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Abstract: This paper has proposed a novel algorithm for solving fixed point problems for quasi-
nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed
method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this
algorithm for data classification to osteoporosis risk prediction, utilizing an extreme learning machine.
From the experimental results, our proposed algorithm consistently outperforms existing algorithms
across multiple evaluation metrics. Specifically, it achieved higher accuracy, precision, and F1-score
across most of the training boxes compared to other methods. The area under the curve (AUC) values
from the receiver operating characteristic (ROC) curves further validated the effectiveness of our
approach, indicating superior generalization and classification performance. These results highlight
the efficiency and robustness of our proposed algorithm, demonstrating its potential for enhancing
osteoporosis risk-prediction models through improved convergence and classification capabilities.
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1. Introduction

In this paper, let H represent a real Hilbert space equipped with the inner product 〈·, ·〉 and its
corresponding norm || · ||. We denote the sets of real numbers and positive integers by R and N,
respectively.
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A fixed point problem involves finding

v ∈ H such that Uv = v, (1.1)

where U is a self-mapping on H . We denote the set of solutions to the fixed point problem of the
mapping U by Fix(U). Iterative methods are crucial in fixed point theory, especially when dealing
with nonlinear mappings. The Picard iteration method [1], developed by Charles Émile Picard in
the late 19th century, has long been a cornerstone of mathematical analysis, particularly in solving
differential equations. It is highly effective for contractive mappings, where it guarantees convergence
to a unique solution by repeatedly applying the function to an initial guess. However, its effectiveness
is limited when dealing with nonexpansive mappings, where convergence is not always assured. To
address this limitation, Mann [2] introduced the Mann iteration method in 1953, broadening the scope
of the Picard method to include nonexpansive mappings. Since then, the Mann iteration has become
an essential tool in fixed point theory and numerical analysis, particularly in cases where traditional
methods might struggle to converge. In 2013, Khan [3] introduced the Picard-Mann iteration method,
a hybrid approach that combines elements of both the Picard and Mann iterations. This method
was designed to enhance the convergence of traditional techniques, particularly for certain types of
mappings where standard methods can be slow or less effective. By blending the simplicity of Picard’s
method with the flexibility of Mann’s, the Picard-Mann iteration offers a more efficient way to find
fixed points, especially in more complex or nonexpansive scenarios. This hybrid approach not only
expands its applicability but also has the potential to accelerate convergence compared to using either
method alone. Khan further demonstrated both weak and strong convergence results for nonexpansive
mappings in uniformly convex Banach spaces using the Picard-Mann iteration method.

A variational inclusion problem (VIP) is typically formulated as follows:

Find v ∈ H such that 0 ∈ (X + Y)v, (1.2)

where X : H → H is a single-valued mapping and Y : H → 2H is a multivalued mapping. The
set of all solutions to the VIP is denoted by (X + Y)−1 (0). The study of solving the VIP has garnered
significant attention among researchers in optimization and functional analysis. Numerous researchers
have focused on developing efficient algorithms for addressing this problem. Two methods that have
gained considerable popularity are the forward-backward splitting method [4,5] and the Tseng splitting
method [6]. Various researchers have modified and adapted the forward-backward splitting method
to solve the VIP (see [7–9]). The Tseng splitting method is another approach that has been refined
and applied to solve the VIP (see [10–12]). Both methodologies are extensively referenced in the
academic literature on solving the VIP, owing to their efficiency and flexibility in application to various
problem formulations. Researchers have further developed these methods, enhancing convergence
rates, computational error tolerance, and the capacity to accommodate additional problem constraints.
In 2018, Gibali and Thong [13] developed a modified iterative method aimed at solving the VIP. They
enhanced existing techniques by adjusting the step size rule based on Tseng’s method and the Mann
iteration method, to improve both efficiency and applicability. The method is detailed as follows:
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Algorithm 1 : Mann Tseng-type method
Initialization: Let a1 ∈ H , µ1 > 0, and µ, αn, βn ∈ (0, 1).
Iterative Steps: Given n ≥ 1, calculate an+1 as follows:
Step 1. Compute

yn = (I + µnY)−1(I − µnX)an.

If an = yn, then stop and yn is a solution of the VIP. Otherwise,
Step 2. Compute

zn = yn − µn(Xyn − Xan)

and

an+1 = (1 − αn − βn)an + βnzn.

Step 3. Update

µn+1 =

 min
{
µn,

µ‖an − yn‖

‖Xan − Xyn‖

}
if Xan − Xyn , 0;

µn otherwise.

Set n = n + 1 and go to Step 1.

