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1. Introduction

We generalize the classical Halanay inequality to encompass fractional-order systems with both
discrete and distributed neutral delays. This inequality, originally formulated for integer-order systems,
is now generalized to non-integer orders.

Lemma 1.1. Consider a nonnegative function w(t) that satisfies the inequality

w(t) < —=Kiw(t) + K, sup w(s), t > a,

t—T<s<t

where 0 < K, < K. Under these conditions, positive constants K3 and K4 exist such that
w(f) < Kze %409 ¢ > q.

Halanay first introduced this inequality while studying the stability of a specific differential
equation [10]
V' () = —Au(t) + Bu(t — 1), T > 0.
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Since then, the inequality has been generalized to include variable coefficients and delays of varying
magnitude, both bounded and unbounded [1,25,26]. These generalizations have found applications in
Hopfield neural networks and the analysis of Volterra functional equations, particularly in the context
of problems described by the following system [12,16,27]:

x/(1) = —cixi(1) + 2?21 bijfi(x;(t — 1)) + 27:1 a;;fi(x;j(0) + 1, >0,
x(t)=¢,t), -1<t<0,i=1,..,n

Such problems arise in various fields, including parallel computing, cryptography, image processing,
combinatorial optimization, signal theory, and geology [15,17,18].

Additionally, a generalization of the Halanay inequality to systems with distributed delays is
presented in [21]:

w'(x) £ —B(x)w(x) + A(x) f‘x’ k(s)w(x — s)ds, x > 0.
0

The solutions exhibit exponential decay if the kernels satisfy the conditions

fm PSk(s)ds < oo,
0

for some 8 > 0, and

A(x)fmk(s)dsgB(x)—C, C>0, xeR
0

See also [22] for further details.

This study broadens the scope of Halanay’s inequality to encompass fractional-order systems. The
justification for using fractional derivatives is provided in [2,3]. We also consider neutral delays, where
delays appear in the leading derivative. Specifically, we analyze the stability of the following problem:

{ DE* [w() = pw(t = )] < —qwit) + [[w(k(t=r)dr, p>0,0<a <l v t>a

w(t) =w(t), a—v<t<a.

We establish sufficient conditions on the kernel k to guarantee Mittag-Leftler stability, ensuring that the
solutions satisfy

W) < AE(~q [ () — ¢ @]"), 1 > a.

We provide examples of function families that satisfy our assumptions. As an application, we consider
a fractional-order Cohen-Grossberg neural network system with neutral delays [9]. This system
represents a more general form of the traditional Hopfield neural network.

There is extensive research on the existence, stability, and long-term behavior of Cohen-Grossberg
neural network systems. Our focus is on research that specifically addresses networks with time delays
or fractional-order dynamics. For integer-order neutral Cohen-Grossberg systems, refer to [5, 7, 24].
The fractional case with discrete delays was explored in [14]. While the Halanay inequality has been
adapted for fractional-order systems with discrete delays in [4, 11, 28], we are unaware of any work
addressing our specific problem (1.1).

The techniques used for integer-order systems are not directly applicable to the fractional-order
case. For example, the Mittag-Leffler functions lack the semigroup property, and estimating the
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expression E,(—q (¢ (t —v) — ¢ (@))")/Eo(—q (¢ () — ¢ (a))?) is challenging for convergence analysis.
The ideal decay rate would be E,(—g (¢ (t) — ¢ (a))"), but the neutral delay introduces new challenges,
particularly near v. Approximating with (¢ (f) — ¢ (a))™ (using Mainardi’s conjecture) does not fully
resolve these issues.

This paper is organized into eight sections, beginning with background information in Section 2.
Section 3 presents our inequality for systems with discrete time delays, and Section 4 discusses two
potential kernel functions. Section 5 investigates a fractional Halanay inequality in the presence of
distributed neutral delays. Solutions of arbitrary signs for the problem in Section 3 are addressed in
Section 6, and Section 7 applies our results to a Cohen-Grossberg system with neutral delays. Section 8
provides the conclusion, summarizing the findings and highlighting directions for future research.

2. Preliminaries

This section provides fundamental definitions and lemmas essential for the subsequent analysis.
Throughout the paper, we consider [a,b] to be an infinite or finite interval, and ¢ to be an n-
continuously differentiable function on [a, b] such that ¢ is increasing and ¢’ (%) # 0 on [a, b].

Definition 2.1. The p-Riemann-Liouville fractional integral of a function w with respect to a function
@ is defined as

1 < _
Iw(z) = @ f [¢ (@) — ¢ (9)]* Yw(s)g (s)ds, @ >0, z>a

provided that the right side exists.

Definition 2.2. The ¢-Caputo derivative of order a > 0 is defined by

d) w (),

D — Jena -
c @) (90’ ) dx

which can be expressed equivalently as

1 g o
D000 = s [ [el0 - o] Y0l (@ dr x> a

where
1 4\
[n] — — _[—
w, (x) (90’(%) %) wx), n [—a].
Particularly, when 0 < a < 1
1 d
an,oz — Inp,l—a
2w (%) (—go’ > —d%)w(%)

1 * - /’
= mﬁ @ (¢) — ()] " ' () dr.

The Mittag-Leffler functions used in this context are defined as follows:
[se] yn
E,(y) := E ———, R > 0,
) ey ra+an) e(@)
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and

I
Eop(y) := Z:(; G o ke > 0. Re@) > 0.

Lemma 2.1. [13] The Cauchy problem

{ DIy =), 0<a<1,{>a, 1€R
2.1
@) = Ya,
has the solution
Y@ =yiEe (A[e @) =@ @]"), { > a.

