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Abstract: Wind speed is a critical factor that affects various aspects of life in Thailand, particularly 
agriculture, which is a fundamental component of the Thai economy. Therefore, studying and 
understanding wind speed is essential for planning and developing the country's economy sustainably. 
Wind speed data often include both positive and zero values, which are consistent with the zero-
inflated Birnbaum-Saunders distribution. Additionally, the inherent variability of wind speed poses 
challenges for accurate prediction. When analyzing data from multiple weather stations, the common 
coefficient of variation helps compare the wind variability at each station, even if the average wind 
speeds differ. Therefore, the estimation of the common coefficient of variation allows for reliable 
statistical inference and decision-making. In this article, we proposed five methods to construct 
confidence intervals for the common coefficient of variation of several zero-inflated Birnbaum-
Saunders distributions. These methods include the generalized confidence interval, the method of 
variance estimation recovery, the large sample approximation, the bootstrap confidence interval, and 
the fiducial generalized confidence interval. We evaluated the performance of these methods using a 
comprehensive simulation study and compared them in terms of coverage probabilities and average 
widths. The results revealed that overall, the generalized confidence interval and the bootstrap 
confidence interval are the most effective and perform better than other methods in various situations. 
Finally, we applied these proposed methods to wind speed data from Thailand. 

Keywords: average width; confidence interval; coefficient of variation; coverage probability; zero-
inflated Birnbaum-Saunders; wind speed 
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1. Introduction 

In meteorology, wind speed is a fundamental atmospheric quantity caused by the movement of 
air from high to low pressure, usually due to temperature variations. Alongside wind speed, wind 
direction plays a pivotal role in the analysis and prediction of weather patterns and the global climate. 
Wind speed and direction significantly affect factors such as evaporation rates, sea surface turbulence, 
and the formation of oceanic waves and storms. Moreover, these factors have substantial impacts on 
water quality, water levels, and various fields, including weather forecasting, climatology, renewable 
energy, environmental monitoring, aviation, and agriculture. Therefore, a comprehensive 
understanding of wind speed is important for managing potential impacts. Additionally, using wind 
speed data for analysis can help researchers and experts understand and address issues related to wind 
speed across various areas. For wind speed data, a normal distribution may not be appropriate, even 
though the normal distribution is one of the most widely used statistical distributions. If the data 
exhibits skewness, it is advisable to consider alternative distributions. Many new distributions have 
been developed using certain transformations from the normal distribution. One such distribution is 
the Birnbaum-Saunders distribution. Importantly, Mohammadi, Alavi, and McGowan [1] investigated 
the application of the two-parameter Birnbaum-Saunders distribution for analyzing wind speed and 
wind energy density at ten different stations in Canada. Their results demonstrated that the Birnbaum-
Saunders distribution was especially effective at all the chosen locations. The Birnbaum-Saunders 
distribution was introduced by Birnbaum and Saunders [2] for the purpose of modeling the fatigue life 
of metals subjected to periodic stress. As a result, this distribution is sometimes referred to as the 
fatigue life distribution. The Birnbaum-Saunders distribution has been applied in various contexts, 
such as engineering, testing, medical sciences, and environmental studies. It is well known that the 
Birnbaum-Saunders distribution is a positive skewed one. However, some data to be analyzed may 
have both positive and zero values. Therefore, if zero observations follow a binomial distribution 
combined with the Birnbaum-Saunders distribution, the resulting distribution is the zero-inflated 
Birnbaum-Saunders (ZIBS) distribution, which is a new and interesting distribution. This ZIBS 
distribution was inspired by Aitchison [3], and several researchers have studied the combination of 
zero observations with other distributions to form new distributions, such as the zero-inflated 
lognormal distribution [4], the zero-inflated gamma distribution [5], and the zero-inflated two-
parameter exponential distribution [6]. 

The coefficient of variation (CV) of wind speed is important for several reasons. Since the CV 
measures the dispersion of data relative to the mean, it is expressed as the ratio of the standard deviation 
to the mean. The CV assesses the variability of a dataset, regardless of the unit of measurement. 
Additionally, using the CV to evaluate wind speed is beneficial in various contexts. For instance, 
calculating the CV helps in understanding how much wind speed fluctuates compared to its average. 
If the CV is high, it indicates that the wind speed is highly variable, making it more difficult to predict 
wind conditions. In the context of wind energy, the CV can help assess the reliability of energy sources. 
If wind speed variability is high, it may result in inconsistent energy production, which could affect 
the stability of energy output from wind farms. Additionally, the coefficient of variation has been used 
in many fields, including life insurance, science, economics, and medicine. Importantly, many 
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researchers have constructed confidence intervals (CIs) for the coefficient of variation, which have 
been applied to various distributions. For example, Vangel [7] constructed the CIs for a normal 
distribution coefficient of variation. Buntao and Niwitpong [8] introduced the CIs for the coefficient 
of variation of zero-inflated lognormal and lognormal distributions. D’Cunha and Rao [9] proposed 
the Bayes estimator and created CIs for the coefficient of variation of the lognormal distribution. 
Sangnawakij and Niwitpong [10] developed CIs for coefficients of variation in two-parameter 
exponential distributions. Janthasuwan, Niwitpong, and Niwitpong [11] established CIs for the 
coefficients of variation in the zero-inflated Birnbaum-Saunders distribution. 

In the analysis and comparison of wind variability across multiple weather stations or wind 
directions, without needing to account for the differences in average wind speed at each station or 
direction, it is necessary to use the common CV. The common CV provides a single indicator 
representing the overall variability of wind speed, which is crucial when planning wind energy 
projects, designing wind turbines, or calculating the power production of wind farms that require 
knowledge of wind stability across different areas. Additionally, the common CV is useful in 
meteorological and climatological research, as it allows for the analysis of wind variability across 
multiple regions simultaneously. It can also assist in examining the relationship between wind 
variability and long-term climate changes or recurring events, such as storms or shifts in wind patterns. 
Therefore, the common coefficient of variation is a crucial aspect when making inferences for more 
than one population. This holds particularly true when collecting independent samples from various 
situations. Consequently, numerous researchers have investigated methods for computing the common 
coefficient of variation in several populations from variety distributions. For instance, Tian [12] made 
inferences about the coefficient of variation of a common population within a normal distribution. 
Then, Forkman [13] studied methods for constructing CIs and statistical tests based on McKay's 
approximation for the common coefficient of variation in several populations with normal 
distributions. Sangnawakij and Niwitpong [14] proposed the method of variance of estimate recovery 
to construct CIs for the common coefficient of variation for several gamma distributions. Next, Singh 
et al. [15] used several inverse Gaussian populations to estimate the common coefficient of variation, 
test the homogeneity of the coefficient of variation, and test for a specified value of the common 
coefficient of variation. After that, Yosboonruang, Niwitpong, and Niwitpong [16] presented methods 
to construct CIs for the common coefficient of variation of zero-inflated lognormal distributions, 
employing the method of variance estimate recovery, equal-tailed Bayesian intervals, and the fiducial 
generalized confidence interval. Finally, Puggard, Niwitpong, and Niwitpong [17] introduced 
Bayesian credible intervals, highest posterior density intervals, the method of variance estimate 
recovery, generalized confidence intervals, and large-sample methods to construct confidence intervals 
for the common coefficient of variation in several Birnbaum-Saunders distributions. Previous research 
has shown that no studies have investigated the estimation of the common coefficient of variation in 
the context of several ZIBS distributions. Therefore, the primary objective of this article is to determine 
the CIs for the common coefficient of variation of several ZIBS distributions. The article presents five 
distinct methods: the generalized confidence interval, the method of variance estimates recovery, the 
large sample approximation, the bootstrap confidence interval, and the fiducial generalized confidence 
interval. 
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2. Materials and methods 

Let 𝑌௜௝ , 𝑖 = 1,2, … , 𝑘 and 𝑗 = 1,2, … , 𝑚௜be a random sample drawn from the ZIBS distributions. 
The density function of 𝑌௜௝ is given by 

𝑓൫𝑦௜௝; 𝜗௜ , 𝛼௜, 𝛽௜൯ = 𝜗௜Ι଴ൣ𝑦௜௝൧ + (1 − 𝜗௜)
1

2𝛼௜𝛽௜√2𝜋
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𝑦௜௝
ቇ

ଵ ଶ⁄
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൬

௬೔ೕ
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ఉ೔

௬೔ೕ
− 2൰൨ Ι(଴,ஶ)ൣ𝑦௜௝൧, 

where 𝜗௜ , 𝛼௜, and 𝛽௜ are the proportion of zero, shape, and scale parameters, respectively. Ι is an 

indicator function, with Ι଴ൣ𝑦௜௝൧ = ൜
1; 𝑦௜௝ = 0,

0; otherwise,
 and Ι(଴,ஶ)ൣ𝑦௜௝൧ = ൜

0; 𝑦௜௝ = 0,

1; 𝑦௜௝ > 0
. This distribution 

is a combination of Birnbaum-Saunders and binomial distributions. Suppose that 𝑚௜ = 𝑚௜(ଵ) + 𝑚௜(଴) 
is the sample size, where 𝑚௜(ଵ) and 𝑚௜(଴) are the numbers of positive and zero values, respectively. 
For the expected value and variance of 𝑌௜௝, we have applied the concepts from Aitchison [3], which 
can be expressed as follows: 

