
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(2): 2509–2540.
DOI: 10.3934/math.2025117
Received: 16 October 2024
Revised: 23 January 2025
Accepted: 29 January 2025
Published: 12 February 2025

Research article

A nonmonotone trust region technique with active-set and interior-point
methods to solve nonlinearly constrained optimization problems

Bothina El-Sobky1,*, Yousria Abo-Elnaga2 and Gehan Ashry1

1 Department of Mathematics and Computer Science, Faculty of Science, Alexandria University,
Alexandria, Egypt

2 Department of basic science,Tenth of Ramadan City, Higher Technological Institute, Egypt

* Correspondence: Email: bothina elsobky@alexu.edu.eg.

Abstract: This study is devoted to incorporating a nonmonotone strategy with an automatically
adjusted trust-region radius to propose a more efficient hybrid of trust-region approaches for
constrained optimization problems. First, the active-set strategy was used with a penalty and Newton’s
interior point method to convert a nonlinearly constrained optimization problem to an equivalent
nonlinear unconstrained optimization problem. Second, a nonmonotone trust region was utilized to
guarantee convergence from any starting point to the stationary point. Third, a global convergence
theory for the proposed algorithm was presented under some assumptions. Finally, the proposed
algorithm was tested by well-known test problems (the CUTE collection); three engineering design
problems were resolved, and the results were compared with those of other respected optimizers. Based
on the results, the suggested approach generally provides better approximation solutions and requires
fewer iterations than the other algorithms under consideration. The performance of the proposed
algorithm was also investigated, and computational results clarified that the suggested algorithm was
competitive and better than other optimization algorithms.

Keywords: active set; penalty method; interior point; nonmonotone trust region; global convergence
Mathematics Subject Classification: 49M37, 65K05, 90C30, 90C55

1. Introduction

In this paper, we will consider the following nonlinear constrained optimization problem

minimize f (x),
sub ject to Pi(x) = 0, i ∈ Ẽ,

Pi(x) ≤ 0, i ∈ Ĩ,
û ≤ x ≤ v̂,

(1.1)

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025117

2510

where f : ℜn →ℜ and Pi(x): ℜn →ℜm, such that

Ẽ
⋃

Ĩ = {1, · · · ,m}

and
Ẽ
⋂

Ĩ = ∅

are twice continuously differentiable and m < n. We denote the feasible set

E = {x : û ≤ x ≤ v̂}

and the strict interior feasible set
int(E) = {x : û < x < v̂},

where
û ∈ {ℜ

⋃
{−∞}}n, v̂ ∈ {ℜ

⋃
{∞}}n,

and û < v̂.
This work combines an active-set strategy with the penalty approach to transform problem (1.1)

into an unconstrained optimization problem with bounded variables. To solve the unconstrained
optimization problem with bounded-on variables, Newton’s interior-point method, which was
suggested in [1] and used by [2–5], is utilized. However, Newton’s method is a local one, and it may
not converge if the starting point is far from a stationary point. A nonmonotone trust-region
mechanism deals with this problem and guarantees convergence from any starting point to the
stationary point.

A trust-region technique can induce strong global convergence and is a very important method
for solving unconstrained and constrained optimization problems [6–9]. The trust-region technique is
more robust when dealing with rounding errors. One advantage of this technique is that it does not
require the model’s objective function to be convex.

A critical aspect in trust-region approaches is the strategy for determining the trust-region radius
∆k at each iteration. The standard trust-region strategy is predicated on the objective function and the
model agreement. The radius of the trust region is updated by paying attention to the ratio

rk =
Aredk

Predk
,

where Aredk represents the actual reduction, and Predk represents the predicted reduction. It is safe to
increase ∆k in the next iterate when rk is close to 1, and this is due to a good agreement between the
objective function and the model over a current region of trust. Otherwise, ∆k must be reduced.

It is well-known that the standard trust-region radius ∆k is independent of the gradient and Hessian
of the objective function, so we cannot know if the radius ∆k is convenient for the whole
implementation. This situation increases the number of subproblems to solve in the inner steps of the
method, decreasing its efficiency. If we reduce the number of ineffective iterations, we can decrease
the number of subproblems solved in each step. Authors in [10] proposed a method for determining
the initial radius monitoring agreement between the objective function and the model along the
steepest descent path evaluated.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2511

Authors in [11] proposed the first customizable technique to reduce the number of solved
subproblems. This technique used the gradient and Hessian information from the current iteration to
calculate the trust-region radius ∆k without requiring an initial trust-region radius.

Motivated by the idea proposed in [11], authors in [12] proposed an automatically adjustable
radius for trust-region methods and demonstrated that nonmonotone trust-region methods inherit the
conventional trust-region method’s strong convergence features. On the other hand, authors in [13]
presented a nonmonotone strategy to line search methods for unconstrained optimization problems.
Numerical experiments and theoretical analysis have referred to the effectiveness of this method in
improving both the possibility of obtaining the global optimum and the rate of convergence of
algorithms [14]. Motivated by these outstanding results, many researchers have been interested in
combining the nonmonotone strategy with the trust-region methods [15, 16].

Nonmonotone approaches have altered the ratio rk when comparing Aredk to Predk. The following
is a definition of one of the most common nonmonotone ratios:

r̃k =
fl(k) − f (xk + dk)

Predk
,

where
fl(k) = max

0≤ j≤m(k)
{ fk− j}

in which
m(0) = 0

and
m(k) = min{m(k − 1) + 1,N}

with an integer constant N ≥ 0. It has been proven that the nonmonotone trust-region methods inherit
the robust convergence properties of the trust-region method. The numerical experiments of the
nonmonotone trust-region methods have shown that it is more efficient than the monotone versions,
especially in the presence of the narrow, curved valley. Although the nonmonotone strategy in [13]
performs well in many cases, it contains some drawbacks, and two important instances of these
drawbacks can be described as follows:

• In any iterate, a good function value generated is essentially discarded due to {max} term in

fl(k) = max
0≤ j≤m(k)

{ fk− j}.

• The numerical performances in some cases seriously depend on the choice of parameter N.

Authors in [17] proposed a new nonmonotone strategy for line search methods. It was based on a
weighted average of previous successive iterations. This strategy is generally efficient and promising
when encountered with unconstrained optimization and can overcome the mentioned drawbacks. In
this strategy, fl(k) is replaced with a weighted average of previous successive iterations Ck, which is
defined as follows:

Ck =

{
f (xk), if k = 0,
ηk−1Qk−1Ck−1+ f (xk)

Qk
, if k ≥ 1,

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2512

and

Qk =

{
1, if k = 0,
ηk−1Qk−1 + 1, if k ≥ 1,

such that
0 ≤ ηmin ≤ ηk−1 ≤ ηmax ≤ 1,

where ηk is updated as follows

ηk =

{
0.5η0, if k = 1,
0.5(ηk−1 + ηk−2), if k ≥ 2.

(1.2)

Motivated by the advantage of the nonmonotone strategy in the trust-region framework [17], authors
in [18] suggested a new nonmonotone trust-region method such that the ratio r̃k in their proposal
changed as follows

r̃k =
Ck − f (xk + dk)

Predk
.

The investigation has proved that the combination of the nonmonotone strategy of [17] with the trust
region a new method that has inherited the strong theoretical properties of the trust-region method as
well as the computational robustness of the nonmonotone strategy.

Motivated by the nonmonotone trust-region strategy in [18], we will utilize it in our proposed
method. We expect it will significantly decrease the total number of iterations and function
evaluations. We will clarify that under some conditions, the proposed nonmonotone trust-region
active-set penalty (NTRAI) algorithm has global convergence properties.

Furthermore, the applicability of the NTRAI approach to solving problem (1.1) was examined using
well-known test problems (the CUTE collection), three mechanical engineering problems from the
most recent test suite [19], and a nonconvex problem from [20]. Numerical experiments show that the
NTRAI method exceeds rival algorithms in terms of efficacy.

Some notations are utilized throughout this paper, and this is clarified in the rest of this section.
The paper is organized as follows: In Section 2, a detailed description of the main steps of the NTRAI
algorithm for constrained optimization problems is introduced. Section 3 is devoted to the global
convergence theory of the NTRAI algorithm under some suitable conditions. Section 4 contains a
Matlab implementation of the NTRAI algorithm and numerical results for three mechanical
engineering problems. Finally, Section 5 contains concluding remarks.

To express the function value at a particular point, we use the symbol

fk = f (xk), ∇ fk = ∇ f (xk), ∇2 fk = ∇
2 f (xk), Pk = P(xk), ∇Pk = ∇P(xk), Yk = Y(xk), Zk = Z(xk)

and so on. We denote the Hessian of the objective function fk or an approximation to it by Pk . Finally,
every norm is l2-norms.