Lemma 2.2. []13] The Cauchy problem

{D“é’“y(():ﬂy({)+h(§),O<a/§1,/IER,§>a, 22)

y(a) =y, €R, .

admits the solution for { > a

Y
Y = yiEa (¢ (0) — ¢ (@]) + f [¢ () = ¢ (] Equ (A0 () — 0 ()]") ¢ (s)h(5)ds.

Lemma 2.3. For A, v, w > 0, the following inequality is valid for all 7 > a:

f [0(5) — @] [p@) -] ety (5)ds < Clop () — 9 @],

where
C = max {1,21-V}ru) [T+AQ+1D/v]w™.

Proof. For z > a, let
1) =[e@-¢@]™ f o) - @' [0 - g ()] eyt (5)ds
Set £[¢ (2) — ¢ (a)] = ¢ (s) — ¢ (a). Then, [¢ (2) — ¢ (a)] dé = ¢’ (s)ds and
1) =[¢@ - ¢@]" fo 1o o eedeosiolgg 25 g

As for0 < ¢ < 1/2, we have (1 - f)v_l < max {1, 21‘V} , therefore

1/2

I(z) < max{l,zl‘v} [¢ (@) — ¢ @] gl gwtle@-vw] ge
0
1

tle@-p@]' | (1-g ! gleeleor@lge, (2.3)
1/2
Letu = wé ¢ (2) — ¢ (a)]. Then, dé = [¢(z) — ¢ (a)]_1 w 'du and
1/2 00
[¢(2) — ¢ (@] gl gwtle@-v@] ge < () f e du = w'T (). (2.4)
0 0
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If 1 < wéle(z) —¢(a)], then

ele@-e@] 5 [wé[p(z) — ¢ (a)]]1+[/l] S [wé[p () —¢ (a)]]A
- I'(Aa]+2) - ra+2) '

Therefore, when 1/2 < £ < 1,

Ir+4) < 20T (1+2)
[wélp@ - @'~ [p@-p@]"

é;/l—l e—wg[ga(z)—sa(a)] < g1

and consequently

1
@ -p@]' | (1-g "ol ge
1/2

20T 2+ A
w T ( )d

IA

1
le@-p@]' | 1-&""

12 [¢ @) - ¢ @]
1 1-v, =1
= 20 T2+ (1- §)V_1 dé = 27w T 2).
1/2 4

When wé [¢ (z) — ¢ (a)] < 1, it implies that [wé [¢ (2) — ¢ (@)]]! < 1 < e“[¢@-¢@] Consequently,
1
[e@—o@]' | &7 (1 -gy " etleov@lge
12

1
< [p@-¢@]" ﬂs“(l—a“wwﬂy@y—¢mnr%f
1
1 w—/l
< 2wt | (-&taE=2"—. (2.5)
1/2 v
Taking into account (2.3)—(2.5), we infer that

21 (A + 2
1) < max{1,27} 0T @)+ —2 (4+2)

A+ 1
< max{l,zl-V}w-Ar(ﬁ)(H (4+ )),z>a.
Vv

The proof is complete.

Lemma 2.4. [8, (4.4.10), (4.9.4)] For 3> 0,v >0, and 1,1* € C, 1 # A%, we have

f PE, (A2t — ) Eq (A" (x — 2)™)dz
0

/lEa,B+v(/l%a) - /1*Ea/,ﬂ+v(/l*%
A=

‘)
%,B+v—1 ,

and foro >0,y > 0,
1727 Eqy(p2) () = 7 T E g iy (p2©).
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Lemma 2.5. For8>0,v>0,and 1,1* € C, 1 # A*, we have

f % Eup(1[0@) -0 @] e (0) -0 @] [0 @ - ¢ @]
XCIIYQ,V(/F‘ [ (%) — 0 (D]")¢’ (2) dz
= oG — g (@ LB [ (o) — ¢ (a)];)_— ;Ea,ﬁwu lp () — ¢ @I
and for o> 0,y > 0,

[0 2) = 9 @] Ear(ple @) — @] = [p00)— g @]
XEqriy(p [ () — @ (@)]). (2.6)

Proof. Letu = ¢ (x) — ¢ (z) . Then,
f " Eup(1 [0 - 0 @] [0 60 - ¢ QI [0 @) - o @
XaEa,V(ﬂ* [0 () — 0 (2]’ (2) dz
- | U060 — 6 (@) — ") 060 — 0 (@) — ™ ™ B (e

At this point, we can utilize Lemma 2.4 to derive the following:

f Eo s @) - ¢ @] 660 - 0 QI [0 @) - @]
XE, (A" [ () — ¢ ()]’ (2) dz
_ [<P (0) — o (a)]ﬁJrv_] A Ea,ﬁ+v(/l [90 () — @ (a)] ) — /lEa,,Bw(/l [90 (%) - (a)] )

A =2
To prove the second formula in the lemma, we have

I [0(2) =9 @] Eay(ple @) — ¢ @]")0)
= % f By (ple@ - 0@ 060 - e QI [0@ - 0 @] ¢ @ dz.
From the first formula in the lemma, with 8 =y, v = 0, 1 = p, * = 0, we obtain
I [0(2) = ¢ @] Eapy(ple @) — ¢ @)]")0)
= % f ’ [¢ (@ - ¢ @] " Eay(ple@ - ¢ @] [et) -0 @] ¢ ) dz

= [0 — @] Enpio(pe 30) — 9 (@)]),

where we have used

1
E, (A - Y= —.
A () = @] o)
m]
Mainardi’s conjecture. [19] For fixed y with O < y < 1, the following holds:
1 1
<E/(—qt") < q, t>0. 2.7

1+ qgl(1 -y
This result was later established in [6,23].

gr(1+y)y ey +1°
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3. Halanay inequality for fractional-order systems with both discrete neutral delays and
distributed delays

To start, we will introduce the concept of Mittag-Lefller stability.

