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Abstract: This article discusses the saddlepoint approximation for the p-values of some distribution-
free tests, a signed rank test for bivariate location problems and a dispersion test for scale problems.
The statistics of the two considered tests are constructed based on the ratio of two variables. The
accuracy of the saddlepoint approximation is compared to traditional asymptotic normal approximation
by applying numerical comparisons. Furthermore, the proposed approximations are illustrated by
analyzing numerical examples. The results of numerical comparisons indicate that the approximation
error resulting from the proposed method is much lower than the traditional method, which is evidence
of the superiority of the proposed approximation method over the traditional method. Accordingly, we
can say that the saddlepoint approximation method can be a competitive alternative to the traditional
method.
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1. Introduction

Asymptotic approximations of the saddlepoint type for the p-value of the test statistics of two
distribution-free tests are considered. The first test addresses the scale problem and it has been
introduced by Mathur and Dolo [1] as a good alternative to some famous scale tests such as the Siegel-
Tukey test [2], Levene test [3], Klotz test [4] and Fligner and Killeen test [5]. The second test addresses
the location problem and is a bivariate signed-ranked test [6]. This test is characterized by its statistic
being independent of the correlation between two variables, making it easy to note the marginal effect
of a single variable on the test statistic. Moreover, it is a scale-invariant test, ensuring that the value of
the statistic does not change when the scale of the observations has been changed. Furthermore, it is
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robust to outliers and more robust than its counterparts under the non-normal distribution, even under
very small changes in location. Mathur and Sepehrifar [6] have proven that their test is competitive
with several analogues, such as the Mardia test [7], Wilcoxon one-sample bivariate rank sum test, [8]
and the Peters and Randles test [9]. It should be noted that the statistics of the two tests considered
here, whether the scale or the location test, depend on the ratio of the two variables. This technique
was also used by many statisticians in the formation of their test statistics, such as Blumen [10], and
Sen and Mathur [11].

The saddlepoint approximation is fundamentally a method for approximating a probability
density or mass function using its corresponding moment-generating function or cumulant generating
function [12]. It is a frequently used statistical approximation method in approximating many statistical
and probabilistic functions. The theoretical and applied statistics are full of approximation methods
to solve many problems that do not have an exact solution. The accuracy of the approximation
method that each method provides is what distinguishes one method from another. In the case of
approximating the statistical functions, such as the distribution, mass, and density functions, we can
refer to the asymptotic normal approximation method, which depends on the central limit theorem,
and to the saddlepoint approximation method, which is considered a generalization to Laplace’s
method for approximating integrals. The saddlepoint approximation method offers several significant
benefits in statistical inference, particularly in hypothesis testing and p-value approximation. One
of the primary advantages is their high accuracy, especially for small sample sizes, where traditional
asymptotic methods often fall short. Unlike standard approximations, the saddlepoint method produces
precise tail probabilities, which are critical in accurately assessing the significance of test statistics.
Furthermore, this approximation is highly versatile and can be applied to a wide range of complex
distributions, including nonparametric tests and ratio-based statistics. The computational efficiency
of the saddlepoint method also makes it a practical alternative to the simulation methods, reducing
the need for extensive simulations. Overall, the saddlepoint approximation method is a powerful
and flexible tool that can outperform traditional methods, particularly in challenging scenarios where
exact solutions are impractical or unavailable. In this article, a comparison is made between the
accuracy of the two methods for approximating the p-value of the two statistics of the considered
non-parametric tests, clarifying that the saddlepoint approximation method is more accurate than the
normal approximation method. The origin of the saddlepoint method in statistics can be traced back
to 1954 by the work presented by Daniels [13] as an approximation of the probability density function
for the mean of n random variables. Daniels’s work served as the starting point for many scholars
and statisticians to present many approximations of statistical and probability functions, such as the
approximation of the distribution function, the conditional distribution function, and the bivariate
distribution function by Lugannani and Rice [14], Skovgaard [15], and Wang [16], respectively.
Subsequently, contributions were made to this topic, and its applications have spread to many branches
of statistics. In this regard, we can refer to several references, for example, [12, 17–20]. Gatto and
Jammalamadaka [21] introduced a saddlepoint approximation for the distribution function of a M
statistic, conditioned on another M statistic. Abd-Elfattah and Butler [22, 23] derived the permutation
distribution of the weighted log-rank class of tests using the saddlepoint approximation method. Abd-
Elfattah [24,25] proposed the saddlepoint approximation method to approximate p-values for weighted
log-rank class of tests considering truncated binomial and randomized block designs, respectively.
Abd El-Raheem and Abd-Elfattah [26, 27] extended the results of [22, 25] for the clustered censored
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data. Abd El-Raheem et al. [28] approximated the tail probabilities for multivariate sign and signed-
rank tests using the saddlepoint approximation method. Readers may refer to recent works on the
saddlepoint approximation, such as [29–32].