𝐸൫𝑌௜௝൯ = (1 − 𝜗௜)𝛽௜ ቆ1 +
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respectively. Hence, the coefficient of variation of 𝑌௜௝ is defined as 

𝜃 =
1
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The asymptotic distribution of 𝜗መ௜  is calculated by using the delta method, which is given by 

ඥ𝑚௜൫𝜗መ௜ − 𝜗௜൯~𝑁(0, 𝜗௜(1 − 𝜗௜)) , where 𝜗መ௜ = 𝑚௜(଴) 𝑚௜⁄  . According to Ng, Kundu, and 
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where 𝛼ො௜ = ൝2 ൥൬𝑦ത௜ ∑
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 . The 

estimator of 𝜃௜ is given by 

𝜃෠௜ =
ଵ

ଶାఈෝ೔
మ

ඨఈෝ೔
మ൫ସାହఈෝ೔

మ൯ାణ෡೔൫ଶାఈෝ೔
మ൯

మ
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.       (1) 

According to Janthasuwan, Niwitpong, and Niwitpong [11], the asymptotic variance of 𝜃෠௜, derived 
using the Taylor series in the delta method, is given by 

𝑉൫𝜃෠௜൯ ≈
ଵ

అ೔
ቊ

ଷଶఈ೔
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where 𝛹௜ = (2 + 𝛼௜
ଶ)ଶ(1 − 𝜗௜)[𝛼௜

ଶ(4 + 5𝛼௜
ଶ) + 𝜗௜(2 + 𝛼௜

ଶ)ଶ]. According to Graybill and Deal [19], 
the common CV of several ZIBS distributions can be written as 

𝜃෠ =
∑ ఏ෡೔ ௏෡൫ఏ෡೔൯ൗೖ

೔సభ
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,         (3) 

where 𝑉෠൫𝜃෠௜൯ denotes the estimator of 𝑉൫𝜃෠௜൯, which is defined in Eq (2) with 𝛼௜ and 𝜗௜ replaced 

by 𝛼ො௜ and 𝜗መ௜, respectively. This can be expressed as follows: 
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1
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where 𝛹෡௜ = (2 + 𝛼ො௜
ଶ)ଶ൫1 − 𝜗መ௜൯ൣ𝛼ො௜

ଶ(4 + 5𝛼ො௜
ଶ) + 𝜗መ௜(2 + 𝛼ො௜

ଶ)ଶ൧. 

The following subsection provides detailed explanations of the methods employed for 
constructing confidence intervals. 

2.1. Generalized confidence interval 

Weerahandi [20] recommended the generalized confidence interval (GCI) method for 
constructing confidence intervals, which is based on the concept of a generalized pivotal 
quantity (GPQ). To construct the confidence interval for 𝜃 using the GCI, we get the generalized 
pivotal quantities for the parameters 𝛽௜ , 𝛼௜ , and 𝜗௜ . Sun [21] introduced the GPQ for the scale 
parameter 𝛽௜, which can be derived as  

𝐺ఉ೔
൫𝑦௜௝; 𝛬௜൯ = ൜

𝑚𝑎𝑥(𝛽௜ଵ, 𝛽௜ଶ) ; 𝛬௜ ≤ 0;

𝑚𝑖𝑛(𝛽௜ଵ, 𝛽௜ଶ) ; 𝛬௜ > 0,
       (4) 

where 𝛬௜  follows the t-distribution with 𝑚௜(ଵ) − 1  degrees of freedom. 𝛽௜ଵ  and 𝛽௜ଶ  are the two 
solutions of the following quadratic equation: 
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𝛺ଵ𝛽௜
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 , and 𝐷௜ = ∑ ൫ඥ𝑌௜௝ − 𝐶௜൯

ଶ௠೔(భ)

௝ୀଵ
 . 

Next, considering the GPQ for the shape parameter 𝛼௜ as proposed by Wang [22], the GPQ for 𝛼௜ is 
derived as 

𝐺ఈ೔
൫𝑦௜௝; 𝛫௜, 𝛬௜൯ = ඨ

ா೔భାா೔మீഁ೔
మ ൫௬೔ೕ;௸೔൯ିଶ௠೔(భ)ீഁ೔

൫௬೔ೕ;௸೔൯

ீഁ೔
൫௬೔ೕ;௸೔൯௷೔

,    (5) 

where 𝐸௜ଵ = ∑ 𝑌௜௝
௠೔(భ)

௝ୀଵ
 , 𝐸௜ଶ = ∑

ଵ

௒೔ೕ

௠೔(భ)

௝ୀଵ
  , and 𝛫௜  follows the chi-squared distribution with 𝑚௜(ଵ) 

degrees of freedom. Subsequently, the GPQ for the proportion of zero 𝜗௜ was recommended by Wu 
and Hsieh [23], who proposed using the GPQ based on the variance stabilized transformation to 
construct confidence intervals. Therefore, the GPQ for 𝜗௜ is defined as 

𝐺ణ೔
= sinଶ ൤arcsin ඥ𝜗መ௜ −

ௐ೔

ଶඥ௠೔
൨,      (6) 

where 𝑊௜ = 2ඥ𝑚௜ ቀarcsin ඥ𝜗መ௜ − arcsin ඥ𝜗௜ቁ ~𝑁(0,1). Now, we can calculate the GPQs for 𝜃௜ 

and the variance of 𝜃෠௜ using Eqs (5) and (6), resulting in 

𝐺ఏ೔
=
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ଶାீഀ೔
మ

ඨ
ீഀ೔
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మ ቁ

మ

ଵିீഛ೔

       (7) 

and 
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ଵ
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ቊ
ଷଶீഀ೔
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మ +
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మ ቀସାଷீഀ೔

మ ቁቃ
మ

௠೔ቀଵିீഛ೔
ቁ

ቋ,     (8) 

where 𝐺అ೔
= ൫2 + 𝐺ఈ೔

ଶ ൯
ଶ

൫1 − 𝐺ణ೔
൯ ቂ𝐺ఈ೔

ଶ ൫4 + 5𝐺ఈ೔

ଶ ൯ + 𝐺ణ೔
൫2 + 𝐺ఈ೔

ଶ ൯
ଶ

ቃ. Therefore, the GPQ for 𝜃௜ is 

the weighted average of the GPQ 𝐺ఏ೔
 based on 𝑘 individual samples, given by 

𝐺ఏ =
∑ ீഇ೔

ீೇ൫ഇ෡೔൯
ൗೖ

೔సభ

∑ ଵ ீೇ(ഇ෡೔)
ൗೖ

೔సభ

.        (9) 

Then, the (1 − 𝜌)100% CI for the common CV of several ZIBS distributions employing the GCI 
method is given by 

[𝐿ீ஼ூ , 𝑈ீ஼ூ] = [𝐺ఏ(𝜌 2⁄ ), 𝐺ఏ(1 − 𝜌 2⁄ )],       (10) 
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where 𝐺ఏ(𝜌 2⁄ ) and 𝐺ఏ(1 − 𝜌 2⁄ ) denote the 100(𝜌 2⁄ )th and 100(1 − 𝜌 2⁄ )th percentiles of 

𝐺ఏ, respectively. 
Algorithm 1 is used to construct the GCI for the common coefficient of variation of several ZIBS 

distributions. 
Algorithm 1. 

For 𝑔 = 1 to 𝑛, where 𝑛 is the number of generalized computations: 
1) Compute 𝐴௜ , 𝐵௜, 𝐶௜, 𝐷௜ , 𝐸௜ଵ, and 𝐸௜ଶ. 
2) At the 𝑝 step: 

a) Generate 𝛬௜~𝑡൫𝑚௜(ଵ) − 1൯, and then compute 𝐺ఉ೔
൫𝑦௜௝; 𝛬௜൯ from Eq (4); 

b) If 𝐺ఉ೔
൫𝑦௜௝; 𝛬௜൯ < 0, regenerate 𝛬௜~𝑡൫𝑚௜(ଵ) − 1൯; 

c) Generate 𝛫௜~𝜒௠೔(భ)
ଶ , and then compute 𝐺ఈ೔

൫𝑦௜௝; 𝐾௜, 𝛬௜൯ from Eq (5); 

d) Compute 𝐺ణ೔
, 𝐺ఏ೔

, and 𝐺௏൫ఏ෡೔൯ from Eqs (6)–(8), respectively; 

e) Compute 𝐺ఏ from Eq (9). 
End 𝑔 loop. 
3) Repeat step 2, a total of G times; 
4) Compute 𝐿ீ஼ூ and 𝑈ீ஼ூ from Eq (10). 

2.2. Method of variance estimates recovery 

The method of variance estimates recovery (MOVER) estimates a closed-form confidence 
interval. Let 𝜔ෝ௜  be an unbiased estimator of 𝜔௜ . Furthermore, let [𝑙௜, 𝑢௜]  represent the (1 −

𝜌)100% confidence interval for 𝜔௜, 𝑖 = 1,2, . . . , 𝑘. Assume that ∑ 𝑐௜𝜔௜
௞
௜ୀଵ  is a linear combination of 

the parameters 𝜔௜, where 𝑐௜ are constants. According to Zou, Huang, and Zhang [24], the lower and 
upper limits of the confidence interval for ∑ 𝑐௜𝜔௜

௞
௜ୀଵ  are defined by 

𝐿 = ෍ 𝑐௜𝜔ෝ௜

௞

௜ୀଵ

− ඩ෍[𝑐௜𝜔ෝ௜ − min(𝑐௜𝑙௜, 𝑐௜𝑢௜)]ଶ

௞

௜ୀଵ

 

and 

𝑈 = ∑ 𝑐௜𝜔ෝ௜
௞
௜ୀଵ + ට∑ [𝑐௜𝜔ෝ௜ − max(𝑐௜𝑙௜, 𝑐௜𝑢௜)]ଶ௞

௜ୀଵ . 