2. Nonmonotone trust-region active-set penalty algorithm

In this section, we will first present a complete description of the significant steps of the active-set
strategy using the penalty technique and Newton’s interior-point approach. Then the nonmonotone
trust-region algorithm’s essential phases are presented. Finally, the key stages for applying the NTRAI
method to problem (1.1) are shown.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2513

2.1. An active-set penalty interior-point method

Consider the active-set strategy introduced in [21] and used by [5, 7]. We will introduce a diagonal
matrix Z(x) ∈ ℜm×m whose diagonal entries are

zi(x) =


1, if i ∈ Ẽ,
1, if i ∈ Ĩ and Pi(x) ≥ 0,
0, if i ∈ Ĩ and Pi(x) < 0,

(2.1)

where i = 1, · · · ,m. Utilizing the diagonal matrix (2.1), we can write problem (1.1) as follows

minimize f (x),
sub ject to P(x)T Z(x)P(x) = 0,

û ≤ x ≤ v̂,

where
P(x) = (P1(x), · · · , Pm(x))T

is a twice continuously differentiable function. The above problem is converted to the following
equivalent problem by utilizing the penalty method [22]

minimize f (x) + ρ2∥Z(x)P(x)∥2,
sub ject to û ≤ x ≤ v̂,

(2.2)

where ρ > 0 is a parameter.
Let

ϕ̃(x; ρ) = f (x) +
ρ

2
∥Z(x)P(x)∥2, (2.3)

and then we will define a Lagrangian function associated with problem (2.2) as follows

L(x, λû, λv̂; ρ) = ϕ̃(x; ρ) − λT
û (x − û) − λT

v̂ (v̂ − x), (2.4)

where λû and λv̂ are Lagrange multiplier vectors associated with the inequality constraints x − û ≥ 0
and v̂ − x ≥ 0, respectively.

A point x∗ ∈ E will be a local minimizer of problem (2.2) if there exists multiplier vectors λû(x∗) ∈
ℜn
+ and λv̂(x∗) ∈ ℜn

+ such that the following conditions are satisfied

∇ϕ̃(x∗; ρ) − λû(x∗) + λv̂(x∗) = 0, (2.5)

λ
(j)
û (x(j)

∗ − û(j)) = 0, (2.6)

λ
(j)
v̂ (v̂(j) − x(j)

∗) = 0, (2.7)

where
∇ϕ̃(x∗; ρ) = ∇ f (x∗) + ρ∇P(x∗)Z(x∗)P(x∗).

Motivated by the interior point method introduced in [1] and used by [2,4,8,9], we define a diagonal
scaling matrix Y(x) whose diagonal elements are given by

y(j)(x) =


√

(x(j) − û(j)), if (∇ϕ̃(x; ρ))(j) ≥ 0 and û(j) > −∞,√
(v̂(j) − x(j)), if (∇ϕ̃(x; ρ))(j) < 0 and v̂(j) < +∞ ,

1, otherwise.
(2.8)

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2514

Utilizing the matrix Y(x), conditions (2.5)–(2.7) are equivalent to the following nonlinear system

Y2(x)∇ϕ̃(x; ρ) = 0. (2.9)

Nonlinear Eq (2.9) is continuous but is not differentiable at some point x ∈ E for the following
reasons:

• It may be non-differentiable when y(j) = 0. To overcome this problem, we restrict x ∈ int(E).
• It may be non-differentiable when y(j) has an infinite upper bound and a finite lower bound, and

(∇ϕ̃(x; ρ))(j) = 0.

To overcome this problem, we define a vector Ψ(x) whose components

Ψ(j)(x) =
∂((y(j))2)
∂x(j) , j = 1, · · · , n

are defined as follows

Ψ(j)(x) =


1, if (∇ϕ̃(x; ρ))(j) ≥ 0 and û(j) > −∞,
−1, if (∇ϕ̃(x; ρ))(j) < 0 and v̂(j) < +∞ ,
0, otherwise.

(2.10)

When we apply Newton’s technique to the system (2.9), we get

[Y2(x)∇2ϕ̃(x; ρ) + diag(∇ϕ̃(x; ρ))diag(Ψ(x))]∆x = −Y2(x)∇ϕ̃(x; ρ), (2.11)

where
∇2ϕ̃(x; ρ) = H + ρ∇P(x)Z(x)∇P(x)T , (2.12)

and H is the Hessian of the objective function f (x) or an approximation to it.
Assuming that x ∈ int(E), then the matrix Y(x) must be non-singular. Multiply both sides of Eq (2.9)

by Y−1(x) and set
∆x = Y(x)d,

we have

[Y(x)∇2ϕ̃(x; ρ)Y(x) + diag(∇ϕ̃(x; ρ))diag(Ψ(x))]d = −Y(x)∇ϕ̃(x; ρ). (2.13)

Notice that the step dk, which is generated by system (2.13) is equivalent the step generated by solving
the following quadratic programming subproblem

minimize ϕ̃(x; ρ) + (Y∇ϕ̃(x; ρ))T d + 1
2dT Bd, (2.14)

where
B = Y(x)∇2ϕ̃(x; ρ)Y(x) + diag(∇ϕ̃(x; ρ))diag(Ψ(x)). (2.15)

Newton’s approach has the advantage of being quadratically convergent under reasonable assumptions,
but it has the drawback of requiring the initial point to be close to the solution. The nonmonotone
trust-region globalization approach ensures convergence from any starting point. It is a crucial method
for solving a smooth, nonlinear, unconstrained, or constrained optimization problem that can produce
substantial global convergence.

For the purpose of solving problem (2.14), we introduce a detailed description of the nonmonotone
trust-region algorithm.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2515

2.2. A nonmonotone trust-region algorithm

The trust-region subproblem associated with the problem (2.14) is

minimize qk(Ykd) = ϕ̃(xk; ρk) + (Yk∇ϕ̃(xk; ρk))T d,+1
2dT Bkd,

sub ject to ∥ d ∥≤ ∆k,
(2.16)

where ∆k > 0 is the radius of the trust region.
Using a dogleg method, which is a very cheap method, to solve subproblem (2.16) and obtain the

step dk. For more details, see [23].

• To compute the step dk

In a dogleg method, the solution curve to the subproblem (2.16) is approximated by a piecewise
linear function connecting the Newton point to the Cauchy point. The following algorithm explains
the key phases of the dogleg approach to solve subproblem (2.16) and obtain dk.

Algorithm 2.1. Dogleg algorithm.
Step 1. Compute the parameter tcp

k as follows:

tcp
k =


∥(Yk∇ϕ̃(xk;ρk))∥2

(Yk∇ϕ̃(xk;ρk))T Bk(Yk∇ϕ̃(xk;ρk)) if ∥Yk∇ϕ̃(xk;ρk)∥3

(Yk∇ϕ̃(xk;ρk))T Bk(Yk∇ϕ̃(xk;ρk)) ≤ ∆k ,

and (Yk∇ϕ̃(xk; ρk))T Bk(Yk∇ϕ̃(xk; ρk)) > 0,
∆k

∥Yk∇ϕ̃(xk;ρk)∥ , otherwise.

(2.17)

Step 2. Compute the Cauchy step
dcp

k = −tcp
k (Yk∇ϕ̃(xk; ρk)).

Step 3. If
∥dcp

k ∥ = ∆k,

then set dk = dcp
k .

Else, If Yk∇ϕ̃(xk; ρk) + Bkd
cp
k = 0, then set dk = dcp

k .
Else, compute Newton’s step sN by solving the following subproblem:

min(Yk∇ϕ̃(xk; ρk))T dN +
1
2

dNT BkdN .

End if.
Step 4. If ∥dN

k ∥ ≤ ∆k, then set dk = dN
k .

Else, computing dogleg step between dcp
k and dN

k and compute dk as follows

dk = dN
k + dcp

k .

End if.

By using dogleg Algorithm 2.1, the step dk satisfies the following condition, which is called a
fraction-of-Cauchy decrease condition

qk(0) − qk(Ykdk) ≥ φ[qk(0) − qk(Ykd
cp
k)] (2.18)

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2516

for some φ ∈ (0, 1].
When a condition is referred to as a fraction-of-Cauchy decrease, it indicates that the predicted

reduction obtained by the step dk is more than or equal to a fraction of the predicted decrease obtained
by the dkcp (Cauchy step).

To ensure that the matrix Yk is nonsingular, we need to guarantee that xk+1 ∈ int(E). To do this, we
need to a damping parameter τk.

• To obtain damping parameter τk

The main steps to obtain the damping parameter τk are clarified in the following algorithm:

Algorithm 2.2. Damping parameter τk.
Step 1. Compute the parameter αk as follows:

α(i)
k =


û(i)−x(i)

k

Y (i)
k d(i)

k
, if û(i) > −∞ and Y (i)

k d(i)
k < 0,

1, otherwise.

Step 2. Compute the parameter βk as follows:

β(i)
k =


v̂(i)−x(i)

k

Y (i)
k d(i)

k
, if v̂(i) < ∞ and Y (i)

k d(i)
k > 0,

1, otherwise.

Step 3. Compute the damping parameter τk as follows

τk = min{1,min
i
{α(i)

k , β
(i)
k }}. (2.19)

Step 4. Set
xk+1 = xk + τkYkdk.

To test the scaling step τkYkdk to decide whether it will be accepted or not, a merit function is
required. The merit function ties the objective function and the constraints in such a way that progress
in the merit function means progress in solving the problem. The merit function that is used in our
algorithm is the penalty function ϕ̃(xk; ρk).

Let the actual reduction Aredk be defined as follows

Aredk = ϕ̃(xk; ρk) − ϕ̃(xk + τkYkdk; ρk).

Additionally, Aredk can be expressed as follows

Aredk = f (xk) − f (xk + τkYkdk) +
ρk

2
[∥ ZkPk ∥

2 − ∥ Zk+1Pk+1 ∥
2]. (2.20)

Let the predicted reduction Predk be defined as follows

Predk = qk(0) − qk(τkYkdk)

= −(Yk∇ fk)Tτkdk −
1
2
τ2

kdT
k Gkdk +

ρk

2
[∥ ZkPk ∥

2 − ∥ Zk(Pk + ∇PT
k Ykτkdk) ∥2], (2.21)

where
Gk = YkPkYk + diag(∇ϕ̃(xk; ρk))diag(ηk).

