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1. Introduction

Magnetohydrodynamics (MHD) investigates the interplay between conducting fluids and
electromagnetic fields. It has extensive potential applications across diverse domains, encompassing
energy, materials science, astrophysics, and engineering technologies [19]. In particular, the impacts
of rotational and boundary layer effects on MHD are of significant research importance, as detailed in
prior studies [1, 2, 4, 9–11, 15, 20].

The classical incompressible MHD equations constitute a set of coupled partial differential
equations. Grounded in the fundamental principles of physics, such as the conservation of mass,
momentum, and energy, as well as Maxwell’s electromagnetic equations, they are employed to depict
the behavior of conducting fluids under the influence of electromagnetic fields. The incompressible
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MHD equations can be summarized as follows:

∂
∂t u + u · ∇u = −∇p − B × j + ν∆u,
∂
∂t B = ∇ × (u × B) + η∆B,
j = σ(E − B × u),
E = ∇φ,
∇ · u = ∇ · B = 0,

where u, p, j, B, E, φ correspond to the fluid velocity, the pressure, the current density, the magnetic
field, the electric field, and the electric potential, respectively. The coefficients ν, η, σ are the kinematic
viscosity, the magnetic diffusivity, and the electrical conductivity, respectively. B × j represents the
Lorentz force.

In this paper, we consider the MHD equations under the influence of the Coriolis force, with the
magnetic field B = β

ε
(0, 0, 1)T .

In this scenario, the MHD equations are simplified to include only the momentum equation with the
Coriolis force and the current density equation. Specifically,

∂tuε + (uε · ∇)uε − ε∆uε + α
ε
e3 ∧ uε + β

ε
e3 ∧ jε + 1

ε
∇pε = 0,

jε − ∇φε + e3 ∧ uε = 0,
∇ · uε = ∇ · jε = 0,

(1.1)

where (t, x) ∈ R+×Ω, Ω = S × [0, 1], S is smooth bounded domain of R2, α
ε
e3∧uε is the Coriolis force

term, and the charge conservation principle requires ∇ · jε = 0. We also consider Equation (1.1) under
the following initial and boundary conditions:

uε(t, x)|t=0 = uε0(x), (1.2)
uε(t, x)|∂Ω = 0, jε · n|∂Ω = 0, (1.3)

where n is the normal vector of ∂Ω. Since we are considering a system (1.1) in the regionΩ = S×[0, 1],
the boundary condition of jε is equivalent to

jε3(t, x)|z=0,1 = 0, jεh · ns|∂S = 0, (1.4)

where ns is the normal vector of ∂S .
It is crucial to acknowledge that boundary layer effects must be considered when examining rotating

fluids within bounded regions. The boundary layer concept, originally introduced by the German
physicist Ludwig Prandtl, is of paramount importance in fluid dynamics. It delineates the transitional
zone wherein the fluid velocity shifts from zero near the solid surface to free-flow velocity due to
viscous influences. Extensive experimental and theoretical investigations have established that the
flow region adjacent to the solid wall can be bifurcated into two distinct zones: one is a skinny layer
near the object, called the boundary layer, where the coefficient of viscosity plays a significant role.
The other is the region outside the boundary layer, which has a negligible viscosity coefficient.

In Model (1.1), the parameter ε > 0 is very small (∼ 10−7), with 1/ε used to describe the strength of
the magnetic field and the rotation rate of the fluid. Therefore, the system in (1.1) describes the dynamic
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behavior of incompressible fluids with low viscosity and large force terms. Furthermore, the ratio
β/α > 0 represents the Elsasser number utilized to describe the relative strength between the magnetic
field and fluid flow in MHD. As the Elsasser number increases, the boundary layer transitions from the
Ekman type to the Hartmann type. For example, when the external force term is of the Coriolis type
(β/α = 0), it can simulate rotating fluids in oceans, atmospheres, or containers (see [14, 15]). When
magnetic effects are considered (β/α ≫ 1), e3 ∧ jε represents the Lorentz force. It is linked to uε

through Ohm’s law, as shown in (1.1)2.
This paper considers a three-dimensional model subject to high-speed rotation and the effect of

a high-intensity magnetic field (β/α = O(1)) within a bounded domain Ω. It is assumed that the
direction of the rotation axis aligns with that of the mean magnetic field, both being e3 = (0, 0, 1)T . The
hydrodynamic behavior within this region is profoundly influenced by the magnetic field and rotational
effects, displaying characteristics that markedly deviate from those of the interior region. Furthermore,
the structure of the boundary layer exerts a substantial impact on the stability and performance of the
overall flow system. For further details on MHD layers, please refer to [6–8, 13, 16, 17].

The Ekman-Hartmann layer is crucial in MHD systems with strong magnetic fields and rapid
rotation. It impacts ocean currents and wind patterns in geophysics, heat management in engineering,
and plasma confinement in fusion reactors. Extensive research has been devoted to the mathematical
analysis of the Ekman-Hartmann boundary layer. For instance, in [6], the authors employed a
matched asymptotic expansion technique to investigate the boundary layer for the half-space domain
and the region between two parallel plates. Their findings revealed that the boundary layer displays
nonlinear stability when the characteristic Reynolds number, defined within the boundary layer, falls
below a critical threshold. This conclusion was corroborated in [16] under more generalized spectral
assumptions. It is noteworthy that the models discussed in [6] and [16] represent generalizations of
the system in (1.1), wherein Eq (1.1)2 is replaced by an equation governing the evolution of the
magnetic field. For the simplified Model (1.1), [13] introduced a unified approach for boundary layer
analysis, with special attention given to the derivation of approximate solutions in scenarios involving
rotation (the Ekman layer) or magnetic fields (the Hartmann layer). Furthermore, in the intricate
setting characterized by concurrent high-speed rotation and intense magnetic fields, [17] undertook a
comprehensive investigation of Model (1.1) under Dirichlet boundary conditions applied to the region
bounded by two parallel planes. This study effectively extended the nonlinear stability conclusion
established for the Ekman-Hartmann boundary layer in [16] to encompass a broader range of initial
value conditions. Subsequently, Rousset [18] proved the nonlinear stability of Ekman-Hartmann
boundary layers in a spherical geometry for well-prepared initial data.

Furthermore, investigating rotating fluids within cylindrical domains presents numerous
challenges, primarily arising from the intricate interplay among hydrodynamics, rotation, and the
container’s geometry, particularly in the vicinity of corners and edges. Bresch, Desjardins, and
Gérard-Varet [3] addressed these challenges by developing correction terms near the lateral edges
while preserving the integrity of the upper and lower boundary terms as well as the interior terms.

1.1. Notation

Before presenting the results, we provide the following definitions for convenience.
Let ∇ = (∂x, ∂y, ∂z)T , ∇h = (∂x, ∂y)T , and ∇⊥h = (−∂y, ∂x)T . We also write ∆ = ∂2

x + ∂
2
y + ∂

2
z and
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∆h = ∂
2
x + ∂

2
y , f = ( f h, f3)T , f h = ( f1, f2)T , f h,⊥ = (− f2, f1)T , and

A =

(
−β α

−α −β

)
.

In this paper, we occasionally employ the notation A ≲ B to denote the equivalence A ≤ CB, where C
is a uniform constant.

1.2. The main result

For a fixed ε > 0, the mathematical behavior of Systems (1.1)–(1.4) closely resembles that of the
incompressible Navier–Stokes equations. By the theory of global weak solutions, which is analogous
to the Leray solutions of the incompressible Navier–Stokes equations (for further details, see [19]),
this paper aims to investigate the asymptotic behavior of the weak solutions as ε approaches zero. The
details are as follows.