Considering Eq (7), the (1 − 𝜌)100% CI for 𝜃௜ based on the GPQs has become  

[𝑙௜, 𝑢௜] = ൣ𝐺ఏ೔
(𝜌 2⁄ ), 𝐺ఏ೔

(1 − 𝜌 2⁄ )൧,        (11) 

where 𝐺ఏ೔
(𝜌 2⁄ ) and 𝐺ఏ೔

(1 − 𝜌 2⁄ ) represent the 100(𝜌 2⁄ )th and 100(1 − 𝜌 2⁄ )th percentiles 

of 𝐺ఏ೔
, respectively. Hence, the (1 − 𝜌)100% CI for the common CV of several ZIBS distributions 
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employing the MOVER method is given by 

𝐿ெை௏ாோ = ∑ 𝑐௜
#𝜃෠௜

௞
௜ୀଵ − ට∑ ൣ𝑐௜

#𝜃෠௜ − 𝑚𝑖𝑛(𝑐௜
#𝑙௜, 𝑐௜

#𝑢௜)൧
ଶ௞

௜ୀଵ     (12) 

and 

𝑈ெை௏ாோ = ∑ 𝑐௜
#𝜃෠௜

௞
௜ୀଵ + ට∑ ൣ𝑐௜

#𝜃෠௜ − 𝑚𝑎𝑥(𝑐௜
#𝑙௜, 𝑐௜

#𝑢௜)൧
ଶ௞

௜ୀଵ ,    (13) 

where 𝑐௜
# =

ఎ೔

∑ ఎೕ
ೖ
ೕసభ

 and 𝜂௜ =
ଵ

௏෡൫ఏ෡೔൯
. 

Algorithm 2 is used to construct the MOVER for the common coefficient of variation of several 
ZIBS distributions. 
Algorithm 2. 

1) Compute 𝛼ො௜ and 𝜗መ௜; 

2) Compute 𝜃෠௜ and 𝑉෠൫𝜃෠௜൯; 

3) Compute 𝑙௜ and 𝑢௜ from Eq (11); 
4) Compute 𝐿ெை௏ாோ from Eq (12); 
5) Compute 𝑈ெை௏ாோ from Eq (13). 

2.3. Large sample approximation 

Recall that the estimator of 𝜃௜ from Eq (1) is 

𝜃෠௜ =
1

2 + 𝛼ො௜
ଶ

ඨ
𝛼ො௜

ଶ(4 + 5𝛼ො௜
ଶ) + 𝜗መ௜(2 + 𝛼ො௜

ଶ)ଶ

1 − 𝜗መ௜

, 

and the estimated variance of î  is 

𝑉෠൫𝜃෠௜൯ ≈
1

𝛹෡௜

ቊ
32𝛼ො௜

ସ(1 + 2𝛼ො௜
ଶ)ଶ

𝑚௜(ଵ)(2 + 𝛼ො௜
ଶ)ଶ

+
𝜗መ௜[2 + 𝛼ො௜

ଶ(4 + 3𝛼ො௜
ଶ)]ଶ

𝑚௜൫1 − 𝜗መ௜൯
ቋ, 

where 𝛹෡௜ = (2 + 𝛼ො௜
ଶ)ଶ൫1 − 𝜗መ௜൯ൣ𝛼ො௜

ଶ(4 + 5𝛼ො௜
ଶ) + 𝜗መ௜(2 + 𝛼ො௜

ଶ)ଶ൧. The large sample (LS) estimate of the 

CV for the ZIBS distribution is a pooled estimate, as described in Eq (3). Accordingly, the (1 − 𝜌)100% 
CI for the common CV of several ZIBS distributions employing the LS method is as follows: 

[𝐿௅ௌ, 𝑈௅ௌ] = ൤𝜃෠ − 𝑧ଵି
ഐ

మ
ට

ଵ

∑ ఎ೔
ೖ
೔సభ

, 𝜃෠ + 𝑧ଵି
ഐ

మ
ට

ଵ

∑ ఎ೔
ೖ
೔సభ

൨,     (14) 

where 𝜂௜ =
ଵ

௏෡൫ఏ෡೔൯
. 

Algorithm 3 is used to construct the LS for the common coefficient of variation of several ZIBS 
distributions. 
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Algorithm 3. 
1) Compute 𝛼ො௜ and 𝜗መ௜; 

2) Compute 𝜃෠௜ and 𝑉෠൫𝜃෠௜൯; 

3) Compute 𝐿௅ௌ and 𝑈௅ௌ from Eq (14). 

2.4. Bootstrap confidence interval 

Efron [25] introduced the bootstrap method, which involves repeated resampling of existing data. 
According to Lemonte, Simas, and Cribari-Neto [26], the constant-bias-correcting parametric 
bootstrap is the most efficient method for reducing bias. As a result, we used it to estimate the 
confidence interval for 𝜃. Assuming that there are 𝐷 bootstrap samples available, the 𝛼ො௜ series for 
those samples can be computed, which is shown as 𝛼ො௜ଵ

# , 𝛼ො௜ଶ
# , . . . , 𝛼ො௜஽

# . Here, 𝛼ො௜௥
#  is a sequence of the 

bootstrap maximum likelihood estimation (MLE) of 𝛼௜௥ for 𝑖 = 1,2, . . . , 𝑘 and 𝑟 = 1,2, . . . , 𝐷. The 
MLE of 𝛼௜௥ can be calculated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton 
nonlinear optimization algorithm. The bias of the estimator 𝛼௜ is defined as 

𝐷(𝛼ො௜, 𝛼௜) = 𝐸(𝛼ො௜) − 𝛼௜, 

and then the bootstrap expectation 𝐸(𝛼ො௜) could be approximated using the mean 𝛼ො௜
/

=
ଵ

஽
∑ 𝛼ො௜௥

#஽
௥ୀଵ . As 

a result, the bootstrap bias estimate for 𝐷  replications of 𝛼ො௜  is derived as 𝐷෡(𝛼ො௜, 𝛼௜) = 𝛼ො௜
/

− 𝛼ො௜ . 

According to Mackinnon and Smith [27], the corrected estimate for 𝛼ො௜
# is obtained by applying the 

bootstrap bias estimate, which is 

𝛼ො௜
∗ = 𝛼ො#

௜ − 2𝐷෡(𝛼ො௜, 𝛼௜).       (15) 

Let 𝜗መ௜
# be observed values of 𝜗መ௜ based on bootstrap samples. In accordance with Brown, Cai, and 

DasGupta [28], the bootstrap estimator of 𝜗௜ is given by 

𝜗መ௜
∗~𝑏𝑒𝑡𝑎 ቀ𝑚௜𝜗መ௜

# +
ଵ

ଶ
, 𝑚௜൫1 − 𝜗መ௜

#൯ +
ଵ

ଶ
ቁ.     (16) 

By using Eqs (15) and (16), the bootstrap estimators of i  and the variance of 𝜃෠௜ can be written as 

𝜃෠௜
∗ =

ଵ

ଶା൫ఈෝ೔
∗൯

మ
ඨ

൫ఈෝ೔
∗൯

మ
ቀସାହ൫ఈෝ೔

∗൯
మ

ቁାణ෡೔
∗ቀଶା൫ఈෝ೔

∗൯
మ

ቁ
మ

ଵିణ෡೔
∗      (17) 

and 

𝑉෠ ∗൫𝜃෠௜൯ ≈
ଵ

అ෡೔
∗ ൝

ଷଶ൫ఈෝ೔
∗൯

ర
ቀଵାଶ൫ఈෝ೔

∗൯
మ

ቁ
మ

௠೔(భ)ቀଶା൫ఈෝ೔
∗൯

మ
ቁ

మ +
ణ෡೔

∗ቂଶା൫ఈෝ೔
∗൯

మ
ቀସାଷ൫ఈෝ೔

∗൯
మ

ቁቃ
మ

௠೔൫ଵିణ෡೔
∗൯

ൡ,    (18) 

where 𝛹෡௜
∗ = (2 + (𝛼ො௜

∗)ଶ)ଶ൫1 − 𝜗መ௜
∗൯ൣ(𝛼ො௜

∗)ଶ(4 + 5(𝛼ො௜
∗)ଶ) + 𝜗መ௜

∗(2 + (𝛼ො௜
∗)ଶ)ଶ൧ . Now, the common 𝜃 
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based on 𝑘 individual sample is obtained by 

𝜃෠∗ =
∑ ఏ෡೔

∗ ௏෡∗൫ఏ෡೔൯ൗೖ
೔సభ

∑ ଵ ௏෡∗൫ఏ෡೔൯⁄ೖ
೔సభ

.         (19) 

Consequently, the (1 − 𝜌)100% CI for the common CV of several ZIBS distributions employing the 
bootstrap confidence interval (BCI) method is provided by 

[𝐿஻஼ூ , 𝑈஻஼ூ] = ൣ𝜃෠∗(𝜌 2⁄ ), 𝜃෠∗(1 − 𝜌 2⁄ )൧,     (20) 

where 𝜃෠∗(𝜌 2⁄ )  and 𝜃෠∗(1 − 𝜌 2⁄ )  denote the 100(𝜌 2⁄ )th  and 100(1 − 𝜌 2⁄ )th  percentiles of 
𝜃෠∗, respectively. 