Definition 3.1. For 0 < a < 1, a solution v(2) is defined as a-Mittag-Leffler stable if there exist positive
constants A and vy such that

V@Il < AEo(=y [¢(2) = ¢ (@]), 2> a,
where ||.|| represents a specific norm.

Theorem 3.1. Let u(t) be a nonnegative function fulfilling the conditions
t
DE [u(r) — pu(t — v)| < —qu(r) + f u(Hk(t — s)ds, 0<a <1, t>a, (3.1)

with the initial condition
ut)=w(@®) >0, a—-v<tr<a, (3.2)

where k is a nonnegative function integrable over its domain, and g > 0. Assume p > 0, and that k
satisfies the following inequality for some M > 0:

f Euu (=gl ® = 0 0] [0 () - ¢ (9]

X (f E,(=qle(0) — ¢ (@)]") k(s — cr)dU) @' (s) ds
< ME,(—qle(®) -¢@]"), t>a. (3.3)
Further, assume that the constant M satisfies

1

M<1-
S T @ty —g@)

1
(5 +I(1-a)[ela+3v)-¢ (a)]a) p, (3.4)

with the additional condition

1 1 "
@t -g@r (?1 Hmolplas =gl )p <t )

Then, u(t) exhibits Mittag-Leffler decay, i.e.,
u(t) < CE, (—qle () — o @]"), t>a
for some constant C > 0.

Proof. Solutions of (3.1) and (3.2) will be compared to those of

{ DZ* [w(t) = pwit = v)] = =gw(®) + [[w(s)k(t = $)ds, 0 <a <1, 1>a, (3.6)

wit)=w()=>20,a-v<t<a.
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The equation presented in (3.6) can be expressed equivalently as

!
D [w(t) — pw(t — v)] = —q [w(t) — pw(t — v)] + f k(t — s)w(s)ds — gpw(t —v), t > a.
This permits to profit from the form

w(t) — pw(t—v) = [w(a) - pwla—v)|E(—qle () —¢(@)]")
+ f [0 @) — ()] Enal—qle @) — ¢ ()]

X (—qu(s -v)+ fs k(s — O')W(O')dO') ¢ (s)ds.

a

Capitalizing on the nonnegativity of the solution, we find for ¢ > a,

w(t) < @(@El(—q (@) —¢@)") + pwit —v) + f Eoa(=q[e (1) — ¢ ()]

X[@(t) — ¢ (s)]o‘_1 (f k(s — O')W(O')dO') ¢ (s) ds. (3.7
Therefore, for ¢t > a,
w(t)
Ey(—q(p(1) — ¢ (@))
< w(a)+ P w(t —v)

E (—q (¢ () — ¢ (a)?)

1 ' a-1 a
- E(ny - -
+Ea(_q (90 (t) _ (,D(Cl))a) L [90 (t) SD(S)] s ( Q[(p (t) QD(S)] )

X ( f ks - E, (~q(p (@) - ¢ (@)") E. (=g (g;z((:))_ 2 (a))a)dﬁ) ¢’ (s)ds,
and
W) < w(a)+ P (t—v)

Eo(—q(0(0) —p@)) "

1 ! _ a—1
+Ea<—q<¢<t>—so<a>>“>fa Lo @) = ¢ (s)]

XEqo(=q @ (D) — ()]
x ( f k(s — )Eq (= (¢ () — 9 (@)% da) o (s)ds

w(o)

Ey(-q(e @) - ¢(a)")

" o Ea(~q (@ (@) — @)

p
E,(—q (o) — ¢ (a)”)

w(o)
M .
T Ea (g (@ (@) —p @)

IA

w(a) +

w(t —v)
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We will repeatedly utilize the following estimation:

1
E (=g (e (D) = p(a)?)

(f k(s — O')W(O')dcr) "(s)ds

Eau(=qle(®) = o)) [0 — ()]

1 t (¢4 a—1
= Ea/a/ - - -
Ea(_q (‘;0 (t) _ ‘,D(Cl))a) u B ( q [(p (t) SD(S)] ) [SD (t) QD(S)]

* o w(o) ,
([ Eecale@ - o@D o) 905
w(o)
M ) 3.8
= M E Cae@—p@n T 68
Then, for ¢ > a, the following inequality holds:
w(r) 14
< _
ECale® @ = "M B0 —p@m Y
w(o)
M 3.9
T e (g le @ - o @) 39
This inequality will serve as our initial reference.
For ¢ € [a,a + v], since E,(—q ¢ () — ¢ (a)]") is decreasing, it follows that
Eo(—qle () — ¢ (@)]") = Eo(—q [ (a+v) - o (a@)]"),
and hence
w(t) p
< |1
EqleO-g@]) ( " ECalp@to-v <a>]‘*) p T
w(o)
M ;
T R B (Cqlp @ -9 @])
or "
w(t 14
1-M 1 . 3.10
= i -g @™ = ( Y Eqlgat-gp (a))“) e G-10)

If t € [a + v, a + 2v], owing to relations (3.9) and (3.10), we find

w(t) p p
1
a0 —g@) = S @@+ M( * Ea<—q<¢<a+v>—<,o<a>>“)

E,(—q (et —v)—¢(a)”)
Ei—q 6D =9 @)) ap @)

+M su W)
o Eo (—q (@ () — g @)

Observe that

Ei(=qlpt-v) -9 @)) _ 1
Ef(-qe (D -¢@)") — Eul-qle®—-¢@))

AIMS Mathematics Volume 10, Issue 2, 2466-2491.
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1