Theorem 1.1. Let (uε, jε) ∈ L∞(R+; L2(Ω)) be a family of weak solutions of Systems (1.1)–(1.4)
associated with the initial data uε0(x) ∈ L2(Ω). Under the following well-prepared initial data
conditions: uε0 = (uε0,h, u

ε
0,3) and ū0,h =

∫ 1

0
uε0,h dz, satisfy

lim
ε→0+

uε0 = (ū0,h, 0) =: ū0, in L2(S ). (1.5)

For an universal constant C0,
∥ū0,h∥L∞(S ) < C0, (1.6)

then ū(t, x, y) = (ūh, 0) satisfies the following two-dimensional (2D) primitive type equations with the
initial data ū0: 

∂tūh + (ūh · ∇h)ūh + γūh + ηūh,⊥ + ∇h p̄ + β∇⊥h φ̄ = 0,
∇h · ūh = 0,
∆hφ̄ = −

2 cos τ
2

(α2+β2)
1
4
∇⊥h · ūh,

ūh |∂S= 0, ∇hφ̄ · ns |∂S= 0,

(1.7)

where γ and η are defined by γ = 2

(α2+β2)
1
4

(
α sin( τ2 )+β cos( τ2 )

)
, η = 2

(α2+β2)
1
4

(
α cos( τ2 )−β sin( τ2 )

)
, sin(τ) =

α√
α2+β2

, and cos(τ) = β√
α2+β2

, such that

lim
ε→0+
∥uε − ū∥L∞(R+;L2(Ω)) = 0.

Remark 1.1. We employ strict asymptotic analysis to demonstrate that System (1.1) converges to the
limiting system (1.7) under high rotational conditions, which is a 2D system incorporating both
damping and rotational effects, where the term γūh represents the damping, and the term ηūh,⊥

signifies the rotation. The structure of the damping term γūh specifically recovers the results obtained
by [13], confirming the accuracy and consistency of our analysis. Meanwhile, the term ηūh,⊥

indicates that the derived limiting state still exhibits rotational effects, aligning with physical
expectations and highlighting the enduring impact of rotation on magnetohydrodynamic fluids.
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Remark 1.2. Addressing the challenges posed by the corners and lateral boundaries of cylindrical
domains, we adopt an approach inspired by the work of [3]. We refine the boundary conditions by
constructing correction terms in a thin layer near the lateral boundaries, ensuring a more accurate
representation of the physical system.

Remark 1.3. In Section 2, we derived the structure of the approximate solution for the MHD fluid
within a cylindrical domain. This structure provides a more accurate representation of the fluid
characteristics in such geometries. By capturing the essential features of the fluid’s behavior under
the influence of magnetic fields and rotation, our solution offers a robust framework for constructing
numerical models in geophysics and related fields. This approach facilitates more precise simulations
and predictions.

This paper is organized as follows: Section 2 constructs approximate solutions order by order
through asymptotic expansion and introduces correction terms to satisfy incompressibility and
boundary conditions. Section 3 investigates the properties of the 2D limiting equation. Section 4
proves the convergence results for rotating magnetohydrodynamics in the limiting state.

2. Construction of approximate solutions

This section constructs a linear approximate solution (uapp
L , papp

L , japp
L , φ

app
L ) of the following form:

uapp
L = Σ∞i=0ε

i[ui,int(t, x, y, z) + ui,T (t, x, y, λ) + ui,B(t, x, y, θ)],
papp

L = Σ∞i=0ε
i[pi,int(t, x, y, z) + pi,T (t, x, y, λ) + pi,B(t, x, y, θ)],

japp
L = Σ∞i=0ε

i[ ji,int(t, x, y, z) + ji,T (t, x, y, λ) + ji,B(t, x, y, θ)],
φ

app
L = Σ∞i=0ε

i[φi,int(t, x, y, z) + φi,T (t, x, y, λ) + φi,B(t, x, y, θ)],

(2.1)

where θ = z
ε
, λ = 1−z

ε
, and the superscripts int, T, B, and c represent the interior, top boundary, bottom

boundary terms, and correction terms, respectively. We also put a nature boundary condition as follows:

lim
λ→∞

ui,T (t, x, y, λ) = lim
θ→∞

ui,B(t, x, y, θ) = 0. (2.2)

Furthermore, the approximate solution satisfies the following linear approximate equations:
∂tuapp

L − ε∆uapp
L + α

ε
e3 ∧ uapp

L +
β

ε
e3 ∧ japp

L + 1
ε
∇papp

L = Rapp
L ,

japp
L − ∇φ

app
L + e3 ∧ uapp

L = 0,
∇ · uapp

L = ∇ · japp
L = 0,

(2.3)

where Rapp
L represents the residual term obtained by substituting the linear approximate solution

(uapp
L , papp

L , japp
L , φ

app
L ) into the original linear system, with the boundary conditions

uapp
L |∂Ω = 0, japp

L,3 |z=0,1 = 0, japp
L,h · ns|∂S = 0. (2.4)

Next, we decide the precise forms of (2.1) by analyzing the order of ε. Moreover, we substitute the
approximate forms of (2.1) for the top and bottom boundaries into System (2.3) and analyze its εi-order
parts (i = −2,−1, 0, · · · ).
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2.1. Analyzing the internal terms and top and bottom boundary terms

In this subsection, we analyze the part of the linear approximation system of order εi and
determine the specific form of the linear approximated solution by combining the top and bottom
boundary conditions and the incompressibility conditions. We mainly construct the bottom boundary
and interior terms in the following section. The construction process of the top boundary layer is
similar to that of the bottom boundary.

2.1.1. The O(ε−2)-order part in the system.

Through simple computation
∂θp0,B = ∂2

θφ
0,B = 0,

we obtain the highest order term as ε−2. Clearly, getting p0,B and ∂θφ0,B is independent of θ. It is natural
to take p0,B = 0, implying that the boundary layer’s highest order pressure term is vanishing.

Similarly, it can be obtained that p0,T = 0, and that ∂λφ0,T is independent of λ.

2.1.2. The O(ε−1)-order part in the system.

From the ε−1-order bottom boundary term, we get
∂2
θu

0,B
h +Au0,B

h − β∇
⊥
h φ

0,B = 0,
∂2
θu

0,B
3 − ∂θp1,B = 0,

∂θφ
0,B = ∂θu0,B

3 = ∂
2
θφ

1,B = 0.

(2.5)

First, from (2.5)3, we know that u0,B
3 is independent of θ. Combining u0,B

3 then satisfies the Dirichlet
boundary condition, and the Taylor–Proudman theorem leads to the conclusion that u0,B

3 = 0. Next,
due to u0,B

h satisfying the boundary condition, take the limit ε → 0 for (2.5)1, which gives ∇⊥h φ
0,B = 0.

Combined with ∂θφ
0,B = 0 from (2.5)3, this gives ∇φ0,B = 0. Moreover, j0,B

3 = 0 can be obtained
from (2.3)2. On this basis, in combination with (2.5)2, we can see that p1,B is also independent of θ.

Similarly, we take the ε−1-order internal terms from the equations as
∂x p0,int = αu0,int

2 + β j0,int
2 ,

∂y p0,int = −αu0,int
1 − β j0,int

1 ,

∂z p0,int = 0.

(2.6)

It is natural to show that p0,int(t, x, y) is independent of z. Combining the incompressible conditions of
u0,int and j0,int and (2.6)1,2, we get

∂y∂x p0,int − ∂x∂y p0,int

=α(∇h · u0,int
h ) + β(∇h · j0,int

h )

= − ∂z(αu0,int
3 + β j0,int

3 ) = 0.

Due to u0,B
3 = j0,B

3 = 0 and their boundary conditions in (2.4), we obtain

u0,int
3 |z=0,1 = j0,int

3 |z=0,1 = (αu0,int
3 + β j0,int

3 )|z=0,1 = 0. (2.7)
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According to the Taylor–Proudman theorem, ∂z(αu0,int
3 + β j0,int

3 ) = 0 and (2.7); it follows that u0,int
3 =

j0,int
3 = 0. Hence, ∂zφ

0,int = 0 and φ0,int(t, x, y) is independent of z. Since j0,int satisfies

j0,int = ∇φ0,int − e3 ∧ u0,int,

Eq (2.6) can be changed to 
∂x p0,int = αu0,int

2 + β∂yφ
0,int − βu0,int

1 ,

∂y p0,int = −αu0,int
1 − β∂xφ

0,int − βu0,int
2 ,

∂z p0,int = 0.