Algorithm 4 is used to construct the BCI for the common coefficient of variation of several ZIBS 
distributions. 
Algorithm 4. 

For 𝑏 = 1 to 𝑛: 
1) At the 𝑞 step: 

a) Generate 𝑦௜௝
∗ , with replacement from 𝑦௜௝ where 𝑖 = 1,2, . . . , 𝑘 and 𝑗 = 1,2, . . . , 𝑚௜; 

b) Compute 𝛼ො௜
/ and 𝐷෡(𝛼ො௜, 𝛼௜); 

c) Compute 𝛼ො௜
∗ from Eq (15); 

d) Generate 𝜗መ௜
∗ from Eq (16); 

e) Compute 𝜃෠௜
∗ from Eq (17); 

f) Compute 𝑉෠ ∗൫𝜃෠௜൯ from Eq (18); 

g) Compute 𝜃෠∗ from Eq (19). 
End 𝑏 loop. 
2) Repeat step 1, a total of B times; 
3) Compute 𝐿஻஼ூ and 𝑈஻஼ூ from Eq (20). 

2.5. Fiducial generalized confidence interval 

Hannig [29] and Hannig [30] introduced the concept of the generalized fiducial distribution by 
assuming a functional relationship 𝑅௝ = 𝑄௝(𝛿, 𝑼) for 𝑗 = 1,2, . . . , 𝑚, where 𝑸 = (𝑄ଵ, . . . , 𝑄௠) are 
the structural equations. Then, assume that 𝑼 = (𝑈ଵ, . . . , 𝑈௠)  are independent and identically 
distributed samples from a uniform distribution 𝑈(0,1) and that the parameter 𝛿 ∈ Ξ ⊆ 𝑅௣ is 𝑝-
dimensional. Consequently, the generalized fiducial distribution is absolutely continuous with a 
density 

𝜓(𝛿) =
௃(௥,ఋ)௅(௥,ఋ)

∫ ௃(௥,ఋᇲ)௅(௥,ఋᇲ)ௗఋᇲ
ೳ

,        (21) 

where 𝐿(𝒓, 𝜹) represents the joint likelihood function of the observed data and 
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𝐽(𝑟, 𝛿) = ෍ ተተdet ൮൭
𝑑

𝑑𝑟
𝑸ିଵ(𝑟, 𝛿)൱

ିଵ
𝑑

𝑑𝛿
𝑸ିଵ(𝑟, 𝛿)൲

௝

ተተ

௝ୀ൫௝భ,...,௝೛൯

ଵஸ௝೔ழ...ழ௝೛ஸ௠

, 

where 
ௗ

ௗ௥
𝑸ିଵ(𝑟, 𝛿)  and 

ௗ

ௗఋ
𝑸ିଵ(𝑟, 𝛿)  are 𝑚 × 𝑝  and 𝑚 × 𝑚  Jacobian matrices, respectively. In 

addition, Hannig [29] deduced that if the sample 𝑟 was independently and identically distributed from 
an absolutely continuous distribution with cumulative distribution function 𝐹ఋ(𝑟) , then 𝑸ିଵ =

൫𝐹ఋ(𝑅ଵ), . . . , 𝐹ఋ(𝑅௠)൯. Let 𝑍௜௝ , 𝑖 = 1,2, . . . , 𝑘, 𝑗 = 1,2, . . . , 𝑚௜(ଵ), be a random sample drawn from the 

Birnbaum-Saunders distribution. The likelihood function can be written as 

𝐿൫𝑧௜௝|𝛼௜, 𝛽௜൯ ∝
ଵ

ఈ
೔

೘೔(భ)
ఉ

೔

೘೔(భ)
∏ ൥൬

ఉ೔

௭೔ೕ
൰

భ

మ
+ ൬

ఉ೔

௭೔ೕ
൰

య

మ
൩ 𝑒𝑥𝑝 ൤−

ଵ

ଶఈ೔
మ ∑ ൬

௭೔ೕ

ఉ೔
+

ఉ೔

௭೔ೕ
− 2൰

௠೔(భ)

௝ୀଵ
൨

௠೔(భ)

௝ୀଵ
. 

Therefore, from Eq (20), the generalized fiducial distribution of (𝛼௜, 𝛽௜) is 

𝑝൫𝛼௜, 𝛽௜ห𝑧௜௝൯ ∝ 𝐽 ቀ𝑧௜௝, (𝛼௜, 𝛽௜)ቁ 𝐿൫𝑧௜௝|𝛼௜, 𝛽௜൯, 

where 

𝐽 ቀ𝑧௜௝ , (𝛼௜, 𝛽௜)ቁ = ෍
4ห𝑧௜௝ − 𝑧௜௟ห

𝛼௜൫1 + 𝛽௜ 𝑧௜௝⁄ ൯(1 + 𝛽௜ 𝑧௜௟⁄ )
ଵஸ௝ழ௟ஸ௠೔(భ)

 

as obtained by Li and Xu [31]. Let 𝛼௜
# and 𝛽௜

# be the generalized fiducial samples for 𝛼௜ and 𝛽௜, 
respectively. According to Li and Xu [31], the adaptive rejection Metropolis sampling (ARMS) method 
was used to obtain the fiducial estimates of 𝛼௜  and 𝛽௜  from the generalized fiducial distribution. 
Thus, the calculation of 𝛼௜

# and 𝛽௜
# can be implemented using the function arms in the package dlm 

of R software. Additionally, Hannig [29] recommended methods for estimating the fiducial generalized 
pivotal quantities for binomial proportion 𝜗௜, with simulation results indicating that the best option is 
the mixture distribution of two beta distributions with weight ½, which is 

𝜗௜
#~

ଵ

ଶ
𝑏𝑒𝑡𝑎൫𝑚௜(଴), 𝑚௜(ଵ) + 1൯ +

ଵ

ଶ
𝑏𝑒𝑡𝑎൫𝑚௜(଴) + 1, 𝑚௜(ଵ)൯.    (22) 

Currently, the approximate fiducial generalized pivotal quantities for 𝜃௜ and the variance of 𝜃෠௜ can 
be computed by 

𝜃௜
# =

ଵ

ଶା൫ఈ೔
#൯

మ
ඨ൫ఈ೔

#൯
మ

ቀସାହ൫ఈ೔
#൯

మ
ቁାణ೔

#ቀଶା൫ఈ೔
#൯

మ
ቁ

మ

ଵିణ೔
# ,      (23) 

and 
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𝑉#൫𝜃෠௜൯ ≈
ଵ

అ೔
# ൝

ଷଶ൫ఈ೔
#൯

ర
ቀଵାଶ൫ఈ೔

#൯
మ

ቁ
మ

௠೔(భ)ቀଶା൫ఈ೔
#൯

మ
ቁ

మ +
ణ೔

#ቂଶା൫ఈ೔
#൯

మ
ቀସାଷ൫ఈ೔

#൯
మ

ቁቃ
మ

௠೔൫ଵିణ೔
#൯

ൡ,    (24) 

where 𝛹௜
# = ቀ2 + ൫𝛼௜

#൯
ଶ

ቁ
ଶ

൫1 − 𝜗௜
#൯ ൤൫𝛼௜

#൯
ଶ

ቀ4 + 5൫𝛼௜
#൯

ଶ
ቁ + 𝜗௜

# ቀ2 + ൫𝛼௜
#൯

ଶ
ቁ

ଶ

൨ . As a result, the 

common 𝜃 based on 𝑘 individual samples is calculated as 

 𝜃# =
∑ ఏ೔

# ௏#൫ఏ෡೔൯ൗೖ
೔సభ

∑ ଵ ௏#൫ఏ෡೔൯⁄ೖ
೔సభ

.        (25) 

The (1 − 𝜌)100% confidence interval for the common CV of several ZIBS distributions employing 
the fiducial generalized confidence interval (FGCI) method is obtained by 

[𝐿ிீ஼ூ , 𝑈ிீ஼ூ] = [𝜃#(𝜌 2⁄ ), 𝜃#(1 − 𝜌 2⁄ )],      (26) 

where 𝜃#(𝜌 2⁄ ) and 𝜃#(1 − 𝜌 2⁄ ) denote the 100(𝜌 2⁄ )th and 100(1 − 𝜌 2⁄ )th percentiles 
of 𝜃#, respectively. 

The algorithm 5 is used to construct the FGCI for the common coefficient of variation of several 
ZIBS distributions. 
Algorithm 5. 