Under the right conditions, this approach demonstrates strong convergence and provides practical
benefits, making it particularly valuable in real-world scenarios. Prior to this, in 1964, Polyak [14]
proposed the inertial extrapolation technique, known as the heavy ball method, to accelerate the
convergence of iterative algorithms. In 2020, Padcharoen et al. [11] introduced the following splitting
method that builds on Tseng’s approach and incorporates the inertial extrapolation technique for
solving the VIP.
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Algorithm 2 : Inertial Tseng method
Initialization: Let a0, a1 ∈ H , θn ∈ [0, 1), and µn ∈ (0, 1/L) where L is a Lipschitz constant.
Iterative Steps: Given n ≥ 1, calculate an+1 as follows:
Step 1. Compute

wn = an + θn(an − an−1)

and

yn = (I + µnY)−1(I − µnX)wn.

If wn = yn, then stop and yn is a solution of the VIP. Otherwise,
Step 2. Compute

an+1 = yn − µn(Xyn − Xwn).

Set n = n + 1 and go to Step 1.

While weak convergence was confirmed under typical conditions, the method has also proven
effective in practical applications, such as image deblurring and recovery.

In this study, we are interested in investigating the fixed point problem and the VIP, that is,

v ∈ Fix(U) ∩ (X + Y)−1 (0), (1.3)

where Y : H → 2H is a maximal monotone mapping, X : H → H is `-Lipschitz continuous and a
monotone mapping, and U : H → H is quasi-nonexpansive and a demiclosed mapping. We denote
the set of solutions to this problem by Ψ. Recently, Mouktonglang et al. [15] introduced the following
method for solving fixed points of demicontractive mapping and the VIP in the case where X = ∇ f
and Y = ∂g, where f : H → R and g : H → R ∪ {+∞} are two proper, lower semicontinuous, and
convex functions.
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Algorithm 3 : Double inertial proximal gradient Mann method
Initialization: Select arbitrary elements a0, a1 ∈ H . Let µ ∈ (0, 1), µ1 ∈ (0,∞), {αn} ⊂ (0, 1),
{θn} ⊂ [0,∞), {δn} ⊂ [0,∞), {pn} ⊂ [0,∞), and {qn} ⊂ [1,∞).
Iterative Steps: Construct {an} by using the following steps:
Step 1. Compute

zn = an + θn(an − an−1),
wn = zn + δn(zn − an−1),
yn = proxµng(I − µn∇ f )wn,

un = yn + µn(∇ f (wn) − ∇ f (yn)),

and

an+1 = (1 − αn)un + αnUun.

If wn = yn = un = Uun, then stop and wn is a solution of the problem. Otherwise,
Step 2. Update

µn+1 =

 min
{

µqn‖wn − yn‖

‖∇ f (wn) − ∇ f (yn)‖
, µn + pn

}
if ∇ f (wn) , ∇ f (yn);

µn + pn otherwise.

Replace n with n + 1 and then repeat Step 1.

The authors proved a weak convergence theorem under specific conditions using this method and
demonstrated it with a numerical example in signal recovery. The approach is inspired by the proximal
gradient technique, double inertial steps, and Mann iteration.

In this article, we present a novel algorithm that demonstrates weak convergence to a common
solution for fixed point problems involving quasi-nonexpansive mappings and variational inclusion
problems within the context of real Hilbert spaces, under reasonable assumptions. The presented
algorithm is given along with essential assumptions in Section 3. Additionally, in Section 4, we employ
this algorithm in conjunction with an extreme learning machine for data classification, specifically to
predict osteoporosis risk.

2. Preliminaries

We gather essential definitions and lemmas needed to establish our main results. We denote weak
and strong convergence as ⇀ and→, respectively. Assume a, b ∈ H , and we have

‖a + b‖2 = ‖a‖2 + 2〈a, b〉 + ‖b‖2, (2.1)
‖γa + (1 − γ)b‖2 = γ‖a‖2 + (1 − γ)‖b‖2 − γ(1 − γ)‖a − b‖2, (2.2)

for any γ ∈ R.

Definition 2.1. A self-mapping X : H → H is called
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(i) `-Lipschitz continuous if there is ` > 0 such that ‖Xa − Xb‖ ≤ `‖a − b‖ for all a, b ∈ H ;
(ii) nonexpansive if X is 1-Lipschitz continuous;

(iii) quasi-nonexpansive if Fix(X) is nonempty and ‖Xa − r‖ ≤ ‖a − r‖ for all a ∈ H and r ∈ Fix(X);
(iv) demiclosed if for any sequence {an} ⊂ H , the following implication holds:

an ⇀ r and (I − X)an → 0 =⇒ r ∈ Fix(X).