Since p0,int and φ0,int are independent of z, it follows from expression above that u0,int
h (t, x, y) is also

independent of z.
The following inner product of the system in Eq (2.6)1,2 and u0,int

h , combined with the
incompressibility condition for u0,int

h , gives∫
S
− j0,int

2 · u0,int
1 + j0,int

1 · u0,int
2 = 0. (2.8)

Note that u0,int
h and j0,int

h satisfy the equations and the boundary condition j0,int = ∇φ0,int − e3 ∧ u0,int,

j0,int
h · ns|∂S = 0.

(2.9)

Then, by combining (2.8) and (2.9), it can be deduced that∫
S
−| j0,int

h |
2 + j0,int

h · ∇hφ
0,int

= −

∫
S
| j0,int

h |
2 +

∫
∂S

j0,int
h · ns · φ

0,int = 0.

Thus we obtain j0,int
h = 0 from the boundary condition in (2.4) for j0,int

h and have

φ0,int(t, x, y) = −∆−1
h ∇

⊥
h · u

0,int
h . (2.10)

On the basis of this analysis, it can be seen that the internal terms in (2.6) can be reduced to∂x p0,int = αu0,int
2 ,

∂y p0,int = −αu0,int
1 .

By the incompressibility condition of u0,int
h , p0,int can be expressed as

p0,int(t, x, y) = α∆−1
h ∇

⊥
h · u

0,int
h . (2.11)

Furthermore, the boundary terms (2.5) can be rewritten as∂2
θu

0,B
h +Au0,B

h = 0,
u0,B

h |θ=0 = −u0,int
h , limθ→∞ u0,B

h = 0.
(2.12)
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Equation (2.12) is a fourth-order ordinary differential system in u0,B
h . Solving this differential equation

is straightforward, and we can solve it for

u0,B
h (t, x, y, θ) = −e−aθ

(
cos(bθ)u0,int

h + sin(bθ)u0,int
h,⊥

)
, (2.13)

where
a = (α2 + β2)

1
4 cos( τ2 ), b = (α2 + β2)

1
4 sin( τ2 ).

Furthermore, from (2.3)2 and φ0,B = 0, we have

j0,B
h (t, x, y, θ) = −u0,B

h,⊥. (2.14)

Similar to the analysis above, we can also obtain the expressions for the top boundary terms as φ0,T =

u0,T
3 = 0 and

u0,T
h (t, x, y, λ) = −e−aλ

(
cos(bλ)u0,int

h + sin(bλ)u0,int
h,⊥

)
. (2.15)

2.1.3. The O(1)-order part in the system.

From the O(1)-order bottom boundary term, we get
∂2
θu

1,B
h +Au1,B

h = ∇h p1,B + β∇⊥h φ
1,B,

∂θp2,B = ∂2
θu

1,B
3 ,

∂θu1,B
3 = −∇h · u0,B

h ,

∂2
θφ

2,B = −∇⊥h · u
0,B
h .

(2.16)

Firstly, from (2.16)3 and the expression of (2.13) for u0,B
h , we have

∂θu1,B
3 = ∇

⊥
h ·

(
e−aθ

(
cos(bθ)u0,int

h + sin(bθ)u0,int
h,⊥

))
. (2.17)

If we integrate Equation (2.17) concerning θ, we get

u1,B
3 (t, x, y, θ) = − (a2 + b2)−1e−aθ(a sin(bθ) + b cos(bθ)

)
∇⊥h · u

0,int
h (2.18)

− (a2 + b2)−1e−aθ(a cos(bθ) − b sin(bθ)
)
∇h · u0,int

h .

From the boundary condition in (2.4), we can deduce that

u1,int
3 |z=0 = −u1,B

3 |θ=0 = (a2 + b2)−1(b∇⊥h · u0,int
h + a∇h · u0,int

h

)
. (2.19)

According to the boundary expression in (2.19), we take u1,int
3 to be

u1,int
3 (t, x, y, z) = (1 − 2z)(a2 + b2)−1(b∇⊥h · u0,int

h + a∇h · u0,int
h

)
. (2.20)

We then combine this with the incompressible condition of u1,int that

∇h · u1,int
h = −∂zu1,int

3 = 2(a2 + b2)−1(b∇⊥h · u0,int
h + a∇h · u0,int

h

)
. (2.21)

In this case, u1,int
h can be expressed as

u1,int
h = 2(a2 + b2)−1(au0,int

h − bu0,int
h,⊥

)
+ g1(t, z),

where the expression for g1(t, z) is determined below.
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Remark 2.1. It is worth noting that ∇h · u0,int
h in (2.18)–(2.21) practically vanishes. Since this term

affects the construction of u1,int
h and hence the limit equations, we keep it in this form.

Below, we analyze the forms of u1,int
h and g1,int. First of all, we know that the O(1)-order interior

part in the approximate system is:
∂tu0,int

h −Au1,int
h + ∇h p1,int + β∇⊥h φ

1,int = 0,
∂tu0,int

3 + ∂z p1,int = 0,
∇h · u0,int

h = 0,
∆φ1,int = −∇⊥h · u

1,int
h .

(2.22)

Given u0,int
3 = 0 and (2.22)2, it follows that p1,int(t, x, y) is independent of z. At this point, the expression

for ∇⊥h φ
1,int is not determined, so we can assume that ∇⊥h φ

1,int = g2(t, x, y) + g3(t, z). Consequently,
Eq (2.22)1 can be decomposed into the parts related to (x, y) and the parts related to z, i.e.,

∂tu0,int
h − 2(a2 + b2)−1A

(
au0,int

h − bu0,int
h,⊥

)
+ ∇h p1,int + g2(t, x, y) = 0,

and
g1(t, z) + g3(t, z) = 0.

Furthermore, we can set g1(t, z) = g3(t, z) = 0, as this assumption does not affect the subsequent
analysis. Therefore, both u1,int

h and ∇⊥h φ
1,int are independent of z, and u1,int

h can be expressed as

u1,int
h (t, x, y) = 2(a2 + b2)−1(au0,int

h − bu0,int
h,⊥

)
. (2.23)

Next, we analyze φ1,int. Assuming φ1,int = g4(x, y) + g5(z), then with the boundary condition in (2.4),
we have

∂zφ
1,int|z=0,1 = ∂zg5(z)|z=0,1 = 0,

which gives

g5(z) =
∞∑

n=0

an cos(nz),

where an is a family of constants. Thus

∆φ1,int = ∆hg4(x, y) −
∞∑

n=0

n2an cos(nz); (2.24)

however, by (2.22)3 and because u1,int
h is independent of z, it follows that ∆φ1,int is independent of z.

This contradicts (2.24), and thus an = 0, i.e., φ1,int(t, x, y) is independent of z.
With the above analysis and the expression in (2.23) for u1,int

h , (2.22) can be rewritten as
∂tu0,int

h + γu0,int
h + ηu0,int

h,⊥ + ∇h p1,int + β∇⊥h φ
1,int = 0,

∇h · u0,int
h = 0,

∆hφ
1,int = −

2 cos τ
2

(α2+β2)
1
4
∇⊥h · u

0,int
h ,

(2.25)
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where
γ = 2

(α2+β2)
1
4
(α sin τ

2 + β cos τ
2 ), η = 2

(α2+β2)
1
4
(α cos τ

2 − β sin τ
2 ).

On the basis of the expressions for u1,B
3 and u0,B

h , we integrate (2.16)2,4 to get

p2,B(t, x, y, θ) = e−aθ sin(bθ)∇⊥h · u
0,int
h , (2.26)

and
∂θφ

2,B = (a2 + b2)−1e−aθ(b sin(bθ) − a cos(bθ)
)
∇⊥h · u

0,int
h + g6(t, x, y), (2.27)

where the form of g6(t, x, y) is determined subsequently.
On the basis of the facts that the O(1)-order term ∂θφ

1,B|θ=0 = −∂zφ
0,int|z=0 = 0 in the boundary

conditions in (2.4) and that ∂θφ1,B is independent of θ, we can determine that φ1,B(t, x, y) is also
independent of θ. Combining the boundary condition (2.2) with the boundary terms p1,B and
φ1,B(t, x, y), independent of θ, and taking the limit ε to zero at both ends of (2.16)1, we get

∇h p1,B = −β∇⊥h φ
1,B. (2.28)

Thus u1,B
h satisfies the following equations and boundary conditions, and the right-hand side of the

system are all known terms: ∂
2
θu

1,B
h +Au1,B

h = 0,
u1,B

h |θ=0 = −u1,int
h , lim

ε→∞
u1,B

h = 0.

