.
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Figure 4. π∗(0) versus η based on prospect theory.
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Figure 5. π∗(0) versus µ based on performance measure.
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Figure 6. π∗(0) versus µ based on prospect theory.
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Figure 7. π∗(0) versus σ based on performance measure.
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Figure 8. π∗(0) versus σ based on prospect theory.
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Figure 9. π∗(0) versus x0 based on performance measure.
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Figure 10. π∗(0) versus x0 based on prospect theory.
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Figure 11. π∗(0) versus γ based on performance measure.
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Figure 12. π∗(0) versus γ based on prospect theory.
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Figures 7 and 8 plot π∗(0) versus σ for problem (2.9) and problem (2.24), respectively. It can be
seen from them that for each optimization problem, π∗(0) is a decreasing function of σ. When the
volatility σ increases, the market price of the risk, ς = µ−r

σ
, decreases. As a result, the manager shall

invest less in the risky asset.
Figures 9 and 10 represent π∗(0) versus x0 for problem (2.9) and problem (2.24), respectively. We

can note from them that for each optimization problem, π∗(0) decreases with x0, since an increase in
the initial wealth leads the manager to get close to the benchmark, and hence he invests less in the risky
asset to reduce the risk.

Figures 11 and 12 graph π∗(0) versus γ for problem (2.9) and problem (2.24), respectively. The
parameter γ characterizes both the manager’s risk attitude towards gains and the degree of risk aversion
attitude towards losses. We can observe that the manager, based on the performance measure, invests
more money in the risky asset at the initial time as γ increases, while for the manager based on prospect
theory, π∗(0) increases with γ when γ is no more than about 0.5 and decreases with γ when γ is greater
than about 0.5. This is due to two effects: the first effect is that when γ decreases, the manager becomes
more risk averse in the gain domain, and then he will invest less in the risky asset. The second effect is
that the manager also becomes more risk-seeking in the loss domain with γ decreasing, and therefore,
he shall invest more in the risky asset to eliminate losses in the loss domain. Figure 11 shows that based
on the performance measure, the first effect outweighs the second effect for problem (2.9). Figure 12
presents that based on prospect theory, for a relatively low value of γ, the first effect outweighs the
second effect, while for a relatively high value of γ, the second effect outweighs the first effect.

5. Conclusions

In this paper, we investigate the optimal portfolio selection problem of a fund manager when he
bases decisions on the performance measure comparison to a benchmark. The choice of the benchmark
is very crucial in the optimization problem. Extending the constant benchmark in [18], we assume the
benchmark to be a value-weighted portfolio with a fixed proportion invested in the risky asset, which
implies that the benchmark depends completely on the financial market. In general, it is a highly
nontrivial task to solve a non-linear optimization problem with a stochastic benchmark. However,
when the penalty and reward functions are both power functions, the stochastic benchmark we
consider allows us to derive the optimal investment strategy by combining the linearization method, the
martingale method, the change of measure, and the concavification method. Theoretical and numerical
results show that the optimal terminal relative performance ends up with zero from a certain value of the
price density, which reflects the moral hazard problem. A natural extension of our investigation would
be to incorporate some risk constraints, such as, a VaR (value at risk) constraint or an ES (expected
shortfall) constraint, into the optimization problem to investigate how the risk constraints impact the
optimal investment behaviors of the manager.
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