= Eq@uta_p@r)
< 1+4gI'(d-a@) (¢ QRu+a)—g¢(a)” = A. (3.11)
Therefore,
w(t) AE,(—qev+a)—p(@)"+p)p
1
Eicqe—v@ = |'T Eqlewra-g@r =) |, P =)
+M sup (o)

a<o<t Eq (=q (@ () — ¢ (@)")’

and consequently,
w(t)
Ey(=q (¢ (D) — ¢ (@)")
A
<|1+ + - 2] sup @(0). (3.12)
=" " E,(qle@+v)-¢@P) 1~ )" | ico=
Notice that we will write (3.12) as

(1-M)

w(t) A
- M
Ecae0-s@m M = L eura-s@P
|1+ 2L +( p )2] sup  w(o) (3.13)
1_M 1_M a—v<o<a ' '

When ¢ € [a + 2v, a + 3v], the estimations

e -¢l@ _¢lat+3v)-—¢@
pt-v)-p@ ~ platv)-¢@’

together with (2.7), imply for t > a + 2v,

E,(—q(p(t—v)—¢(@)”) < 1+q(p(t)—¢(@)'T(1-a)
E.(—qe®)—¢@)) ~ l+gl@et—v)—¢@)TA+a)!
1+q(p@)—¢(a)'T(1-a)
gl'(l+a) ' (pt-v)—p(a)®

< (1 + a) N IF'd+a)(e®)-¢@)'Td-a)
T qet-v) - @) (p(t-v)—p(@)*
- I'l +a)
T qpatv)-g(@)”

+((p (a+3v)—p@)'TA +a)(1 - a)

(p(a+v)-¢@)

3 T + @)
T (patv)-¢ @)

X(é +I'(1 — @) (go(a+3v)—(,0(a))a), (3.14)

Notice that I'(1 + @) can be approximated by one.
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By virtue of relations (3.13) and (3.14), having in mind (3.9), we infer

w(z) < w@+ 2 Eo(—q (¢t —v) —p(a)")

E(—q(e () —p(@)") 1-M E,(—q(p)—¢())
A

XEa (=q(@pa+v)—¢(a)”)

p PV
< () |
w(o)
M
T R Ea(—q (@) —p @)
or
w(r) p AV
1-M) < 1
Ealo-g@p = 5w { T T-ME,(~qlpw+a) - ¢ @)
p P\
><1+1_M+(1_M)]}, (3.15)
where | .
@t - go(a))a( +T(1 - a)[p(a+3v) - ¢(a)] )
As
AV
— > 1,
E,(-qle(a+v)-¢@])
we can rewrite Eq (3.15) as follows:
w(t)
1-M <
M b0 —s@l = "5 [«p (v ¥ a) o <a> ")
pV
X {1 + .Y + (1 — }
We now make the following claim.
Claim. Forf € [a + (n — v, a + nv],
w(t) A

1-M
( ) E (=g (¢ (D) = p(a)?) = E,(=q(¢ W +a)—¢(a)?)

XZZ:O (%)k sup @(o0).

a—v<oc<a

It is evident that the assertion is valid for the cases n = 1, 2, and 3. Assume that it holds for #, i.e.,
on [a+ (n— 1)v,a + nv]. Now, let t € [a + nv,a + v(n + 1)]. Utilizing (3.9), we derive

w(?) < sp wo)+ PE.(—q e (t —v) — ¢(a)]")

E.(—q [90 @) -9 (a)]a) a-v<o<a (I -M)E,(—q [‘10 ) -y (a)]a)
k

A
e alp@ 0 @) 2o (753 Jup @)
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+M su w@)
- E, (—qle @) - @]")

and by (3.14)

w(t)
E (=g (¢ () — p(a)?)

Vp A n Vp
T HE e @r o e @ 2o (=) ]S“? @)
A n+1 Vp k
E(—qp@+v)—p@)") [1 Yo (75) L_i‘iﬁla w(©)

A n+l Vp k
oo @ o) e @) 2k (=5) Jup @@).

Therefore, the claim holds true. Then, for ¢ > a,

(1-M)

IA

A w ( pV
MO S | @ T ST vi) w(“)]
XEy(—=q (¢ (1) = ¢ (a)?). (3.16)

The series in (3.16) converges due to (3.4) and (3.5). The proof is complete. O
4. Examples

In this section, we identify two classes of functions that satisfy the conditions of the theorem.
First class: Consider the set of functions k that fulfill the following inequality for all s > a :

f Eo(=q[e (@) — ¢ @)]k(s = 0)do < Cy [ (s) - o @], C1,4> 0. 4.1

a

The family of functions k(¢ — s) defined as
k(t = 5) < e (1) — ¢ ()] 0@y ()

satisfies the specified relation when the constants b and C, are carefully chosen. Indeed, since

I'(l1 +a) < I'(l1 +a)

qr® = a T @
1+ (e I'd+a)+ gt qt

E,(—qt") < >0, 4.2)

it follows that
f Eu(~q ¢ (@) — @]k (s — o) do

: @ f s [0(@) = @] [p(s) - g ()] AP+l (o) dor

01 _ _ a—1
< 29C,I(1 + a/)F(Iq a)[3-alb (6() =0 @]", 5> a.
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Therefore, (4.1) holds with

2¢C,I(1 r(-a)[3-a]b*!
C = GIrd+old-o)[3-a] A=1-a
q

By applying formula (2.6), we obtain
f Eau(=q[e (0 =0 ()] [ (1) = o (9]

X ( f k(s =) Eo(—q[p(0) —¢ (a)]“)dCf) ¢’ (s) ds

IA

C f Enu(—qle @D =)D @) -0 )] [¢(5) — 0 (@] ¢ (s)ds
CiI(@)E,1(—q e () — ¢ (@)]). (4.3)

