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1. Introduction

Integrable evolution equations are very common and play a key role in nonlinear science, as
shown in studies like [1–3]. Specifically, the Korteweg-de Vries (KdV) equation, which comes
from fluid dynamics, explains how waves with slight dispersion and small amplitude evolve in media
with quadratic nonlinearity [2, 4]. Additionally, the nonlinear Schrödinger (NLS) equation describes
the behavior of waves that are slightly nonlinear and quasi-monochromatic in media with cubic
nonlinearity [3, 5, 6]. Moreover, the derivative nonlinear Schrödinger (DNLS) equation is used to
describe Alfvén waves in plasmas with low-β values, as well as large-amplitude waves that run parallel
to the magnetic field [7–9]. These equations are mathematically integrable, meaning they can be solved
exactly.

Recently, Ablowitz and Musslimani introduced the following parity time (PT)-symmetric nonlocal
NLS equation and derived its explicit solutions [10]:

iut(x, t) = uxx(x, t) + 2εu(x, t)2u∗(−x, t) (ε = ±1), (1.1)
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where ε = ±1 denotes the focusing (+) and defocusing (−) nonlinearity, and the asterisk denotes the
complex conjugate. The PT symmetry implies that the self-induced potential V(x, t) = u(x, t)u∗(−x, t)
fulfills the relation V∗(−x, t) = V(x, t), while the nonlocality indicates that the value of the potential
V(x, t) at x requires the information on u(x, t) at x, as well as at −x [11–13]. Since Eq (1.1) exhibits
properties akin to those of the standard NLS equation, such as integrability in the Lax and inverse
scattering senses, a significant amount of theoretical research has been conducted [14–16], and the
study on the equations has extended to higher-order and coupled ones [17–19]. Furthermore, there has
been experimental evidence observed in the fields of optics and materials science [20–22].

Subsequently, some other nonlocal integrable equations have been proposed [23–25]. One of these
nonlocal equations is the nonlocal DNLS equation [8, 9],

iut(x, t) = uxx(x, t) + ε[u(x, t)2u∗(−x, t)]x (ε = ±1), (1.2)

which is obtained from the standard DNLS equation by replacing |u|2u with u(x, t)2u∗(−x, t), and the
conserved density V(x, t) = u(x, t)u∗(−x, t) satisfies the relation V∗(−x, t) = V(x, t). In [8], hierarchies
of nonlocal DNLS-type equations have been derived utilizing Lie algebra splitting, with the specific
nonlocal DNLS equation being termed as nonlocal DNLSI. Zhou [9] formulates the 2n-fold Darboux
transformation (DT) and derives global bounded solutions from zero seed solutions for Eq (1.2). In
this paper, we concentrate on how to construct arbitrary order DT of Eq (1.2), what happens if the
eigenvalues degenerate, and how to construct solutions from different seeds.

This paper is organized as follows: In Section 2, we give a detailed derivation of the Wronskian-type
determinant representation of arbitrary order DT. Moreover, different choice of the eigenvalues may
lead different Darboux matrix, even in the same order. If there are duplicate eigenvalues, a generalized
form of the DT may prove useful. In Section 3, we obtain solutions of Eq (1.2) from zero and non-
zero seed solutions. Periodic solutions and rogue waves are constructed despite of the existence of
singularity. Finally, conclusions and discussions are given in Section 4.

2. Darboux transformation

In this section, we will construct the DT of the coupled nonlocal DNLS equations

iut − uxx + (u2v)x = 0, (2.1a)
ivt + vxx + (uv2)x = 0, (2.1b)

which is the compatibility condition of the following Lax pair [9]:

Φx = UΦ,Φt = VΦ, (2.2)

where Φ = ( f (x, t), g(x, t))T ,

U = λ2σ3 + λP =

(
λ2 λu
λv −λ2

)
, (2.3)

V = i(λ2uv−2λ4)σ3−2iλ3P+ iλ(P3−σ3Px) =

 iλ2uv − 2iλ4 iλ
(
u2v − ux

)
− 2iλ3u

iλ
(
uv2 + vx

)
− 2iλ3v −iλ2uv + 2iλ4

 , (2.4)
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with

P =

(
0 u
v 0

)
, (2.5)

and Pauli matrix

σ3 =

(
1 0
0 −1

)
. (2.6)