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2517

• To test τkYkdk and update ∆k

Motivated by the nonmonotone trust-region strategy in [18], we define

r̂k =
Ck − ϕ̃(xk + τkYkdk; ρk)

qk(0) − qk(τkYkdk)
, (2.22)

where

Ck =

 ϕ̃(xk; ρk), if k = 0,
ηk−1Qk−1Ck−1+ϕ̃(xk;ρk)

Qk
, if k ≥ 1,

(2.23)

and

Qk =

 1, if k = 0,

ηk−1Qk−1 + 1, if k ≥ 1,
(2.24)

such that
0 ≤ ηmin ≤ ηk−1 ≤ ηmax ≤ 1.

The following algorithm clarifies how the trial step will be tested and updated the trust region radius
∆k:

Algorithm 2.3. Test τkYkdk and update ∆k.
Step 0. Choose 0 < θ1 < θ2 ≤ 1, ∆max > ∆min, and 0 < α̃1 < 1 < α̃2.
Step 1. Compute Qk using (2.24) and Ck using (2.23).
Evaluate r̂k using (2.22).
While r̂k < θ1, or Predk ≤ 0.
Set ∆k = α̃1 ∥ dk ∥.
Return to algorithm (2.1) to evaluate a new step dk.
Step 2. If θ1 ≤ r̂k < θ2, then set xk+1 = xk + τkYkdk.
Set ∆k+1 = max(∆min,∆k).
End if.
Step 3. If r̂k ≥ θ2, then set xk+1 = xk + τkYkdk.
Set ∆k+1 = min{max{∆min, α̃2∆k},∆max}.
End if.

• To update the parameter ρk

To update ρk, a scheme proposed by [24] is used; and we will clarify this in the algorithm that
follows:

Algorithm 2.4. Updating ρk.
Step 1. Set ρ0 = 1 and use Eq (2.21) to evaluate Predk.
Step 2. If

Predk ≥∥ Yk∇PkZkPk ∥ min{∥ Yk∇PkZkPk ∥,∆k}. (2.25)

Then, set ρk+1 = ρk.
Else, set ρk+1 = 2ρk.
End if.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2518

Finally, the nonmonotone trust-region algorithm is terminated, if

∥ Yk∇ fk ∥ + ∥ Yk∇PkZkPk ∥≤ ϵ1

or
∥ dk ∥≤ ϵ2

for some ϵ1 > 0 and ϵ2 > 0.

• Nonmonotone trust-region algorithm

We will clarify the main steps of the nonmonotone trust-region algorithm to solve subproblem (2.16)
in the algorithm that follows:

Algorithm 2.5. The nonmonotone trust-region algorithm.
Step 0. Initial value

Starting x0 ∈ int(E). Compute matrices Z0, Y0 and Ψ0. Set ρ0 = 1.
Choose ϵ1, ϵ2, α̃1, α̃2, θ1, θ2, such that ϵ1 > 0, ϵ2 > 0, α̃2 > 1 > α̃1 > 0 and 0 < θ1 < θ2 ≤ 1.
Choose ∆0, ∆min, and ∆max, such that ∆min ≤ ∆0 ≤ ∆max.
Set k = 0.

Step 1. If ∥ Yk∇ fk ∥ + ∥ Yk∇PkZkPk ∥≤ ϵ1, then stop.
Step 2. Evaluating the trial step dk using the Algorithm 2.1.
Step 3. Stop and end the algorithm if ∥ dk ∥≤ ϵ2.
Step 4. Compute both τk and Yk using Algorithm 2.2 and Eq (2.8), respectively. Set xk+1 = xk + τkYkdk.
Step 5. Utilize (2.1) to evaluate Zk+1.
Step 6. To test the scaling step and update ∆k:

i) Computing Qk using (2.24) and Ck using (2.23).
ii) Compute r̂k using (2.22).
iii) Using Algorithm 2.3 to test the scaling step τkYkdk and update the radius of the trust-
region ∆k.

Step 7. Updating the parameter ρk using Algorithm 2.4.
Step 8. Utilize (2.10) to evaluate Ψk+1.
Step 9. Set k = k + 1 and return to Step 1.

2.3. Nonmonotone trust-region active-set penalty algorithm

The main steps for the NTRAI algorithm to solve problem (1.1) will be clarified in the following
algorithm:

Algorithm 2.6. NTRAI algorithm.
Step 1. Utilize active-set strategy and penalty method to convert a nonlinearly constrained
optimization problem (1.1) to an unconstrained optimization problem with bounded variables (2.2).
Step 2. Utilize an interior-point method and a diagonal scaling matrix Y(x) given in (2.8), and the
first-order necessary conditions (2.5)–(2.7) equivalent to the nonlinear system in (2.9).

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2519

Step 3. Utilize Newton’s method to solve the nonlinear system (2.9) and obtain the equivalent
subproblem (2.14).
Step 4. Solve subproblem (2.14) using nonmonotone trust-region Algorithm 2.5.

The global convergence analysis for NTRAI Algorithm 2.6 is conducted in the following section.

3. Analysis of global convergence

In this section, a global convergence analysis for the NTRAI Algorithm 2.6 to solve problem (1.1)
will be presented. First, we will introduce the necessary assumptions that are requested to prove the
theory of global convergence for the NTRAI Algorithm 2.6. Second, we will introduce some lemmas
that are required to prove the main results. Third, we will study the iteration sequence convergence
when ρk is unbounded and bounded, respectively. Finally, the main global convergence results for the
NTRAI Algorithm 2.6 will be proved.

3.1. Necessary assumptions

Let {xk} be the sequence of points generated by the NTRAI Algorithm 2.6 and let Ω be a convex
subset of ℜn that contains all iterates xk ∈ int(E) and xk + τkYkdk ∈ int(E), for all trial steps dk. On
the set Ω, we assume the following assumptions, under which the global convergence theory will be
proved.

• Assumptions:

[As1] For all x ∈ Ω, the functions f (x) and P(x) are at least twice continuously differentiable.
[As2] All of f (x), ∇ f (x), ∇2 f (x), P(x), and ∇P(x) are uniformly bounded in Ω.
[As3] The sequence of Hessian matrices {Bk} is bounded.

Some lemmas are required to prove the main global convergence theory. These lemmas are
introduced in the following section:

3.2. Required lemmas

We shall introduce some lemmas that are necessary to support the main results.

Lemma 3.1. Under assumptions As1–As3, there exists a constant K1 > 0 such that,

Predk ≥ K1τk ∥ Yk∇ϕ̃(xk; ρk) ∥ min{∆k,
∥ Yk∇ϕ̃(xk; ρk) ∥
∥ Bk ∥

}. (3.1)

Proof. Since the fraction-of-Cauchy decrease condition (2.18) is satisfied by the trial step dk, then we
will consider the following two cases:
i) If

dcp
k = −

∆k

∥ Yk∇ϕ̃(xk; ρk) ∥
(Yk∇ϕ̃(xk; ρk))

and
∥ Yk∇ϕ̃(xk; ρk) ∥3≥ ∆k[(Yk∇ϕ̃(xk; ρk))T Bk(Yk∇ϕ̃(xk; ρk))],

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2520

then

qk(0) − qk(Ykd
cp
k) = −(Yk∇ϕ̃(xk; ρk))T dcp

k −
1
2

dcpT

k Bkd
cp
k

=
∆k

∥ Yk∇ϕ̃(xk; ρk) ∥
∥ Yk∇ϕ̃(xk; ρk) ∥2

−
1
2

∆2
k

∥ Yk∇ϕ̃(xk; ρk) ∥2
((Yk∇ϕ̃(xk; ρk))T Bk(Yk∇ϕ̃(xk; ρk)))

≥
1
2
∆k ∥ Yk∇ϕ̃(xk; ρk) ∥ . (3.2)

ii) If

dcp
k = −

∥ Yk∇ϕ̃(xk; ρk) ∥2

(Yk∇ϕ̃(xk; ρk))T Bk(Yk∇ϕ̃(xk; ρk))
(Yk∇ϕ̃(xk; ρk))

and
∥ Yk∇ϕ̃(xk; ρk) ∥3≤ ∆k((Yk∇ϕ̃(xk; ρk))T Bk(Yk∇ϕ̃(xk; ρk))),

then we have

qk(0) − qk(Ykd
cp
k) = −(Yk∇ϕ̃(xk; ρk))T dcp

k −
1
2

dcpT

k Bkd
cp
k

=
1
2

∥ Yk∇ϕ̃(xk; ρk) ∥4

(Yk∇ϕ̃(xk; ρk))T Bk(Yk∇ϕ̃(xk; ρk))

≥
∥ Yk∇ϕ̃(xk; ρk) ∥2

2 ∥ Bk ∥
. (3.3)

From inequalities (2.18), (3.2), and (3.3), we have

qk(0) − qk(Ykdk) ≥ K1 ∥ Yk∇ϕ̃(xk; ρk) ∥ min{∆k,
∥ Yk∇ϕ̃(xk; ρk) ∥
∥ Bk ∥

}. (3.4)

From inequality (3.4) and the following fact

qk(0) − qk(Ykτkdk) ≥ τk[qk(0) − qk(Ykdk)],

where 0 ≤ τk ≤ 1, then we have

qk(0) − qk(Ykτkdk) ≥ K1τk ∥ Yk∇ϕ̃(xk; ρk) ∥ min{∆k,
∥ Yk∇ϕ̃(xk; ρk) ∥
∥ Bk ∥

}.

From (2.21), we have
Predk = q(0) − q(Ykτkdk).

Hence

Predk ≥ K1τk ∥ Yk∇ϕ̃(xk; ρk) ∥ min{∆k,
∥ Yk∇ϕ̃(xk; ρk) ∥
∥ Bk ∥

}.