IA

To ensure that assumption (3.4) is met, we can select C; (or C, for the specific example) such that

1 1 @
Cil(a) <1 - @)= go(a))( +T(1-a)|p@a+3v)—p@]"|p

Second class: Assume that k(t — s) < C; [¢ (1) — ¢ (s)]a_1 E o(=b [ (@) — ¢ (5)]")¢’ (s) for some b > 0
and C5 > 0 to be determined. A double use of (2.6) and (4.2) gives

C; f [0 () = 0 ()] Ena (=gl @ — 0 ()]

X ( f [0(5) = @ (D))" Eqo(=b [ (5) = 9 (@)]VEa(=q [0 (@) — ¢ (@)])¢ () dU) ¢’ (s) ds

IA

CsI'(1 ¢ )
% f Eqo (_q [90 ® -9 (S)]a) [QD () - (S)]oz 1

><( f | [0 () = @ (@] Eqal=b[0(s) — 0 (@)]) ¢ (o) — ¢ (@] " ¢ (o) dd)so (s) ds
C3F((¥)F(1 + @) f

IA

Epo(—qle @) — ()] Eq1(=b[@(s) — ¢ (@] [e () — ¢ ()]* " ¢ (s) ds

IA

C.I'%(1 I _ _
I “’) @ f Eva(=qlo®) -0 &) [0 0 — o)™ [0 () — 0 @] &' (s) ds

C3r2(1 + a)l"z(a)
qb

IA

Epi(—qle® —¢@]". (4.4)

2 2 . ., .
Clearly, M = W. It suffices now to impose the condition on C; and/or the constant b in order

to fulfill the condition on M.
5. Fractional Halanay inequality with both distributed neutral delays and distributed delays
In this section, we will examine the inequality that arises when the neutral delay is distributed,

AIMS Mathematics Volume 10, Issue 2, 2466-2491.



2479

{ D¢ [u(t) - pfat u(s)g(t—s) ds] < —qu(t) + fat u(Hk(t—s)ds, t,bv>a, 0<a<1, p>0,
5.1

ult) =up =0, t€la—-uv,al,
which we will contrast with

{ D¢ [w(t) -p f; w(s)g(t — s) ds] = —qw(t) + fat w(k(t — s)ds, t,bv>a, 0<a <1, p>0,
wit)=wog=uy=>0, tela—uv,al.
(5.2)
We assume g is a continuous function (to be determined later) and that the solutions are nonnegative.
Let us reformulate this as

D¢t [w(t) -p f; w(s)g(t — s) ds] =—q [w(t) - pfat w(s)g(t — ) ds]
—QPfaIW(S)g(f— s)ds + fatw(s)k(t— s)ds, tv>a, 0<a<1, p>0
w(t) =wy =0, t€la—-v,al.

Therefore,
w(t) —pfat w(s)g(t —s)ds = Eu(=q[p® — ¢ @] o
+ f t [0 () =0 ()] Enal(—q e (@) — ¢ ()]")
X (—qp fs g(s —oyw(o)do + fs k(s — ow(o)do | ¢’ (s)ds,

and, for t > a,

w(t) < El—qle®-¢@]Iwo+p f gt — ) w(s)ds + f Eoa(=q[e (1) = ¢ ()]

X [o @) — ¢ (5)]"" (f k(s — o)w(o) dO') ¢’ (s)ds. (5.3)

a

Dividing both sides of (5.3) by E,(—¢q [¢ (1) — ¢ (a)]"), we find

w(r) _ P
a = Wwo+ @
Eo(—qe () — ¢ (@)]") Eo(—qle @) — ¢ @]")
1 ' _ a—1
"E—qle @ - o@]) f o @)= ¢ ()]
XEa,a(_q [QD (t) - @ (S)]a)

X (f k(s —0)Ey(—qle (o) — ¢ (a)]”)dO') ¢ (s)ds

a

ft w(s) g(t — s)ds

X su W(O-)
aSO'I:S)t Ea(_q [QD (O-) - QD (a)]a) ’
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or, fort > a,
W) < wo+ P f 4t - IE(alo () - p@]")
Ea(_q [90 (t) - @ (a)]a) E(l(_q [90 (l) - (a)]a) a
x( wls) = ) ds
E,(=ql¢(s) — (@]
+M sup wa)

o<t Eo(=q o (@) — 0 (@)]")

The relation
P
E,(-qle® - ¢ @]

is assumed for some M* > 0. Then,

f 8t — )Eo(—qle(s) —@(a)]*)ds < M,

w(r) . w(o)
< M+ M , ,
Eacdlo ) —g@p) =T MM s e @ —e@ly
and
w(r) < l—l\tIV—S—MEa(_q [ (D) — ¢ (@], t> a,

in the case that
M +M< 1.

Example. Take & as above, and select g fulfilling
gt =5 < Cap () =@ ()] Eqal=cle(®) = 0 ()])¢ (5) .
for some Cy4, ¢ > g. Then,

I'(1 !
( q“") f [0(5) - @ (@] gt — 5)ds

@ f Evo(=clp®) = ¢ ()]

X[ (1) — 0 ()]" " @ (s) — @ @] ¢ (s)ds
I'(1 I
c AN @ e - @], 1> a

IA

f Eo(=q[e (s) — ¢ (@)])g(t - s)ds

IA

IA

A value for M* would be

Cypl'(1 + o)(@)
p .
Therefore, we have proved the following theorem.

M =

Theorem 5.1. Let u(t) be a nonnegative solution of (5.1), where q and p are positive and k and g are
continuous functions with k (t), g (t) > 0 for all t such that

f Eun(=q[o @) - ¢ [0 ) - ¢ ()]
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X (f E,(—qle (@) — ¢ (@] ) k(s —0) dO') ¢ (s)ds

< ME,(—qle® —¢@]"), t > a,

p f gt = E(—q e (s) =@ @]")ds < M"E, (—q[¢ () — ¢ (@)]"), t > a,

hold for some M, M* > 0 with
M +M<1.