For 𝑔 = 1 to 𝑛: 
1) Generate 𝐺 samples of 𝛼௜ and 𝛽௜ by using the arms function in the dlm package of R 

software; 
2) Burn-in 𝐹samples (the number of remaining samples is 𝐺 − 𝐹); 
3) Thin the samples by applying sampling lag 𝐿 > 1, and the final number of samples is 𝐺ᇱ =

(𝐺 − 𝐹) 𝐿⁄ . Because the generated samples are not independent, we must reduce the 
autocorrelation by thinning them; 

4) Generate 𝜗௜
# from Eq (22); 

5) Compute 𝜃௜
# and 𝑉#൫𝜃෠௜൯ from Eqs (23) and (24), respectively; 

6) Compute 𝜃# from Eq (25); 
End 𝑔 loop. 
7) Repeat steps 1–6, a total of 𝐺 times; 
8) Compute 𝐿ிீ஼ூ and 𝑈ிீ஼ூ from Eq (26). 

3. Simulation results and discussion 

To evaluate the performance of the proposed methods, Monte Carlo simulations in R software 
were conducted under various scenarios using different sample sizes, proportions of zeros, and shape 
parameters, as shown in Table 1. The scale parameter was consistently fixed at 1.0 in all scenarios. In 
generating a simulation, we set the total number of replications to 1000 replicates, 3000 replications 
for the GCI and FGCI, and 500 replications for the BCI. The performance comparison was based on a 
coverage probability (CP) greater than or equal to the nominal confidence level of 0.95, as well as the 
narrowest average width (AW). Algorithm 6 shows the computational steps to estimate the coverage 
probability and average width performances of all the methods.  
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Table 1. Parameter settings for k = 3, 5, 10. 

Scenarios (𝑚ଵ, . . . , 𝑚௞) (𝛼ଵ, 𝛼ଶ, . . . , 𝛼௞) (𝜗ଵ, 𝜗ଶ, . . . , 𝜗௞) 

k = 3    

1–12 (303) (2.03), (2.53), (3.03) (0.13), (0.1,0.3,0.5), (0.33), (0.53) 

13–24 (30, 50,100) (2.03), (2.53), (3.03) (0.13), (0.1,0.3,0.5), (0.33), (0.53) 

25–36 (503) (2.03), (2.53), (3.03) (0.13), (0.1,0.3,0.5), (0.33), (0.53) 

37–48 (1003) (2.03), (2.53), (3.03) (0.13), (0.1,0.3,0.5), (0.33), (0.53) 

k = 5    

49–60 (303, 502) (2.05), (2.55), (3.05) (0.15), (0.12,0.32,0.5), (0.35), (0.55) 

61–72 (302, 502, 100) (2.05), (2.55), (3.05) (0.15), (0.12,0.32,0.5), (0.35), (0.55) 

73–84 (30, 502, 1002) (2.05), (2.55), (3.05) (0.15), (0.12,0.32,0.5), (0.35), (0.55) 

85–96 (503, 1002) (2.05), (2.55), (3.05) (0.15), (0.12,0.32,0.5), (0.35), (0.55) 

k = 10    

97–108 (305, 505) (2.010), (2.510), (3.010) (0.110), (0.15,0.33,0.52), (0.310), (0.510) 

109–120 (305, 503, 1002) (2.010), (2.510), (3.010) (0.110), (0.15,0.33,0.52), (0.310), (0.510) 

121–132 (506, 1004)  (2.010), (2.510), (3.010) (0.110), (0.15,0.33,0.52), (0.310), (0.510) 

133–144 (10010) (2.010), (2.510), (3.010) (0.110), (0.15,0.33,0.52), (0.310), (0.510) 

*Note: (303) stands for (30,30,30). 

The simulation results for k = 3 are shown in Table 2 and Figure 1. The coverage probabilities of 
the confidence intervals for the GCI method are greater than the nominal confidence level of 0.95 in 
almost all scenarios, while the coverage probabilities for the MOVER method are close to the specified 
coverage probability value when proportions of zeros equal 0.13. For the BCI method, they are close 
to the target, especially when the sample size is large. For the LS and FGCI methods, they provide 
coverage probability values lower than 0.95 in all scenarios. In terms of average width, the LS and 
MOVER methods have narrower confidence intervals than other methods in most scenarios. However, 
the coverage probabilities of both confidence intervals are less than 0.95 in almost all scenarios, so 
they do not meet the requirements. Among the remaining methods, the GCI method has the shortest 
average width in all scenarios studied, while the BCI method has the widest. 

The simulation results for k = 5 are shown in Table 3 and Figure 2. The coverage probabilities of 
the LS and BCI methods are close to the nominal confidence level of 0.95 in almost all scenarios. In 
contrast, the MOVER and FGCI methods have values below the specified target. For the GCI method, 
the coverage probability meets the target when the proportions of zeros are unequal. In terms of the 
average width, the confidence interval of the MOVER method is the narrowest. However, this method 
has a coverage probability lower than 0.95 in all scenarios, thus failing to meet the criteria. The LS 
and BCI methods have the widest confidence intervals compared to the other methods. 

 
 
 
 
 
 



2710 

AIMS Mathematics  Volume 10, Issue 2, 2697–2723. 

Table 2. Performance measures of the 95% confidence intervals for the common CV; k = 3. 

Scenarios 
Coverage probability Average width 

GCI MOVER LS BCI FGCI  GCI MOVER LS BCI FGCI  

1 0.960 0.954 0.898 0.943 0.941 0.3124 0.2772 0.2826 0.3127 0.3190 

2 0.956 0.931 0.866 0.934 0.937 0.4539 0.3607 0.3706 0.4235 0.4313 

3 0.964 0.941 0.857 0.935 0.920 0.4097 0.3738 0.3921 0.4678 0.4459 

4 0.975 0.920 0.786 0.923 0.909 0.6208 0.5442 0.5843 0.7380 0.6854 

5 0.952 0.952 0.864 0.948 0.931 0.2648 0.2344 0.2354 0.2779 0.2756 

6 0.968 0.947 0.818 0.933 0.928 0.4445 0.3103 0.3108 0.4040 0.4133 

7 0.968 0.935 0.797 0.953 0.923 0.3517 0.3257 0.3325 0.4519 0.4129 

8 0.987 0.908 0.747 0.943 0.910 0.5304 0.4918 0.5044 0.7448 0.6674 

9 0.965 0.953 0.865 0.950 0.929 0.2193 0.1965 0.1938 0.2527 0.2407 

10 0.967 0.907 0.758 0.943 0.926 0.4259 0.2698 0.2620 0.3955 0.3937 

11 0.976 0.922 0.715 0.937 0.901 0.2917 0.2885 0.2770 0.4365 0.3813 

12 0.982 0.911 0.682 0.945 0.910 0.4374 0.4473 0.4247 0.7475 0.6405 

13 0.960 0.953 0.900 0.942 0.937 0.2055 0.1927 0.1977 0.2176 0.2136 

14 0.956 0.926 0.886 0.938 0.917 0.2770 0.2877 0.2998 0.3452 0.3159 

15 0.965 0.936 0.863 0.941 0.920 0.2647 0.2590 0.2761 0.3312 0.3012 

16 0.965 0.925 0.843 0.941 0.902 0.3964 0.3780 0.4159 0.5280 0.4647 

17 0.957 0.944 0.898 0.945 0.934 0.1730 0.1618 0.1647 0.1950 0.1849 

18 0.953 0.906 0.811 0.939 0.902 0.2519 0.2507 0.2525 0.3395 0.3026 

19 0.978 0.933 0.834 0.946 0.911 0.2259 0.2267 0.2326 0.3188 0.2774 

20 0.966 0.916 0.767 0.943 0.892 0.3358 0.3371 0.3515 0.5252 0.4429 

21 0.954 0.944 0.859 0.948 0.908 0.1427 0.1356 0.1344 0.1761 0.1609 

22 0.956 0.905 0.717 0.956 0.922 0.2403 0.2170 0.2092 0.3444 0.3006 

23 0.970 0.918 0.759 0.952 0.893 0.1872 0.1996 0.1926 0.3086 0.2570 

24 0.977 0.912 0.696 0.948 0.886 0.2877 0.3083 0.2973 0.5290 0.4305 

25 0.962 0.944 0.894 0.946 0.930 0.2247 0.2130 0.2172 0.2394 0.2345 

26 0.969 0.960 0.914 0.950 0.941 0.2951 0.2764 0.2841 0.3215 0.3095 

27 0.965 0.934 0.844 0.940 0.910 0.2898 0.2888 0.3035 0.3631 0.3295 

28 0.963 0.922 0.832 0.930 0.898 0.4228 0.4224 0.4543 0.5779 0.5085 

29 0.967 0.954 0.900 0.942 0.923 0.1878 0.1796 0.1804 0.2135 0.2037 

30 0.968 0.942 0.838 0.938 0.916 0.2754 0.2367 0.2390 0.3086 0.2920 

31 0.964 0.932 0.813 0.940 0.902 0.2438 0.2494 0.2546 0.3483 0.3037 

32 0.978 0.901 0.775 0.943 0.892 0.3631 0.3816 0.3885 0.5766 0.4877 

33 0.951 0.939 0.842 0.930 0.908 0.1543 0.1498 0.1478 0.1930 0.1768 

34 0.969 0.907 0.790 0.953 0.922 0.2610 0.2050 0.1972 0.2997 0.2773 

35 0.977 0.919 0.723 0.941 0.882 0.2022 0.2227 0.2128 0.3380 0.2830 

36 0.978 0.916 0.772 0.916 0.854 0.3030 0.3462 0.3280 0.5797 0.4705 

37 0.953 0.944 0.917 0.945 0.926 0.1508 0.1500 0.1537 0.1685 0.1604 

38 0.951 0.955 0.926 0.946 0.916 0.1871 0.1973 0.2013 0.2248 0.2076 

39 0.936 0.937 0.893 0.950 0.906 0.1917 0.2062 0.2144 0.2582 0.2271 

Continued on next page 
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Scenarios 
Coverage probability Average width 