This article aims to enhance the accuracy of p-value calculations in small sample sizes, where
traditional methods, such as the normal approximation, can fail to provide precise results. The accuracy
of the proposed approach (saddlepoint approximation) is assessed by comparing the approximated p-
values to exact p-values obtained by the simulation method (permutation-based, so time-consuming).
The relative absolute error is used to evaluate the precision and reliability of the approximation across
various scenarios.

The article is organized as follows: In Sections 2 and 3, we provide the saddlepoint results and show
the other asymptotic approximations for the considered tests. Finally, Sections 4 and 5 are devoted to
the numerical comparisons between the saddlepoint and normal approximation methods using real and
simulated data, respectively.

2. Dispersion test

Let yi, i = 1, 2, ..., n and x j, j = 1, 2, ...,m be independent random samples from continuous
populations with distribution functions FY(y) and FX(σy). To test the hypothesis H0 : FY(y) = FX(σy),
for all y and σ = 1 against H1 : FY(y) , FX(σy), for all y and σ , 1, σ > 0. Mathur and Dolo [1]
introduced the dispersion test statistic as follows:

W =
nm∑
k=1

ϕkR(rk), (2.1)

where rk =
x j−M
yi−M , M is the median of the combined samples, R(rk) is the rank of rk, and

ϕk =

{
1, rk ≥ 0,
0, rk < 0.

The expectation and variance of the test statistic in (2.1) under H0 are E(W |H0) = mn(mn + 1)/4, and
V(W |H0) = mn(mn + 1)(2mn + 1)/24. When sample sizes are large

Z =
W − E(W |H0)
√

V(W |H0)
∼ N(0, 1).

Saddlepoint approximation

In this subsection, the saddlepoint approximation method is applied to approximate the p-value of
the statistic in (2.1).

Depending on the permutation distribution of the statistic W in (2.1), then the moment generating
function of W is given by:

MW(s) =
nm∏
k=1

(
1
2
+

1
2

exp{sR(rk)}
)
,
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then, the cumulant generating function, CGF, of the statistic W is

KW(s) =
nm∑
k=1

log
(
1
2
+

1
2

exp{sR(rk)}
)
. (2.2)

The first, second, and third derivatives of the CGF, KW , in (2.2) are

K
′

W(s) =
nm∑
k=1

R(rk) exp{sR(rk)}
1 + exp{sR(rk)}

,

K
′′

W(s) =
nm∑
k=1

R(rk)2 exp{sR(rk)}
[1 + exp{sR(rk)}]2 ,

and

K
′′′

W (s) =
nm∑
k=1

R(rk)3 exp{sR(rk)}
[
1 + exp{sR(rk)}

]
− 2R(rk)3 exp{2sR(rk)}[

1 + exp{sR(rk)}
]3 .

The saddlepoint approximation of the cumulative distribution function of the statistic W, FW(w) is
given by [14]:

F̂W(w) =

Φ(ρ̃1) + ϕ(ρ̃1)
(

1
ρ̃1
− 1
γ̃1

)
if w , µW ,

1
2 +

K′′′W (0)

6
√

2π(K′′W (0))3/2 if w = µW ,

where

ρ̃1 = sgn(s̃)
√

2[s̃w − KW(s̃)], and γ̃1 = s̃
√

K′′W(s̃).

Here, Φ and ϕ represent the standard normal distribution function and density function, respectively,
and µW = E(W |H0) is the mean of the distribution. The symbol sgn(s̃) denotes the sign of s̃. The
saddlepoint s̃ is the unique solution to the equation K′W(s̃) = w.

The saddlepoint approximation of the exact p-value for the statistic W is given by:

P̂(W ≥ w0) ≃ 1 − Φ(ρ̃1) − ϕ(ρ̃1)
(

1
ρ̃1
−

1
γ̃1

)
,

where w0 is the observed value of the statistic W.