Definition 2.2. Let Y : H → 2H be a multivalued mapping. Then Y is said to be

(i) monotone if for all (a, c), (b, d) ∈ graph(Y) (the graph of mapping Y), 〈c − d, a − b〉 ≥ 0;
(ii) maximal monotone if for every (a, c) ∈ H ×H , 〈c − d, a − b〉 ≥ 0 for all (b, d) ∈ graph(Y) if and

only if (a, c) ∈ graph(Y).

Lemma 2.3. [16] Let X : H → H be a mapping and Y : H → 2H a maximal monotone mapping. If
Tµ := (I + µY)−1 (I − µX) with µ > 0, then Fix(Tµ) = (X + Y)−1(0).

Lemma 2.4. [17] If Y : H → 2H is a maximal monotone mapping and X : H → H is a Lipschitz
continuous monotone mapping, then the sum X + Y is also maximal monotone.

3. Main results

To analyze the convergence, we assume the following conditions.

(C1) Y : H → 2H is a maximal monotone mapping.
(C2) X : H → H is `-Lipschitz continuous and a monotone mapping.
(C3) U : H → H is quasi-nonexpansive and a demiclosed mapping.
(C4) Ψ is nonempty.

The following algorithm will be employed for Theorem 3.2.

Algorithm 4
Initialization: Select arbitrary elements a−1, a0, a1 ∈ H . Let {αn} ⊂ (0, 1), {µn} ⊂ (0, 1

`
), {θn}, {δn} ⊂

(−∞,∞), and set n := 1.
Iterative Steps: Construct {an} by using the following steps:
Step 1. Define

dn = an + θn(an − an−1) + δn(an−1 − an−2).

Step 2. Compute

cn = (I + µnY)−1(I − µnX)dn,

bn = cn + µn(Xdn − Xcn).

Step 3. Evaluate

an+1 = U[αndn + (1 − αn)Ubn].

If Ubn = bn = cn = dn, then stop and dn ∈ Ψ. Otherwise, replace n by n + 1 and then repeat Step 1.
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Remark 3.1. Suppose that U and X are mappings on H and the item (C1) holds. According to
Lemma 2.3, if Ubn = bn = cn = dn in Algorithm 4, then it is easy to show that dn ∈ Ψ.

Next, we are ready to prove Theorem 3.2.

Theorem 3.2. Let the sequence {an} be generated by Algorithm 4 satisfying the items (C1)–(C4).
Assume that the following conditions are satisfied:

(C5) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1.

(C6) 0 < lim inf
n→∞

µn ≤ lim sup
n→∞

µn <
1
`
.

(C7)
∞∑

n=1

|θn|‖an − an−1‖ < ∞.

(C8)
∞∑

n=1

|δn|‖an−1 − an−2‖ < ∞.

Then, {an} converges weakly to a solution of Ψ.

Proof. Let ã ∈ Ψ. By the condition (C6), there are n0 ∈ N, µ > 0, and µ̄ < 1
`

such that µ ≤ µn ≤ µ̄ for
all n ≥ n0. We will now establish the following claims.
Claim 1. For any n ∈ N,

〈cn − ã, bn − dn〉 ≤ 0.

By using the definition of cn, we have

(I − µnX)dn ∈ (I + µnY)cn.

Thus, we can write

yn =
1
µn

(dn − cn − µnXdn) ,

where yn ∈ Ycn. Since X + Y is maximal monotone, we obtain

〈cn − ã, Xcn + yn〉 ≥ 0,

implying that

〈cn − ã, cn + µn(Xdn − Xcn) − dn〉 ≤ 0.

Claim 2. For each n ≥ n0,

‖Ubn − ã‖2 ≤ ‖dn − ã‖2 − [1 − (µ̄`)2]‖dn − cn‖
2.

From (2.1) and the fact that U is a quasi-nonexpansive mapping, we have

‖Ubn − ã‖2 ≤ ‖bn − ã‖2

= ‖cn − ã‖2 + 2µn〈cn − ã, Xdn − Xcn〉 + µ2
n‖Xdn − Xcn‖

2
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= ‖cn − dn‖
2 + 2〈cn − dn, dn − ã〉 + ‖dn − ã‖2 + 2µn〈cn − ã, Xdn − Xcn〉

+ µ2
n‖Xdn − Xcn‖

2

= ‖dn − ã‖2 − ‖cn − dn‖
2 + 2〈cn − ã, cn − dn〉 + 2µn〈cn − ã, Xdn − Xcn〉

+ µ2
n‖Xdn − Xcn‖

2

= ‖dn − ã‖2 − ‖cn − dn‖
2 + µ2

n‖Xdn − Xcn‖
2 + 2〈cn − ã, bn − dn〉.