GCI MOVER LS BCI FGCI  GCI MOVER LS BCI FGCI  

40 0.921 0.915 0.873 0.943 0.891 0.2691 0.3055 0.3206 0.4083 0.3453 

41 0.952 0.939 0.887 0.943 0.928 0.1249 0.1262 0.1270 0.1502 0.1390 

42 0.947 0.943 0.876 0.955 0.926 0.1677 0.1701 0.1679 0.2150 0.1936 

43 0.948 0.913 0.838 0.957 0.909 0.1601 0.1799 0.1800 0.2476 0.2091 

44 0.951 0.899 0.804 0.956 0.894 0.2276 0.2749 0.2708 0.4040 0.3288 

45 0.955 0.943 0.879 0.954 0.916 0.1016 0.1053 0.1034 0.1354 0.1205 

46 0.954 0.900 0.810 0.959 0.902 0.1540 0.1452 0.1381 0.2101 0.1849 

47 0.938 0.909 0.763 0.951 0.880 0.1309 0.1614 0.1486 0.2379 0.1937 

48 0.915 0.890 0.727 0.958 0.883 0.1877 0.2503 0.2267 0.4030 0.3163 

*Note: Italics indicate the most suitable average width.

 

Figure 1. Comparison of the performance of the proposed method for k = 3 in terms of 
coverage probability with respect to (A) sample size, (B) shape parameter, (C) proportion 
of zero, and in terms of average width with respect to (D) sample sizes, (E) shape 
parameter, and (F) proportion of zero (a1 = (303), b1 = (30, 50, 100), c1 = (503), d1 = 
(1003), e1 = (2.03), f1 = (2.53), g1 = (3.03), h1 = (0.13), i1 = (0.1, 0.3, 0.5), j1 = (0.33), k1 
= (0.53)). 
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Table 3. Performance measures of the 95% confidence intervals for the common CV; k = 5. 

Scenarios 
Coverage probability Average width 
GCI MOVER LS BCI FGCI  GCI MOVER LS BCI FGCI  

49 0.944 0.933 0.978 0.944 0.938 0.2182 0.1734 0.2820 0.2145 0.2196 

50 0.954 0.935 0.942 0.954 0.951 0.2685 0.2293 0.3080 0.2834 0.2831 

51 0.937 0.902 0.965 0.944 0.933 0.2862 0.2319 0.3922 0.3217 0.3080 

52 0.940 0.893 0.910 0.904 0.893 0.4433 0.3356 0.5854 0.5083 0.4783 

53 0.924 0.930 0.977 0.941 0.934 0.1860 0.1490 0.2356 0.1903 0.1904 

54 0.951 0.920 0.910 0.946 0.930 0.2355 0.1987 0.2566 0.2657 0.2582 

55 0.915 0.905 0.927 0.941 0.912 0.2485 0.2079 0.3326 0.3074 0.2841 

56 0.910 0.882 0.895 0.934 0.919 0.3868 0.3079 0.5006 0.5068 0.4596 

57 0.900 0.928 0.961 0.941 0.917 0.1570 0.1266 0.1946 0.1711 0.1655 

58 0.959 0.914 0.813 0.935 0.920 0.2159 0.1730 0.2119 0.2573 0.2457 

59 0.881 0.879 0.896 0.955 0.920 0.2094 0.1866 0.2774 0.2993 0.2633 

60 0.866 0.832 0.803 0.922 0.888 0.3235 0.2896 0.4272 0.5123 0.4468 

61 0.915 0.918 0.986 0.940 0.937 0.1794 0.1482 0.2542 0.1822 0.1824 

62 0.959 0.935 0.933 0.931 0.913 0.2317 0.2076 0.2873 0.2584 0.2453 

63 0.898 0.900 0.975 0.937 0.911 0.2318 0.1991 0.3535 0.2751 0.2559 

64 0.897 0.879 0.944 0.912 0.891 0.3514 0.2837 0.5282 0.4348 0.3954 

65 0.907 0.917 0.988 0.937 0.928 0.1526 0.1264 0.2120 0.1617 0.1583 

66 0.950 0.923 0.909 0.946 0.921 0.2032 0.1796 0.2397 0.2467 0.2274 

67 0.878 0.895 0.948 0.946 0.904 0.2016 0.1778 0.3009 0.2640 0.2367 

68 0.875 0.873 0.922 0.939 0.905 0.3101 0.2663 0.4551 0.4360 0.3821 

69 0.877 0.911 0.979 0.951 0.920 0.1266 0.1053 0.1743 0.1456 0.1376 

70 0.966 0.888 0.827 0.945 0.908 0.1865 0.1581 0.1996 0.2466 0.2211 

71 0.816 0.859 0.912 0.958 0.906 0.1664 0.1565 0.2496 0.2550 0.2195 

72 0.833 0.816 0.863 0.928 0.887 0.2587 0.2442 0.3822 0.4364 0.3693 

73 0.938 0.946 0.996 0.950 0.944 0.1531 0.1339 0.2344 0.1615 0.1588 

74 0.959 0.937 0.954 0.940 0.932 0.1894 0.1762 0.2585 0.2225 0.2082 

75 0.919 0.918 0.982 0.942 0.926 0.1967 0.1761 0.3266 0.2440 0.2228 

76 0.884 0.880 0.955 0.916 0.884 0.2931 0.256 0.4900 0.3874 0.3432 

77 0.928 0.920 0.996 0.944 0.923 0.1296 0.1134 0.1945 0.1429 0.1377 

78 0.965 0.898 0.935 0.952 0.925 0.1656 0.1574 0.216 0.2128 0.1940 

79 0.870 0.881 0.966 0.948 0.917 0.1684 0.1581 0.2772 0.2346 0.2055 

80 0.875 0.835 0.932 0.932 0.894 0.2572 0.2371 0.4154 0.3859 0.3298 

81 0.923 0.935 0.980 0.942 0.905 0.1074 0.0949 0.1594 0.1289 0.1197 

82 0.952 0.928 0.882 0.952 0.922 0.1488 0.1371 0.1773 0.2100 0.1868 

83 0.843 0.907 0.933 0.953 0.892 0.1417 0.1401 0.2284 0.2271 0.1910 

84 0.844 0.866 0.896 0.945 0.882 0.2195 0.2161 0.3534 0.3878 0.3185 

85 0.931 0.925 0.984 0.948 0.929 0.1346 0.1221 0.1881 0.1460 0.1415 

86 0.950 0.939 0.959 0.953 0.937 0.1661 0.1606 0.2165 0.1994 0.1852 

87 0.907 0.916 0.961 0.939 0.899 0.1701 0.1615 0.2626 0.2221 0.1999 

Continued on next page 
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Scenarios 
Coverage probability Average width 
GCI MOVER LS BCI FGCI GCI MOVER LS BCI FGCI 

88 0.883 0.895 0.954 0.922 0.891 0.2420 0.2330 0.3924 0.3520 0.3043 

89 0.928 0.926 0.978 0.948 0.924 0.1123 0.1025 0.1558 0.1297 0.1228 

90 0.952 0.935 0.925 0.955 0.919 0.1431 0.1379 0.1806 0.1898 0.1712 

91 0.861 0.903 0.945 0.946 0.905 0.1432 0.1424 0.2215 0.2126 0.1837 

92 0.862 0.864 0.903 0.938 0.894 0.2063 0.2140 0.3319 0.3503 0.2915 

93 0.909 0.907 0.953 0.939 0.903 0.0919 0.0858 0.1269 0.1167 0.1064 

94 0.958 0.900 0.847 0.947 0.918 0.1290 0.1225 0.1481 0.1857 0.1631 

95 0.860 0.889 0.897 0.952 0.914 0.1172 0.1258 0.1831 0.2054 0.1705 

96 0.819 0.832 0.847 0.937 0.881 0.1713 0.2029 0.2787 0.3511 0.2824 

*Note: Italics indicate the most suitable average width. 

 

Figure 2. Comparison of the performance of the proposed method for k = 5 in terms of 
coverage probability with respect to (G) sample size, (H) shape parameter, (I) proportion 
of zero, and in terms of average width with respect to (J) sample sizes, (K) shape parameter, 
and (L) proportion of zero (a2 = (303, 502), b2 = (302, 502, 100), c2 = (30, 502, 1002), d2 = 
(503, 1002), e2 = (2.05), f2 = (2.55), g2 = (3.05), h2 = (0.15), i2 = (0.12,0.32,0.5), j2 = (0.35), 
k2 = (0.55)). 
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The simulation results for k = 10 are shown in Table 4 and Figure 3. In almost all scenarios, the 
LS and BCI methods have coverage probabilities greater than or close to 0.95, except when the 
proportions of zeros equal 0.510. Both methods have wider average widths compared to the other 
methods. The GCI method has coverage probabilities close to 0.95 when the sample size is large and 
the shape parameters are equal to 2.0. For the MOVER method, even though it has the narrowest 
average width, it has coverage probabilities lower than 0.95 in all scenarios. 