3. Signed rank test for bivariate location problem

Let a random sample (xi, yi) for i = 1, 2, . . . , n, consisting of n independent pairs taken from
a bivariate population with a continuous distribution function FX,Y(x + µ1, y + µ2). Assume the
population is elliptically symmetric around its median (µ1, µ2). We aim to test the null hypothesis
H0 : (µ1, µ2) = (0, 0) against the alternative hypothesis H1 : (µ1 , 0, µ2 , 0). For this purpose, assume
ϑi = tan−1(di), where di = yi/xi for i = 1, 2, . . . , n are the tangents of the projected angles corresponding
to S 1, S 2, . . . , S n, respectively, where S i = (Xi,Yi)′ for i = 1, 2, . . . , n. Sign tests are fundamental in
non-parametric methods, and numerous researchers have worked on developing non-parametric tests
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based on this concept. When the underlying population exhibits elliptical symmetry, it seems intuitive
and logical to assess the distance of each observation from the origin. Mathur and Sepehrifar [6] used
the ranks of these distances along with the directions of the observations to construct a signed rank
statistic for the bivariate location problem as follows:

U1 =
1
n

n∑
i=1

δiR(di) cos
( iπ

n

)
, (3.1)

and

U2 =
1
n

n∑
i=1

δiR(di) sin
( iπ

n

)
, (3.2)

where

δi =

1, if Yi is negative in the (i + 1) ordered slope,
−1, if Yi is positive in the (i + 1) ordered slope.

Under the the null hypothesis H0, P(δi = −1) = P(δi = 1) = 1/2, the statistic U1 has normal
distribution with E(U1|H0) = 0 and V(U1|H0) = 1

3

∑n
i=1 cos2

(
iπ
n

)
, and the U2 has normal distribution

with E(U2|H0) = 0 and V(U2|H0) =
(
n −

∑n
i=1 cos2

(
iπ
n

))
/3. Thus, the bivariate signed rank statistic is

given by:

U = U1 + U2 =

n∑
i=1

δiCi, (3.3)

where Ci =
1
nR(di)

(
cos

(
iπ
n

)
+ sin

(
iπ
n

))
. The statistic U in (3.3) is normally distributed with mean

E(U |H0) = 0 and variance V(U |H0) = 1/3. Let ηi =
δi+1

2 , then ηi = 0 or ηi = 1. Thus, the statistic
in (3.3) becomes

U =
n∑

i=1

2ηiCi −

n∑
i=1

Ci. (3.4)

Saddlepoint approximation

This subsection applies the saddlepoint approximation method to approximate the p-value of the
statistic in (3.4).

The moment generating function of the statistic U in (3.4) is determined by its permutation
distribution and is given by:

MU(s) = e−s
∑n

i=1 Ci

n∏
i=1

(
1
2
+

1
2

e2sCi

)
,

then, the CGF of the statistic U is

KU(s) = −s
n∑

i=1

Ci +

n∑
i=1

log
(
1
2
+

1
2

e2sCi

)
. (3.5)

The first, second, and third derivatives of the CGF, KU , in (3.5) are
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K′U(s) = −
n∑

i=1

Ci +

n∑
i=1

Cie2sCi

1
2 +

1
2e2sCi

,

K′′U(s) =
n∑

i=1

C2
i e2sCi(

1
2 +

1
2e2sCi

)2 ,

K′′′U (s) =
n∑

i=1

C3
i e2sCi

[
1 − e2sCi

]
(

1
2 +

1
2e2sCi

)3 .

The saddlepoint approximation of the cumulative distribution function of the statistic U, FU(u), is
given by [14]:

F̂U(u) =

Φ(ρ̃2) + ϕ(ρ̃2)
(

1
ρ̃2
− 1
γ̃2

)
if u , µU ,

1
2 +

K′′′U (0)

6
√

2π(K′′U (0))3/2 if u = µU ,

where

µU = E(U |H0), ρ̃2 = sgn(s̃)
√

2[s̃u − KU(s̃)], and γ̃2 = s̃
√

K′′U(s̃).

The saddlepoint s̃ is the unique solution to the equation K′U(s̃) = u.
The saddlepoint approximation of the exact p-value for the statistic U is given by:

P̂(U ≥ u0) ≃ 1 − Φ(ρ̃2) − ϕ(ρ̃2)
(

1
ρ̃2
−

1
γ̃2

)
,

where u0 is the observed value of the statistic U.

4. Numerical comparisons

Analyzing real data is essential for validating the saddlepoint approximation and comparing it to
the normal approximation. By applying the saddlepoint approximation to real data, we can assess its
accuracy in approximating the exact p-value and its effectiveness across various scenarios, thereby
confirming its robustness and reliability.