Using Claim 1, we get

‖Ubn − ã‖2 ≤ ‖dn − ã‖2 − ‖cn − dn‖
2 + µ2

n‖Xdn − Xcn‖
2.

By the Lipschitz continuity of X, we have that

‖Ubn − ã‖2 ≤ ‖dn − ã‖2 − ‖cn − dn‖
2 + (µ̄`)2‖dn − cn‖

2.

Thus, Claim 2 is established.
Claim 3. lim

n→∞
‖an − ã‖ = lim

n→∞
‖dn − ã‖ = lim

n→∞
‖en − ã‖, where en = αndn + (1 − αn)Ubn.

Since U is a quasi-nonexpansive mapping and using Claim 2, we have

‖an+1 − ã‖ = ‖Uen − ã‖

≤ ‖en − ã‖

≤ αn‖dn − ã‖ + (1 − αn)‖Ubn − ã‖

≤ ‖dn − ã‖ for all n ≥ n0

≤ ‖an − ã‖ + |θn|‖an − an−1‖ + |δn|‖an−1 − an−2‖ for all n ≥ n0.

Applying this to Lemma 1 in [18] with the conditions (C7) and (C8), we derive that the sequence
{‖an − ã‖} converges and hence lim

n→∞
‖an − ã‖ = lim

n→∞
‖dn − ã‖ = lim

n→∞
‖en − ã‖. In particular, {an}, {dn}, and

{en} are bounded.
Claim 4. lim

n→∞
‖dn − Ubn‖ = 0.

From (2.2), U is a quasi-nonexpansive mapping, and using Claim 2, we have

‖an+1 − ã‖2 ≤ ‖en − ã‖2

= αn‖dn − ã‖2 + (1 − αn)‖Ubn − ã‖2 − αn(1 − αn)‖dn − Ubn‖
2

≤ ‖dn − ã‖2 − αn(1 − αn)‖dn − Ubn‖
2 for all n ≥ n0.

This together with Claim 3 and the condition (C5) implies that lim
n→∞
‖dn − Ubn‖ = 0.

Claim 5. lim
n→∞
‖Ubn − bn‖ = 0.

Again, using Claim 2, we get, for all n ≥ n0,

[1 − (µ̄`)2]‖dn − cn‖
2 ≤ ‖dn − ã‖2 − ‖Ubn − ã‖2.

Thus, we obtain from Claim 4 and 1 − (µ̄`)2 > 0 that

lim
n→∞
‖dn − cn‖ = 0. (3.1)
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By the Lipschitz continuity of X, it follows that

‖dn − bn‖ ≤ ‖dn − cn‖ + ‖cn − bn‖

= ‖dn − cn‖ + µn‖Xdn − Xcn‖

≤ (1 + µ̄`)‖dn − cn‖ for all n ≥ n0,

which by (3.1) yields

lim
n→∞
‖dn − bn‖ = 0. (3.2)

Combining (3.2) and Claim 4, we have that

‖Ubn − bn‖ ≤ ‖Ubn − dn‖ + ‖dn − bn‖ → 0 as n→ ∞.

Claim 6. lim
n→∞
‖an − bn‖ = lim

n→∞
‖an − cn‖ = 0.

By using the the definition of dn, the following inequalities are obtained:

‖an − bn‖ ≤ ‖an − dn‖ + ‖dn − bn‖

≤ |θn|‖an − an−1‖ + |δn|‖an−1 − an−2‖ + ‖dn − bn‖

and

‖an − cn‖ ≤ ‖an − dn‖ + ‖dn − cn‖

≤ |θn|‖an − an−1‖ + |δn|‖an−1 − an−2‖ + ‖dn − cn‖.

Combining (3.1)–(3.2) and the conditions (C7)–(C8), we deduce that Claim 6 is true.
Claim 7. Every weak sequential cluster point of {an} belongs to Ψ.
Let a∗ be a weak sequential cluster point of {an}. Then ank ⇀ a∗ as k → ∞ for some subsequence
{ank} of {an}. This implies by Claim 6 that bnk ⇀ a∗ and cnk ⇀ a∗ as k → ∞. It follows, from
the fact that U is a demiclosed mapping and Claim 5, that a∗ ∈ Fix(U). Next, we show that a∗ ∈
(X + Y)−1 (0). Let (v, u) ∈ graph (X + Y), that is, u − Xv ∈ Yv. It is implied by the definition of cn that

1
µnk

(
dnk − cnk − µnk Xdnk

)
∈ Ycnk . By the maximal monotonicity of Y , we have〈

v − cnk , u − Xv −
1
µnk

(
dnk − cnk − µnk Xdnk

)〉
≥ 0.