Under the reduction condition v(x, t) = −εū∗(x, t) = −εu∗(−x, t), Eq (2.1) will be reduced to the
nonlocal DNLS Eq (1.2). Here, f̄ (x, t) means f (−x, t). Unlike the local DNLS equation, there are four

linear independence solutions of (2.2) associate with one complex eigenvalue. Specifically, if
(

f
g

)
are solutions of (2.2) with λ, then

(
f
−g

)
,
(
εḡ∗

f̄ ∗

)
, and

(
εḡ∗

− f̄ ∗

)
are solutions of (2.2) with −λ, λ∗, and

−λ∗, respectively.

2.1. The first-order DT

We can suppose Φ[1] = TΦ as the DT, where

T =

(
λa1(x, t) + a0(x, t) λb1(x, t) + b0(x, t)
λc1(x, t) + c0(x, t) λd1(x, t) + d0(x, t)

)
(2.7)

is the first-order DT matrix, and there exist U[1] and V[1] possessing the same form as U and V with u
and v replaced by the new potentials u[1] and v[1], which satisfy Eq (2.2). Therefore, T [λ] must satisfy
conditions

Tx + TU − U[1]T = 0, (2.8a)
Tt + TV − V[1]T = 0. (2.8b)

We set Φ1 =

(
f1

g1

)
are solutions of (2.2) with λ = λ1. Comparing the coefficients of λ j, ( j = 3, 2, 1, 0)

in Eq (2.8), we obtain b1(x, t) = c1(x, t) = a0(x, t) = d0(x, t) = 0, b0(x, t) = b0, c0(x, t) = c0 and
a1(x, t) =

g1
f1
, d1(x, t) =

f1
g1

by setting b0 = c0 = −λ1, so we have

u[1] = ρ1
2u + 2λ1ρ1, (2.9a)

v[1] =
1
ρ1

2 v − 2λ1
1
ρ1
, (2.9b)

where ρ1 =
g1
f1

.

Theorem 1. Suppose λ1 , 0, which is real when ε = 1 or purely imaginary when ε = −1. Define Φ[1]

and ρ1 as above such that ρ1ρ̄1
∗ = 1. Then Eq (2.9) are new solutions of (1.2), and the corresponding

Darboux matrix is

T =

(
λρ1 −λ1

−λ1
λ
ρ1

)
= λ

(
ρ1

1
ρ1

)
−

(
λ1

λ1

)
. (2.10)

Proof. We only need to prove v[1] = −εū[1]
∗, which can be easily verified by using (2.9) and ρ1ρ̄1

∗≥0.
�
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As λ1 will be real or purely imaginary, one-fold DT only allows two eigenvalues λ1 and −λ1, so one-
fold DT is degenerated in a sense. If we choose λ1, −λ1, λ1

∗, and −λ1
∗ as four different eigenvalues,

the real and imaginary part of λ1 are both not equal to zero and we need to construct multi-fold DT.

2.2. The second-order DT

In this subsection, we will construct the two-fold DT of (1.2). The multi-fold DT can be iterated by
the one-fold DT, so we set second-order Darboux matrix as

T2 = λ2
(

a2
1
a2

)
+ λ

(
b1

c1

)
+

(
a0

a0

)
. (2.11)

We set Φk =

(
fk

gk

)
are solutions of (2.2) with λ = λk, ρk =

gk
fk

(k = 1, 2), and then T2 maps (u, v,Φ) to

(u[2], v[2],Φ[2]). By following the previous steps, we obtain

u[2] = a2
2u − 2a2b1, v[2] =

v
a2

2 +
2c1

a2
(2.12)

with

a0 = λ1λ2, a2 =

∣∣∣∣∣∣λ1g1 f1

λ2g2 f2

∣∣∣∣∣∣∣∣∣∣∣∣λ1 f1 g1

λ2 f2 g2

∣∣∣∣∣∣
, b1 =

∣∣∣∣∣∣ f1 λ1
2 f1

f2 λ2
2 f2

∣∣∣∣∣∣∣∣∣∣∣∣λ1 f1 g1

λ2 f2 g2

∣∣∣∣∣∣
, c1 =

∣∣∣∣∣∣g1 λ1
2g1

g2 λ2
2g2

∣∣∣∣∣∣∣∣∣∣∣∣λ1g1 f1

λ2g2 f2

∣∣∣∣∣∣
. (2.13)

If λ2 = λ1
∗ and λ1

∗ , ±λ1, we can obtain Theorem 1 in [9]. Moreover, if λ1, λ2 are both real or
purely imaginary, we can also obtain new solutions of (1.2).

