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1. Introduction

Throughout this paper, all algebras are finite-dimensional algebras over an algebraically closed
k, and all modules are finitely generated left modules unless stated otherwise. Let A be a finite-
dimensional k-algebra. That is, A is a ring with an identity element such that A has a finite-dimensional
k-vector space structure compatible with the multiplication of the ring. For example, the set Mn(k)
of all n × n square matrices with coefficients in k is a finite-dimensional k-algebra with respect to the
usual matrix addition and multiplication. We denote by mod A the category of all finitely generated
A-modules. For X ∈ mod A, we denote by pdAX (resp. idAX) the projective (resp. injective) dimension
of X. We write addAX to be the full subcategory of mod A consisting of the direct summands of the
finite copies of X.

The following conjectures are important in homological algebra and the representation theory of
finite-dimensional k-algebras.
Auslander–Reiten conjecture: An A-module X with Ext≥1

A (X, X) = 0 = Ext≥1
A (X, A) is projective.
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Gorenstein projective conjecture: A Gorenstein projective A-module X is projective if Ext≥1
A (X, X) =

0.
Strong Nakayama conjecture: If X is an A-module such that Ext≥0

A (X, A) = 0, then we have X = 0.
Generalized Nakayama conjecture: Let S be a simple A-module. Then, there exists i ≥ 0 such that
Exti

A(S , A) , 0.

Let A be a finite-dimensional k-algebra, and let

0→ A
f0
−→ I0

f1
−→ I1

f2
−→ · · ·

be a minimal injective resolution of AA.
Auslander–Gorenstein conjecture: If pdAIi ≤ i for any i ≥ 0, then A is a Gorenstein algebra (that is,
idAA < ∞ and idAA < ∞).
Nakayama conjecture: If Ii is projective for any i ≥ 0, then A is self-injective.
Gorenstein symmetric conjecture: idAA = idAA.

There are close relationships among homological conjectures mentioned above; we refer the reader
to [2,5,14,20,21]. At present, there are only a handful of algebras that have been proved to satisfy these
homological conjectures. Many authors have investigated whether these homological conjectures are
valid for two finite-dimensional k-algebras that are closely related. For instance, it was proved in [5]
that the Auslander–Reiten conjecture and the Gorenstein projective conjecture hold under singular
equivalences of finite-dimensionalalgebras induced by adjoint pairs. Pan in [15] showed that the
Auslander–Reiten conjecture holds under derived equivalences.

In studying the representation theory of finite groups, Broué in [4] introduced the notion of stable
equivalences of Morita Type, which is not only a special case of stable equivalences and that of
separable equivalences but also tightly related to derived equivalences. Rickard showed in [16] that for
self-injective algebras, derived equivalences imply stable equivalences of Morita Type. It is well known
that two algebras, which are stably equivalent of Morita Type, share many interesting invariants, such as
representation dimensions, extension dimensions, finitistic dimensions, ϕ-dimensions, ψ-dimensions,
and so on (see [10, 11, 13, 18, 19] for detail).

In this paper, we study the above-mentioned homological conjectures under stable equivalences of
Morita Type, and obtain more invariants as follows.
Main Theorem: (Theorems 3.4, 3.5, 3.10, and 3.12) Let A and B be finite-dimensional k-
algebras such that A and B are stably equivalent of Morita Type. Then, A satisfies the Auslander–
Reiten conjecture (resp. Gorenstein projective conjecture, strong Nakayama conjecture, generalized
Nakayama conjecture, Auslander–Gorenstein conjecture, Nakayama conjecture, Gorenstein symmetric
conjecture ) if and only if B does so.

The paper is organized as below: In Section 2, we give some notations and some preliminary results
that are often used in this paper. The proof of the main theorem will be given in Section 3, and we give
an example to explicate the results.

2. Preliminaries

Let A be a finite-dimensional k-algebra, and X ∈mod A. We use D(X) to denote the standard duality
of X.
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Definition 2.1. ( [4]) Let A and B be two finite-dimensional k-algebras. A and B are stably equivalent
of Morita Type if there exist bimodules AMB and BNA such that
1) M and N are projective as one-sided modules;
2) M ⊗B N � A ⊕ P as (A, A)-bimodules for some projective (A, A)-bimodule P;
3) N ⊗A M � B ⊕ Q as (B, B)-bimodules for some projective (B, B)-bimodule Q.