Thus, by the monotonicity of X, we get〈
v − cnk , u

〉
≥

〈
v − cnk , Xv +

1
µnk

(
dnk − cnk − µnk Xdnk

)〉
=

〈
v − cnk , Xv − Xcnk

〉
+

〈
v − cnk , Xcnk − Xdnk

〉
+

1
µnk

〈
v − cnk , dnk − cnk

〉
≥

〈
v − cnk , Xcnk − Xdnk

〉
+

1
µnk

〈
v − cnk , dnk − cnk

〉
.

This result follows from the Lipschitz continuity of X and (3.1), giving us

〈v − a∗, u〉 = lim
k→∞

〈
v − cnk , u

〉
≥ 0,

which, combined with the maximal monotonicity of X + Y , implies that a∗ ∈ (X + Y)−1(0). Hence,
a∗ ∈ Ψ. Finally, by Opial’s lemma in [16], we conclude that the sequence {an} converges weakly to a
point in Ψ. �
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4. Application to osteoporosis risk prediction

Osteoporosis is a major global health issue, particularly affecting the elderly population. It leads
to weakened bones and a higher risk of fractures, which can result in significant morbidity, loss of
mobility, and increased mortality rates. Machine learning (ML) models can analyze large datasets
containing complex variables like demographics, lifestyle, genetics, and bone density, identifying
individuals at high risk of osteoporosis earlier. This allows for timely interventions, preventing
fractures and other complications.

In this section, we implement our newly proposed algorithm as the optimizer for an extreme
learning machine (ELM), originally introduced by Huang et al. [19], to assess osteoporosis risk using
a comprehensive dataset from Kaggle*. This dataset provides a detailed overview of health factors that
contribute to osteoporosis, including demographic details, lifestyle choices, medical history, and bone
health indicators. Its comprehensive nature facilitates the development of machine learning models
that can accurately identify individuals at high risk for osteoporosis. By analyzing key factors such as
age, gender, hormonal changes, and lifestyle habits, our research significantly advances osteoporosis
management and prevention strategies. This predictive capability enables early diagnosis, supporting
timely interventions that minimize fracture risk, enhance patient outcomes, and optimize the allocation
of healthcare resources. Additionally, the integration of machine learning models with our novel
optimizer improves prediction accuracy, representing a significant innovation in the field. Table 1
provides readers with an understanding of the dataset’s structure, including a detailed description of its
components.

Osteoporosis occurs when bone density significantly decreases, resulting in fragile and brittle bones.
It is diagnosed when the T-score is -2.5 or lower, based on a bone density scan (DEXA scan), see
Figure 1. At this stage, bones have become considerably more porous and weaker, making them prone
to fractures. Osteoporosis typically progresses from osteopenia, an intermediate stage characterized
by lower-than-normal bone density but not as severe as osteoporosis. Factors such as age, hormonal
changes (e.g., menopause), nutritional deficiencies (e.g., calcium or vitamin D), and lack of physical
activity can contribute to the development of osteoporosis.

*https://www.kaggle.com/datasets/amitvkulkarni/lifestylefactors-influencing-osteoporosis
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Table 1. The characteristics of the Osteoporosis dataset used for risk prediction, including
statistics for each feature such as mean (x̄), maximum (Max), minimum (Min), standard
deviation (SD), and coefficient of variation (CV).

Feature Description x̄ Max Min SD CV
Age The age of the individual in years 39.1011 90 18 21.3554 0.5461
Gender The individual’s gender: Male or Female 1.5066 2 1 0.5001 0.3319
Hormonal Changes Indicates if the individual has experienced 1.4989 2 1 0.5001 0.3336

hormonal changes, such as menopause
Family History Indicates a family history of osteoporosis 1.5097 2 1 0.5000 0.3312

or fractures: Yes or No
Race/Ethnicity The individual’s race or ethnicity: 2.0255 3 1 0.8183 0.4040

e.g., Caucasian, African American, Asian
Body Weight The individual’s body weight status: 1.4754 2 1 0.4995 0.3385

Normal or Underweight
Calcium Intake The individual’s dietary calcium intake: 1.5127 2 1 0.4996 0.3304

Low or Adequate
Vitamin D Intake The individual’s vitamin D intake: 1.4836 2 1 0.4998 0.3369

Insufficient or Sufficient
Physical Activity Indicates the individual’s physical activity level: 1.4785 2 1 0.4996 0.3379

Sedentary for low activity or Active
Smoking Indicates if the individual is a smoker: Yes or No 1.4984 2 1 0.5001 0.3337
Alcohol Consumption Indicates the individual’s alcohol consumption: 1.4954 2 1 0.5001 0.3344