2.3. The multi-fold DT

From above results, we know the DT will be iterated two times if λ is a complex eigenvalue and
one times if λ is real or purely imaginary. Therefore, if we choose λk(k = 0, 1, 2, · · ·, n1) as complex
eigenvalues and λ j( j = 0, 1, · · ·, n2) as real (ε = 1) or purely imaginary (ε = −1) eigenvalues, then
we can construct the (2n1 + n2)-fold DT of (1.2). For example, we can construct third-order DT by
choosing (n1, n2) = (1, 1) or (0, 3) and fourth-order DT by choosing (n1, n2) = (2, 0), (1, 2), or (0, 4).
Even though the 2n-fold DT have been derived in [9] by choosing n1 = n, n2 = 0, we construct the
Wronskian-type determinant representation of the Darboux matrix.
• 2n-order DT

We set 2n-order Darboux matrix as

T2n(λ) = λ2n

(
a2n

d2n

)
+ λ2n−1

(
b2n−1

c2n−1

)
+ · · · +

(
a0

d0

)
, (2.14)

and Φk =

(
fk

gk

)
are solutions of (2.2) with λ = λk, ρk =

gk
fk

(k = 1, 2, · · · , 2n), and then T2n maps

(u, v,Φ) to (u[2n], v[2n],Φ[2n]), where a2k, d2k (k = 0, 1, · · · , n), b2k−1, c2k−1(k = 1, 2, · · · , n) are 4n + 2
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unknown functions. Solving 4n equations T2n(λk)Φ[2n] = 0 (k = 1, 2, · · · , 2n) by setting d2n = 1
a2n

and
d0 = a0, we can uniquely determine the 4n + 2 unknown functions, and obtain

u[2n] = a2n
2u − 2a2nb2n−1, v[2n] =

v
a2n

2 +
2c2n−1

a2n
(2.15)

with

a2n = (−1)n a0D3

D1
, d2n = (−1)n a0D4

D2
, b2n−1 =

a0D5

D1
, c2n−1 = −

a0D6

D2
, (2.16)

and

D1 =
∣∣∣F(2,4,··· ,2n)

(1,2,··· ,2n) G(1,3,··· ,2n−1)
(1,2,··· ,2n)

∣∣∣ , (2.17a)

D2 =
∣∣∣F(1,3,··· ,2n−1)

(1,2,··· ,2n) G(2,4,··· ,2n)
(1,2,··· ,2n)

∣∣∣ , (2.17b)

D3 =
∣∣∣F(0,2,··· ,2n−2)

(1,2,··· ,2n) G(1,3,··· ,2n−1)
(1,2,··· ,2n)

∣∣∣ , (2.17c)

D4 =
∣∣∣F(1,3,··· ,2n−1)

(1,2,··· ,2n) G(0,2,··· ,2n−2)
(1,2,··· ,2n)

∣∣∣ , (2.17d)

D5 =
∣∣∣F(0,2,··· ,2n)

(1,2,··· ,2n) G(1,3,··· ,2n−3)
(1,2,··· ,2n)

∣∣∣ , (2.17e)

D6 =
∣∣∣F(1,3,··· ,2n−3)

(1,2,··· ,2n) G(0,2,··· ,2n)
(1,2,··· ,2n)

∣∣∣ , (2.17f)

where

F(2,4,··· ,2n)
(1,2,··· ,2n) =


f1λ1

2 f1λ1
4 · · · f1λ1

2n

f2λ2
2 f2λ2

4 · · · f2λ2
2n

...
...

...
...

f2nλ2n
2 f2nλ2n

4 · · · f2nλ2n
2n

 , (2.18)

G(1,3,··· ,2n−1)
(1,2,··· ,2n) =


g1λ1 g1λ1

3 · · · g1λ1
2n−1

g2λ2 g2λ2
3 · · · g2λ2

2n−1

...
...