For the convenience of the readers, we give an easy example to understand stable equivalences of
Morita Type. We refer to [12] for more information.

Example 2.2. Let A be a finite-dimensional k-algebra given by the quiver

1 α //

γ
��

2

β��
3

with relation αβγα = βγαβ = γαβγ = 0.
It is not hard to check that A is a symmetric quasi-hereditary algebra.
And the finite-dimensional k-algebra B is given by the quiver

·
1

ρ

⇄
δ
·
2

µ

⇄
ν
·
3

with relation ρµ = νδ = δρ − µν = 0
B is a symmetric algebra. It follows from [12] that A and B are stably equivalent of Morita Type.
Recall from [3] that two finite-dimensional k-algebras A and B are said to be stably equivalent if

their stable module categories modA and modB are equivalent as additive categories. It follows that
the stable equivalence of Morita Type is a significant class of stable equivalences (see [18, Section 4]
for detail).

Remark 2.3. Let A and B be two finite-dimensional k-algebras, and let AMB and BNA be finitely
generated projective as one-sided modules. Suppose that there exist bimodules AXA and BYB and
bimodule isomorphisms.

AM ⊗B NA �A AA ⊕A XA and B(N ⊗A M)B �B BB ⊕B YB.

1) If AXA and BYB are the zero modules, then A is Morita equivalent to B.
2) If both AXA and BYB have finite projective dimension as bimodules, then A and B are singularly
equivalent of Morita type [5].
3) If AXA and BYB are usual bimodules, then A and B are separably equivalent [9].
4) The following chain of implications holds.

Morita equivalence
⇓

Stable equivalence of Morita Type
⇓

Singular equivalence of Morita Type
⇓

Separable equivalence
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Let A and B be stably equivalent of Morita Type defined as in Definition 2.1. We write TN =

N ⊗A − : mod A→ mod B and TM = M ⊗B − : mod B→ mod A, respectively. The functors TP and TQ

are defined similarly. The next result is due to [18].

Lemma 2.4. Let A and B be stably equivalent of Morita Type defined as in Definition 2.1; then the
following holds:

1) The bimodules M and N are projective generators as one-side modules;
2) TN ,TM,TP, and TQ are exact functors;
3) The images of the functors TP and TQ consist of projective modules;
4) The functors TM and TN take projective modules to projective modules;
5) TM ◦ TN → Idmod A ⊕ TP and TN ◦ TM → Idmod B ⊕ TQ are natural isomorphisms.

Take a minimal projective presentation P1
f
→ P0 → X → 0 of X in mod A. Recall from [1, 3] that

CokerHomA( f , A) is said to be the transpose of X, denoted by Tr(X). Recall from [6] that X is called
Gorenstein projective if Ext≥1

A (X, A) = 0 = Ext≥1
Aop(Tr(X), A). The Gorenstein projective dimension of

X, denoted by GpdA X, is defined as inf {n| there exists an exact sequence 0 → Gn → · · · → G1 →

G0 → X → 0 with each Gi Gorenstein projective }.
We also list some homological facts needed in the later proofs.

Lemma 2.5. ( [17]) Let A and B be two finite-dimensional k-algebras, and X ∈ mod A and Y ∈ mod B.
Suppose that M is an (A, B)-bimodule with AM and MB projective. Then, for any positive integer n, we
have

1) Extn
A(M ⊗B Y, X) � Extn

B(Y,HomA(M, X));
2) there exists a right B-module isomorphism HomA(X,M) � HomA(X, A) ⊗A M;
3) there exists a right B-module isomorphism Extn

A(X,M) � Extn
A(X, A) ⊗A M.

According to [3, Section 2, P7], we have the following observation.

Lemma 2.6. Let 0→ C
f0
−→ I0 → · · ·

fn
−→ In → · · · be a minimal injective resolution of C ∈ mod A. If

L ∈ addC with a minimal injective resolution

0→ L
g0
−→ I′0 → · · ·

gn
−→ I′n → · · ·

then I′i ∈ addIi for all i ≥ 0.