Then, we can find a positive constant C such that
w(t) < CE,(—qle (@) — ¢ (@)]), t > a.
6. Solutions that may be positive or negative

Before delving into applications, it is important to note that previous research on Halanay
inequalities, including our earlier work, often assumes that solutions are non-negative. This supposition
is sufficient for applications like neural networks without time delays. To determine the stability of the
equilibrium solution, we can simplify the problem by shifting the equilibrium point to the origin using
a variable transformation and then analyzing the magnitude of the solutions. However, when dealing
with systems that have time delays, this approach becomes more complex. Directly proving stability
for solutions that can be positive or negative presents new challenges, as time delays now appear within
convolution integrals. The necessary estimations are more intricate and require careful analysis.

Now, we return to

DZ [u(r) — pu(t — v)] < —qu(t) + fat k(t — su(s)ds, p>0,0<a<1, t,v>a,
ut) =w() >0, a-v<t<a,

with |@(s)| < WoE.(—q(¢ (s + v) — ¢ (a))®) for s € [a — v, a], wy > 0. To clarify these concepts, let us
suppose that 1 > p > 0, and examine the following expression:

w(t) — pw(t—v) = [w(a) - pw(a—v)|E,(—qle () — ¢ (a)]”)
+ f [ () = 0 (H)]* ™ Enal=q e @ — ¢ ()]")

X (—qu(s —v)+ fs k(s — O')W(O')dO') ¢ (s)ds.

a

Then, fort > a
WOl < 2w0Ea (=g o ©) - 0 @]) + p Wit - v)
+ap f Eaal= [0 = 0] [0 (1) - 0 ()" s — )l (5)ds

; f Euu(=q e (0 = (] [0 (1) = 0 ()]

X (fs k(s — o) |w(o)| dO') ¢ (s)ds. (6.1)

a

AIMS Mathematics Volume 10, Issue 2, 2466-2491.



2482

Fort € [a,a + v],

o) qpwo f ' a-1
<3 ~
EcqlpO-p@) ~ " E(cqlp 0 -p@T) J, lo () —¢ )]
XEa,a(_q [90 (- Y (S)]Q)Ea(_q [QD (s) — [0 (a)]a) gp/ (s)ds

+M su @)
oot Ea (—qle (@) —¢@]")

where M is defined as in Eq (3.3). Again, as

f Eau(=qlo @D = @) @ (0) =0 ()] Ea(=q e (5) — (@] ¢’ (s)ds

ra t
< ( q+ a,) f E(W(—C] [90 () - ©® (s)]a) [90 (1) — ¢ (S)]a—l [90 (s) - o (a)]_a SO, (5)ds
I'(1 r
< WEQ’I (_q [(’0 (t) - (a)]a) ’ (62)

we can write

lw(o)|
E,(—qle @) - ¢(a)]%)

< 3wo+wel'(1 + a)'(@)p

w(o)
M )
" usglj'l:s)l Ea (_q [90 (0-) - (a)](l)

or

(o)
E Cale-plap) - Tt rotor (63)

If t € [a + v,a + 2u], we first observe that

(1-M)

3w + wol (1 + )['(@)p
(1-M)
(EaCalpt-v) —¢@])
Ey(=qle @) - (@]
3wo + wol (1 + )'(@)p o
< = Eo(=q (¢ (1) = p(@)),

Wt —v)| <

E.(—qle (@) — ¢ @]

where A is as in (3.11). Using the fact that

A3wo +wol'(1 + &)'()p
1-M ’

wo <
and relations (6.1) and (6.3), we get

Wl < 2woE, (—q e (@) — ¢ (@)]")

3wo + wol (1 + )['(@)p o
10 Eo(=q (@) = ¢ (a)")

3wo + wol (1 + )['(@)p
(1-M)

+gpA
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x f Eva(=qle® - 0] [ (1) = p ()]
XEq(=q (@ (s) — ¢ (@) (s)ds
+ f Eun(=qle (0 = ()] [0 (1) - o ()]

X (fs k(s — o) w(o)ldo | ¢ (s)ds.

Next, in view of (6.2), we find

WOl < 2woE. (=g e (1) — ¢ (@)]")
3wo + wol (@) '(@ + 1)p

+pA - Ey(—=q (¢ (1) — ¢(a)))
3wo + wol (1 + )['(@)p
+qpA )

o I'(l1+a)l'(a)

pa— (=qle® - ¢@])

+ f [0 = @ ()] Enal=qle® — ¢ ()]

X (fs k(s — o) w(o)do| ¢’ (s)ds.

a

or

[w(?)| N pPAwy [1 +I'(1 + o)'(@)]

1-M) 2wy

(I-M)
x (3 +T(1 + a)(@)p)
34w, [1 + T(1 + a)[(@)]

E,(—qle® —¢(a)]")

< 2W0 + (1 ~ M)
Awo[1 +T(1 + )l (@)]* ,
(1-M) '
For t € [a + 2v, a + 3v], by virtue of (3.14),
E(=qlpt-v) -9 @)) _ 1
Ei(—qe(D—p@)) = (pla+v)-¢()*
X(;[ +I(1-a)(pla@a+3v)—¢@)'] = :V>1,
and therefore
o Vv
Wl < 2w, (gl ()~ @)+ 0
« [ZWO N 3Awg [1 +T°(1 + a/)F(a/)]p N Awo [1 + T + o) (@)]? )
(1-M) (1-M)

XE.(—q (¢ (1) — ¢ (a))