This completes the proof. □

Lemma 3.2. Under assumptions As1 and As3, then Z(x)P(x) is Lipschitz continuous in Ω.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2521

Proof. The proof of this lemma similar [21, Lemma 4.1].
We can verify that ∇P(x)Z(x)P(x) is Lipschitz continuous in Ω and ∥Z(x)P(x)∥2 is differentiable

from Lemma 3.2. □

Lemma 3.3. At any iteration k, we have

Zk+1 = Zk + Ak, (3.5)

where A(xk) ∈ ℜm×m is a diagonal matrix whose diagonal entries are defined as follows

(ak)i =


1, if (Pk)i < 0 and (Pk+1)i ≥ 0,
−1, if (Pk)i ≥ 0 and (Pk+1)i < 0,
0, otherwise,

(3.6)

where i = 1, 2, · · · ,m.

Proof. See [6, Lemma 6.2]. □

Lemma 3.4. Under assumptions As1–As3, there exists a constant K2 > 0, such that

∥AkPk∥ ≤ K2∥dk∥. (3.7)

Proof. See [6, Lemma 6.3]. □

Lemma 3.5. Under assumptions As1–As3, there exists a constant K3 > 0, such that

| Aredk − Predk |≤ K3τkρk∥dk∥
2. (3.8)

Proof. From Eqs (2.20) and (3.5), we have

Aredk = f (xk) − f (xk + τkYkdk) +
ρk

2
[PT

k ZkPk − P(xk + τkYkdk)T (Zk + Ak)P(xk + τkYkdk)].

Subtracting the above equation from (2.21), and using Cauchy-Schwarz inequality, we have

|Aredk − Predk| ≤
τ2

k

2
| dT

k Yk(∇2 f (xk) − ∇2 f (xk + ξ1τkYkdk))Ykdk |

+
τ2

k

2
| dT

k diag(∇ϕ̃(xk; ρk))diag(Ψ)dk |

+ ρkτk | Yk(∇Pk − ∇P(xk + ξ2τkYkdk))ZkPkdk |

+
ρkτ

2
k

2
| dT

k Yk[∇PkZk∇PT
k − ∇P(xk + ξ2Ykτkdk)Zk∇P(xk + ξ2Ykτkdk)T]Ykdk |

+
ρkτ

2
k

2
∥AkPk∥

2 + ρkτk | Yk∇P(xk + ξ2Ykτkdk)AkPkdk |

+
ρkτ

2
k

2
| dT

k Yk[∇P(xk + ξ2Ykτkdk)Ak∇P(xk + ξ2Ykτkdk)T]Ykdk |

for some ξ1 and ξ2 ∈ (0, 1). From assumptions As1–As3 and using Lemma 3.4, the proof is completed.
□

The following section is devoted to the analysis of global convergence for NTRAI Algorithm 2.6
when ρk is unlimited.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2522

3.3. Global convergence when ρk is unbounded

Observe that we do not assume that ∇P(x) has full column rank for all x ∈ Ω in assumptions As1-
As3; therefore, we may have alternative types of stationary points. The definitions that follow describe
these stationary spots.

Definition 3.1. (A Fritz John (FJ) point.) If there is ω∗ ∈ ℜ and a Lagrange multiplier vector σ∗ ∈ ℜm

that is not all zero, then the point x∗ ∈ ℜ is said to be a FJ point if the following conditions are satisfied

ω∗Y∗∇ f (x∗) + Y∗∇P(x∗)σ∗ = 0, (3.9)
Z(x∗)P(x∗) = 0, (3.10)
(σ∗)iPi(x∗) = 0, i = 1, 2, · · · ,m (3.11)
ω∗, (σ∗)i ≥ 0, i = 1, 2, · · · ,m. (3.12)

The conditions (3.9)–(3.12) are referred to as FJ conditions. See [25] for further information.
The FJ conditions are referred to as a Karush-Kuhn-Tucker (KKT) conditions, and the point

(x∗, 1, σ∗ω∗) is referred to as the KKT point if ω∗ , 0.

Definition 3.2. (Infeasible Fritz John (IFJ) point.) If there is ω∗ ∈ ℜ and a Lagrange multiplier vector
σ∗ ∈ ℜ

m that is not all zero, then the point x∗ ∈ ℜ is said to be a IFJ point if the following conditions
satisfy

ω∗Y∗∇ f (x∗) + Y∗∇P(x∗)σ∗ = 0, (3.13)
Y(x∗)∇P(x∗)Z(x∗)P(x∗) = 0, but ∥Z(x∗)P(x∗)∥ > 0, (3.14)

(σ∗)iPi(x∗) = 0, i = 1, 2, · · · ,m, (3.15)
ω∗, (σ∗)i ≥ 0, i = 1, 2, · · · ,m. (3.16)

The conditions (3.13)–(3.16) are referred to as IFJ conditions. See [25] for further information.
The IFJ conditions are referred to as the infeasible KKT conditions and the point (x∗, 1, σ∗ω∗) is

referred to as the infeasible KKT point if ω∗ , 0.
The next two lemmas provide conditions that are equivalent to those stated in Definitions 3.1

and 3.2.

Lemma 3.6. Under assumptions As1–As3, there exists {xki} ⊆ {xk}k≥0, satisfies IFJ conditions if:

1) limki→∞ ∥Zki Pki∥ > 0.

2) limki→∞

{
mind

{
∥Zki(Pki + ∇PT

ki
Ykiτkid)∥2

}}
= limki→∞ ∥Zki Pki∥

2.

Proof. The proof of this lemma is similar to the proof of [2, Lemma 3.1]. □

Lemma 3.7. Under assumptions As1–As3, there exists {xki} ⊆ {xk}k≥0 satisfies FJ conditions if:

1) For all ki, ∥Zki Pki∥ > 0 and limki→∞ Zki Pki = 0.

2) limki→∞

{
mind

{
∥Zki (Pki+∇PT

ki
Ykiτki d)∥2

∥Zki Pki ∥
2

}}
= 1.

Proof. The proof of this lemma similar the proof of [26, Lemma 3.2]. □

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2523

According to the Algorithm 2.4, the sequence of parameters {ρk} is only unlimited when there is an
infinite subsequence of indexes ki indexing iterates of acceptable steps that fulfill, for every k ∈ {ki},

Predk < ∥Yk∇PkZkPk∥min{∥Yk∇PkZkPk∥,∆k}. (3.17)

A subsequence of iterates {xk} satisfies the FJ conditions or IFJ conditions if ρk → ∞ as k → ∞. This
is demonstrated by the next two lemmas.

Lemma 3.8. Under assumptions As1–As3 and ρk → ∞ as k → ∞.
If ∥ZkPk∥ ≥ ε > 0 for all k ∈ {ki}, a subsequence of the iteration sequence with index ki exists and

fulfills the IFJ conditions in the limit.

Proof. For simplification, we assume ki is k. This lemma’s proof is due to a contradiction, so, assume
that there is no subsequence of iterates that satisfies the IFJ conditions in the limit. From Lemma 3.6
and Definition 3.2, we have

| ∥ZkPk∥
2 − ∥Zk(Pk + ∇PT

k Ykτkd)∥2 |≥ ε1

and
∥Yk∇PkZkPk∥ ≥ ε2,

respectively. Hence

∥Yk∇ϕ̃(xk; ρk)∥ = ∥Yk(∇ fk + ρk∇PkZkPk)∥
≥ ρk∥Yk∇PkZkPk∥ − ∥Yk∇ fk∥

≥ ρkε2 − ∥Yk∇ fk∥ ≥ ρkε2.

From (2.15) and (2.12), we have

∥Bk∥ = ∥YkPkYk + ρkYk∇PkZk∇PT
k Yk + diag(∇ϕ̃(x; ρ))diag(Ψ(x))∥

≤ ρk(∥Yk∇PkZk∇PT
k Yk∥ + diag(

1
ρk
∇ fk + ∇PkZkPk)diag(Ψ(x))) + ∥YkPkYk∥. (3.18)

From inequalities (3.1) and (3.18), we have

Predk ≥ K1ρkτkε2 min{∆k,
ε2

∥Yk∇PkZk∇PT
k Yk∥ + diag(∇PkZkPk)diag(Ψ(x))

} (3.19)

for k sufficiently large. There is an infinite number of acceptable iterates at which inequality (3.17)
holds since ρk → ∞. From inequalities (3.17) and (3.19), we have

∥Yk∇PkZkPk∥min{∥Yk∇PkZkPk∥,∆k} ≥ K1,

ρkτkε2 min{∆k,
ε2

∥Yk∇PkZk∇PT
k Yk∥ + diag(∇PkZkPk)diag(Ψ(x))

}.

According to the assumption As2, the preceding inequality’s right side tends toward infinity as
k → ∞ and the left-hand side is bounded such that

lim
k→∞
τk = 1.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2524

This result gives a contradiction unless ρk∆k is bounded. That is ∆k → 0.
Now, if ρk → ∞, at k → ∞, we will consider two cases:
First, if

∥ZkPk∥
2 − ∥Zk(Pk + ∇PT

k τkYkdk)∥2 ≥ ε1,

then
ρk{∥ZkPk∥

2 − ∥Zk(Pk + ∇PT
k τkYkdk)∥2} ≥ ρkε1 → ∞.

Hence, Predk → ∞ using assumptions As2 and As3. In other words, the left-hand side of
inequality (3.17) goes to infinity since k → ∞, but the right-hand side goes to zero since ∆k → 0.
Then we get a contradiction with the assumption in this case.