3. Results

In this section, we always assume that A and B are stably equivalent of Morita type linked by
bimodules AMB and BNA. That is, there exist projective bimodules APA and BQB and bimodule
isomorphisms M ⊗B N � A ⊕ P and N ⊗A M � B ⊕ Q. According to Lemma 2.4, 5), there are
natural isomorphisms TN ◦ TM � Idmod A ⊕ TP and TM ◦ TN � Idmod B ⊕ TQ. For convenience, we
consider TM ◦ TN and Idmod A ⊕ TP, TN ◦ TM and Idmod B ⊕ TQ to be equal, respectively.

Lemma 3.1. 1) An A-module I is injective if and only if so is a B-module N ⊗A I.
2) A right A-module J is injective if and only if so is J ⊗A M as a right B-module.
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Proof. We only prove 1), and the proof of 2) is similar.
1) The only if part of the assertion is due to the proof of [18, Theorem 4.1]. Now, we give a brief

proof. Suppose that I is an injective A-module. Take a short exact sequence in mod B.

0→ X
f
→ Y → Z → 0. (3.1)

For any B-module homomorphism g : X → TN(I), we claim that there exists a B-module
homomorphism α : Y → TN(I) such that g = α f .

As TM is an exact functor by Lemma 2.4 2), the exact sequence (3.1) gives an exact sequence in
mod A

0→ TM(X)
TM( f )
→ TM(Y)→ TM(Z)→ 0.

Since TM(g) : TM(X) → TMTN(I) = I ⊕ TP(I), and I is an injective A-module by assumption, there
exists an A-module homomorphism h : TM(Y) → I such that (IdI , 0)TM(g) = hTM( f ). Hence,
(IdTN (I), 0)TNTM(g) = TN(h)TNTM( f ), where TN(h) : TNTM(Y) → TN(I). Note that TNTM(Y) =
Y ⊕ TQ(Y). Let TN(h) = (α, β) : Y ⊕ TQ(Y)→ TN(Y), then we have

(IdTN (I), 0)
(

g 0
0 TQ(g)

)
= (α, β)

(
f 0
0 TQ( f )

)
,

which yields g = α f as claimed. Thus, N ⊗A I is an injective B-module.
Conversely, assume that N ⊗A I is an injective B-module. By a similar argument of the only if part,

one has that M ⊗B N ⊗A I is an injective A-module. Because I is isomorphic to a direct summand of
M ⊗B N ⊗A I, denoted by AI|A(M ⊗B N ⊗A I), by Lemma 2.4 5), I is an injective A-module. □

Proposition 3.2. 1) idAX = idB(N ⊗A X) for an A-module X. In particular, idAA = idBB.
2) idTA = id(T ⊗A M)B for a right A-module T . In particular, idAA = idBB.

Proof. We prove only part 1), and part 2) is proved analogously.
Without loss of generality, we assume that idAX = m < ∞. Then, there exists an injective resolution

of X
0→ X → I0 → I1 → · · · → Im → 0,

which gives rise to an exact sequence in mod B:

0→ N ⊗A X → N ⊗A I0 → N ⊗A I1 → · · · → N ⊗A Im → 0,

where N ⊗A Ii is an injective B-module for any 0 ≤ i ≤ m by Lemma 3.1 1). This means idB(N ⊗A X) ≤
m = idAX. Similarly, we get idA(M ⊗B N ⊗A X) ≤ idB(N ⊗A X). Since AX|A(M ⊗B N ⊗A X) by Lemma
2.4 5), we have idAX ≤ idA(M ⊗B N ⊗A X) ≤ idB(N ⊗A X) as desired.

By the above discussion, we have idAA = idB(N ⊗A A) = idBN. On the other hand, because N
is a projective generator for B-modules by Lemma 2.4 1), one gets idBN = idBB. It follows that
idAA = idBB. □

Recall that a finite-dimensional k-algebra A is said to be a Gorenstein algebra, if A has finite left
and right self-injective dimensions. According to Proposition 3.2, the following is obtained directly.

Theorem 3.3. Let A and B be stably equivalent of Morita Type. Then,
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1) A is a Gorenstein algebra if and only if so is B.
2) A satisfies the Gorenstein symmetric conjecture if and only if B does so.