Duhamel’s principle leads to

u1,B
h (t, x, y, θ) = −e−aθ(cos(bθ)u1,int

h − sin(bθ)u1,int
h,⊥ ). (2.29)

Remark 2.2. Notably, the coefficient γ of the damping term of the linear limit system remains
consistent with the results in [13]. Meanwhile, ηu0,int

h,⊥ is due to the retention of ∇h · u0,int
h

in (2.18)–(2.21), reacting to the continuous effect of rotation on the fluid.

Similarly, on the basis of the analysis above, we can get

u1,T (t, x, y, λ) =
 −e−aλ(cos(bλ)u1,int

h − sin(bλ)u1,int
h,⊥ )

(a2 + b2)−1e−aλ(a sin(bλ) + b cos(bλ)
)
∇⊥h · u

0,int
h

 , (2.30)

p2,T (t, x, y, λ) =e−aλ sin(bλ)∇⊥h · u
0,int
h , (2.31)

∂λφ
2,T (t, x, y, λ) =(a2 + b2)−1e−aλ(b sin(bλ) − a cos(bλ)

)
∇⊥h · u

0,int
h + g7(x, y), (2.32)

and ∇h p1,T = −β∇⊥h φ
1,T and g7(x, y) are determined subsequently.

2.1.4. The O(ε)-order part in the system.

The boundary O(ε)-order term in the incompressibility condition is ∂θu2,B
3 = −∇h · u1,B

h . It can then
be found in the case where u1,B

h is known that

u2,B
3 (t, x, y, θ) =

∫ +∞

θ

∇h · u1,B
h (t, x, y, s) ds. (2.33)
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Similarly, according to the incompressibility condition, the upper boundary term u2,T
3 is

u2,T
3 (t, x, y, λ) = −

∫ +∞

λ

∇h · u1,T
h (t, x, y, s) ds. (2.34)

Since the internal higher-order terms do not introduce singularities, they do not affect the subsequent
analysis. Therefore, we take u2,int = 0, then u2,B

h = u2,T
h = 0. We will correct the boundary conditions

for u2,B
3 and u2,T

3 subsequently.
On the basis of the facts that the O(ε)-order terms ∂θφ

2,B|θ=0 = −∂zφ
1,int|z=0 and

∂λφ
2,T |λ=0 = ∂zφ

1,int|z=1 in the boundary conditions in (2.4) and that φ1,int is independent of z, we can
get ∂λφ2,T |λ=0 = ∂θφ

2,B|θ=0 = 0. Thus there is

∂θφ
2,B = (a2 + b2)−1e−aθ(b sin(bθ) − a cos(bθ)

)
∇⊥h · u

0,int
h + (a2 + b2)−1a∇⊥h · u

0,int
h ,

and

∂λφ
2,T = −(a2 + b2)−1e−aλ(b sin(bλ) − a cos(bλ)

)
∇⊥h · u

0,int
h − (a2 + b2)−1a∇⊥h · u

0,int
h .

In this subsection, we construct the top and bottom boundaries as well as the internal terms (see
Figure 1),with the approximate solution (u1,app

L , p1,app
L , φ

1,app
L , j1,app

L ) given by



u1,app
L =

u0,int
h + u0,B

h + u0,T
h

0

 + ε u1,int
h + u1,B

h + u1,T
h

u1,int
3 + u1,B

3 + u1,T
3

 + ε2

 0
u2,B

3 + u2,T
3

 ,
p1,app

L = p0,int + ε(p1,int + p1,B + p1,T ) + ε2(p2,B + p2,T ),

φ
1,app
L = φ0,int + ε(φ1,int + φ1,B + φ1,T ) + ε2(φ2,B + φ2,T ),

j1,app
L = ∇φ

1,app
L − e3 ∧ u1,app

L ,

(2.35)

where the approximate solution (u1,app
L , j1,app

L ) satisfies

∇ · u1,app
L = 0, (2.36)

∇ · j1,app
L = ε(∆hφ

1,B + ∇⊥h · u
1,B
h + ∆hφ

1,T + ∇⊥h · u
1,T
h ) + ε2(∆hφ

2,B + ∆hφ
2,T ), (2.37)

and

u1,app
L |z=0,1=

u0,B
h |θ= 1

ε

0

 + ε  u1,B
h |θ= 1

ε

(−1)1−z
|z=0,1u1,B

3 |θ= 1
ε

 + ε2

 0
(−1)z

|z=0,1u2,B
3 |θ= 1

ε

 , (2.38)

j1,app
L,3 |z=0,1= 0, (2.39)

j1,app
L,h · ns |∂S, 0, u1,app

L |∂S, 0. (2.40)

The next goal is to correct these incompressibility conditions and boundary conditions one by one.
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z

y
x

Top boundary layer

Ω

z=1

z=0 Bottom boundary layer

Interior

Figure 1. Schematic of the top and bottom boundary layers in a cylindrical domain Ω.

2.2. Modification of the top and bottom boundary conditions of u1,app
L

This subsection aims to correct the top and bottom boundary conditions in (2.40), and we establish
the correction term uc, namely

uc = u0,c + εu1,c + ε2u2,c.

Note that we can now construct the correction term uc in such a way as to ensure that uc satisfies the
incompressibility condition. We therefore make ui,c (i = 0, 1, 2) satisfy

u0,c =(− cos (2πz)u0,B
h |θ= 1

ε
, sin (2πz)

2π ∇h · u0,B
h |θ= 1

ε
), (2.41)

u1,c =(− cos (2πz)u1,B
h |θ= 1

ε
, sin (2πz)

2π ∇h · u1,B
h |θ= 1

ε
)

+ (πsin(πz)
∫ +∞

1
ε

u0,B
h dθ, cos(πz)u1,B

3 |θ= 1
ε
), (2.42)

u2,c =(−πsin(πz)
∫ +∞

1
ε

u1,B
h dθ,− cos(πz)u2,B

3 |θ= 1
ε
). (2.43)

It is clear from the expression (2.41)–(2.43) above that

∥uc∥W1,∞(0,T ;H1(Ω)) = O(ε
1
2 ). (2.44)

At this point, an approximate solution (u2,app
L , j2,app

L ) is obtained, i.e.u2,app
L = u1,app

L + uc,

j2,app
L = ∇φ

1,app
L − e3 ∧ (u1,app

L + uc),

and (u2,app
L , j2,app

L ) satisfies

∇ · u2,app
L =0, (2.45)
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∇ · j2,app
L =ε(∆hφ

1,B + ∇⊥h · u
1,B
h + ∆hφ

1,T + ∇⊥h · u
1,T
h ) + ε2(∆hφ

2,B + ∆hφ
2,T ) (2.46)

+ ∇⊥h · u
0,c
h + ε∇

⊥
h · u

1,c
h + ε

2∇⊥h · u
2,c
h ,

and

j2,app
L,3 |z=0,1= 0, u2,app

L |z=0,1= 0, (2.47)

j2,app
L,h · ns |∂S, 0, u2,app

L |∂S, 0. (2.48)

In the analysis above, we corrected the top and bottom boundary conditions for the approximate
solution of the velocity field. Below, we correct the lateral boundary conditions.