None for non-drinkers or Moderate
Medical Conditions Any existing medical conditions the individual 2.0158 3 1 0.8226 0.4081

may have, such as Rheumatoid Arthritis
Medications Any medications the individual is currently taking, 1.4969 2 1 0.5001 0.3340

such as Corticosteroids or No Medications
Prior Fractures Indicates if the individual has previously 1.4979 2 1 0.5001 0.3338

experienced fractures: Yes or No

Osteoporosis The target variable indicating 979 instances of the presence of osteoporosis
979 instances of the absence of osteoporosis

Figure 1. The figure illustrates three stages of bone density: (1) Normal bone, which has a T-
score of -1 or higher, indicating healthy bone density; (2) Osteopenia, which shows mild bone
loss with a T-score between -1 and -2.5, representing a condition of lower-than-normal bone
density; and (3) Osteoporosis, characterized by significant bone loss and increased porosity,
with a T-score of -2.5 or lower, indicating a higher risk of fractures.

In the process of creating our extreme learning machine (ELM), we consider N distinct samples,
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where the training set S := {(an, tn) : xn ∈ R
n, tn ∈ R

m, n = 1, 2, . . . ,N} consists of input data xn and
corresponding target outputs tn. The output function of an ELM for a standard single-layer feedforward
network (SLFN) with M hidden nodes is mathematically represented as:

O j =

M∑
i=1

βi
1

1 + e−(wia j+bi)
,

where wi is a randomly initialized weight, and bi is a randomly initialized bias for the i-th hidden
node. The goal is to find the optimal output weights βi. The above system of linear equations can be
represented in matrix form as T = Hβ, where

H =


1

1+e−(w1a1+b1) · · ·
1

1+e−(wMa1+bM )

...
. . .

...
1

1+e−(w1aN +b1) · · ·
1

1+e−(wMaN +bM )

 ,
where H is the hidden layer output matrix, T = [tT

1 , . . . , t
T
N]T is the target output matrix, and β =

[βT
1 , . . . , β

T
M]T is the vector of optimal output weights. These optimal weights can be computed as β =

H†T , where H† is the Moore-Penrose generalized inverse of H, though finding H† may be challenging
in practice. Therefore, obtaining a solution β via convex minimization can help address this challenge.
The least squares problem is particularly effective for this, and regularization is a commonly employed
technique in machine learning and statistics to mitigate overfitting, enhance model generalization, and
ultimately improve performance in classification tasks. We conducted a series of experiments on a
classification problem, explicitly using the well-known least absolute shrinkage and selection operator
(LASSO) method [20]. The detailed descriptions of these experiments are provided below: For λ > 0,

min
β∈RM

1
2
‖Hβ − T‖22 + λ‖β‖1. (4.1)

By applying Algorithm 4 to solve the problem (4.1), we are setting Xβ ≡ ∇( 1
2‖Hβ − T‖22) and Yβ ≡

∂(λ‖β‖1) with λ = 0.01.
We evaluate the performance of the classification algorithms using four evaluation metrics:

Accuracy, precision, recall, and F1-score [21]. These metrics are defined as follows:

Accuracy =
T P + T N

T P + FP + T N + FN
× 100%;

Precision =
T P

T P + FP
× 100%;

Recall =
T P

T P + FN
× 100%;

F1-score =
2 × (Precision × Recall)

Precision + Recall
.

In these formulas, T P represents True Positives, T N True Negatives, FP False Positives, and FN
False Negatives.
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Additionally, we used binary cross-entropy loss [22] to evaluate the model’s ability to distinguish
between two classes in binary classification tasks. This loss is computed as the average:

Loss = −

N∑
i=1

ϕi log ϕ̄i + (1 − ϕi) log(1 − ϕ̄i),

where ϕ̄i represents the predicted probability for the i-th instance, ϕi is the corresponding true label,
and N is the total number of instances.

Next, as illustrated in Figure 2, we partition the dataset using a 5-fold cross-validation approach.
In each fold, 80% of the data is used for training (highlighted in purple), and 20% is allocated for
validation (highlighted in green). This ensures that every subset of the data is used for validation
exactly once, while the rest is used for training.

Figure 2. Illustration of 5-fold cross-validation. In each fold, 80% of the data (represented
in purple) is used for training, and the remaining 20% (represented in green) is used for
validation. Each fold uses a different subset for validation, ensuring that the entire dataset is
validated once while the other folds are used for training.