Proof. 1) Follows from Proposition 3.2 directly.
2) By Proposition 3.2, we have idAA = idBB and idAA = idBB. So the assertion follows. □

Theorem 3.4. Let A and B be stably equivalent of Morita Type. Then,

1) A satisfies the Auslander–Gorenstein conjecture if and only if B does so;
2) A satisfies the Nakayama conjecture if and only if B does so.

Proof. Let

0→ A
f0
−→ I0 → · · ·

fn
−→ In → · · · (3.2)

be a minimal injective resolution of AA, and let

0→ B
g0
−→ E0 → · · ·

gm
−→ Em → · · · (3.3)

be a minimal injective resolution of BB. We claim that pdAIi = pdBEi for any i ≥ 0. Applying the
functor N ⊗A − to the sequence (3.2) gives an exact sequence in mod B:

0→B N
N⊗ f0
−→ NA ⊗A I0 → · · ·

NA⊗ fn
−→ N ⊗A In → · · ·

where N ⊗A Ii is an injective B-module for any i ≥ 0 by Lemma 3.1 1). It follows from Lemma 2.6
that Ei ∈ add(N ⊗A Ii) for all i. Note that the functor N ⊗A − takes projective modules to projective
modules by Lemma 2.4 4), one gets pdBEi ≤ pdB(N ⊗A Ii) ≤ pdA(Ii), for any i ≥ 0. Similarly, we have
pdAIi ≤ pdBEi for any i ≥ 0. And our claim is obtained.
1) Assume that A satisfies the Auslander–Gorenstein conjecture. If pdBEi ≤ i for any i ≥ 0, then pdAIi ≤

i for all i ≥ 0 by the above discussion, and hence A is a Gorenstein algebra by assumption. It follows
from Theorem 3.3 1) that B is a Gorenstein algebra, which means that B satisfies the Auslander–
Gorenstein conjecture.

The converse is proved dually.
2) Suppose that A satisfies the Nakayama conjecture. If Ei is projective for any i ≥ 0, then each Ii is
a projective A-module for any i ≥ 0 by the discussion above. So, A is self-injective by assumption. It
follows from Proposition 3.2 1) that B is self-injective.

Dually, it can be verified that A satisfies the Nakayama conjecture when B does so. □

As applications of Lemma 3.1, we have the following conclusions.

Lemma 3.5. 1) An A-module X is projective if and only if so is a B-module HomA(M, X). In particular,
HomA(AMB, AA) is a projective B-module.
2) A B-module Y is projective if and only if so is an A-module HomB(N,Y). In particular, HomB(BNA, B)
is a projective A-module.

AIMS Mathematics Volume 10, Issue 2, 2589–2601.
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Proof. We only prove 1); the proof of 2) is similar.
1) Suppose that X is a projective A-module. It is clear that D(X) is a right injective A-module, and

hence D(X)⊗A M is a right injective B-module by Lemma 3.1 2). From the right B-module isomorphism
D(HomA(M, X)) � D(X) ⊗A M, we know that D(HomA(M, X)) is an injective right B-module, which
implies that HomA(M, X) is a projective left B-module.

Similarly, we prove that X is a projective A-module when HomA(M, X) does so.
In particular, since A is a projective A-module, HomA(AMB, AA) is a projective B-module. □

Lemma 3.6. Let X be an A-module and n a positive integer. If Extn
A(X, A) = 0, then Extn

B(N⊗AX, B) = 0.

Proof. Assume Extn
A(X, A) = 0. One checks easily that Extn

A(X, L) = 0 for any projective A-module L.
Since NA and AHomB(N, B) are projective by Lemma 3.5 2), we have

Extn
B(N ⊗A X, B)

� Extn
A(X,HomB(N, B))(by Lemma 2.5 (1))

= 0.

□

Proposition 3.7. Let X and Y be A-modules and n a positive integer. If Extn
A(X,Y) = 0 = Extn

A(X, A),
then Extn

B(N ⊗A X,N ⊗A Y) = 0.

Proof. Assume that Ext1
A(X,Y) = 0 = Ext1

A(X, A). It is not hard to check that Ext1
A(X, L) = 0 for any

projective A-module L. Since TMTN(X) = X ⊕ TP(X) and TMTN(Y) = Y ⊕ TP(Y) and TP(X) and TP(Y)
are projective A-modules by Lemma 2.4 3), there exist isomorphisms Ext1

A(TMTN(X), TMTN(Y)) =
Ext1

A(X ⊕ TP(X),Y ⊕ TP(Y)) � Ext1
A(X,Y) ⊕ Ext1

A(X,TP(Y)) = 0 by assumption.
Let ε be any element of Ext1

B(TN(X),TN(Y)). Represent ε by a short exact sequence in mod B.