2.3. Correction of the lateral boundary conditions for u2,app
L

The purpose of this subsection is to correct the lateral boundary conditions in (2.48) for u2,app
L . The

horizontal component of the approximate solution u2,app consists of u0,int
h . It is therefore natural to

impose a Dirichlet boundary condition on the velocity field u0,int
h (t, x, y) in the bounded domain S in

R2:
u0,int

h |∂S= 0. (2.49)

Thus, we have
u2,app

h |∂S= 0. (2.50)

Below, we correct the vertical component of the approximate solution u2,app
L . Referring to [3], we

introduce d : S 7→ R as a distance to the side S , and construct the lateral correction terms in the region
of size εσ ( 1

2 < σ < 1) near the lateral boundary (see Figure 2). The value of σ here will be determined
later.

z

y
x

Top boundary layer

Ω

z=1

z=0 Bottom boundary layer

Lateral boundary layerInterior

(size=ε)

(size=ε)

(size=εσ)

Figure 2. Schematic of the boundary layers in a cylindrical domain Ω.

First, using w0,c = (w0,c
h ,w0,c

3 ) to correct the ε0-order term, we write

w0,c
3 = −e−

d(x,y)
εσ u0,c

3 = −e−
d(x,y)
εσ

(
sin (2πz)

2π ∇h · u0,B
h |θ= 1

ε

)
, (2.51)
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and w0,c
h = 0. w0,c

3 vanishes at the top and bottom boundaries. Furthermore, the presence of e−
d(x,y)
εσ in

w0,c
3 causes w0,c

3 to vanish when ε is sufficiently small, as well as away from the region where the size
of the side edges is εσ. At the same time, w0,c does not satisfy the incompressibility condition and has

∇ · w0,c = −e−
d(x,y)
εσ cos (2πz)∇h · u0,B

h |θ= 1
ε
.

Concerning w0,c, we have the following estimates:
∥∇ · w0,c∥W1,∞(R+,L2(Ω)) = O(ε

σ+1
2 ),

∥w0,c∥W1,∞(R+,L2(Ω)) = O(ε
σ+1

2 ),
∥w0,c∥W1,∞(R+,H1(Ω)) = O(ε

1
2 ).

Secondly, using w1,c = (w1,c
h ,w1,c

3 ) to correct for the ε1-order side boundary term, we write

w1,c
3 = −e−

d(x,y)
εσ ε(u1,int

3 + u1,B
3 + u1,T

3 + u1,c
3 ), (2.52)

and

w1,c
h =ε

σ(−1 + e−
d(x,y)
εσ ) ∇d(x,y)

|∇d(x,y)|2 (∂θu1,B
3 − ∂λu

1,T
3 ) (2.53)

− cos (2πz)εσ(−1 + e−
d(x,y)
εσ ) ∇d(x,y)

|∇d(x,y)|2∂θu
1,B
3 |θ= 1

ε
.

Clearly, from the definitions of u1,int
3 , u1,B

3 , u1,T
3 , and u1,c

3 , as well as the analysis above, it follows that
w1,c satisfies all boundary conditions. Nevertheless, it does not satisfy the incompressibility condition:

∇ · w1,c =εσ(−1 + e−
d(x,y)
εσ )∇h ·

(
∇d(x,y)
|∇d(x,y)|2 (∂θu1,B

3 − ∂λu
1,T
3 )

)
(2.54)

− cos (2πz)e−
d(x,y)
εσ ∂θu1,B

3 |θ= 1
ε
−e

d(x,y)
εσ ε(∂zu1,int

3 + ∂zu1,c
3 )

− cos (2πz)εσ(−1 + e−
d(x,y)
εσ )∇h ·

(
∇d(x,y)
|∇d(x,y)|2∂θu

1,B
3 |θ= 1

ε

)
.

We have the following estimates for w1,c:
∥∇ · w1,c∥W1,∞(R+,L2(Ω)) = O(εσ),
∥w1,c∥W1,∞(R+,L2(Ω)) = O(εσ),
∥w1,c∥W1,∞(R+,L2(Ω)) = O(εσ−

1
2 ).

Finally, utilizing w2,c = (w2,c
h ,w2,c

3 ) to correct the ε2-order side boundary term, we write

w2,c
3 = −e−

d(x,y)
εσ ε2(u2,int

3 + u2,B
3 + u2,T

3 + u2,c
3 ).

Since the higher-order correction term does not affect the subsequent analysis, we take w2,c
h = 0. Then

w2,c satisfies the boundary conditions, and

∇ · w2,c = −e−
d(x,y)
εσ ε(∂θu2,B

3 − ∂λu
2,T
3 ) − e−

d(x,y)
εσ ε2(∂zu2,int

3 + ∂zu2,c
3 ),
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as well as 
∥∇ · w2,c∥W1,∞(R+,L2(Ω)) = O(ε

σ+1
2 ),

∥w2,c∥W1,∞(R+,L2(Ω)) = O(ε
σ+1

2 ),
∥w2,c∥W1,∞(R+,H1(Ω)) = O(ε

σ+1
2 ).

Next, we take σ = 3
4 and

wc = w0,c + w1,c + w2,c.

Moreover, wc satisfies 
∥∇ · wc∥W1,∞(R+,L2(Ω)) = O(ε

3
4 ),

∥wc∥W1,∞(R+,L2(Ω)) = O(ε
3
4 ),

∥wc∥W1,∞(R+,H1(Ω)) = O(ε
1
4 ).

(2.55)

It is worth noting that while constructing wc, we need it to satisfy the incompressibility condition.
According to [12, 21], uw ∈ W1,∞(R+,H1(Ω)) exists such that the following equations hold:∇ · uw = −∇ · wc,

uw|∂Ω = 0,

and
∥uw∥W1,∞(0,T ;H1(Ω)) ≲ ∥∇ · wc∥W1,∞(0,T ;L2(Ω)) = O(ε

3
4 ). (2.56)

In the analysis above, we corrected the boundary and incompressibility conditions for the approximate
solution of the velocity field. Moreover, we denote this new approximate solution u3,app as

u3,app
L = u1,app

L + uc + wc + uw.

Moreover, let
j3,app
L = ∇φ

1,app
L − e3 ∧ (u1,app

L + uc + wc + uw).

Due to we construct the correction term uc + wc + uw, relative to which we also correct the magnetic
potential.

2.4. Correction of the incompressibility and boundary conditions for j3,app
L

In this subsection, we correct the incompressibility condition of j3,app
L by constructing a correction

term φc for the magnetic potential. By the order of ε in (2.46), we write φc as

φc = φ0,c + φ1,c + φ2,c.

Next, according to [12,21], ∇φ0,c,∇φ1,c,∇φ2,c ∈ L∞(R+,H1(Ω)) exists such that the following equations
hold: {

∇ · (∇φ0,c) = −∇⊥h · u
0,c
h ,

∇φ0,c |∂Ω= 0,
(2.57)
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∇ · (∇φ1,c) = −∇⊥h · (εu1,c

h + εu1,B
h + εu1,T

h + wc
h + uw

h ) − ε∆h(φ1,B + φ1,T ),
∇φ1,c |∂Ω= 0,

(2.58){
∇ · (∇φ2,c) = −ε2∇⊥h · u

2,c
h − ε

2∆h(φ2,B + φ2,T ),
∇φ2,c |∂Ω= 0.

(2.59)

Thus, we obtain a new approximate solution for the magnetic potential j4,app
L , i.e.,

j4,app
L = ∇(φ1,app

L + φc) − e3 ∧ (u1,app
L + uc + wc + uw), (2.60)

which satisfies
∇ · j4,app

L = 0, j4,app
L,3 |z=0,1= 0. (2.61)

In the following, correcting only the lateral boundary conditions of j4,app is necessary. Through the
analysis and construction process above, we can get

j4,app
L,H · ns |∂S= (ε∇hφ

1,int + ε∇hφ
1,B + ε∇hφ

1,T + ε2∇hφ
2,B + ε2∇hφ

2,T ) · ns |∂S .

First, we take
∇hφ

1,int · ns |∂S= 0. (2.62)

Secondly, according to [12, 21], ∇hφ
w ∈ L∞(R+,H1(Ω)) exists such that the following equations hold:∇h · (∇hφ

w) = 0,
∇hφ

w |∂Ω= −(ε∇hφ
1,B + ε∇hφ

1,T + ε2∇hφ
2,B + ε2∇hφ

2,T ) |∂Ω .

In summary, we have completed the construction of the approximate solution and satisfied all its
incompressibility and boundary conditions.