4.1. Numerical comparisons for the dispersion test

Example 1: Prehistoric Native Americans used pipes for ceremonial purposes, which were typically
made of carved stone or clay ceramics. Clay pipes were easier to produce, while stone pipes required
careful drilling using a hollow bone and special stone drills. According to one anthropologist, the
easier manufacturing process of clay pipes resulted in greater variation in their construction. The
diameters of ceramic pipe bowls and stone pipes (cm) from the Wind Mountain archaeological area
were measured to evaluate this claim. These data are presented in Table 1, and the source of these
data is the reference [33]. The dispersion test is used to evaluate the null hypothesis, which states
no difference in variance, against the alternative hypothesis supporting the anthropologist’s claim that
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clay pipes exhibit greater variance. The approximated p-value using the simulation (permutation-based
method), saddlepoint, and normal approximation methods are calculated and listed in Table 2.

Table 1. Pipe bowl diameters for ceramic and stone pipes.

Ceramic pipe bowl diameters (cm) Stone pipe bowl diameters (cm)
1.7 1.6
5.1 2.1
1.4 3.1
0.7 1.4
2.5 2.2
4.0 2.1
3.8 2.6
2.0 3.2
3.1 3.4
5.0
1.5

Table 2. The approximated p-values using the simulation, saddlepoint, and normal
approximation methods for the dispersion test.

Example Simulation Saddlepoint Normal
Example 1 0.020465 0.020576 0.020758
Example 2 0.284281 0.283228 0.282564

Example 2: A key indicator of a company’s productivity is the relative annual return to its
total assets. This metric shows the return generated from assets over a year, thoroughly assessing
the company’s financial efficiency and profitability. It is useful for comparing competing firms.
Table 3 displays the percentage returns based on assets for a random sample of prominent companies
from France and Germany. The source of these data is the reference [34]. The dispersion test is
used to evaluate the claim that there is a difference in the population variance of percentage yields
between leading companies in France and Germany. The approximated p-value using the simulation,
saddlepoint, and normal approximation methods are obtained and listed in Table 2.
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Table 3. The percentage returns based on assets for a random sample of prominent companies
from France and Germany.

Sample from France Sample from Germany
2.5 2.3
2.0 3.2
4.5 3.6
1.8 1.2
0.5 3.6
3.6 2.8
2.4 2.3
0.2 3.5
1.7 2.8
1.8
1.4
5.4
1.1

Table 2 shows that the saddlepoint approximation technique offers higher accuracy and reliability
than the traditional method, as it is significantly closer to that obtained using the simulation method.

4.2. Numerical comparisons for the bivariate signed rank test

Example 1: In 2010, the average minimum temperatures recorded for counties Roscommon and
Meath in Ireland showed notable variations throughout the year. These temperatures, measured in
degrees Celsius (°C), reflect the coldest daily temperatures, averaged over the year. Table 4 shows
the average minimum temperatures (°C) recorded for counties Roscommon and Meath, Ireland 2010;
see [35] for more details. We aim to test the null hypothesis, H0 : (µ1, µ2) = (0, 0) against the alternative
hypothesis H1 : (µ1 , 0, µ2 , 0).

Table 4. The average minimum temperatures (°C) recorded for counties Roscommon and
Meath, Ireland 2010.

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Roscommon -1.6 -1.4 0.6 3 4.3 9 11.7 8.3 8.8 4.5 0.8 -5.4

Meath -2 -1.4 0.6 3.4 5 9.7 11.9 9.2 9.1 5.9 1.5 -4.6

Example 2: The data were collected to study the development of the immune system in 36 HIV-
positive newborns. These children were given Ritonavir therapy, and their CD45RA and CD45RO T
cell counts were measured at birth and again after 24 weeks of treatment. Table 5 shows the difference
between CD45RA T cells and CD45RO T cells at 24 weeks of treatment and at birth. The source of
these data is the reference [36]. The bivariate signed rank test was conducted to determine whether
these cell counts were significantly changed over the treatment period. The p-value of this test is
calculated using simulation, saddlepoint, and normal approximation methods and presented in Table 6.
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Table 5. The difference between CD45RA T cells and CD45RO T cells at 24 weeks of
treatment and at birth.

CD45RA T 242 569 270 -25 309 22 -42 -233 206 -106 55 85
30 194 -87 159 29 89 -9 158 76 15 3 93

160 66 180 237 105 16 167 -10 -16 -7 15 160
CD45RO T 1708 569 757 499 231 338 26 119 163 -186 54 48

50 525 -110 148 102 364 36 234 122 24 36 71
44 128 155 85 76 6 364 -18 -21 -2 32 188

Table 6. The approximated p-values using the simulation, saddlepoint, and normal
approximation methods for the bivariate signed rank test.