0→ TN(Y)→ K
f
→ TN(X)→ 0. (3.4)

We claim that the sequence (3.4) is split. Indeed, applying the exact functor TM to the sequence (3.4)
gives an exact sequence in mod A:

0→ TMTN(Y)→ TM(K)
TM( f )
→ TMTN(X)→ 0,

which is split because of Ext1
A(TMTN(X),TMTN(Y)) = 0. Then, there exists g ∈ HomA(TMTN(X),

TM(K)) such that TM(IdTN (X)) = TM( f )g. Thus, TNTM(IdTN (X)) = TNTM( f )TN(g),where TN(g) : TN(X)⊕

TQTN(X)→ K ⊕ TQ(K). Set TN(g) =
(
α β

σ τ

)
, then we have(

IdTN (X) 0
0 TQ(IdTN (X))

)
=

(
f 0
0 TQ( f )

) (
α β

σ τ

)
.

This means IdTN (X) = fα, and our claim is obtained. It follows that Ext1
B(N ⊗A X,N ⊗A Y) = 0.

Suppose Extn
A(X,Y) = 0 = Extn

A(X, A) for n > 1. By dimension shifting and by assumption, one
gets isomorphisms 0 = Extn

A(X,Y) � Ext1
A(Ωn−1(X), Y) and 0 = Extn

A(X, A) � Ext1
A(Ωn−1(X), A). From

the above step, we have Ext1
B(TN(Ωn−1(X)), TN(Y)) = 0. On the other hand, since TN is exact and

takes projective A-modules to projective B-modules by Lemma 2.4 2) and 3), there are isomorphisms
Extn

B(TN(X),TN(Y)) � Ext1
B(Ωn−1(TN(X)), TN(Y)) � Ext1

B(TN(Ωn−1(X)),TN(Y)) = 0 as desired. □
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Lemma 3.8. Let X be an A-module. Then there is a projective right B-module Q′ such that

(TrX) ⊗A HomB(N, B) � Tr(N ⊗A X) ⊕ Q′

as right B-modules.

Proof. Take a minimal projective presentation of X

P1 → P0 → X → 0. (3.5)

Applying the functor ()∗ = HomA(−, A) induces an exact sequence

P∗0 → P∗1 → TrX → 0.

On the other hand, one obtains the exact sequence

N ⊗A P1 → N ⊗A P0 → N ⊗A X → 0, (3.6)

and the exact sequence

(N ⊗A P0)† → (N ⊗A P1)† → Tr(N ⊗A X) ⊕ Q′ → 0

for some projective right B-module Q′, where ()† = HomB(−, B).
Since NA and AHomB(N, B) are projective by Lemmas 2.4 1) and 3.5 2), for any A-module Y we

have isomorphisms

HomB(N ⊗A Y, B)
� HomA(Y,HomB(N, B))(by the adjoint isomorphism)
� HomA(Y, A) ⊗A HomB(N, B)(Lemma 2.5 (2)).

Hence, applying HomB(−, B) to the sequence (3.6) and − ⊗ N† to the sequence (3.5), respectively, we
get a commutative diagram with exact arrows

(N ⊗A P0)†

�
��

// (N ⊗A P1)†

�
��

// Tr(N ⊗A X) ⊕ Q′

��

// 0

P∗0 ⊗A N† // P∗1 ⊗A N† // Tr(X) ⊗A N† // 0

This induces a right B-module isomorphism Tr(N ⊗A X) ⊕ Q′ � Tr(X) ⊗A N† by five-lemma. □

Proposition 3.9. Let A and B be stably equivalent of Morita Type. Then an A-module G is Gorenstein
projective if and only if so is a B-module N ⊗A G.

