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Abstract: This paper presents a novel numerical method, named extended fractional neural stochastic
differential equation (fNSDE)-Net, which combines the generative adversarial network (GAN) and
fNSDE with a self-attention module. The method is designed to generate and forecast the stock price
of Contemporary Amperex Technology Co., Ltd. (CATL) in China. The primary challenge of this
study lies in the fact that the input consists of a single, irregular time-series dataset with long-range
dependencies (i.e., Hurst index H > 1

2 ), and its inherent noise cannot be directly modeled using
pure Brownian motion. The proposed method not only generates multiple sample paths based on
the initial data in a probabilistic sense but also preserves the long-term memory characteristics of
the generated samples. Moreover, the pricing of a Bermuda call option, induced by stock prices, is
explored. Through a series of numerical error comparisons and estimator reliability tests, the proposed
method outperforms both the pure fNSDE-GAN method and the NSDE-GAN method in terms of
fitting and generalization performance, thereby demonstrating its effectiveness.
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1. Introduction

Contemporary Amperex Technology Co., Ltd. (CATL), as a leading new energy innovation and
technology company in China and even the world, has attracted widespread attention for its stock
price [1–3]. Predicting the trend of stock price is an important basis for many investors to make
investments. However, influenced by factors such as new energy costs, usability, economic
conditions, and policy environments, CATL’s stock price exhibits prolonged volatility and
long-memory characteristics, which brings inherent difficulties to the prediction of its price trend. The
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objective of this study is to design an efficient numerical method, named extended fractional neural
stochastic differential equation (fNSDE)-Net, for simulating and forecasting stock prices and their
corresponding Bermuda options, which exhibit long-term dependence characteristics. The core idea
behind this method is to integrate the generative adversarial network (GAN) with the fNSDE and
self-attention modules to generate and predict the prices of underlying assets. The main contributions
of this paper are summarized as follows: The proposed method, extended fNSDE-Net, combines the
strengths of fNSDE-Net, which excels at simulating long-range correlated time series, and the
generative capabilities of GAN, enabling the generation of multiple simulation paths for a single
stock price time series in a probabilistic sense. In particular, the self-attention mechanism is
incorporated into the generator component of our method to better capture long-range dependencies.
The results demonstrate that, compared to the pure fNSDE-GAN method [4] and the NSDE-GAN
method [5], our approach outperforms them in terms of both fitting and generalization performance
for stock prices exhibiting temporal memory effects. In addition to fitting/forecasting the stock price
of CATL, we also address the pricing of a vanilla Bermuda call option derived from the generated
stock price paths. Motivated by the least squares Monte (LSM) Carlo method originally proposed by
Longstaff et al. [6], we apply dynamic programming principles to price the corresponding option. To
the best of our knowledge, no existing work has combined fNSDE-Net with LSM methods for option
pricing. This paper aims to make a modest contribution in this regard.