Example Simulation Saddlepoint Normal
Example 1 0.260260 0.260738 0.255757
Example 2 0.034412 0.034437 0.031085

Table 6 demonstrates that the saddlepoint approximation technique provides greater accuracy and
reliability than the traditional method, as its results are much closer to those obtained using the
simulation method.

5. Simulation study

When analytical solutions are intractable or impractical, statistical approximation methods, such
as asymptotic normal approximation or saddlepoint approximation methods, are often employed to
make inferences about complex models or datasets. Understanding the relative performance of these
methods is crucial for selecting the most appropriate technique for a given context. This section uses
simulation studies to evaluate and compare the performance of different approximation methods under
various conditions.

5.1. Simulation study for the dispersion test

For the dispersion test, a simulation study is performed to assess the consistency of the saddlepoint
p-value approximation across various sample sizes, distributions, and location parameter values. The
simulations involved two distributions: logistic and extreme value. For each distribution, 1,000 data
sets are generated with total sample sizes of N = 16, 24, 32, and 42, where m = n = N/2. The
simulated mid-p-value for each of the 1,000 data sets is calculated using 106 randomized sequences
for the indicators ϕk. Let σ = σx/σy represent the dispersion parameter, where σx and σy are the
scale parameters for the populations X and Y , respectively. Let Mx and My be the medians of the two
populations X and Y , respectively. The data sets are generated with My = 0, σy = 1, Mx = cσy,
where c = 0, 1, and 2, and σx is selected to ensure that the mean of the simulated mid-p-values for the
1,000 data sets is approximately 0.05. To compare the saddlepoint and normal approximation methods,
we calculate the following quantities: saddlepoint approximation proportion (Sap.Prop.) refers to the
proportion of the saddlepoint method to the simulation method, relative absolute error of saddlepoint
(Rel.Abs.Err.Sap.) indicated the accuracy of the saddlepoint method compared to the simulation
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method, and relative absolute error of normal (Rel.Abs.Err.Nor.) represented the accuracy of the
normal method compared to the simulation method. The mathematical definition of the quantities
Sap.Prop., Rel.Abs.Err.Sap., and Rel.Abs.Err.Nor. are given by:

S ap.Prop. = 100 ∗
∑M

i=1 I (|Pi(S ap) − Pi(S im)| < |Pi(Nor) − Pi(S im)|)
M

,

where I() denotes the indicator function, Pi(S ap) represents the saddlepoint p-value, Pi(Nor)
represents the normal approximation p-value, and Pi(S im) represents the simulated p-value.

Rel.Abs.Err.S ap. =
1
M

M∑
i=1

|Pi(S ap) − Pi(S im)|
Pi(S im)

,

and

Rel.Abs.Err.Nor. =
1
M

M∑
i=1

|Pi(Nor) − Pi(S im)|
Pi(S im)

.

Results of the simulation study for comparing saddlepoint and normal approximation techniques are
presented in Table 7. It also shows that the average of the Sap.Prop. is approximately 87.56%
(this value is the average of all fourth-column values in Table 7). This high percentage indicates
that the saddlepoint approximation method was more accurate in 87.56% of the considered cases.
Furthermore, The average of the Rel.Abs.Err.Sap. is approximately 0.049 (this value is the average
of all fifth-column values in Table 7), and the corresponding value for the normal approximation is
approximately 0.1193 (this value is the average of all sixth-column values in Table 7). The large
difference between the relative absolute error of the two methods also shows that the saddlepoint
method is more accurate than the normal approximation method. We can illustrate the superiority of
the saddlepoint approximation method over the normal approximation method by plotting the relative
absolute error of the two methods. Figures 1 and 2 display the relative absolute error of the saddlepoint
and normal approximation methods for logistic and extreme value distributions when N = 16 and
c = 0. It is clearly evident that the relative absolute error resulting from the saddlepoint method is
much less than that resulting from the normal approximation method.

AIMS Mathematics Volume 10, Issue 2, 2602–2618.
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Table 7. Comparison of accuracy and efficiency of saddlepoint and normal approximation
methods.