Proof. Assume that G is a Gorenstein projective A-module, we have Ext≥1
A (G, A) = 0 =

Ext≥1
A (Tr(G)A, AA). Lemma 3.6 yields Ext≥1

B (N ⊗A G, B) = 0. On the other hand, since BN is projective,
there exists a (B, A)-bimodule isomorphism HomB(HomB(N, B), B) � N. And hence, for all n ≥ 1, we
have

Extn
B(Tr(N ⊗A G), B)

AIMS Mathematics Volume 10, Issue 2, 2589–2601.
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� Extn
B(TrG ⊗A HomB(N, B), B) (by Lemma 3.8)

� Extn
A(TrG,HomB(HomB(N, B), B)) (by Lemma 2.5, 1))

� Extn
A(TrG,N)

= 0 (because N is a projective right A-module ).

This implies that N ⊗A G is a Gorenstein projective B-module.
Conversely, assume that N ⊗A G is a Gorenstein projective B-module. Then, M ⊗B N ⊗A G is a

Gorenstein projective A-module. It follows from [7, Theorem 2.5] that G is a Gorenstein projective
A-module because AG|A(M ⊗B N ⊗A G) by Lemma 2.4 5). □

Theorem 3.10. Let A and B be stably equivalent of Morita Type. Then,

1) A satisfies the Auslander–Reiten conjecture if and only if B does so;
2) A satisfies the Gorenstein projective conjecture if and only if B does so;
3) A satisfies the strong Nakayama conjecture if and only if B does so;

Proof. We prove only the “if ” part, the proof of the “only if ” part is analogous.
1) Assume that B satisfies the Auslander–Reiten conjecture. Let X be an A-module satisfying

Ext≥1
A (X, X) = 0 = Ext≥1

A (X, A). By Lemma 3.6 and Proposition 3.7, we have Ext≥1
B (N ⊗A X,N ⊗A X) =

0 = Ext≥1
B (N ⊗A X, B). So, N ⊗A X is a projective B-module by assumption. It follows from Lemma

2.4 4) that M ⊗B N ⊗A X is a projective A-module, which shows that X is a projective A-module, for
AX|A(M ⊗B N ⊗A X) by Lemma 2.4 5).

2) Suppose that B satisfies the Gorenstein projective conjecture. Let G be a Gorenstein projective
A-module with Exti≥1

A (G,G) = 0. According to Proposition 3.9 and Lemma 3.6, it follows that N ⊗A G
is a Gorenstein projective B-module satisfying Exti≥1

B (N ⊗A G,N ⊗A G) = 0. So, N ⊗A G is a projective
B-module by assumption, and hence M ⊗B N ⊗A G is a projective A-module by Lemma 2.4 4). Thus,
we obtain that G is a projective A-module, for AG|A(M ⊗B N ⊗A G) by Lemma 2.4 5).

3) Assume that B satisfies the strong Nakayama conjecture. Let X be an A-module satisfying
Ext≥0

A (X, A) = 0. By Lemma 3.6, one has Ext≥1
B (N ⊗A X, B) = 0. On the other hand, because

HomB(N, B) is a projective A-module by Lemma 3.5 2), there are isomorphisms HomB(N ⊗A X, B) �
HomA(X,HomB(N, B)) � HomA(X, A) ⊗A HomB(N, B) = 0 by the adjoint isomorphism and Lemma 2.5
2). It follows that N ⊗A X = 0 by assumption, and hence X = 0 since NA is a projective generator from
Lemma 2.4 1). □

Lemma 3.11. Let X be an A-module.

(1) If HomA(X, A) = 0, then we have P ⊗A X = 0;
(2) If X is a simple A-module with HomA(X, A) = 0, then N ⊗A X is a simple B-module.

Proof. 1) Assume that the assertion would not hold. We have HomA(P⊗A X, A) , 0, because P⊗A X is
a projective A-module by Lemma 2.4 3). By the definition of stable equivalences of Morita type, there
exist isomorphisms HomA(M ⊗B N ⊗A X, A) � HomA(X ⊕ (P ⊗A X), A) � HomA(P ⊗A X, A) , 0.

On the other hand, since HomA(M, A) is a projective B-module and HomB(N, B) is a projective
A-module, respectively, by Lemma 3.5, we have

HomA(M ⊗B N ⊗A X, A)
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� HomB(N ⊗A X,HomA(M, A)) (by the adjoint isomorphism )
� HomB(N ⊗A X, B) ⊗B HomA(M, A) (by Lemma 2.5 2))
� HomA(X,HomB(N, B)) ⊗B HomA(M, A) (by the adjoint isomorphism)
� HomA(X, A) ⊗A HomB(N, B) ⊗B HomA(M, A) (by Lemma 2.5 2)).