Second, if
∥ZkPk∥

2 − ∥Zk(Pk + ∇PT
k τkYkdk)∥2 ≤ −ε1,

then we have
ρk{∥ZkPk∥

2 − ∥Zk(Pk + ∇PT
k τkYkdk)∥2} ≤ −ρkε1 → −∞.

Similar to the first case, Predk → −∞, but Predk > 0 and this gives a contradiction. These two
contradictions prove the lemma. □

The following lemma shows that the behavior of NTRAI Algorithm 2.6 when

lim inf
k→∞

∥ZkPk∥ = 0

and ρk → ∞ as k → ∞.

Lemma 3.9. Under assumptions As1–As3 and at ρk → ∞ as k → ∞, then there exists a subsequence
{ki} of iterates that satisfies the FJ conditions in the limit if ∥ZkPk∥ > 0 for all k ∈ {ki} and

lim
ki→∞
∥Zki Pki∥ = 0.

Proof. For simplification, we assume ki is k. Assume that there is no subsequence of iterations that
fulfills the FJ conditions in the limit since the demonstration of this lemma relies on contradiction.
From Lemma 3.7, we have

| ∥ZkPk∥
2 − ∥Zk(Pk + ∇PT

k τkYkdk)∥2 |
∥ZkPk∥

2 ≥ ε > 0 (3.20)

for each k very large.
Now we will consider three cases if ρk → ∞, at k → ∞:
First, if

lim inf
k→∞

dk

∥ZkPk∥
= 0,

then there is a contradiction with inequality (3.20).
Second, if

lim sup
k→∞

dk

∥ZkPk∥
= ∞.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2525

From subproblem (2.16), we have

Yk∇ fk + ρkYk∇PkZkPk = −(Bk + υkI)d, (3.21)

where 0 < υk is the Lagrange multiplier vector of the trust region constraint. Hence, we can write
inequality (3.1) as follows

Predk ≥ K1τk ∥ Yk(∇ fk + ρk∇PkZkPk) ∥ min{∆k,
∥ (Bk + υkI)dk ∥

∥ Bk ∥
}.

From (2.15) and the above inequality, we have

Predk ≥ K1τk ∥ Yk(∇ fk + ρk∇PkZkPk) ∥ min{∆k,
∥ (Yk∇PkZk∇PT

k Yk + Ĝk +
υk
ρk

I)dk ∥

∥ Yk∇PkZk∇PT
k Yk + Ĝk ∥

},

(3.22)

where
Ĝ =

1
ρk

YkPkYk + diag(
1
ρk
∇ fk + ∇PkZkPk)diag(Ψ(x)).

As a result, there are an infinite number of acceptable steps at which inequality (3.17) holds. From
inequality (3.17), we have

Predk < ∥Yk∇Pk∥
2∥ZkPk∥

2, (3.23)

and using inequalities (3.22) and (3.23), we have

K1τk ∥ Yk(∇ fk + ρk∇PkZkPk) ∥min{∆k,
∥ (Yk∇PkZk∇PT

k Yk + Ĝk +
υk
ρk

I)dk ∥

∥ Yk∇PkZk∇PT
k Yk + Ĝk ∥

}

< κ2∥ZkPk∥
2,

where
κ = supx∈Ω∥Yk∇Pk∥.

Dividing the above inequality by ∥ZkPk∥, then

K1τk ∥ Yk(∇ fk + ρk∇PkZkPk) ∥min{
∆k

∥ZkPk∥
,
∥ (Yk∇PkZk∇PT

k Yk + Ĝk +
υk
ρk

I)dk ∥

∥ Yk∇PkZk∇PT
k Yk + Ĝk ∥ ∥ZkPk∥

}

< κ2∥ZkPk∥, (3.24)

As k → ∞, the right-hand side of the previous inequality goes to zero. That is,

∥ Yk(∇ fk + ρk∇PkZkPk) ∥
∥ (Yk∇PkZk∇PT

k Yk + Ĝk +
υk
ρk

I)dk ∥

∥ Yk∇PkZk∇PT
k Yk + Ĝk ∥ ∥ZkPk∥

is bounded along the subsequence {ki} where

lim
ki→∞

dki

∥Zki Pki∥
= ∞.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2526

That is, either dki
∥Zki Pki ∥

lies in the null space of

Yki∇PkiZki∇PT
ki

Yki +
υki

ρki

I

or
∥ Yk(∇ fk + ρk∇PkZkPk) ∥→ 0.

The first possibility only occurs when υki
ρki
→ 0 as ki → ∞ and dki

∥Zki Pki ∥
lies in the matrix’s null space.

Yki∇PkiZki∇PT
ki

Yki contradicts assumption (3.20) and implies that a subsequence of {ki} satisfies the FJ
conditions in the limit.

The second possibility implies

∥ Yk(∇ fk + ρk∇PkZkPk) ∥→ 0

as ki → ∞. Hence, ρki∥Yki∇PkiZki Pki∥ must be bounded, and we have ∇ fki = 0. This implies that a
subsequence of {ki} satisfies the FJ conditions in the limit.

Third, if

lim sup
k→∞

dk

∥ZkPk∥
< ∞

and
lim inf

k→∞

dk

∥ZkPk∥
> 0.

Therefore ∥dk∥ → 0. As a result, in the second case, as k → ∞, the right-hand side of (3.24) goes to
zero. Hence

∥ Yk(∇ fk + ρk∇PkZkPk) ∥
∥ (Yk∇PkZk∇PT

k Yk + diag(∇PkZkPk)diag(Ψ(x)) + υk
ρk

I)dk ∥

∥ Yk∇PkZk∇PT
k Yk + diag(∇PkZkPk)diag(Ψ(x)) ∥ ∥ZkPk∥

→ 0.

This implies that, either
∥ Yk(∇ fk + ρk∇PkZkPk) ∥→ 0

or
∥ (Yk∇PkZk∇PT

k Yk + diag(∇PkZkPk)diag(Ψ(x)) + υk
ρk

I)dk ∥

∥ Yk∇PkZk∇PT
k Yk + diag(∇PkZkPk)diag(Ψ(x)) ∥ ∥ZkPk∥

→ 0.

In a similar way to the above second case, we can prove that a subsequence of {ki} satisfies the FJ
conditions in the limit. The proof is now complete. □

3.4. Convergence when ρk is bounded

We continue our analysis in this section on the assumption that the penalty parameter ρk is bounded.
In other words, we proceed with our analysis assuming that there is an integer k̄ such that ρk = ρ̄ < ∞

for all k ≥ k̄.

Lemma 3.10. Assume that {xk} is the sequence of iterations generated by the NTRAI algorithm, then
we have

ϕ̃(xk+1; ρ̄) ≤ Ck+1 ≤ Ck. (3.25)

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2527

Proof. Let iterate k be a successive iterate, then from Algorithm 2.3, we have

r̂k =
Ck − ϕ̃(xk + τkYkdk; ρ̄)

Predk
≥ θ1.

That is,
Ck − ϕ̃(xk + τkYkdk; ρ̄) ≥ θ1Predk

and by using inequality (3.1), we have

ϕ̃(xk+1; ρ̄) ≤ Ck − K1θ1τk ∥ Yk∇ϕ̃(xk; ρ̄) ∥ min{∆k,
∥ Yk∇ϕ̃(xk; ρ̄) ∥
∥ Bk ∥

}. (3.26)

From (2.23), (2.24) and using inequality (3.26), then we have

Ck+1 =
ηkQkCk + ϕ̃(xk+1; ρ̄)

Qk+1

≤
ηkQkCk +Ck − K1θ1τk ∥ Yk∇ϕ̃(xk; ρ̄) ∥ min{∆k,

∥Yk∇ϕ̃(xk;ρ̄)∥
∥Bk∥

}

Qk+1

≤
Ck(ηkQk + 1) − K1θ1τk ∥ Yk∇ϕ̃(xk; ρ̄) ∥ min{∆k,

∥Yk∇ϕ̃(xk;ρ̄)∥
∥Bk∥

}

Qk+1

≤ Ck −
K1θ1τk ∥ Yk∇ϕ̃(xk; ρ̄) ∥ min{∆k,

∥Yk∇ϕ̃(xk;ρ̄)∥
∥Bk∥

}

Qk+1
.

That is,
Ck+1 ≤ Ck. (3.27)

From (2.23), we have

Ck+1 =
ηkQkCk + ϕ̃(xk+1; ρ̄)

Qk+1
.

Using (2.24), then we have

Ck+1(ηkQk + 1) = ηkQkCk + ϕ̃(xk+1; ρ̄).

Hence

Ck+1 −Ck =
ϕ̃(xk+1; ρ̄) −Ck+1

ηkQk
. (3.28)

From (3.27) and (3.28), we have
ϕ̃(xk+1; ρ̄) ≤ Ck+1. (3.29)

From (3.27) and (3.29), we have
ϕ̃(xk+1; ρ̄) ≤ Ck+1 ≤ Ck.

This completes the proof. □

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2528

Lemma 3.11. Under assumptions As1–As3 and at any iteration k at which

∥Yk∇ϕ̃(xk; ρ̄k)∥ + ∥Yk∇PkDkPk)∥ > ϵ1.

Then, there exists a constant K4 > 0 such that

Predk ≥ K4τk∆k. (3.30)

Proof. From (2.12), (2.15), and using assumptions As1–As3, then there exists a constant b1 > 0 such
that ∥Bk∥ ≤ b1 for all k. Let

∥Yk∇ϕ̃(xk; ρ̄k)∥ >
ϵ1
2

and using inequality (3.1), we have

Predk ≥ K1τk ∥ Yk∇ϕ̃(xk; ρ̄k) ∥ min{∆k,
∥ Yk∇ϕ̃(xk; ρ̄k) ∥
∥ Bk ∥

}

≥
1
2

K1τkϵ1 min{1,
ϵ1

2b1∆max
}∆k

≥ K4τk∆k,

where
K4 =

1
2

K1ϵ1 min{1,
ϵ1

2b1∆max
}.