(6.4)
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+pVT(1 + a)l'(@)
(I-M)
XP%+3mmu+ra+aﬁmnp+mwn+ra+arww 1
(I-M) (I-M)
XE(—q (¢ (1) — ¢ (a))
+ f [0 () = @ ()] Enal=qle®) — ()] ( f k(s — o) w(o)| dff) ¢ (s)ds.

a

So,
Iw(@)l
1-M
M Sl 0 - p@D)
p 3Awg [1 +T(1 + a)I'(a)] Awg [1 +1°(1 + oz)l“(oz)]2 )
< 2W0+(1—M)[2W0+ d =) p+ a2 ]
pVI'(l + o)l'(@)
(1-M)
| 2w + 3Awg [1 +T°(1 + a)F(a)]p N Awo [1 +T( + o) (@)])? 2] ,
(1-M) (1-M)
or
[w(?)| pVIl+T(1+a)l(a)]
M G0 -p@p) = T 1om
2 2
+%%ApVIL+H1+§HHw]
(1-M)
AwgV[1 +T(1 + o) ()] ,
T p’. (6.5
Writing (6.5) in the form
Iw(®)| pVI1+T(1 + o) ()]
1-M) < 2 2
Eﬁ(—q[¢(ﬂ-¢(aﬂ“)( ) o awo 1-M
pVI1+T( + a)[(a)]\
+3WOA( (1 ~ M) )
3
ol (pV[l +T'(1+ a/)F(a)])
1-M
< 3wed [1 N pVIlI+T1 +a)(a)]
1-M
pVI1+T( +a)(@)]\
" Y
3
+(pV[1+I(1+anxan)l 6.6)
1-M

provides the basis for our next claim.
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Claim. On the interval [a + (n — 1)v, a + nv], it is clear that
k
[w(?)] _ (1_M)S3Azn (Vp[1+F(1+a)F(a)]) .
E,(~qle@® - @]\ wo k=0 1-M

The validity of the claim for n = 1,2, and 3 is established by Eqs (6.3), (6.4), and (6.6). Lett €
[a + nv,a + (n + 1)v]. Then from (6.1),

WOl < 2woEq (—q[e (1) — ¢ (@)]")

wo v (VpIT@U( + o) + 11\ i
1—MZI¢:O( 1—M )Ea(_CI[SD(f)—SD(a)])

woV Z (Vp [T()[(1 +a) + 1])"

+3ApV

Apl'(1 r
+3ApI'(1 + @) (a)l_M o .Y

XEq (=g [e (1) — ¢ (@)]")

+ f Ena(=qle @) =0 ()] [ @) — @ (s)]" ( f k(s — o) IW(U)Idrf) ¢ (s)ds,

or
(1 - M) (o) 5, VA Z (Vp [C(1 + &)(@) + 1])k
wo ) Es(—qle( -9 @]") ~ 1 — M £ik=0 1-M
+?V_—p]‘1:1"(1 + a)l'(@)
n (VpITA +&)(@) + 11\
X Zk:O( 1-M ) '
Then,
(1 - M) (o)
wo ) Ea(=qle(®) — ¢ (@)]")
k
< 34 {1 + [T+ )l@) + 1] 72 {VM ZZZO(VP a ;_“Z(“) * 1]) }
i.e.,
1-M w()| n (VpILA +o)(@) + 171\
<3411 .
( wo )Ea(—q[¢(t)—so(a)]")< { +Z’<=0( 1-M ) }
Thus,
1-M (o) el (Vp [T + @) (@) + 11\
<34 :
( wo )Ea (—qle® - ¢ @]%) = Zk:o( 1-M )

demonstrating that the assertion holds. Moreover, the series converges if the following condition is

satisfied:
1+T(1 +a)(a@)

1-M
We have just proved the following result.

Vp < 1.
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Theorem 6.1. Suppose that u(t) is a solution of

DZ [u(r) — pu(t — v)] < —qu(r) + fot k(t — su(s)ds, ttv>a, p>0,0<a<]1,
ult)=w(), a—v<t<a,

with |@(t)] < E,(—q(e(t+v) —¢(a)*),a-v <t <a,q>0,p>0,andk is a nonnegative function
verifying
!
f [¢(®) = @ ()] Eqo(—qe @) — ()]

X (f Eo(=q[p (o) — (@] k(s - O')dU) ¢ (s)ds
< ME,(—qle®) -¢@]), t>a,

for some M such that
M<1-[T'(d+a)l(a)+1]Vp,

with
1 +a)(@)+1]Vp < 1.

Then,
W) < CE,(—q[e @) —¢@]%), t > a,

where C > 0 is a positive constant.
7. Application in neural network theory

Neural networks are a fundamental part of artificial intelligence and are widely used to address
complex problems in various fields. In this work, we utilize our findings to analyze the behavior of
Cohen-Grossberg neural networks. Specifically, we consider the following problems:

D [x(0) = pxlt = v)] = —hi (x, (1) [g,- (i (0) = 3 aify (5, 0) = 2 byl (3,0 =)
J= J=

= S diy [Ty () (x; 1 - s))ds—],], tLu>a, p>0

=1
xiét) =x0(), tela-v,a],i=1,2,..,n,

and
D [xit) = p [ xi(shilt = $)ds| = =hi (xi (1) [g,- (i (0) = 3 byly (x; (= D)
— .Zn:l a,-jfj(xj(t)) - 21111 d,'jj:o (Dj )Cj(t— S))kj(S)dS - I,] , t>a, p> 0,
Jj= Jj=

xi(0)=xo@), t<a,i=12,..,n,

where x; (¢) stands the state of the ith neuron, n is the number of neurons, g; is a suitable function, A;
represents an amplification function, b;;, a;;, d;; represent the weights or strengths of the connections
from the jth neuron to the ith neuron, I; is the external input to the ith neuron, y; are the neutral
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delay kernels, f;,1;, ®@; denote the signal transmission functions, v is the neutral delay, T corresponds
to the transmission delay, ¢; is the history of the ith state, and k; denotes the delay kernel function.
These systems represent a general class of Cohen-Grossberg neural networks with both continuously
distributed and discrete delays. To streamline our analysis and highlight our key findings, we have
opted to examine simpler systems with fixed time delays. More complex scenarios involving variable
delays or multiple delays can be explored in future research. To simplify our analysis, let us examine
the simpler case

D [xi0) — pxi(t = v)] = —h; (x; (0) | g (x: () — _il dij 7 k; (5) £ (x; (2 = 9)) ds - Ii] C A
J= .