...
...

g2nλ2n g2nλ2n
3 · · · g2nλ2n

2n−1

 , (2.19)

and other matrix blocks with the following blocks have been similarly defined.
As D1 =

∏2n
j=1 λ jD4, D2 =

∏2n
j=1 λ jD3, and a0 =

∏2n
j=1 λ j, then d2n = 1

a2n
will be satisfied

automatically.

If we choose λn+ j = λ∗j and Φn+ j =

(
εḡ j

∗

f̄ j
∗

)
( j = 1, 2, · · · , n), then a0 =

∏n
j=1 |λ j|

2, D1 =∣∣∣∣∣∣∣ F(2,4,··· ,2n)
(1,2,··· ,n) G(1,3,··· ,2n−1)

(1,2,··· ,n)

εḠ∗(2,4,··· ,2n)
(1,2,··· ,n) F̄∗(1,3,··· ,2n−1)

(1,2,··· ,n)

∣∣∣∣∣∣∣ and so are D2, · · · ,D6, where Ḡ∗(2,4,··· ,2n)
(1,2,··· ,n) means doing complex conjugate

and space-reverse operation to G(2,4,··· ,2n)
(1,2,··· ,n) .

Theorem 2. Suppose λ j ( j = 1, 2, · · · , n) are complex, which are all not real or purely imaginary. Then
Eq (2.15) are new solutions of (1.2). Especially, when n = 1, (2.15) become (2.12).

Proof. We only need to prove v[2n] = −εū[2n]
∗, which can be easily verified by using D̄3

∗
= D4, and

D̄5
∗

= εD6. �
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Remark 1. It is a little different if we choose λk+ j = λ∗j, Φk+ j =

(
εḡ j

∗

f̄ j
∗

)
( j = 1, 2, · · · , k)

and λs (s = 2k + 1, · · · , 2n) are all real (e.g., ε = 1), here a0 =
∏k

j=1 |λ j|
2 ∏2n

s=2k+1 λs, D1 =∣∣∣∣∣∣∣∣∣∣∣∣
F(2,4,··· ,2n)

(1,2,··· ,k) G(1,3,··· ,2n−1)
(1,2,··· ,k)

εḠ∗(2,4,··· ,2n)
(1,2,··· ,k) F̄∗(1,3,··· ,2n−1)

(1,2,··· ,k)

F(2,4,··· ,2n)
(2k+1,··· ,2n) G(1,3,··· ,2n−1)

(2k+1,··· ,2n)

∣∣∣∣∣∣∣∣∣∣∣∣ and so are D2, · · · ,D6. Equation (2.15) is new solutions of (1.2) with

constraints ρsρ̄s
∗ = 1 (s = 2k + 1, · · · , 2n).

• (2n − 1)-order DT
We set (2n − 1)-order Darboux matrix as

T2n−1(λ) =

( ∑n
k=1 a2k−1λ

2k−1 ∑n−1
k=0 b2kλ

2k∑n−1
k=0 c2kλ

2k ∑n
k=1 d2k−1λ

2k−1

)
, (2.20)

and Φk =

(
fk

gk

)
are solutions of (2.2) with λ = λk, ρk =

gk
fk

(k = 1, 2, · · · , 2n − 1). Then T2n−1 maps

(u, v,Φ) to (u[2n−1], v[2n−1],Φ[2n−1]), where a2k−1, d2k−1 (k = 1, 2, · · · , n), b2k, c2k (k = 0, 1, · · · , n − 1)
are 4n unknown functions. Solving 4n − 2 equations T2n−1(λk)Φ[2n−1] = 0 (k = 1, 2, · · · , 2n − 1) by
setting d2n−1 = 1

a2n−1
and c0 = b0, we can uniquely determine the 4n unknown functions, and obtain

u[2n−1] = a2n−1
2u − 2a2n−1b2n−2, v[2n−1] =

v
a2n−1

2 +
2c2n−2

a2n−1
(2.21)

with

a2n−1 = −
b0D3

D1
, d2n−1 = −

b0D4

D2
, b2n−2 = (−1)n−1 b0D5

D1
, c2n−2 = (−1)n−1 b0D6

D2
, (2.22)

where

D1 =
∣∣∣F(1,3,··· ,2n−1)