This completes the proof. □

Lemma 3.12. Under assumptions As1–As3 and if

∥Yk∇ϕ̃(xk; ρ̄k)∥ + ∥Yk∇PkZkPk)∥ > ϵ1,

then an acceptable step is found after finitely many trials. That is, the condition

Ck − ϕ̃(xk+1; ρ̄k)
Predk

≥ θ1

will be satisfied.

Proof. Since
∥Yk∇ϕ̃(xk; ρ̄k)∥ + ∥Yk∇PkZkPk)∥ > ϵ1,

then from Lemmas 3.5, 3.10, and 3.11, we have

|
Ck − ϕ̃(xk+1; ρ̄k)

Predk
− 1 | ≤|

ϕ̃(xk; ρ̄k) − ϕ̃(xk+1; ρ̄k)
Predk

− 1 |

=|
Aredk

Predk
− 1 |

=
| Aredk − Predk |

Predk

≤
K3ρ̄τk∆

2
k

K4τk∆k
≤

K3ρ̄∆k

K4
.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2529

As a result of step dk being rejected, ∆k is now small, and after a finite number of trials, the acceptance
rule will finally be satisfied. That is

Ck − ϕ̃(xk+1; ρ̄k)
Predk

≥ θ1

and this ends the proof. □

Lemma 3.13. Under assumptions As1–As3 and if

∥Yk∇ϕ̃(xk; ρ̄k)∥ + ∥Yk∇PkZkPk)∥ > ϵ1,

at a given iteration k, the jth trial step satisfies

∥dk j∥ ≤
(1 − θ1)K4

2ρ̄K3
, (3.31)

then it has to be accepted.

Proof. Since the proof of this lemma is by a contradiction, we assume that the inequality (3.31) is true
and the step dk j is rejected. Since dk j is rejected, then we have from Algorithm 2.3

Ck j − ϕ̃(xk j+1; ρ̄)
Predk j

≤ θ1.

Using, inequalities (3.8) and (3.30), we have Hence

(1 − θ1) <|
Ck j − ϕ̃(xk j+1; ρ̄)

Predk j
| ≤|
ϕ̃(xk j; ρ̄) − ϕ̃(xk j+1; ρ̄)

Predk j
|

=
| Aredk j − Predk j |

Predk j

<
K3ρ̄τk j∥dk j∥2

K4τk j∥dk j∥
≤

(1 − θ1)
2
.

This demonstrates the lemma and provides a contradiction. □

3.5. Global convergence theory

The fundamental global convergence theorem for Algorithm 2.6 is covered in this section.

Theorem 3.1. Under assumptions As1–As3, the sequence of iterates generated by the NTRAI algorithm
satisfies

lim inf
k→∞

[∥Yk∇ fk∥ + ∥Yk∇PkZkPk∥] = 0. (3.32)

Proof. First, we will prove the following limit by contradiction

lim inf
k→∞

∥Yk∇ϕ̃(xk; ρ̄k)∥ + ∥Yk∇PkZkPk∥ = 0. (3.33)

So, suppose that,
∥Yk∇ϕ̃(xk; ρ̄k)∥ + ∥Yk∇PkZkPk∥ > ϵ1

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2530

for all k. Consider a trial step indexed j of the iteration indexed k such that k j ≥ k̄ and k ≥ k̄. Using
Algorithm 2.3 and Lemma 3.11, we have the following for any acceptable step indexed k j,

Ck j − ϕ̃k j+1 ≥ θ1Predk j ≥ θ1K4τk j∆k j . (3.34)

As k goes to infinity, we have
lim
k→∞
∆k j = 0. (3.35)

This implies that the value of ∆k j is not bounded below:

If we consider an iteration with indexed k j > k̄ and if the preceding step was approved, that is, if
j = 1, then ∆k1 ≥ ∆min. Thus, in this case, ∆k j is bounded.

If j > 1, at least one trial step has been rejected, and according to Lemma 3.13, we have

∥dki∥ >
(1 − θ1)K4

2ρ̄K3
,

for all i = 1, 2, · · · , j − 1. Since dki is a rejected trial step, then from algorithm 2.3, we have

∆k j = α̃1∥dk j−1∥ > α̃1
(1 − θ1)K4

2ρ̄K3
.

Hence, ∆k j is bounded and this contradicts condition (3.35). Hence, the supposition is wrong and the
limit in (3.33) holds. Hence, limit in (3.32) holds and this completes the proof of the theorem. □

4. Numerical results

This section compares the performance of the NTRAI algorithm and demonstrates its robustness
and efficiency using a collection of test problems with varying features that are commonly utilized
in the literature. First, the tested problems are the Hock and Schittkowski’s subset of the general
nonlinear programming testing environment (the CUTE collection) [27]. Second, three engineering
design problems are also tested.

We provided the numerical results of NTRAI algorithm obtained on a laptop with 8 GB RAM,
USB 3 (10x), Nvidia GEFORCE GT, and Intel inside Core (TM)i7-2670QM CPU 2.2 GHz. NTRAI
was run under MATLAB (R2013a)(8.2.0.701)64-bit(win64). The values of the required constants in
Step 0 of nonmonotone trust-region Algorithm 2.5 were selected to be

θ1 = 0.25, θ2 = 0.75, α̃1 = 0.5, α̃2 = 2, ϵ1 = 10−10, and ϵ2 = 10−8.

Successful termination with respect to the nonmonotone trust-region Algorithm 2.5 means that the
termination condition of the algorithm is met with ϵ1.

4.1. Benchmark test problems

Benchmark problems are listed in Hock and Schittkowski [27] to show the effectiveness of the
NTRAI algorithm. For comparison, we have included the corresponding results of the NTRAI
algorithm against the numerical results in [3, 28, 29]. This is summarized in Table 1, where Niter

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2531

refers to the number of iterations. The algorithm has the ability to locate the optimal solution for
either a feasible or infeasible initial reference point.

Table 1. Comparison between the methods in [3, 28, 29], and NTRAI algorithm.
Problem name Method [29] Method [28] Method [3] NTRAI algorithm

Niter Niter Niter Niter
Prob1 hs006 7 5 4 4
Prob2 hs007 9 8 7 6
Prob3 hs008 14 6 8 6
Prob4 hs009 10 6 7 5
Prob5 hs012 5 7 4 4
Prob6 hs024 14 4 9 6
Prob7 hs026 19 19 14 12
Prob8 hs027 14 18 12 12
Prob9 hs028 6 2 3 2
Prob10 hs029 8 6 9 7
Prob11 hs030 7 6 8 4
Prob12 hs032 24 5 6 5
Prob13 hs033 29 6 8 5
Prob14 hs034 30 5 7 9
Prob15 hs036 10 7 9 6
Prob16 hs037 7 6 6 4
Prob17 hs039 19 23 5 7
Prob18 hs040 4 3 6 4
Prob19 hs042 6 3 7 5
Prob20 hs043 9 7 6 6
Prob21 hs046 25 10 10 8
Prob22 hs047 25 17 12 10
Prob23 hs048 6 2 3 3
Prob24 hs049 69 16 10 12
Prob25 hs050 11 8 6 5
Prob26 hs051 8 2 3 3
Prob27 hs052 4 2 3 2
Prob28 hs053 5 4 4 3
Prob29 hs056 12 5 4 3
Prob30 hs060 7 7 5 4
Prob31 hs061 44 7 8 6
Prob32 hs063 5 5 4 3
Prob33 hs073 16 7 8 6
Prob34 hs078 4 4 5 4
Prob35 hs079 7 4 4 4
Prob36 hs080 6 5 6 4
Prob37 hs081 9 6 7 5
Prob38 hs093 12 6 5 5

For all problems, these algorithms achieved the same optimal solution in [27]. Figure 1 shows the
numerical results, which are summarized in Table 1 by using the performance profile that is proposed
by Dolan and More [30].

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2532

Figure 1. Performance profile based on the Niter of methods in [3, 28, 29], and NTRAI
algorithm.

The performance profile in terms of Niter is given in Figure 1, which shows a distinctive difference
between the NTRAI algorithm and the other algorithms [3, 28, 29]. Figure 2 represents the number of
iterations required for each problem with different methods.

Figure 2. Comparison between the Niter of methods in [3,28,29] and the NTRAI algorithm.

4.2. Applicability of NTRAI algorithm to solve mechanical engineering problems

In this section, to evaluate the applicability of the NTRAI algorithm in real-world applications, we
will consider three constrained mechanical engineering problems from the latest test suite [19].

In this experimental estimation, the NTRAI algorithm was compared with algorithms AOA [31],
CGA [32], ChOA [33], SA [34], LMFO [35], I-MFO [36], MFO [37], WOA [38], GWO [39],

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2533

SMFO [40], and WCMFO [41]. All algorithms attempt to solve three distinct problems, including: a
gas transmission compressor design problem, a three-bar truss design problem, and a
tension/compression spring design problem.

• P1. Gas transmission compressor design (GTCD) problem

Minimizing the objective function utilizing four design variables is the fundamental objective of the
GTCD problem. Figure 3 clarifies the GTCD problem. The mathematical formulation for the GTCD
problem is

minimize 8.61 × 105
√

x1
x4

x2x
−2
3

3 + 3.69 × 104x3 + 7.72 × 108 x0.219
2
x1
− 765.43 × 106x−1

1 ,

sub ject to x4+1
x2

2
− 1 ≤ 0,

20 ≤ x1 ≤ 50,
1 ≤ x2 ≤ 10,
20 ≤ x3 ≤ 45,
0.1 ≤ x4 ≤ 60.