Figures 1–3 exhibit similar patterns, showing consistent trends. As the sample size increases, all 
the proposed methods tend to decrease. Similarly, as the shape parameter increases, all the proposed 
methods also tend to decrease. Conversely, when the proportion of zeros increases, all the proposed 
methods tend to increase. These observations are all based on the average width. 

 

Figure 3. Comparison of the performance of the proposed method for k = 10 in terms of 
coverage probability with respect to (M) sample size, (N) shape parameter, (O) 
proportion of zero, and in terms of average width with respect to (P) sample sizes, (Q) 
shape parameter, and (R) proportion of zero (a3 = (305, 505), b3 = (305, 503, 1002), c3 = 
(506, 1004), d3 = (10010), e3 = (2.010), f3 = (2.510), g3 = (3.010), h3 = (0.110), i3 = 
(0.15,0.33,0.52), j3 = (0.310), k3 = (0.510)). 
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Table 4. Performance measures of the 95% confidence intervals for the common CV; k = 10. 

Scenarios 
Coverage probability Average width 
GCI MOVER LS BCI FGCI GCI MOVER LS BCI FGCI 

97 0.927 0.894 0.961 0.953 0.953 0.1535 0.1264 0.2812 0.1481 0.1525 

98 0.951 0.940 0.935 0.959 0.952 0.1855 0.1628 0.2812 0.1867 0.1872 

99 0.954 0.850 0.943 0.958 0.954 0.2056 0.1670 0.3932 0.2208 0.2145 

100 0.929 0.789 0.854 0.902 0.891 0.3392 0.2946 0.5878 0.3486 0.3355 

101 0.903 0.905 0.950 0.953 0.929 0.1336 0.1075 0.2353 0.1307 0.1336 

102 0.929 0.931 0.948 0.953 0.944 0.1707 0.1443 0.2344 0.1745 0.1707 

103 0.909 0.862 0.904 0.957 0.936 0.1814 0.1472 0.3341 0.2105 0.1967 

104 0.888 0.803 0.826 0.907 0.896 0.3046 0.2221 0.5069 0.3499 0.3245 

105 0.824 0.914 0.951 0.937 0.920 0.1122 0.0900 0.1926 0.1165 0.1148 

106 0.866 0.908 0.952 0.957 0.940 0.1581 0.1275 0.1935 0.1688 0.1587 

107 0.834 0.853 0.864 0.957 0.906 0.1547 0.1313 0.2802 0.2057 0.1827 

108 0.836 0.791 0.764 0.931 0.870 0.2584 0.2081 0.4254 0.3564 0.3196 

109 0.920 0.908 0.961 0.959 0.933 0.1333 0.1111 0.2818 0.1316 0.1339 

110 0.944 0.931 0.965 0.963 0.915 0.1626 0.1540 0.2816 0.1782 0.1728 

111 0.934 0.895 0.927 0.956 0.925 0.1774 0.1455 0.3911 0.1979 0.1876 

112 0.934 0.874 0.856 0.920 0.889 0.2932 0.2572 0.5836 0.3132 0.2929 

113 0.887 0.926 0.953 0.953 0.920 0.1160 0.0948 0.2347 0.1167 0.1172 

114 0.913 0.915 0.963 0.952 0.931 0.1417 0.1362 0.2356 0.1686 0.1563 

115 0.904 0.895 0.904 0.958 0.908 0.1584 0.1290 0.3312 0.1889 0.1732 

116 0.892 0.865 0.840 0.917 0.871 0.2691 0.1937 0.5054 0.3140 0.2841 

117 0.873 0.920 0.936 0.944 0.892 0.0983 0.0786 0.1927 0.1039 0.1007 

118 0.926 0.905 0.959 0.955 0.912 0.1309 0.1214 0.1922 0.1667 0.1490 

119 0.861 0.879 0.836 0.958 0.905 0.1361 0.1148 0.2756 0.1833 0.1598 

120 0.875 0.788 0.747 0.910 0.830 0.2287 0.1802 0.4273 0.3159 0.2729 

121 0.943 0.921 0.962 0.958 0.929 0.1039 0.0941 0.2170 0.1103 0.1090 

122 0.949 0.931 0.957 0.954 0.923 0.1250 0.1221 0.2174 0.1426 0.1357 

123 0.950 0.903 0.951 0.947 0.903 0.1332 0.1243 0.3034 0.1674 0.1532 

124 0.958 0.900 0.917 0.932 0.883 0.1959 0.1793 0.4527 0.2642 0.2349 

125 0.880 0.919 0.961 0.941 0.889 0.0877 0.0797 0.1804 0.0979 0.0944 

126 0.924 0.930 0.954 0.956 0.927 0.1100 0.1071 0.1808 0.1341 0.1237 

127 0.955 0.907 0.920 0.948 0.887 0.1134 0.1092 0.2552 0.1599 0.1408 

128 0.950 0.859 0.865 0.943 0.882 0.1697 0.1626 0.3878 0.2634 0.2246 

129 0.894 0.923 0.952 0.943 0.866 0.0723 0.0671 0.1480 0.0880 0.0819 

130 0.920 0.904 0.959 0.956 0.910 0.1008 0.0943 0.1468 0.1301 0.1158 

131 0.921 0.863 0.873 0.950 0.906 0.0941 0.0986 0.2125 0.1551 0.1309 

132 0.924 0.823 0.789 0.934 0.862 0.1446 0.1531 0.3257 0.2649 0.2175 

133 0.959 0.933 0.970 0.954 0.936 0.0836 0.0798 0.1534 0.0920 0.0888 

134 0.953 0.949 0.961 0.951 0.923 0.0957 0.1005 0.1538 0.1100 0.1037 

135 0.964 0.907 0.959 0.940 0.919 0.1057 0.1063 0.2146 0.1404 0.1257 

Continued on next page 
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Scenarios 
Coverage probability Average width 
GCI MOVER LS BCI FGCI  GCI MOVER LS BCI FGCI  

136 0.964 0.883 0.943 0.930 0.895 0.1490 0.1541 0.3189 0.2215 0.1904 

137 0.946 0.909 0.969 0.952 0.931 0.0696 0.0678 0.1266 0.0817 0.0769 

138 0.942 0.946 0.964 0.955 0.946 0.0838 0.0886 0.1274 0.1022 0.0934 

139 0.968 0.888 0.927 0.954 0.929 0.0886 0.0946 0.1798 0.1343 0.1154 

140 0.957 0.859 0.904 0.927 0.895 0.1261 0.1418 0.2706 0.2205 0.1824 

141 0.936 0.921 0.947 0.959 0.934 0.0568 0.0590 0.1038 0.0733 0.0666 

142 0.940 0.918 0.958 0.957 0.916 0.0751 0.0782 0.1036 0.0968 0.0858 

143 0.958 0.875 0.877 0.958 0.905 0.0727 0.0841 0.1486 0.1302 0.1073 

144 0.962 0.831 0.858 0.940 0.907 0.1047 0.1298 0.2275 0.2218 0.1763 

*Note: Italics indicate the most suitable average width. 

Algorithm 6. 
For a given (𝑚ଵ, 𝑚ଶ, . . . , 𝑚௞), (𝛼ଵ, 𝛼ଶ, . . . , 𝛼௞), (𝜗ଵ, 𝜗ଶ, . . . , 𝜗௞), and 𝛽ଵ = 𝛽ଶ =. . . = 𝛽௞ = 1, 
for 𝑟 = 1 to 𝑀 
1) Generate sample from the ZIBS distribution; 
2) Compute the unbiased estimates 𝛼ො௜ and 𝜗መ௜; 
3) Compute the 95% confidence intervals for 𝜃 based on the GCI, MOVER, LS, BCI, and 

FGCI via Algorithms 1–5, respectively; 
4) If [𝐿௥ ≤ 𝜃 ≤ 𝑈௥], set 𝐷௥ = 1; else set 𝐷௥ = 0; 
End 𝑟 loop. 

5) The coverage probability and average width for each method are obtained by 𝐶𝑃 =
ଵ

ெ
∑ 𝐷௥

ெ
௥ୀଵ  

and 𝐴𝑊 =
௎ೝି௅ೝ

ெ
, where 𝑈௥ and 𝐿௥ are the upper and lower confidence limits, 

respectively. 