In fact, with the advancement of artificial intelligence (AI), the use of AI to simulate, calculate,
and predict changes in new energy stock prices has become increasingly popular and has become a
major subject of exploration for financial analysts and academic researchers. In recent years, some
scholars have made significant contributions in this field, for example, Sadorsky [7] made use of the
machine learning method of random forests to predict the stock price direction of clean energy
exchange traded funds, and showed that random forests are a useful method for forecasting the clean
energy stock price trends. In addition, Sadorsky [8] also used tree-based machine learning methods to
forecast the direction of solar stock prices. Wang et al. [9] developed a novel prediction method by the
integration of time series and cloud models to manage the stock price prediction of new energy
vehicles enterprises. Gu et al. [10] proposed a neural network prediction method via Markov chain
and long short-term memory (LSTM) neural network to predict new energy stock price, and proved
that the new method was better than LSTM neural network in the evaluation indexes of average
relative error, a posteriori error, mean square error and small robability error of stock price prediction.
Meng et al. [11] employed a novel attention mechanism to forecast new energy electricity price, and
demonstrated that the proposed model was superior to some hybrid models. Shen et al. [12] utilized
autoregressive univariate time series models to predict the trends of new energy stock closing prices,
and showed by comparison that the temporal convolutional attention neural network has a great effect
on stock price prediction. Zhu et al. [13] introduced the new model called “VMD-BIGRU” to predict
the trend of the portfolio and quantify the trades of the portfolios, and proved that this model greatly
improved forecasting performance compared to single gated recurrent unit or LSTM models. Fan
et al. [14] used a new AI model to predict the stock price of new energy industry. This method
involved support vector machines and Ant Lion Optimization to accurately predict stock prices.
Alshater et al. [15] deployed Machine Learning models to forecast energy equity prices by employing
uncertainty indices as a proxy for predicting energy market volatility. Gao et al. [16] introduced the
most commonly used machine learning techniques and explored their diverse applications in
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marketing, stock analysis, demand forecasting, and energy marketing. Ghosh et al. [17] investigated
the predictability of clean energy investment in the US market by using NeuralProphet and selecting
eight sectoral stock indices. Jiang et al. [18] compared the application of various artificial intelligence
methods in electricity price forecasting. Lin et al. [19] proposed a novel decomposition-ensemble
model to predict the energy prices which fluctuate wildly. Mostafa et al. [20] used evolutionary
techniques such as gene expression programming and artificial neural network models to predict oil
prices over the period from January 2, 1986 to June 12, 2012. Pino et al. [21] predicted the hourly
energy prices for the next-day in the Spanish electricity production market based on artificial neural
networks and compared the calculation results with the ARIMA model. Although great progress has
been made in numerical simulation and prediction of new energy stock prices using neural networks
or machine learning methods, the problem of predicting the price of a single new energy stock with
long-term memory effects and non-Brownian motion characteristics has not yet been addressed to the
best of our knowledge. This paper attempts to fill this gap from the perspective of numerical
approximation.

The rest of the paper is organized as follows: Section 2 theoretically outlines the details of the
extended fNSDE-Net approach. Section 3 presents a series of numerical experiments to illustrate the
effectiveness of the new approach. Section 4 introduces the pricing problem of a vanilla Bermuda
call option induced by the generated stock price path and verifies the reliability of the pricing method
through comparative experiments. Finally, Section 5 concludes.

2. Stock price and new network model

In this section, we first present the closing prices of CATL stock over the past year, revealing its
long-range dependency characteristic. Then we introduce the proposed new method in detail. It is
started by stating some basic mathematical concepts and definitions.

Definition 2.1. Let H ∈ (0, 1) be a fixed number. A real-valued mean-zero Gaussian process BH(t), t ≥
0, is called fractional Brownian motion (fBm) with Hurst index H if it fulfills

BH(0) = 0

almost surely and its covariance function satisfies:

Cov(BH(s), BH(t)) =
1
2

(|t|2H + |s|2H − |t − s|2H), s, t ≥ 0. (2.1)

Obviously, fBm becomes the pure Brownian motion when

H =
1
2
.

Moreover, fBm has stationary increments since

BH(t) − BH(s) ∼ N(0, |t − s|2H),

see, e.g., [22, Section 5.3] for detail. Especially, almost all paths of fBm with Hurst index H satisfiy
(H − ε)-Hölder regularity [23] for any ε > 0, i.e.,

|BH(t) − BH(s)| ≤ c|t − s|H−ε
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for a constant c > 0, and s, t ≥ 0. This means: sample path of fBm shows better regularity as the Hurst
index H becomes large, as shown in Figure 1. It is worthwhile to point that according to the definition
of long-range dependency [4, Definition III.2], one verifies readily that the increments of fBm exhibit
long-range dependency if and only if

H >
1
2
.
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Figure 1. Sample paths of fBm with different H; (a): H = 1/4, (b): H = 1/2, (c): H = 3/4.

Next, we investigate the mathematical characteristic of stock price of CATL. Through AKShare
database (see the link https://github.com/akfamily/akshare), we take the closing prices of CATL stock
for all workdays from May 2023 to May 2024, which is given in Figure 2.