Figure 3. Gas transmission compressor design problem.

The performance of the NTRAI algorithm was evaluated against other methods when solving the
GTCD problem. Table 2 presents the numerical results and comparisons for the GTCD problem. As
seen in the table, the NTRAI algorithm is the most effective in addressing this problem.

Table 2. The numerical results and comparison for GTCD problem.
Name of algorithm x1 x2 x3 x4 Optimal cost
SA [34] 46.76 1.62 25.79 0.55 4.390311 × 106

CGA [32] 49.97 20.01 31.47 49.83 1.735023 × 107

GWO [39] 20.00 7.81 20.00 60.00 2.964974 × 106

MFO [37] 50.00 1.18 24.57 0.39 2.964902 × 106

WOA [38] 50.00 1.18 24.86 0.39 2.965002 × 106

LMFO [35] 49.46 1.18 24.64 0.39 2.965456 × 106

WCMFO [41] 50.00 1.18 24.61 0.39 2.964897 × 106

ChOA [33] 50.00 1.19 24.24 0.41 2.966828 × 106

AOA [31] 50.00 1.23 20.00 0.51 3.014615 × 106

SMFO [40] 23.66 1.09 23.66 0.19 3.052254 × 106

I-MFO [36] 50.00 1.18 24.60 0.39 2.964896 × 106

NTRAI 49.6 1.175 24.9 0.382 2.962714204361616 × 106

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2534

• P2. Three-bar truss design (TBTD) problem

In the TBTD problem, three constraints and two variables are used to formulate the weight of the
bar structures, which is the objective function. Figure 4 clarifies the schematic for the TBTD problem.
The mathematical formula for the TBTD problem is

minimize 100(x2 + 2
√

2x1),

sub ject to 2x2

2x1 x2+
√

2x2
1
− 2 ≤ 0,

2x2+2
√

2x1

2x1 x2+
√

2x2
1
− 2 ≤ 0,

2
x1+
√

2x2
− 2 ≤ 0,

0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 11.

Figure 4. Three-bar truss design problem.

The NTRAI algorithm is compared with the other algorithms when solving the TBTD problem.
Table 3 shows the numerical results for the TBTD problem. The NTRAI algorithm outperforms other
algorithms in approximating the optimal values for variables with minimum weight.

Table 3. The numerical results and comparison for TBTD.
Name of algorithm x1 x2 Optimal weight
SA [34] 0.768630 0.474232 2.6482456 × 102

CGA [32] 0.792428 0.397752 2.6390770 × 102

GWO [39] 0.787771 0.410862 2.6389619 × 102

MFO [37] 0.789186 0.406806 2.6389603 × 102

WOA [38] 0.787713 0.410977 2.6389653 × 102

LMFO [35] 0.791713 0.399909 2.6392114 × 102

WCMFO [41] 0.788472 0.408822 2.6389589 × 102

ChOA [33] 0.787802 0.410724 2.6389653 × 102

AOA [31] 0.792789 0.396906 2.6392526 × 102

SMFO [40] 0.792044 0.398859 2.6390973 × 102

I-MFO [36] 0.788792 0.407919 2.6389585 × 102

NTRAI 0.7 0.4 2.3798989873 × 102

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2535

• P3. Tension/compression spring design (TCSD) problem

In the TCSD problem, four constraints and three variables are utilized to formulate the weight of
the tension/compression spring, which is an objective function. As shown in Figure 5, the variables
are wire diameter d, the mean coil diameter D, and the number of active coils N. These variables are
denoted in mathematical formulation by x1, x2, and x3, respectively.

Figure 5. Tension/compression spring design problem.

The mathematical formulation for the TCSD problem is

minimize x2
1x2(2 + x3),

sub ject to 1 − x3
2 x3

71785x4
1
≤ 0,

4x2
2−x1 x2

12566(x2 x3
1−x4

1)
+ 1

5108x2
1
− 1 ≤ 0,

1 − 140.45x1
x2

2 x3
≤ 0,

2
3 (x1 + x2) − 1 ≤ 0,
0.05 ≤ x1 ≤ 2,
0.25 ≤ x2 ≤ 1.3,
2 ≤ x3 ≤ 15.

The NTRAI Algorithm 2.6 is compared with other algorithms when solving the
tension/compression spring design problem. The numerical results and the comparison between
algorithms for the TCSD problem are shown in Table 4. The NTRAI algorithm is better than other
algorithms in approximating the optimal values for variables with minimum weight.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2536

Table 4. The numerical results and comparison for the TCSD problem.
Name of algorithm d = x1 D = x2 N = x3 Optimum weight
SA [34] 0.075935 0.993094 3.879891 0.033670
CGA [32] 0.071031 1.019975 1.726076 0.019749
GWO [39] 0.051231 0.345699 11.970135 0.012676
MFO [37] 0.053064 0.390718 9.542437 0.012699
WOA [38] 0.050451 0.327675 13.219341 0.012694
LMFO [35] 0.050000 0.317154 14.107156 0.012771
WCMFO [41] 0.051509 0.352411 11.545969 0.012666
ChOA [33] 0.051069 0.341746 12.251078 0.012702
AOA [31] 0.050000 0.310475 15.000000 0.013195
SMFO [40] 0.050000 0.314692 14.696505 0.013136
I-MFO [36] 0.051710 0.357217 11.259785 0.012665
NTRAI 0.05179848439 0.35946589 11.12481959619885 0.0126585842553172

• Example. Nonconvex optimization problem [20]

Consider the following nonconvex nonlinear constrained optimization problem

minimize −x1 − x2,

sub ject to x1x2 ≤ 4
0 ≤ x1 ≤ 6,
0 ≤ x2 ≤ 4.

The above problem possesses two strong local minima points (1, 4) and (6, 0.66667). Applying the
NTRAI Algorithm 2.6 on this nonconvex problem, we have the local points (1.0000001220725, 4) are
obtained and the value of objective function is −5.0000001220725.

5. Conclusions

This research focused on combining a nonmonotone technique with an autonomously modified
trust-region radius to provide a more efficient hybrid of trust-region approaches for constrained
optimization problems. The active-set strategy was combined with a penalty and Newton’s interior
point method to transform a nonlinearly constrained optimization problem into an identical
unconstrained one. A nonmonotone trust region was used to ensure convergence from any starting
point to the stationary point. A global convergence theory for the suggested method was developed
based on certain assumptions. Well-known test problems (the CUTE collection) were used to evaluate
the suggested method; three engineering design problems were performed, and the outcomes were
compered with those of other reputable optimizers. The results showed that, compared with the other
algorithms under discussion, the proposed method typically yields better approximation solutions and
requires fewer iterations. Computational findings, which also examined the algorithm’s performance,
demonstrated the suggested algorithm’s competitiveness and superiority over alternative optimization
algorithms.

Several questions should be answered in future research:

• Improving the nonmonotone trust-region algorithm to be able to handle
nondifferentiation-constrained optimization problems.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

2537

• Improving the nonmonotone trust-region algorithm to be able to handle large-scale constrained
optimization problems.
• Utilize a secant approximation of the Hessian matrix to output a more effective algorithm.

Author contributions

Bothina Elsobky: conceived the study, developed the theoretical framework and performed the
numerical experiments; Yousria Abo-Elnaga: conceived the study, supervised the application; Gehan
Ashry: aided in the analysis. All authors have read and agreed to the published version of the
manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors are very grateful to the anonymous reviewers for their valuable and insightful
comments, which have aided us in improving the quality of this paper.

Conflict of interest

The authors declare no conflicts of interest.

References

1. I. Das, An interior point algorithm for the general nonlinear programming problem with trust
region globlization, Institute for Computer Applications in Science and Engineering, 1996.
https://doi.org/10.5555/870136

2. B. El-Sobky, An active-set interior-point trust-region algorithm, Pacific J. Optim., 14 (2018), 125–
159.

3. B. El-Sobky, Y. Abo-Elnaga, A. Mousa, A. El-Shorbagy, Trust-region based penalty barrier
algorithm for constrained nonlinear programming problems: an application of design of minimum
cost canal sections, Mathematics, 9 (2021), 1551. https://doi.org/10.3390/math9131551

4. B. El-Sobky, G. Ashry, An interior-point trust-region algorithm to solve a nonlinear bilevel
programming problem, AIMS Math., 7 (2022), 5534–5562. https://doi.org/10.3934/math.2022307

5. B. El-Sobky, G. Ashry, Y. Abo-Elnaga, An active-set with barrier method and trust-region
mechanism to solve a nonlinear Bilevel programming problem, AIMS Math., 7 (2022), 16112–
16146. https://doi.org/10.3934/math.2022882

6. B. El-Sobky, A multiplier active trust-region algorithm for solving general nonlinear programming
problem, Appl. Math. Comput., 219 (2012), 928–946.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

https://dx.doi.org/https://doi.org/10.5555/870136
https://dx.doi.org/https://doi.org/10.3390/math9131551
https://dx.doi.org/https://doi.org/10.3934/math.2022307
https://dx.doi.org/https://doi.org/10.3934/math.2022882

2538

7. B. El-Sobky, G. Ashry, An active-set Fischer-Burmeister trust-region algorithm to
solve a nonlinear bilevel optimization problem, Fractal Fract., 6 (2022), 412–441.
https://doi.org/10.3390/fractalfract6080412