2.5. Construction of a nonlinear approximate solution

The previous subsections considered the approximate system under the linear system in (2.3). On
the basis of the analysis above, we construct the approximate solution to the following system:

∂tuapp − ε∆uapp + (uapp · ∇)uapp + α
ε
e3 ∧ uapp +

β

ε
e3 ∧ japp + 1

ε
∇papp = Rapp,

japp − ∇φapp + e3 ∧ uapp = 0,
∇ · uapp = ∇ · japp = 0,

(2.63)

where Rapp represents the residual term obtained by substituting the corrected approximate solution
into the original system, with the boundary conditions

uapp|∂Ω = 0, japp
3 |z=0,1 = 0, japp

h · ns|∂S = 0. (2.64)

First, we consider the principal part of the approximate solution uapp and let it be ū(t, x, y). By
analyzing the linear part above and combining (2.25), (2.49), and (2.62), it is natural to set
ū(t, x, y) = (ūh(t, x, y), 0) as

∂tūh + (ūh · ∇h)ūh + γūh + ηūh,⊥ + ∇h p̄ + β∇⊥h φ̄ = 0,
∇h · ūh = 0,
∆hφ̄ = −

2 cos τ
2

(α2+β2)
1
4
∇⊥h · ūh,

(2.65)
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with the boundary conditions
ūh |∂S= 0, ∇hφ̄ · ns |∂S= 0. (2.66)

The remaining terms all consist of the central part ūh(t, x, y). It may be helpful to use the original
notation so that the approximate solution (uapp, papp, φapp, japp) is

uapp = ū + u0,B + u0,T + ε(u1,int + u1,B + u1,T ) + ε2(u2,B + u2,T ) + uc + wc + uw,

papp = p0,int + ε(p̄ + p1,B + p1,T ) + ε2(p2,B + p2,T ),

φapp = φ0,int + ε(φ̄ + φ1,B + φ1,T ) + ε2(φ2,B + φ2,T ) + φc + φw,

japp = ∇φapp − e3 ∧ uapp,

(2.67)

where u0,int
h in the original forms is substituted for ūh in all but the main part (ū, p̄, φ̄).

According to the construction, the following asymptotic behavior holds.

Proposition 2.1. For the approximate solution uapp given above, if ūh ∈ L2(R2), it satisfies

lim
ε→0+
∥uapp − ū∥L2(Ω) = 0.

Proof. With the expression (2.67)1 for uapp, it can be shown that

∥uapp − ū∥L2(Ω)

≤

2∑
i=0

εi(∥ui,B∥L2(Ω) + ∥ui,T ∥L2(Ω)) + ε∥u1,int∥L2(Ω) + ∥uc∥L2(Ω) + ∥wc∥L2(Ω) + ∥uw∥L2(Ω).

□

The presence of the exponential factors e−aθand e−aλ in the boundary layer terms results in the
subsequent estimates being small. As an illustration, consider the example of the bottom boundary
term ∥u0,B∥L2(Ω). From (2.13), we have

∥u0,B∥2L2(Ω) (2.68)

=

∫ 1

0

∫
S

∣∣∣e−aθ
(

cos(bθ)ūh + sin(bθ)ūh,⊥

)∣∣∣2 dxdydz

≤

∫ 1

0

∫
S
|e−

az
ε (ūh + ūh,⊥)|2 dxdydz

=

∫ a
ε

0

∫
S

ε

a
|e−

az
ε (ūh + ūh,⊥)|2 dxdyd az

ε
≲ ε∥ūh∥

2
L2(S ).

Similarly, to estimate other top and bottom boundary terms, by combining (2.68) with the
expression (2.23) for the interior term u1,int, we get

2∑
i=0

εi(∥ui,B∥L2(Ω) + ∥ui,T ∥L2(Ω)) + ε∥u1,int∥L2(Ω) ≲ ε
1
2 ∥ūh∥L2(S ). (2.69)

Recalling (2.44), (2.55), and (2.56), one has

∥uc∥L2(Ω) + ∥wc∥L2(Ω) + ∥uw∥L2(Ω) ≲ ε
1
2 ∥ūh∥L2(S ). (2.70)

Combining (2.68)–(2.70) gives
lim
ε→0+
∥uapp − ū∥L2(Ω) = 0.
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3. Properties of the 2D limiting system

This section investigates the following properties of 2D limit system:
∂tūh + (ūh · ∇h)ūh + γūh + ηūh,⊥ + ∇h p̄ + β∇⊥h φ̄ = 0,
∇h · ūh = 0,
∆hφ̄ = −

2 cos τ
2

(α2+β2)
1
4
∇⊥h · ūh,

(3.1)

with the boundary conditions
ūh |∂S= 0, ∇hφ̄ · ns |∂S= 0. (3.2)

By applying ∇⊥h · to (3.1), and writing ω̄ = ∇⊥h · ūh, we can obtain the vorticity system:

∂tω̄ + (ūh · ∇h)ω̄ + γω̄ + β∆hφ̄ = 0, (3.3)

where
∆hφ̄ = −

2 cos τ
2

(α2+β2)
1
4
ω̄.

Therefore, combined with the definition of γ, (3.3) can be rewritten as

∂tω̄ + (ūh · ∇h)ω̄ + 2α sin τ
2

(α2+β2)
1
4
ω̄ = 0. (3.4)

As the flow is divergence-free, with ∇h · ūh = 0, we have

ω̄ = ∇⊥h · ūh, ūh = −∇
⊥
h (−∆h)−1ω̄. (3.5)

Proposition 3.1. Let ū0,h(x, y) ∈ H1(S ) be a divergence-free vector field, ω̄0 = ∇
⊥
h · ū0,h be the initial

vorticity, and (ū, p̄, φ̄) be a pair of solution to the systems in (3.1) and (3.2) with the initial data
ū0 = (ū0,h, 0). Then the following estimations are valid:

∥ūh∥
2
L2(S ), ∥ω̄∥

2
L2(S ), ∥∇hūh∥

2
L2(S ) ≲ e−νt, (3.6)

where ν = 2α sin τ
2

(α2+β2)
1
4
.

Proof. Given the divergence-free condition, we derive the L2 estimate for ūh as follows:

1
2

d
dt
∥ūh∥

2
L2(S ) + γ∥ūh∥

2
L2(S ) + β⟨∇

⊥
h φ̄, ūh⟩ = 0.

From (2.67)4, it follows that ∇φ̄ = j1,int + e3 ∧ u1,int, and from ū = (ūh, 0), we have〈
∇⊥h φ̄, ūh

〉
=

〈
e3 ∧ j1,int, ū

〉
+

〈
e3 ∧ (e3 ∧ u1,int), ū

〉
=

∫
S

e3 ∧ j1,int · ū −
∫

S
u1,int · ū

= −

∫
S

j1,int · (e3 ∧ ū) +
∫

S

( 2 sin τ
2

(α2+β2)
1
4
ūh,⊥ −

2 cos τ
2

(α2+β2)
1
4
ūh

)
· ūh

= −

∫
S

j1,int · ∇φ0,int −

∫
S

2 cos τ
2

(α2+β2)
1
4
|ūh|

2

= −
2 cos τ

2

(α2+β2)
1
4
∥ūh∥

2
L2(S ).
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A simple derivation gives
1
2

d
dt
∥ūh∥

2
L2(S ) +

2α sin τ
2

(α2+β2)
1
4
∥ūh∥

2
L2(S ) = 0.

We write ν = 2α sin τ
2

(α2+β2)
1
4
, and thus

∥ūh∥
2
L2(S ) ≤ e−νt∥ū0,h∥

2
L2(S ).

From (3.5), it is clear that
1
2

d
dt
∥ω̄∥2L2(S ) + ν∥ω̄∥

2
L2(S ) = 0,

and thus
∥ω̄∥2L2(S ) ≤ e−νt∥ω̄0∥

2
L2(S ).

as well as
∥∇hūh∥

2
L2(S ) ≲ ∥ω̄∥

2
L2(S ) ≤ e−νt∥ω̄0∥

2
L2(S ). □

Remark 3.1. Furthermore, combining this with (3.6) yields an estimate of (3.6) for ∥ū∥L∞(S ).