(1,2,··· ,2n−1) G(2,4··· ,2n−2)
(1,2,··· ,2n−1)

∣∣∣ , (2.23a)

D2 =
∣∣∣F(2,4,··· ,2n−2)

(1,2,··· ,2n−1) G(1,3,··· ,2n−1)
(1,2,··· ,2n−1)

∣∣∣ , (2.23b)

D3 =
∣∣∣F(1,3,··· ,2n−3)

(1,2,··· ,2n−1) G(0,2,··· ,2n−2)
(1,2,··· ,2n−1)

∣∣∣ , (2.23c)

D4 =
∣∣∣F(0,2,··· ,2n−2)

(1,2,··· ,2n−1) G(1,3,··· ,2n−3)
(1,2,··· ,2n−1)

∣∣∣ , (2.23d)

D5 =
∣∣∣F(1,3,··· ,2n−1)

(1,2,··· ,2n−1) G(0,2,··· ,2n−4)
(1,2,··· ,2n−1)

∣∣∣ , (2.23e)

D6 =
∣∣∣F(0,2,··· ,2n−4)

(1,2,··· ,2n−1) G(1,3,··· ,2n−1)
(1,2,··· ,2n−1)

∣∣∣ . (2.23f)

Noticing D1 =
∏2n−1

j=1 λ jD4, D2 =
∏2n−1

j=1 λ jD3 and b0 = −
∏2n−1

j=1 λ j, then d2n = 1
a2n

will be satisfied
automatically.

If we choose λk+ j = λ∗j and Φk+ j =

(
εḡ j

∗

f̄ j
∗

)
( j = 1, 2, · · · , k) , then b0 = −

∏k
j=1 |λ j|

2 ∏2n−1
s=2k+1 λs,

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣
F(1,3,··· ,2n−1)

(1,2,··· ,k) G(2,4,··· ,2n−2)
(1,2,··· ,k)

εḠ∗(1,3,··· ,2n−1)
(1,2,··· ,k) F̄∗(2,4,··· ,2n−2)

(1,2,··· ,k)

F(1,3,··· ,2n−1)
(2k+1,2k+2,··· ,2n−1) G(2,4,··· ,2n−2)

(2k+1,2k+2,··· ,2n−1)

∣∣∣∣∣∣∣∣∣∣∣∣ and so are D2, · · · ,D6.
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Theorem 3. Suppose λ j ( j = 1, 2, · · · , k) are complex, and λs (s = 2k + 1, 2k + 2, · · · , 2n − 1) are real
when ε = 1 or purely imaginary when ε = −1, then Eq (2.21) is new solutions of (1.2) with constraints
ρsρ̄s

∗ = 1 (s = 2k + 1, · · · , 2n − 1). Especially, when n = 1, (2.21) become (2.9).

Proof. Similarly, we only need to prove v[2n−1] = −εū[2n−1]
∗, which can be easily verified by using

D̄3
∗

= (−1)(n2−1)εnD4, and D̄5
∗

= (−1)(n2−1)εn−1D6. �

Until now, we have constructed the arbitrary DT of (1.2) with Wronskian-type determinant
representation. Compared with [9], we have not only constructed the DT of arbitrary order, but also
adopted a simpler and more feasible way.

3. Solutions of Eq (1.2)

In this section, we will construct several explicit solutions of Eq (1.2).

3.1. Solutions by applying the first-order DT

• If we set seed solution u = v = 0, then solution of (2.2) with λ = λk is Φk =

(
fk

gk

)
=

(
αkeθk

βke−θk

)
,

where θk = λ2
k x − 2iλ4

kt (k = 1, 2, · · · ). As λ1 is real when ε = 1 or purely imaginary when ε = −1 in
Theorem 1, background of the new solution of (1.2) will go to infinity, which appears meaningless.
• If we set seed solution u = ρe−ερ

2 x+iφ, the background will also go to infinity. So, we take u = ρeiφ

as the seed solution eclectically to avoid infinity of the background. Solution of (2.2) with λ = λk is

Φk =

(
fk

gk

)
, where

fk = αkeθk + βke−θk , gk = −
λke−iφ

ρ
fk +

e−iφ

λkρ
fk x (3.1)

with θk =

√
λ4

k − λ
2
kρ

2ε
[
x − it

(
2λ2

k + ρ2ε
)]

, ρk =
gk
fk

, αk and βk (k = 1, 2, · · · ) are none-zero complex
constants.