Xi (t) = X0 (t)’ re [a - Uaa]a l: 1’29"‘,”5

fort,v >a, p> 0.
We adopt the following standard assumptions.

(A1) The functions f; are assumed to satisfy the Lipschitz condition
Ifi (x) = fi )| < L;|x —y| forevery x,y € R and foreachi =1,2,...,n,

where L; denotes the Lipschitz constant corresponding to the function f;.

(A2) The delay kernel functions k; are nonnegative and exhibit piecewise continuity. Additionally,
each k; has a finite integral over its domain, expressed as «; = f kj(s)ds < oo, for j=1,.

(A3) The functions g; have derivatives that are uniformly bounded by a constant G. Specifically,

|g§ (z)| <G, forallze Rand foreachi=1,2,...,n,

where G > 0 is a fixed constant.

(A4) The functions h; are strictly positive and continuous, and they satisfy the following bounds:

0<B <h(z)<p,forallzeRandi=1,2,...n

For simplicity, we suppose that the initial values x;, (¢) are all zero for times before a.

T
Definition 7.1. The point x* = (x’f, X5y eues x;';) is said to be an equilibrium if, for each i = 1,2, ....n, it
satisfies the equation

g (x)) Za,, fi(x Zdl] f ki () fi(x})ds + I
j=1

Z (“if + diij)fj (X§) +1, t>a.

=

Previous studies have shown that an equilibrium exists and is unique. To facilitate our analysis,
we translate the equilibrium point to the origin of the coordinate system by using the substitution
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x(t) — x* = y(¢). This leads to the following:
DL [yilt) = pyi(t = v)] = =hi (x; + 31 ) | & (i (1) + x7)

—id,-jfatfj(xj.+yj(t—s))kj(s)ds—l,-], t>a,i=1,..n,
j=1
yi®)=yi():=¢;()—x, t€la-v,al, i=1,..,n,

N D [yi® = pyit = v)] = —H; (v () [G: (v (1))
= S dy [F (- s))kj(s)ds], t>a,i=1,..n,
Vi g)l =yi()=¢;()—x, t€la-v,a], i=1,..,n,
where

Fii@) = f: (v 0+ x7) = fi (%)), Gi 0i () = &i (3: (1) + x7) — g1 (")
H i) =hi(yi@®+x), t>a i=1,..n

Using the mean value theorem, the following inequality can be established:
DL yi(0) — pyi(t — v)| < sgn[yi(t) — pyi(t — v)] D& [yi(e) — pyi(t — v)]
= —sgn [yi(t) = pyi(t = v)] H; (v (1) [g; & O)i () = 3 di [ F (3, = 9)) ks ) ds} :
J=
By subtracting and adding the term pg; (; (t)) yi(f — v), we obtain

DZ" |yi(t) = pyi(t — v)| < —sgn[yi(®) — pyi(t — v)| H; (v: (t)) [gﬁ (X; () [yi(®) = pyi(t = v)]
+pg, (% (D) yi(t — v) - ﬁl dij [ F(y; (t = 9) k; (5) ds] L t>ai=1,.n,
=

or
DZ yi(®) = pyi(t = v)l < =H; (v; 1)) G |yi(t) — pyi(t — v)| + pGH; (y; (1)) lyi(t — v)|
+H; 3 (0) X diy [ k() Li|y; k= 9)|ds, t>a,i=12,..n
j=1
Therefore,

DZ" yit) = pyilt = )| < =GB Iyi(t) = pyi(t = v)| + pGB; yi(t — v)|
B, 3 Lidys [Ty () |y; (1= 9)|ds, t>a,i=1,..,n.
j=1

Finally, we consider the equation for w; and rewrite it in the following form:

wit) = pwilt = V)] = Eo(=GB, [ (1) = ¢ (@]") |04(@) - pDi(a - v)|
+ [ e @ = 0] Eval=qle 0 - 0(5)])

X (pGB,. lwi(t — v)| + B; 5 Lidy; [ k; (s) |w; (2 - s)|ds) ¢ ()ds, t>a,i=1,2,..n.
j=1

The Mittag-Leffler stability of this problem follows directly from our earlier result.
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8. Conclusions

We have investigated a general Halanay inequality of fractional order with distributed delays,
incorporating delays of neutral type. General sufficient conditions were established to guarantee the
Mittag-Lefller stability of the solutions, supported by illustrative examples. The rate of stability
obtained appears to be the best achievable, consistent with previous findings in fractional-order
problems.

Furthermore, we applied our theoretical results to a practical problem, demonstrating their
applicability. Our analysis suggests that these results can be extended to more general cases, such
as variable delays or systems involving additional terms. It is worth noting that the conditions on the
various parameters within the system could potentially be improved, as we did not focus on optimizing
the estimations and bounds. In this regard, exploring optimal bounds for the delay coefficient p and
the kernel £ would be an interesting direction for future research.
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