In our proof, we require the bound for ∥∇hūh∥L∞(S ). This necessity arises from the
Calderón-Zygmund theory of singular integral operators, which asserts that the mapping ω̄→ ∇hūh is
continuous within the space Ls(S ) for 1 < s < ∞. However, the case when s = ∞ presents additional
complexities. To address this, we will establish the desired bound by employing the Littlewood-Paley
decomposition in the subsequent steps.

First, let C = {ξ ∈ R2| 34 ≤ |ξ| ≤
4
3 }. The radial functions ψ−1 and ψ take values in [0, 1] and have

support in B(0, 4
3 ) and C, respectively, such that

∀ξ ∈ R2, ψ−1(ξ) +
∑
j≥0

ψ(2− jξ) = 1.

We then take ψ j(ξ) = ψ(2− jξ). Obviously, ψ j( j > −1) is supported in 2 j−1 < |ξ| < 2 j+2. We write

f j(x) = F −1[ψ j(ξ)F ( f )], j ∈ Z, (3.7)

where F and F −1 are the Fourier and inverse Fourier transforms, respectively. Recalling (3.1), we see
that any function f ∈ L1(S ) holds:

f =
∑
j≥−1

f j(x). (3.8)

Proposition 3.2. Let ū0,h(x, y) ∈ Ha+1(S )(a > 1) be a divergence-free vector field, ω̄0 = ∇
⊥
h · ū0,h

be the initial vorticity, and (ū, p̄, φ̄) be a pair of solutions to the system in (3.1) with the initial data
ū0 = (ū0,h, 0). Then there holds

∥∇hūh∥L∞(S ) ≲ e−νt. (3.9)

Proof. From (3.8), one has
ūh =

∑
j≥−1

F −1
(
ψ jF (ūh)

)
=

∑
j≥−1

ūh, j,

and
∥∇hūh∥L∞(S ) ≤

∑
j≥−1

∥∇hūh, j∥L∞(S ) ≤ ∥∇hūh,−1∥L∞(S ) +
∑
j>−1

∥∇hūh, j∥L∞(S ). (3.10)
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The first term on the right-hand side can easily be bounded using the Bernstein inequality (for a more
specific elaboration of the inequality, see [5])

∥∇hūh,−1∥L∞(S ) ≲ ∥ūh∥L∞(S ). (3.11)

Combining this with (3.5), we have∑
j>−1

∥∇hūh, j∥L∞(S ) =
∑
j>−1

∥∇h∇
⊥
h (−∆h)−1ω̄ j∥L∞(S ) ≤

∑
j>−1

∥ω̄ j∥L∞(S ). (3.12)

Thus, from (3.10)–(3.12) and the results of Proposition 3.1, we have

∥∇hūh∥L∞(S ) (3.13)

≲ ∥ūh∥L∞(S ) +
∑
j>−1

∥ω̄ j∥L∞(S ) ≲ ∥ū0,h∥L∞(S )e−νt +
∑
j>−1

∥ω̄ j∥L∞(S ).

Now, we turn to the term
∑

j>−1∥ω̄ j∥L∞(S ). Applying δ j to (3.4), we have∂tω̄ j + (ūh · ∇h)ω̄ j + νω̄ j = −[δ j, (ūh · ∇h)]ω̄,
ω̄ j |t=0= ω̄ j0,

(3.14)

where [, ] stands for the commutator. Let

ω̄ =
∑
j≥−1

ω̄ j,

with N to be determined later. One then has∑
j>−1

∥ω̄ j∥L∞(S ) =
∑
−1< j<N

∥ω̄ j∥L∞(S ) +
∑
j≥N

∥ω̄ j∥L∞(S ). (3.15)

From (3.6)–(3.8) and (3.14), for j < N, we get

∥ω̄ j∥L∞(S ) (3.16)

≲ e−νt∥ω̄ j0∥L∞(S ) +

∫ t

0
e−ν(t−s)∥[δ j, (ūh · ∇h)]ω̄∥L∞(S ) ds

≲ e−νt∥ω̄ j0∥L∞(S )+

∫ t

0
e−ν(t−s)∥ψ jF ((ūh · ∇h)ω̄)∥L1(S ) ds

≲ e−νt∥ω̄ j0∥L∞(S ) + e−νt(∥ū0,h∥L2(S ) + ∥ω̄0∥H1(S )),

where we used the results of Proposition 3.2. Thus we get∑
j≤N

∥ω̄ j∥L∞(S ) ≤ e−νtN
∑
j≤N

∥ω̄ j0∥L∞(S ) + e−νtN(∥ū0,h∥L2(S ) + ∥ω̄0∥H1(S )). (3.17)

Furthermore, to deal with the case j > N, similar to (3.16), we get∑
j>N

∥ω̄ j∥L∞(S ) (3.18)
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≤ e−νt2−
(a−1)N

2

∑
j>N

∥∇
a−1

2
h ω̄ j0∥L∞(S ) + e−νt2−(a−1)N(∥ū0,h∥L2(S ) + ∥ω̄0∥H1(S )).

If we combine (3.17) and (3.18), taking N =
[

log2
2

a−1

(
1 + 1+

∑
j≥−1∥∇

a−1
2

h ω̄ j0∥L∞(S )

1+
∑

j≥−1∥ω̄ j0∥L∞(S )

)]
, the following holds:∑

j≥−1

∥ω̄ j∥L∞(S ) (3.19)

≲ e−νt
(

ln (1 +
∑
j≥−1

∥∇

a−1
2

h ω̄ j0∥L∞(S )) + ∥ū0,h∥L2(S ) + ∥ω̄0∥H1(S )

)
·
( ∑

j≥−1

∥ω̄ j0∥L∞(S ) + ∥ū0,h∥L2(S ) + ∥ω̄0∥H1(S )

)
≲ e−νt

(
ln (1 + ∥ω̄0∥Ha(S )) + ∥ω̄0∥Ha(S )

)
∥ω̄0∥Ha(S ).

Therefore, the result is derived from from (3.13) and (3.19).
□

4. Proof of the Theorem

In this section, we aim to demonstrate that as ε → 0+, the weak solution uε of the system given
by (1.1)–(1.4) converges in the L2(Ω) norm to ū. Specifically, we show that ∥uε − ū∥L2(Ω) tends to zero.
Given Proposition 2.1, it suffices to establish that ∥uε − uapp∥L2(Ω) also approaches zero.

Note that uε and uapp satisfy the following systems:

∂tuε + (uε · ∇)uε − ε∆uε + α
ε
e3 ∧ uε + β

ε
e3 ∧ jε + 1

ε
∇pε = 0,

jε − ∇φε + e3 ∧ uε = 0,
∇ · uε = ∇ · jε = 0,
uε(t, x)|t=0 = uε0(x),
uε(t, x)|∂Ω = 0, jε3(t, x)|z=0,1 = 0, jεh · ns|∂S = 0,

and 

∂tuapp + (uapp · ∇)uapp − ε∆uapp + α
ε
e3 ∧ uapp +

β

ε
e3 ∧ japp + 1

ε
∇papp = Rapp,

japp − ∇φapp + e3 ∧ uapp = 0,
∇ · uapp = ∇ · japp = 0,
uapp|t=0 = (ū + u0,B + u0,T + ε(u1,int + u1,B + u1,T ) + ε2(u2,B + u2,T ) + uc + wc + uw)|t=0,

uapp(t, x)|∂Ω = 0, japp
3 (t, x)|z=0,1 = 0, japp

h · ns|∂S = 0,

where

Rapp =∂t
(
u0,B + u0,T + ε(u1,int + u1,B + u1,T ) + ε2(u2,B + u2,T ) + uc + wc + uw) (4.1)
− ε∆(ū + εu1,int + ε2(u2,B + u2,T ) + uc + wc + uw)
− ε∆h

(
u0,B + u0,T + ε(u1,B + u1,T )

)
+ (uapp · ∇)

(
εu1,int + uc + wc + uw)
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+ α
ε
e3 ∧ (uc + wc + uw) + ε

(
∇h p2,B + ∇h p2,T

0

)
+ βε

(
∇⊥h φ

2,B + ∇⊥h φ
2,T

0

)
+

2∑
i=0

εi
((

u0,B
h + u0,T

h + ε(u1,int
h + u1,B

h + u1,T
h )

)
· ∇h(ui,B + ui,T )

+
(
ū + uc + wc + uw) · ∇(ui,B + ui,T )

+
(
ε(u1,int

3 + u1,B
3 + u1,T

3 ) + ε2(u2,B
3 + u2,T

3 )
)
∂z(ui,B + ui,T )

)
.