Using Theorem 1, we obtain

u[1] = −
e−iφ

[
β2

1ρ
2ε + 2α1β1

(
2λ2

1 − ρ
2ε

)
e2θ1 + α2

1ρ
2εe4θ1

]
ρ
[
β1 + α1e2θ1

] 2 (3.2)

under the constraint

|α1|
2

|β1|
2 =

λ2
1 − ρ

2ε +

√
−λ2

1

(
ρ2ε − λ2

1

)
−λ2

1 + ρ2ε +

√
−λ2

1

(
ρ2ε − λ2

1

) , (3.3)

which means |λ1| > |ρ|. This solution has been shown in Figure 1, which displays the periodic one-
soliton with ε = 1, ρ = 4, λ1 = 5, α1 = 2, β1 = 1, φ = π, and ε = −1, ρ = 4, λ1 = −5i, α1 = 1/2, β1 = 1,
φ = 0. However, there are periodic singularities in any case for ε. The reason for the existence of
the singularity may be that θk in solution (3.1) is too complex. When ε takes the values of -1 and 1,
respectively, eigenvalue λ will differ due to the constraints, which subsequently causes variations in
other parameters. Additionally, we found that the positions of the singular points have changed.
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Figure 1. The periodic one-soliton from (3.2) with (a) ε = 1, ρ = 4, λ1 = 5, α1 = 2, β1 = 1,
φ = π , and (b) ε = −1, ρ = 4, λ1 = −5i, α1 = 1/2, β1 = 1, φ = 0.

When the eigenvalue λ1 = ±ρ (ε = 1) or λ1 = ±iρ (ε = −1), the new solution will be complex

constant and trivial, so we should resolve (2.2). Now, the solution of (2.2) (ε = 1) is Φ1 =

(
f1

g1

)
,

where

f1 = α1 + α2

(
x − 3iρ2t

)
, g1 = e−iφ f1 −

e−iφ

ρ2 f1x (3.4)

with αk (k = 1, 2) are none-zero complex constants. We can obtain a new fundamental rational solution,

u[1] = −
e−iφ

[
α2

1ρ
4 + α2

2

(
−9ρ8t2 − 6iρ6tx + ρ4x2 − 1

)
+ 2α1α2ρ

4
(
x − 3iρ2t

)]
ρ3 [

α1 + α2
(
x − 3iρ2t

)] 2 . (3.5)

The graph of this solution is displayed in Figure 2(a) with ρ = 1, α1 = 1, α2 = 2 and φ = π. It is
seen that this is a rogue wave, similar to Eq (40) in Yang’s article [26], which blows up to infinity at
x = −1/2 and finite time t = 0. Furthermore, rising from a constant background, rogue wave (3.5) can
be considered as resulting from the degradation of periodic soliton (3.2). If we set ε = −1, then new
rogue wave will blow up to infinity at x = 1/2 and t = 0, which is shown in Figure 2(b). Similarly,
variations in the value of parameter ε only affects the position of solitons or rogue waves, without
altering the type or mechanical properties of the solutions. Meanwhile, parameter φ do not affect the
modulus of the solutions.
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Figure 2. The one rogue wave from (3.5) with (a) ε = 1, ρ = 1, λ1 = −1, α1 = 1, α2 = 2,
φ = π, and (b) ε = −1, ρ = 1, λ1 = −i, α1 = −2, α2 = 4 , φ = 0.