For the comparison of Algorithms 1–3, we set all parameters as follows: The number of hidden
nodes is M = 500, with randomly initialized weights wi in the range [−50, 50] and biases bi in the
range [−5, 5]. Specifically, we define: θn = 0.0004 for Algorithm 2:

θn =

 1
n3 , if an , an−1 and n > N,

θ, otherwise

with

δn =

 1
n3 , if an−1 , an−2 and n > N,

δ, otherwise

for Algorithm 3, and

θn =

 1
‖an−an−1‖n3 , if an , an−1 and n > N,

θ, otherwise

with

δn =

 1
‖an−1−an−2‖n3 , if an−1 , an−2 and n > N,

δ, otherwise

for Algorithm 4 where N denotes the iteration number at which we decide to stop the algorithm. For
further details on the parameter settings, please refer to Table 2.
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Table 2. Parameter settings for Algorithms 1–4. The parameters include µ1, µn, and µ

representing step sizes, αn and βn for the learning rate, θ and δ for adjustment factors, and pn

and qn for additional terms related to the iteration process.

µ1, µn µ αn βn θ δ pn qn

Algorithm 1 0.999
‖H‖2 2.5 × 10−6 1

n+1
1
2 −

1
2n+1 - - - -

Algorithm 2 0.999
‖H‖2 - - - - - - -

Algorithm 3 0.999
‖H‖2 0.5 0.9 - 0.999 0.8 1

n2 1 + 1
n

Algorithm 4 0.999
‖H‖2 - 0.8 - 0.999 -0.001 - -

The results for each algorithm, evaluated on Training Box 1, are presented in Table 3.

Table 3. Performance comparison of Algorithms 1–4 on the validation set from Training
Box 1. These results are based on the model’s evaluation using the first fold of the 5-fold
cross-validation scheme, where Training Box 1 serves as the validation set.

Iter. CPU Time Accuracy Test Precision Recall F1-score
Algorithm 1 54 1.7352 77.44 76.92 77.72 77.31
Algorithm 2 51 1.6293 77.95 77.94 77.94 77.94
Algorithm 3 45 2.4402 81.79 96.41 74.60 84.11
Algorithm 4 54 2.5853 82.05 91.79 76.82 83.64

Table 4 displays the performance outcomes for each algorithm, assessed using Training Box 2.

Table 4. Performance comparison of Algorithms 1–4 on the validation set from Training
Box 2, based on the second fold of the 5-fold cross-validation scheme.

Iter. CPU Time Accuracy Test Precision Recall F1-score
Algorithm 1 42 1.4179 83.89 84.69 83.41 84.05
Algorithm 2 42 1.4632 83.63 84.69 83.00 83.83
Algorithm 3 42 2.2095 85.93 92.85 81.61 86.87
Algorithm 4 35 2.2713 85.93 92.85 81.61 86.87

The performance outcomes for each algorithm, after being tested on Training Box 3, are detailed in
Table 5.

Table 5. Performance comparison of Algorithms 1–4 on the validation set from Training
Box 3, based on the third fold of the 5-fold cross-validation scheme.

Iter. CPU Time Accuracy Test Precision Recall F1-score
Algorithm 1 36 1.3214 83.89 87.24 81.81 84.44
Algorithm 2 33 1.2631 83.89 87.24 81.81 84.44
Algorithm 3 14 0.6169 84.14 87.24 82.21 84.65
Algorithm 4 28 1.8228 84.40 90.81 80.54 85.37

The performance outcomes for each algorithm, after being tested on Training Box 4, are detailed in
Table 6.
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Table 6. Performance comparison of Algorithms 1–4 on the validation set from Training
Box 4, based on the fourth fold of the 5-fold cross-validation scheme.

Iter. CPU Time Accuracy Test Precision Recall F1-score
Algorithm 1 49 1.6230 76.47 75.51 77.08 76.28
Algorithm 2 46 2.3913 76.98 76.53 77.31 76.92
Algorithm 3 44 2.2669 79.28 83.16 77.25 80.09
Algorithm 4 42 2.6810 82.35 93.36 76.56 84.13

The performance results for each algorithm, evaluated on Training Box 5, are provided in Table 7.

Table 7. Performance comparison of Algorithms 1–4 on the validation set from Training
Box 5, based on the fifth fold of the 5-fold cross-validation scheme.

Iter. CPU Time Accuracy Test Precision Recall F1-score
Algorithm 1 51 1.7199 84.30 84.69 83.83 84.26
Algorithm 2 37 1.2250 84.56 85.20 83.91 84.55
Algorithm 3 27 1.4804 85.06 93.36 79.91 86.11
Algorithm 4 42 2.7039 85.32 94.89 79.48 86.51

Remark 4.1. 1) From Tables 3–7, the performance of Algorithms 1–4 was evaluated using a 5-fold
cross-validation scheme, with each training box serving as the validation set in turn:

(i) Training Box 1: Algorithm 4 achieved the highest accuracy (82.05%) with notable precision
(91.79%) and F1-score (83.64%).