Below, we compute the error estimate between uε and uapp. Let v = uε − uapp, jv = jε − japp,
φv = φε − φapp, and pv = pε − papp. We then have

∂tv + (uε · ∇)v − ε∆v + α
ε
e3 ∧ v + β

ε
e3 ∧ jv + 1

ε
pv + (v · ∇)uapp + Rapp = 0,

jv − ∇φv + e3 ∧ v = 0,
∇ · v = ∇ · jv = 0,
v(t, x)|∂Ω = 0, jv

3(t, x)|z=0,1 = 0, jv
h · ns|∂S = 0.

(4.2)

Estimating ∥v∥2L2 using Eq (4.2) naturally yields

1
2

d
dt
∥v∥2L2 + ε∥∇v∥2L2 + ⟨

α
ε
e3 ∧ v + 1

ε
∇pv + (uε · ∇)v, v⟩ + ⟨β

ε
e3 ∧ jv, v⟩

= −⟨(v · ∇)uapp, v⟩ − ⟨Rapp, v⟩.
(4.3)

Using the incompressibility condition for v and the structure of e3 ∧ v, the third term on the left-hand
side of (4.3) is

⟨α
ε
e3 ∧ v + 1

ε
∇pv + (uε · ∇)v, v⟩ = 0.

By definition and the boundary conditions in (4.2)2 − (4.2)4 of jv, the fourth term reduces to

⟨
β

ε
e3 ∧ jv, v⟩ = −β

ε
⟨ jv, e3 × v⟩ = β

ε
⟨ jv, jv − ∇φv⟩

=
β

ε

∫
Ω

| jv|2 dx −
β

ε

∫
Ω

jv · ∇φv dx =
β

ε
∥ jv∥2L2 ≥ 0.

Next, we estimate the right-hand side of (4.3). The first term can be expanded to

⟨(v · ∇)uapp, v⟩
= ⟨v · ∇(ū + u0,B + u0,T + ε(u1,int + u1,B + u1,T ) + ε2(u2,B + u2,T ) + uc + wc + uw), v⟩.

First, by Hölder’s inequality and Proposition 3.2, one obtains

|⟨v · ∇ū, v⟩| = |⟨vh · ∇hūh, vh⟩| (4.4)
≤∥∇hūh∥L∞(S )∥vh∥

2
L2(Ω) ≤ ∥∇hū0,h∥L∞(S )∥v∥2L2(Ω)e

−νt.

Second, for the ε0-order boundary term, in the case of u0,B, we utilize the integration by parts, which
is computed as

|⟨v · ∇(u0,B + u0,T ), v⟩| = |⟨v · ∇v,u0,B + u0,T ⟩|

≤

∫
S×[0, 1

2 ]
|v||∇v||u0,B + u0,T | dx +

∫
S×[ 1

2 ,1]
|v||∇v| · |u0,B + u0,T | dx.
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Due to the boundary conditions on v, we can deduce that

|v| =
∣∣∣∣ ∫ z

0
∂z′vdz′

∣∣∣∣ ≤ d(z)
1
2 ∥∂zv∥L2(0,1),

where d(z) is the distance to the bottom boundary. Then∫
S×[0, 1

2 ]
|v||∇v| · |u0,B + u0,T | dx

≤

∫
Ω

∥∂zv∥L2(0,1) · |∇v| · d(z)
1
2 |u0,B + u0,T | dx

≤ ∥∇v∥2L2(Ω)∥d(z)
1
2 |u0,B + u0,T |∥L2(0,1;L∞(S )),

where
∥d(z)

1
2 |u0,B + u0,T |∥L2(0,1;L∞(S ))

≲
ε

a
∥ūh∥L∞(S )

∫
[0, a

ε ]

az
ε

e−
az
ε d

az
ε

+
ε

a
∥ūh∥L∞(S )

∫
[0, a

ε ]

a(1 − z)
ε

e−
a(1−z)
ε d

a(1 − z)
ε

≲ε∥ūh∥L∞(S ).

In summary, this gives

|⟨v · ∇(u0,B + u0,T ), v⟩| ≲ ε∥ū0,h∥L∞(S )∥∇v∥2L2(Ω)e
−νt. (4.5)

Next, for higher-order terms, it is easy to obtain∣∣∣〈v · ∇(ε(u1,int + u1,B + u1,T ) + ε2(u2,B + u2,T )
)
, v

〉∣∣∣ (4.6)

=ε
∣∣∣〈v · ∇v, (u1,int + u1,B + u1,T ) + ε(u2,B + u2,T )

〉∣∣∣
≤ε∥∇v∥L2(Ω)∥v∥L2(Ω)∥ū0,h∥L∞(S )e−νt

≤
ε

4
∥∇v∥2L2(Ω) + 4ε∥ū0,h∥L∞(S )∥v∥2L2(Ω)e

−νt.

Finally, for the correction term, according to (2.44), (2.55), and (2.56), it follows that

|⟨v · ∇(uc + wc + uw), v⟩| ≤ ε
1
4 ∥v∥2L2(Ω) ∥∇hū0,h∥L∞(S )e−νt. (4.7)

Combining (4.4)–(4.7), we get

⟨(v · ∇)uapp, v⟩ ≲ε
(1

4 + ∥ū0,h∥L∞(S )e−νt
)
∥∇v∥2L2(Ω) (4.8)

+
(
∥∇hū0,h∥L∞(S ) + 4ε∥ū0,h∥L∞(S ) + ε

1
4 ∥∇hū0,h∥L∞(S )

)
∥v∥2L2(Ω)e

−νt.

The second term on the right-hand side of (4.3), from the expression for Rapp, can be easily obtained
as

|⟨v, Rapp⟩| = ∥Rapp∥L2(Ω)∥v∥L2(Ω) (4.9)
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≤ε∥ū0,h∥L2(S )∥v∥L2(Ω)e−νt

≤ε∥ū0,h∥
2
L2(S )e

−νt + ε∥v∥2L2(Ω)e
−νt.

Thus, on the basis of (4.3), (4.8) and (4.9), we have

1
2

d
dt
∥v∥2L2(Ω) +

3ε
4
∥∇v∥2L2(Ω) (4.10)

≤ε∥ū0,h∥L∞(S )e−νt∥∇v∥2L2(Ω) + ε∥ū0,h∥
2
L2(S )e

−νt

+
(
∥∇hū0,h∥L∞(S ) + 4ε∥ū0,h∥L∞(S ) + ε

1
4 ∥∇hū0,h∥L∞(S ) + ε

)
∥v∥2L2(Ω)e

−νt.

Due to the initial conditions in (1.5) and (1.6), and by integrating the inequality (4.10) with respect to
the variable t, we can complete the proof of the theorem.

5. Conclusions

This paper employs a multiscale analysis approach to investigate the impact of the
Ekman-Hartmann boundary layer within rotating MHD flows confined to cylindrical domains and
develops the corresponding approximate solutions. These solutions are valuable for numerical
computations in geophysics and metal engineering industries, aiding in more accurate simulations of
fluid dynamic behaviors. Although our model has achieved innovation in handling constant magnetic
fields and rotation axes, it has limitations in modeling variations in the magnetic fields and rotation
axes over time and space, and in adapting to more complex geometrical shapes. Future research will
explore the effects of complex variations in the magnetic fields and rotation axes on the boundary
layer. It may extend the model to accommodate various geometries, including spherical and
nonplanar, to solve more practical problems.
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