3.2. Solutions by applying the second-order DT

• When we set seed solution u = v = 0, the background of new solutions will not go to infinity if
and only if λ2 is pure imaginary, which means 4argλ/π is an odd integer [9]. Hence, we can obtain a
new soliton solution with λ1 = a(1 − i),

u[2] =
(4 + 4i)εaα1β

∗
1e4ia2(4a2t+x)

(
α1α

∗
1 + iεβ1β1

∗e8ia2 x
)(

εβ1β
∗
1e8ia2 x + iα1α

∗
1

)
2

. (3.6)

This solution does not have singularity and global if |α1| , |β1|, which is periodic in both x and t. The
graph is displayed in Figure 3 with ε = −1, a = 1, α1 = 1 and β1 = 2, from which we can see that the
norm of the solution is periodic in x but independent of t. However, if λ1 and λ2 are both real or purely
imaginary, the background of new solution will go to infinity.
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Figure 3. Left panel is the periodic two solitons from (3.6) with ε = −1, λ1 = 1 − i, α1 = 1
and β1 = 2; Right panel is the corresponding density plot.

• If we set seed solution u = ρe−ερ
2 x+iφ, the background will go to infinity. So, we take u = ρeiφ
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as the seed solution, and the solution of (2.2) with λ = λk is (3.1). Using Eq (2.12), we can obtain
new solutions of Eq (1.2) and display it in Figure 4. Figure 4 show the propagation of two solitons,
the interaction of which seems elastic. However, the solution blows up to infinity in the interaction
region at one fixed point. The reason for the existence of singularity may be due to nonlocal effects.
Figure 5(a) shows the interaction of two periodic soliton with periodic singularities, as long as λ1, λ2

are both real numbers. This solution seems to be a superposition and interaction of two solutions (3.2).
Furthermore, if λ1 = ±ρ, then we can see that the interaction of periodic soliton and rogue wave, which
has been shown in Figure 5(b), will degenerate into the seed solution if λ2 = ±ρ.
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Figure 4. Left panel is the interaction of two solitons from (2.12) with ε = 1, ρ = 1, λ1 =

(1 + i
√

3)/2, α1 = 1, β1 = i, φ = 0; Right panel is the corresponding density plot.
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Figure 5. (a) Inteaction of two periodic solitons from (2.12) with ε = 1, ρ = 1, λ1 = 2,

λ2 = 3, α1 =

√
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2
√

3−3
, α2 =

√
6
√

2+8
6
√

2−8
, β1 = β2 = 1, φ = 0; (b) Interaction of one periodic

soliton and rogue wave from (2.12) with ε = 1, ρ = 1, λ1 = −1, λ2 = 2, α1 = 1 + i, α2 =√
2
√

3+3
2
√

3−3
, β1 = 2, β2 = 1, φ = 0.
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3.3. Solutions by applying the multi-fold DT

• Considering the third-order DT, three eigenvalues can be one complex and one real (or pure
imaginary), or three real. New solutions derived from seeds u = ρeiφ would be the superposition
of previous solutions (2.9) and (2.12). For example, if we choose three eigenvalues as one complex
and one real, new solutions is displayed in Figure 6(a). We can see Figure 6(a) is a superposition
and interaction of Figure 1(a) and Figure 4. There is one periodic soliton and two elastic-interacted
solitons. If the real eigenvalue equals ±ρ, then the solution will be different from Figure 6(a), which
is shown in Figure 6(b). The phases of the solitons undergo changes, and two of them remain parallel
both before and after the collision.

If three eigenvalues are all selected real, then the new solution is displayed in Figure 6(c), which are
three times superposition and interaction of Figure 1(a). Further more, if one of three real eigenvalues
equals ±ρ, then there will be a rogue wave, which has been shown in Figure 6(d).
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Figure 6. Interaction of three solitons from (2.21) with (a) ε = 1, ρ = 1, λ1 = (1 +

i
√

3)/2, λ2 = 2, α1 = −1, α2 =
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√
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• Considering the fourth-order DT, we choose zero seed solutions and two complex eigenvalues
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λ1, λ2, where λ2
k(k = 1, 2) is pure imaginary to avoid infinity of the background. If λ2 , λ1, we can

obtain periodic solitons, which have been shown in Figure 7. If λ2 = λ1, then solution of (2.2) with
λ = λ2, says Φ2, will linearly dependent on Φ1. Following the idea of generalized DT in [7], we set
Φ

[1]
1 = Φ1(λ1 + δ), δ � 1, and obtain

Φ2 = lim
δ→0

Φ1(λ1 + δ) − Φ1(λ1)
δ

, (3.7)

which is another solution of (2.2) with λ = λ1 but linearly independent on Φ1. Using (2.15), we obtain
new solutions of (1.2),