4. An empirical application 

In this study, we leverage wind speed data from all directions to construct CIs for the common 
coefficient of variation of several ZIBS distributions. The data were collected from January 1 to 7, 2024, 
from three weather stations: Chanthaburi Weather Observing Station in Chanthaburi Province, 
Chumphon Weather Observing Station in Chumphon Province, and Songkhla Weather Observing 
Station in Songkhla Province. The selection of these three stations is due to their proximity to the Gulf 
of Thailand, which makes them directly influenced by sea breezes and tropical storms. This results in 
high wind speed fluctuations and also impacts the livelihoods, economy, and environment of the 
surrounding communities. All data were collected by the Thai Meteorological Department and are 
presented in Table 5 (Thai Meteorological Department Automatic Weather System, 
https://www.tmd.go.th/ service/tmdData). To visualize the data distribution, we plotted histograms of 
wind speed data from all three stations, as shown in Figure 4. Table 6 provides statistical summaries 
for wind speed data at each station, revealing that the coefficients of variation of the wind speed data 
for the Chanthaburi Weather Observing Station, Chumphon Weather Observing Station, and Songkhla 
Weather Observing Station are 2.6799, 2.5111, and 2.7118, respectively. When considering the entire 
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wind speed dataset, we observe a mixture of zero values (no wind) and positive values. For the positive 
values, we evaluate the suitability of the data distribution using the Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) calculated as 𝐴𝐼𝐶 = 2𝑙𝑛(𝐿) + 2𝑝 and 𝐵𝐼𝐶 = 2𝑙𝑛(𝐿) +

2𝑝𝑙𝑛(𝑜), respectively, where p is the number of parameters estimated, o is the number of observations, 
and L is the likelihood function. From Table 7, it is evident that the Birnbaum-Saunders distribution 
exhibits the lowest AIC and BIC values compared to other distributions, indicating its best fit for 
positive wind speed data. Additionally, to confirm that the positive wind speed data follows the 
Birnbaum-Saunders distribution, we plotted the cumulative distribution function (CDF) derived from 
the positive wind speed data and the estimated CDF from the Birnbaum-Saunders distribution. As 
shown in Figure 5, both graphs are similar, indicating a good fit. Therefore, the wind speed data 
comprises both positive and zero values and follows the ZIBS distribution. This distribution was thus 
used to compute the CIs for the common coefficient of variation of the wind speed data. Table 8 
presents the 95% confidence intervals for the common coefficient of variation of wind speed data from 
the three weather observing stations using the GCI, MOVER, LS, BCI, and FGCI methods. We 
compared wind speed data with parameters generated from simulation using a sample size of 𝑚௜ = 
1003, parameter 𝛼௜ = 2.53, and parameter 𝜗௜ = 0.53, as shown in Table 2. The simulation results 
indicate that the GCI and BCI methods meet the criterion of coverage probability greater than or equal 
to the nominal confidence level of 0.95. When considering the average width, the GCI method provides 
the narrowest confidence interval. The results in Table 8 show that the confidence interval for the 
common coefficient of variation for the wind speed data using the GCI method is [2.5001, 2.7224], 
with a confidence interval width of 0.2224, which is the narrowest among all methods. This leads to 
the conclusion that the appropriate method for the wind speed data is consistent with the simulation 
results. 

 

Figure 4. The histograms of wind speed data for each weather observing station. 
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Table 5. Data on the wind speed (knots) from the Chanthaburi Weather Observing Station, 
Chumphon Weather Observing Station, and Songkhla Weather Observing Station, 
Thailand. 

N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 

Chanthaburi Weather Observing Station 

4.7 19.4 25.7 10.2 1.7 0.9 0.3 2.2 0.7 0.3 1.5 1.5 0.3 0.0 0.0 1.8 

9.2 18.2 20.6 8.2 0.7 0.1 0.7 1.9 0.4 0.0 0.6 1.7 0.3 0.3 2.2 7.4 

9.8 31.8 36.5 5.6 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.2 5.4 

8.3 30.4 43.9 5.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 2.6 

2.3 25.0 60.7 11.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 

19.2 9.9 1.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 13.3 

Chumphon Weather Observing Station 

0.0 0.0 0.0 0.0 0.8 21.4 14.6 2.8 7.6 11.0 13.2 6.3 1.5 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.5 17.6 13.9 3.5 0.9 1.5 26.5 18.1 0.3 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.2 15.6 23.5 5.9 0.9 4.6 21.0 14.0 0.4 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 11.5 25.2 7.9 0.6 1.9 16.1 29.2 0.3 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 17.8 36.2 1.9 0.3 2.0 22.2 13.1 0.1 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 8.7 26.6 6.2 1.0 2.9 22.6 24.2 0.2 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.3 5.4 2.3 1.8 7.1 46.9 23.0 0.1 0.0 0.0 0.0 

Songkhla Weather Observing Station 

0.9 4.8 12.2 17.0 11.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 

0.3 5.8 19.2 16.9 7.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 3.7 13.8 21.0 14.9 2.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.1 

0.1 1.4 6.9 17.6 16.3 5.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 1.5 8.3 21.9 17.0 1.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

0.4 1.8 9.4 22.1 14.6 2.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.1 

0.3 1.3 8.8 22.2 18.8 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.2 

Table 6. Summary statistics for the wind speed data. 

Data 𝑚௜ 𝑚௜(଴) 𝑚௜(ଵ) 𝜗መ௜ 𝛼ො௜ 𝛽መ௜ 𝜃෠௜ 
Chanthaburi 112 55 57 0.4911 2.4263 2.5385 2.6799 
Chumphon 112 53 59 0.4732 2.1425 3.1567 2.5111 
Songkhla 112 56 56 0.5000 2.4389 1.6118 2.7118 
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Table 7. The AIC and BIC values of each distribution for the wind speed data. 

Distribution 
Chanthaburi  Chumphon  Songkhla  
AIC BIC AIC BIC AIC BIC 

Normal 490.51 494.60 450.80 454.96 388.26 392.31 
Lognormal 341.50 345.59 400.64 404.79 301.91 305.96 
Logistic 466.00 470.09 450.81 454.96 391.04 395.09 
Cauchy 418.12 422.20 467.59 471.75 390.09 394.14 
Exponential 378.61 380.66 396.35 398.43 322.00 324.02 
Gamma 350.13 354.22 390.40 394.55 299.53 303.58 
Birnbaum-Saunders 336.10 342.23 386.43 392.66 285.49 291.56 
Weibull 345.83 349.92 391.75 395.91 300.21 304.26 

  

Figure 5. The CDF of the positive wind speed data and the estimated CDF from the 
Birnbaum-Saunders distribution. 

Table 8. The 95% CIs for the common coefficients of variation for the wind speed data. 

Methods Interval [L, U] Width 
GCI [2.5001, 2.7224] 0.2224 
MOVER [2.5050, 2.7283] 0.2233 
LS [2.5077, 2.7690] 0.2613 
BCI [2.4880, 2.8142] 0.3262 
FGCI [2.4979, 2.7816] 0.2837 

5. General discussion 

Based on the study results, it is evident that the GCI demonstrates good performance in almost 
all scenarios, as the coverage probability is greater than or close to the nominal confidence level 
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of 0.95, which is consistent with the previous research by Ye, Ma, and Wang [32], Thangjai, Niwitpong, 
and Niwitpong [33], Janthasuwan, Niwitpong, and Niwitpong [11]. When k is large, both LS and BCI 
perform well. In most scenarios, MOVER and FGCI have coverage probabilities below acceptable 
levels, indicating that these methods may not be suitable for many situations, which aligns with the 
previous research by Puggard, Niwitpong, and Niwitpong [17]. Considering the average width, all 
proposed methods tend to decrease as the sample size and shape parameters increase, which improves 
their efficiency. Conversely, when the proportion of zeros increases, all proposed methods tend to 
decrease, leading to reduced efficiency. In our case, the simulation results showed that the MOVER 
method provided the narrowest confidence intervals for most scenarios and performed well with small 
sample sizes combined with a low proportion of zeros. However, the MOVER method yielded 
coverage probabilities lower than the specified confidence level in almost all scenarios. Similarly, the 
FGCI method achieves a coverage probability close to the specified confidence level in scenarios with 
a low proportion of zeros. This could be attributed to certain weaknesses that affect the fiducial 
generalized pivotal quantities for the proportion of zeros. Additionally, the issues with both the 
MOVER and FGCI methods likely arise from the upper and lower bounds for zero values used in 
constructing the confidence intervals and the combined effect with other parameters; this results in 
insufficient coverage probability. Finally, wind energy is a vital, renewable source of power, primarily 
generated by capturing wind speed. However, fluctuations in wind speed can introduce uncertainty. 
According to Lee, Fields, and Lundquist [34], understanding these variations is crucial for assessing 
wind resource potential. 

6. Conclusions 

This article presents an estimation of the common coefficient of variation of several ZIBS 
distributions. The methods proposed include GCI, MOVER, LS, BCI, and FGCI. The performance of 
each method was evaluated through Monte Carlo simulations, comparing their coverage probabilities 
and average widths. The simulation results for k = 3 recommend the GCI method due to its acceptable 
coverage probability and narrow confidence intervals in almost all scenarios, while the BCI method is 
another option for situations with large sample sizes. For k = 5, we recommend the GCI method when 
𝜗௜ is unequal, the LS method when 𝜗௜ is small and the sample size is large, and the BCI method when 
𝜗௜ is large. For k = 10, the BCI and GCI methods are recommended: the BCI method (for small to 
medium sample sizes) and the GCI method for large sample sizes. Additionally, in all sample cases (k 
= 3, 5, and 10), the MOVER method has the narrowest confidence intervals but a coverage probability 
below the acceptable level in most situations, and the FGCI method has a coverage probability below 
the acceptable level in almost all situations. Therefore, these two methods are not recommended. 
Finally, all the proposed methods were applied to wind speed data in Thailand and yielded results 
consistent with the simulation findings. In future research, we will explore new methods for 
constructing confidence intervals, potentially using Bayesian and highest posterior density (HPD) 
approaches to enhance their effectiveness. Additionally, we will use other real-world data to conduct a 
more comprehensive study. 
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