8. B. El-Sobky, M. F. Zidan, A trust-region based an active-set interior-point
algorithm for fuzzy continuous static games, AIMS Math., 8 (2023), 13706–13724.
https://doi.org/10.3934/math.2023696

9. B. El-Sobky, Y. Abo-Elnaga, G. Ashry, M. Zidan, A nonmonotone active interior point trust
region algorithm based on CHKS smoothing function for solving nonlinear bilevel programming
problems, AIMS Math., 9 (2024), 6528–6554. https://doi.org/10.3934/math.2024318

10. A. Sartenaer, Automatic determination of an initial trust region in nonlinear programming, SIAM
J. Sci. Comput., 18 (1997), 1788–1803. https://doi.org/10.1137/S1064827595286955

11. X. S. Zhang, J. L. Zhang, L. Z. Liao, An adaptive trust region method and its convergence, Sci.
China Ser. A, 45 (2002), 620–631. https://doi.org/10.1360/02ys9067

12. Z. J. Shiand, J. H. Guo, A new trust region methods for unconstrained optimization, J. Comput.
Appl. Math., 213 (2008), 509–520. https://doi.org/10.1016/j.cam.2007.01.027

13. L. Grippo, F. Lampariello, S. Lucidi, A truncated Newton method with nonmonotone
line search for unconstrained optimization, J. Optim. Theory Appl., 60 (1989), 401–419.
https://doi.org/10.1007/BF00940345

14. P. L. Toint, An assessment of nonmonotone linesearch technique for unconstrained optimization,
SIAM J. Sci. Comput., 17 (1996), 725–739. https://doi.org/10.1137/S106482759427021X

15. N. Y. Deng, Y. Xiao, F. J. Zhou, Nonmonotonic trust region algorithm, J. Optim. Theory Appl., 76
(1993), 259–285. https://doi.org/10.1007/BF00939608

16. J. L. Zhang, X. S. Zhang, A nonmonotone adaptive trust region method and its convergence,
Comput. Math. Appl., 45 (2003), 1469–1477. https://doi.org/10.1016/S0898-1221(03)00130-5

17. H. C. Zhang, W. W. Hager, A nonmonotone line search technique for unconstrained optimization,
SIAM J. Optim., 14 (2004), 1043–1056.

18. J. Mo, C. Liu, S. Yan, A nonmonotone trust region method based on nonincreasing technique of
weighted average of the successive function value, J. Comput. Appl. Math., 209 (2007), 97–108.
https://doi.org/10.1016/j.cam.2006.10.070

19. A. Kumar, G. Wu, M. Ali, R. Mallipeddi, P. Suganthan, S. Das, A test-suite of non-convex
constrained optimization problems from the real-world and some baseline results, Swarm Evol.
Comput., 56 (2020), 100693. https://doi.org/10.1016/j.swevo.2020.100693

20. N. Sahinidis, I. E. Grossmann Convergence properties of generalized benders decomposition,
Comput. Chem. Eng., 15 (1991), 481–491. https://doi.org/10.1016/0098-1354(91)85027-R

21. J. Dennis, M. El-Alem, K. Williamson, A trust-region approach to nonlinear systems of equalities
and inequalities, SIAM J. Optim., 9 (1999), 291–315. https://doi.org/10.1137/S1052623494276208

22. R. Fletcher, An l1 penalty method for nonlinear constraints, Numer. Optim., 1984, 26–40.

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

https://dx.doi.org/https://doi.org/10.3390/fractalfract6080412
https://dx.doi.org/https://doi.org/10.3934/math.2023696
https://dx.doi.org/https://doi.org/10.3934/math.2024318
https://dx.doi.org/https://doi.org/10.1137/S1064827595286955
https://dx.doi.org/https://doi.org/10.1360/02ys9067
https://dx.doi.org/https://doi.org/10.1016/j.cam.2007.01.027
https://dx.doi.org/https://doi.org/10.1007/BF00940345
https://dx.doi.org/https://doi.org/10.1137/S106482759427021X
https://dx.doi.org/https://doi.org/10.1007/BF00939608
https://dx.doi.org/https://doi.org/10.1016/S0898-1221(03)00130-5
https://dx.doi.org/https://doi.org/10.1016/j.cam.2006.10.070
https://dx.doi.org/https://doi.org/10.1016/j.swevo.2020.100693
https://dx.doi.org/https://doi.org/10.1016/0098-1354(91)85027-R
https://dx.doi.org/https://doi.org/10.1137/S1052623494276208

2539

23. J. Dennis, R. Schnabel, Numerica methods for unconstrained optimization and nonlinear
equations, Prentice-Hall, 1983. https://doi.org/10.1137/1.9781611971200

24. Y. Yuan, On the convergence of a new trust region algorithm, Numer. Math., 70 (1995), 515–539.
https://doi.org/10.1007/s002110050133

25. O. Mangasarian, Nonlinear programming, McGraw-Hill Book Company, 1969.

26. B. El-Sobky, Y. Abouel-Naga, A penalty method with trust-region mechanism for
nonlinear bilevel optimization problem, J. Comput. Appl. Math., 340 (2018), 360–374.
https://doi.org/10.1016/j.cam.2018.03.004

27. W. Hock, K. Schittkowski, Test examples for nonlinear programming codes, Springer-Verlag, 1981.
https://doi.org/10.1007/978-3-642-48320-2

28. J. Nocedal, F. Oztoprak, R. Waltz, An interior point method for nonlinear programming
with infeasibility detection capabilities, Optim. Methods Software, 29 (2014), 837–854.
https://doi.org/10.1080/10556788.2013.858156

29. A. L. Tits, A. Wachter, S. Bakhtiari, T. J. Urban, G. T. Lawrence, A primal-dual interior-point
method for nonlinear programming with strong global and local convergence properties, SIAM J.
Optim., 14 (2003), 173–199. https://doi.org/10.1137/S1052623401392123

30. E. Dolan, J. More, Benchmarking optimization software with performance profiles, Math.
Programm., 91 (2002), 201–213. https://doi.org/10.1007/s101070100263

31. L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic
optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609.
https://doi.org/10.1016/j.cma.2020.113609

32. R. Chelouah, P. Siarry, A continuous genetic algorithm designed for the global optimization of
multimodal functions, J. Heuristics, 6 (2000), 191–213. https://doi.org/10.1023/A:1009626110229

33. M. Khishe, M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 149 (2020), 113338.
https://doi.org/10.1016/j.eswa.2020.113338

34. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220
(1983), 671–680. https://doi.org/10.1126/science.220.4598.671

35. Z. Li, Y. Zhou, S. Zhang, J. Song, Levy-flight moth-flame algorithm for function
optimization and engineering design problems, Math. Probl. Eng., 126 (2016), 1423930.
https://doi.org/10.1155/2016/1423930

36. M. H. Nadimi-Shahraki, A. Fatahi, H. Zamani, S. Mirjalili, L. Abualigah, An improved moth-flame
optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering
problems, Entropy, 23 (2021), 1637. https://doi.org/10.3390/e23121637

37. S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm,
Knowl. Based Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006

38. S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67.
https://doi.org/10.1016/j.advengsoft.2016.01.008

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

https://dx.doi.org/https://doi.org/10.1137/1.9781611971200
https://dx.doi.org/https://doi.org/10.1007/s002110050133
https://dx.doi.org/https://doi.org/10.1016/j.cam.2018.03.004
https://dx.doi.org/https://doi.org/10.1007/978-3-642-48320-2
https://dx.doi.org/https://doi.org/10.1080/10556788.2013.858156
https://dx.doi.org/https://doi.org/10.1137/S1052623401392123
https://dx.doi.org/https://doi.org/10.1007/s101070100263
https://dx.doi.org/https://doi.org/10.1016/j.cma.2020.113609
https://dx.doi.org/https://doi.org/10.1023/A:1009626110229
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113338
https://dx.doi.org/https://doi.org/10.1126/science.220.4598.671
https://dx.doi.org/https://doi.org/10.1155/2016/1423930
https://dx.doi.org/https://doi.org/10.3390/e23121637
https://dx.doi.org/https://doi.org/10.1016/j.knosys.2015.07.006
https://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2016.01.008

2540

39. S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61.
https://doi.org/10.1016/j.advengsoft.2013.12.007

40. C. Chen, X. Wang, H. Yu, M. Wang, H. Chen, Dealing with multi-modality using synthesis of
Moth-flame optimizer with sine cosine mechanisms, Math. Comput. Simul., 188 (2021), 291–318.
https://doi.org/10.1016/j.matcom.2021.04.006

41. S. Khalilpourazari, S. Khalilpourazary, An efficient hybrid algorithm based on water cycle
and moth-flame optimization algorithms for solving numerical and constrained engineering
optimization problems, Soft Comput., 23 (2019), 1699–1722. https://doi.org/10.1007/s00500-017-
2894-y

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 2, 2509–2540.

https://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2013.12.007
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2021.04.006
https://dx.doi.org/https://doi.org/10.1007/s00500-017-2894-y
https://dx.doi.org/https://doi.org/10.1007/s00500-017-2894-y
https://creativecommons.org/licenses/by/4.0

	Introduction
	 Nonmonotone trust-region active-set penalty algorithm
	An active-set penalty interior-point method
	A nonmonotone trust-region algorithm
	Nonmonotone trust-region active-set penalty algorithm

	Analysis of global convergence
	Necessary assumptions
	Required lemmas
	Global convergence when k is unbounded
	Convergence when k is bounded
	Global convergence theory

	Numerical results
	Benchmark test problems
	Applicability of NTRAI algorithm to solve mechanical engineering problems

	Conclusions