(4+4i)
(
64te8ix−64it−ie8ix−8e8ixx−8ix−1

)(
−4096it2e8ix+128te8ix+64ie8ixx2−ie8ix+e16ix−1

)
e−16it−4ix (4096it2e8ix + 128te8ix − 64ie8ixx2 + ie8ix + e16ix − 1

)2 (3.8)

with ε = 1, α1 = β1 = 1. This solution is a mixed-type of exponential and rational functions, whose
norm is displayed in Figure 8. From it we can see there are three solitons, one x-periodic soliton and
two elastic-interacted solitons, and no rogue waves are presented obviously. However, the interaction
blows up to infinity at two fixed points. As it has been seen that higher order solution can be the
superposition and interaction of the lower order solution, we do not show the solutions derived from
four real eigenvalues or one complex and two real eigenvalues. At the end, we display new periodic
solitons in Figure 9 obtained by using six-order DT from zero seeds.
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Figure 7. Left panel is the periodic four solitons from (2.15) with ε = 1, λ1 = 1+i, λ2=2(1−i),
α1 = α2 = 1/5 and β1 = β2 = 1; Right panel is the corresponding density plot.
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Figure 8. Left panel is interaction of three solitons from (3.8) with ε = 1, λ1 = λ2 = 1+i, α1 =

β1 = 1; Right panel is the corresponding density plot.
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Figure 9. Left panel is interaction of periodic multi-solitons from (2.15) (n=3) with ε = 1,
λ1 = 1 + i, λ2 = 2(1 − i), λ3 = 3(1 + i), α1 = 0.1, α2 = 0.2, α3 = 0.3, β1 = β2 = β3 = 1; Right
panel is the corresponding density plot.

4. Conclusions

In this paper, the nonlocal DNLS Eq (1.2) has been analytically studied. Firstly, using the Lax pair
of the coupled Eq (2.1), from which the reduction conditions lead to Eq (1.2), we have constructed
arbitrary order DTs in a more streamlined manner. From zero and non-zero seed solutions, new
Wronskian-type determinant solutions are obtained. Specifically, we have obtained new solutions by
applying the first four orders DT.

Starting from zero seeds, due to the nonlocality of the equation, odd-order DTs will cause the
background of the solutions to diverge towards infinity. For even-order DTs, the background of
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the solutions will not go to infinity unless the square of eigenvalues λ2 are pure imaginary, in
order to maintain the reduction conditions, which could increase the difficulty in selecting parameter
values. Soliton solutions without singularities have been obtained for specific parameter values, as
demonstrated in Figures 3, 7, and 9. These new solutions are all periodic and bounded, similar to the
results reported in [9]. Besides, when one eigenvalue tends to another one, generalized DT can be
constructed. Taking the solitons in Figure 7 as an example, we can obtain new solutions which are
mixed-type of exponential and rational functions with λ2 = λ1, which can be seen Figure 8. Although
the solution in Figure 7 is bounded with λ2 , λ1, there are two singularities, causing the solitons to
blow up to infinity.

Starting from non-zero seeds, we have obtained various solutions including the periodic solutions
and rogue waves. If the eigenvalues are real or pure imaginary numbers, there will be constraints
on the parameters. However, these solutions inherently possess singularities. Nevertheless, we have
constructed soliton solutions for the first few orders. Figure 1 displays the periodic one-soliton, which
degrades into a rogue wave (see Figure 2) when the magnitude of the eigenvalue is identical to the
amplitude of the seed solution. Similarly, periodic two- and three-soliton solutions can also degrade
or partially degrade into rogue waves, which can be observed in Figures 5, 6(c), and 6(d). When the
eigenvalues are taken as complex numbers, the interaction of two solitons has been shown in Figure 4.
Figure 6(a) shows a superposition and interaction of Figures 1(a) and 4. When the real eigenvalue
equals to ±ρ, the periodic soliton will disappear, as shown in Figure 6(b).

In addition, the value of ε does not affect much except the location of the singularities, which is
different from the nonlocal NLS Eq (1.1). We hope that the work presented in this paper can provide a
valuable reference and assistance for the study of nonlocal integrable systems.
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