(ii) Training Box 2: Algorithms 3 and 4 tied for the highest accuracy (85.93%), with Algorithm 4
showing marginally better CPU time and recall (81.61%).

(iii) Training Box 3: Algorithm 4 again performed best, achieving an accuracy of 84.40% and a
high precision (90.81%).

(iv) Training Box 4: Algorithm 4 had the best accuracy (82.35%) and precision (93.36%).
(v) Training Box 5: Algorithm 4 tied for the highest accuracy (85.32%), and showed the best

precision (94.89%) and marginally better number of iterations.
In general, Algorithm 4 consistently demonstrated strong performance in accuracy, precision, and F1-
score across most of the training boxes.
2) In practical applications of the proposed algorithm to machine learning problems, the challenge of
unknown or difficult-to-estimate Lipschitz constants is mitigated by the finite nature of the feature set.
In such cases, the Lipschitz constant can be approximated more quickly due to the boundedness of the
feature space. Moreover, the efficiency and convergence of the proposed algorithm are not significantly
impacted by the limitations associated with estimating the Lipschitz constant. This is demonstrated
through the results presented in Tables 3–7, where the algorithm achieves effective performance and
convergence despite potential uncertainties in the Lipschitz parameter.

From Figures 3–7, the accuracy and loss plots for Algorithm 4 across all training boxes show
consistent trends, with training and validation accuracy remaining relatively close to each other
throughout the iterations, indicating minimal overfitting. The training and validation loss curves also
exhibit similar behavior, steadily decreasing over time and stabilizing. However, in some figures (such
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as Figures 3 and 6), the slight divergence between the training and validation loss can be observed in
later iterations, suggesting potential signs of mild overfitting. The model maintains a good balance
between training and validation performance, demonstrating that regularization and parameter choices
prevent significant overfitting. The performance trends suggest that Algorithm 4 generalizes well to
the validation data without overfitting the training set.
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Figure 3. (Left) Training and validation accuracy (left) and loss (right) for Algorithm 4 from
Table 3 over 54 iterations. The blue lines represent training performance, while the red lines
show validation performance, demonstrating stable accuracy and decreasing loss.
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Figure 4. Training and validation accuracy (left) and loss (right) for Algorithm 4 from
Table 4 over 35 iterations. The blue lines represent training performance, while the red
lines show validation performance, demonstrating stable accuracy and decreasing loss.
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Figure 5. Training and validation accuracy (left) and loss (right) for Algorithm 4 from
Table 5 over 28 iterations. The blue lines represent training performance, while the red
lines show validation performance, demonstrating stable accuracy and decreasing loss.
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Figure 6. Training and validation accuracy (left) and loss (right) for Algorithm 4 from
Table 6 over 42 iterations. The blue lines represent training performance, while the red
lines show validation performance, demonstrating stable accuracy and decreasing loss.
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Figure 7. Training and validation accuracy (left) and loss (right) for Algorithm 4 from
Table 7 over 42 iterations. The blue lines represent training performance, while the red
lines show validation performance, demonstrating stable accuracy and decreasing loss.

From Figure 8, we see that the ROC curves illustrate the model’s classification performance, where
higher AUC values reflect stronger class separation.
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Figure 8. Receiver operating characteristic (ROC) curves for Algorithm 4 across the five
training boxes. Each plot represents the ROC curve for the respective training box, with the
area under the curve (AUC) values reported as follows: Training Box 1 (AUC = 0.8254),
Training Box 2 (AUC = 0.90419), Training Box 3 (AUC = 0.91188), Training Box 4 (AUC
= 0.84278), and Training Box 5 (AUC = 0.88094).

5. Conclusions

We proposed a novel algorithm (Algorithm 4) to solve variational inclusion problems and fixed
point problems involving quasi-nonexpansive mappings in a real Hilbert space. Our main theorem
establishes the weak convergence of the proposed algorithm under certain conditions. We also applied
the algorithm in conjunction with an extreme learning machine to the problem of data classification,
specifically to predict osteoporosis risk. Our algorithm achieves an accuracy of over 82%, a precision
of over 91%, a recall of 76%, and an F1-score of over 83% across all training boxes, which demonstrate
the effectiveness of the algorithm we developed.

Data availability

The data are available on the Kaggle website
(https://www.kaggle.com/datasets/amitvkulkarni/lifestylefactors-influencing-osteoporosis).
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