Distribution N c Sap.Prop. Rel.Abs.Err.Sap. Rel.Abs.Err.Nor.
Logistic 16 0 92.6 0.0185 0.1186

1 92.2 0.0193 0.1238
2 90.6 0.0190 0.1208

24 0 85.7 0.1217 0.2555
1 84.3 0.0664 0.1422
2 91.1 0.1153 0.2616

32 0 82.8 0.1223 0.2189
1 83.2 0.0978 0.2033
2 92.3 0.0611 0.1601

42 0 80.1 0.1923 0.2640
1 78.9 0.0568 0.0594
2 90.0 0.0110 0.0175

Extreme value 16 0 89.5 0.0175 0.1081
1 90.1 0.0164 0.1010
2 90.2 0.0159 0.0996

24 0 89.6 0.0659 0.1898
1 93.0 0.03703 0.1364
2 93.1 0.0197 0.0918

32 0 84.3 0.0341 0.0752
1 87.5 0.0127 0.0319
2 89.8 0.0006 0.0022

42 0 80.2 0.0001 0.0023
1 82.0 0.0104 0.0165
2 88.4 0.0446 0.0628

Figure 1. The relative absolute error of the saddlepoint and normal approximation methods
for approximating the p-value of the dispersion test for data generated from the logistic
distribution with N = 16 and c = 0.
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Figure 2. The relative absolute error of the saddlepoint and normal approximation methods
for approximating the p-value of the dispersion test for data generated from the extreme value
distribution with N = 16 and c = 0.

5.2. Simulation study for the bivariate signed rank test

Bivariate data are generated from the bivariate normal, logistic, and extreme value distributions to
compare the different approximation methods used to approximate the exact p-value of the bivariate
signed rank test statistic. 1,000 samples are generated from each distribution. The p-value is calculated
using the three approximation methods for each sample of data, and then we calculate the average of
the thousand p-values of each approximation method. Results of the simulation study for comparing
saddlepoint and normal approximation techniques are displayed in Table 8.

It also shows that the average of the Sap.Prop. is approximately 97%. This high percentage
indicates that the saddlepoint approximation method was more accurate in 97% of the considered cases.
Furthermore, the average of the Rel.Abs.Err.Sap. is approximately 0.0258, and the corresponding
value for the normal approximation is approximately 0.6145. The large difference between the relative
absolute error of the two methods also shows that the saddlepoint method is more accurate than the
normal approximation method. Figures 3 and 4 illustrate the relative absolute error of approximating
the p-value of the bivariate signed rank test using the normal approximation (shown in red) and the
saddlepoint approximation (shown in blue). From Figures 3 and 4, it is evident that the saddlepoint
approximation consistently achieves lower error rates across all sample indices compared to the normal
approximation. The red lines corresponding to the normal approximation show frequent and large
spikes in error, indicating that the normal approximation tends to produce larger deviations from the
true p-values. In contrast, the blue lines representing the saddlepoint approximation remain much
closer to zero, with minimal variation, highlighting its superior accuracy.
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Table 8. Comparison of accuracy and efficiency of saddlepoint and normal approximation
methods.

Distribution Sample size Sap.Prop. Rel.Abs.Err.Sap. Rel.Abs.Err.Nor.
Normal 16 97.4 0.0164 0.5477

24 98.0 0.0206 1.5034
32 97.5 0.0469 1.3640
42 94.8 0.1118 1.9154

Logistic 16 96.9 0.0062 0.1441
24 98.1 0.0059 0.2399
32 98.0 0.0129 0.3834
42 96.3 0.0577 0.9086

Extreme value 16 96.5 0.0081 0.2042
24 96.9 0.0060 0.2334
32 97.5 0.0059 0.1998
42 97.7 0.0115 0.2576

Figure 3. The relative absolute error of the saddlepoint and normal approximation methods
for approximating the p-value of the bivariate signed rank test for data generated from the
logistic distribution with sample size n = 32.
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Figure 4. The relative absolute error of the saddlepoint and normal approximation methods
for approximating the p-value of the bivariate signed rank test for data generated from the
extreme value distribution with sample size n = 32.

6. Conclusions

The article highlights the effectiveness of using the saddlepoint approximation for calculating
p-values in distribution-free tests, particularly for the signed rank test and a nonparametric scale
test. The study compares the saddlepoint approximation method to the traditional asymptotic normal
approximation method, showing that the saddlepoint approximation consistently provides lower error
rates in p-value approximation. Through numerical comparisons and practical examples, the findings
demonstrate that the proposed method offers greater accuracy and can serve as a reliable alternative
to traditional approaches in nonparametric statistics. This suggests that the saddlepoint approximation
has practical advantages in improving the precision of statistical tests.
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