So, HomA(M ⊗B N ⊗A X, A) = 0 by assumption. This leads to a contradiction. Therefore, we obtain
P ⊗A X = 0.

2) According to the assumption and (1), it follows that P⊗A X = 0. Then, we have M⊗B N⊗A X � X,
which implies that M ⊗B N ⊗A X is a simple A-module.

Take any nonzero submodule K of N ⊗A X. The inclusion map f : K ↪→ N ⊗A X induces an exact
sequence in mod B

0→ K → N ⊗A X → L→ 0.

Because MB is a projective generator for B-modules, the functor M⊗B− is exact and faithful, and hence
one gets an exact sequence in mod A

0→ M ⊗B K → M ⊗B N ⊗A X → M ⊗B L→ 0

with M ⊗B K , 0. Since M ⊗B N ⊗A X is a simple A-module, then M ⊗A L = 0, which yields L = 0.
Thus, N ⊗A X is a simple B-module. □

Theorem 3.12. Let A and B be stably equivalent of Morita type. Then, A satisfies the generalized
Nakayama conjecture if and only if B does so.

Proof. Assume that B satisfies the generalized Nakayama conjecture. Let S be any simple A-module.
If HomA(S , A) , 0, we are done.

If HomA(S , A) = 0, then N ⊗A S is a simple B-module by Lemma 3.11 2). Note that HomB(N, B) is
a projective A-module. Then, there exist isomorphisms HomB(N ⊗A S , B) � HomA(S ,HomB(N, B)) �
HomA(S , A) ⊗A HomB(N, B) = 0 by the adjoint isomorphism and by Lemma 2.5 2). Hence, there
exists an integer n ≥ 1 such that Extn

B(N ⊗A S , B) , 0 by assumption. It follows from Lemma 3.6 that
Extn

A(S , A) , 0. □

We conclude with an example to illustrate our results.

Example 3.13. Let k be an algebraically closed field, and let Λ and Γ be finite-dimensional k-algebras
by the following quivers with relations:

Λ ·
1

α

⇄
β
·
2

with relation αβαβ = 0,

and

Γ ·
1

x
⇄

y
·
2
⟲z with relation xy = xz = zy = z2 − yx = 0.
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It follows from [13, Section 5, Example] that Λ and Γ are stably equivalent of Morita type. Note
that Λ is a Nakayama algebra, and indecomposable projective and injective Λ-modules are

P(1) =


1
2
1
2

 , P(2) =


2
1
2
1
2


= I(2) and I(1) =


2
1
2
1

 .

Thus, we obtain a minimal injective resolution of P(1):

0→ P(1)→ I(2)→ I(2)→ I(1)→ 0,

which yields idΛΛ = 2 and pdΛI(1) = 2. Similarly, we have idΛΛ = 2. This implies that Λ satisfies the
Gorenstein symmetric conjecture, Auslander–Gorenstein conjecture, and strong Nakayama conjecture
by [8, Theorem 2]. So that the generalized Nakayama conjecture holds on Λ. On the other hand,
since Λ is of finite representation type, one has that Λ satisfies the Auslander–Reiten conjecture by [2,
Proposition 1.3]. And hence the Gorenstein projective conjecture holds on Λ by [14]. Therefore,
we obtain that Γ satisfies the Gorenstein symmetric conjecture, Auslander–Gorenstein conjecture,
Auslander–Reiten conjecture, Gorenstein projective conjecture, strong Nakayama conjecture, and the
generalized Nakayama conjecture by Theorem 3.3 2), Theorem 3.4 1), Theorem 3.10, and Theorem
3.12.

4. Conclusions

In this paper, we mainly show that many famous homological conjectures are preserved by algebras
that are stably equivalent of Morita type. Our findings contribute to providing new algebras satisfying
homological conjectures. This gives support for the validity of these homological conjectures.

It has been known that the Auslander–Reiten conjecture and the Gorenstein projective conjecture
hold under singular equivalences induced by adjoint pairs. In the future work, we will study whether
the homological conjectures hold under any singular equivalences, even under separable equivalences.
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