Indeed, AKShare is a Python library that provides financial data extraction and analysis tools for
Chinese financial markets. Many researchers have made use of the data from AKShare to analyze stock
price trends, see, e.g., [24, 25] and references therein.
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Figure 2. CATL’s closing price path for all workdays from May 2023 to May 2024.

Now we will show that the path of CATL’s stock closing price is characterized by long-range
dependency. To this end, we need to introduce the notion of R/S statistic.

Let
{V(t), t = 0, 1, · · · ,T }

be a discrete random time series. Define the range of V(t) at time T by

RT := max
0≤i≤T

i∑
t=0

(V(t) − V̄(T )) − min
0≤i≤T

i∑
t=0

(V(t) − V̄(T ))

with

V̄(T ) :=
1
T

∑
0≤t≤T

V(t)

representing the sample mean. Furthermore, let S T be the sample standard deviation defined by

S T :=
( 1
T

T∑
t=0

(V(t) − V̄(T ))2) 1
2 .

The quantity RT/S T is called R/S statistics. An important application of R/S statistics is to determine
whether a random time series V(t) can be simulated using fBm. To be specific, Mandelbrot [26] has
proven that R/S statistics asymptotically satisfy the relation

log(RT/S T ) = H log T + c + OT (1), (2.2)

where H is the Hurst index, c is a constant, and OT (1) is a quantity that vanishes in probability as T
tends to infinity. In fact, Eq (2.2) provides a natural way to estimate H, such as using a linear regression
approach.
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By simple calculation, we obtain the Hurst index that matches the closing price path of CATL stock
is 0.721, which is bigger than 0.5, indicating that the increments of CATL stock price have long-range
dependency. This implies that employing a dynamic process driven by fBm with

H = 0.721

to simulate the CATL stock price will be reasonable. In addition to the Hurst index of CATL’s stock
price, we also calculated the Hurst index for the stock prices of several other well-known companies
(see Table 1 below for details) and found that, with the exception of CATL, the Hurst index for the
stock prices of the others is less than 1/2. In the current work, we focus on the stock price valuation
problem with long-term dependencies (i.e., H > 1/2), and thus, we selected CATL’s stock price as the
underlying asset.

Table 1. Hurst index of stock prices of different companies.
Stock name Hurst index
Trina Solar 0.374
Longi Green Energy 0.439
Hikvision 0.450
Industrial and Commercial Bank of China 0.471
Kweichow Moutai 0.479
Tongwei Co., Ltd. 0.486
Mindray Medical 0.493
CATL 0.721

One more thing to note is that CATL’s stock price is just one path, and thus, there is a need to find
a powerful generative model capable of producing more possible realizations in a probabilistic sense,
thereby providing more valuable information for predicting stock prices. For this purpose, to address
this, we propose a novel method, hereafter referred to as extended fNSDE-Net.

2.1. Extended fNSDE-Net

The extended fNSDE-Net consists of two main components called the generator and the
discriminator. The generator is formulated by an NSDE driven by a fBm with a Hurst index of

H = 0.721,

which is used to generate multiple latent paths with long-range dependency. The discriminator is
represented as a neural controlled differential equation (NCDE) by using the Riemann-Stieltjes
measure of the generator output, aiming to provide a score of how close the generated path is to the
true stock price path. Particularly, the self-attention module is embedded in the generator to efficiently
model relationships between widely separated data. It is followed by a description of the generator.

Generator. Given a time horizon T > 0, let Ytrue(t) denote the closing price of CATL stock, t ∈ [0,T ].
Ytrue(t) is what we wish to approximate, and it is a continuous stochastic process. Let

B∗(t) : [0,T ]→ Rw

be a w-dimensional fBm with Hurst index

H = 0.721.
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Let γ be a random variable of v-dimensional following standard fBm. Set

ζθ : Rv → Rx, µθ : [0,T ] × Rx → Rx, σθ : [0,T ] × Rx → Rx×w, αθ ∈ R
m×x, βθ ∈ R

m,

where ζθ, µθ, σθ, αθ, and βθ are all neural networks with a common parameter θ. The hyperparameter
x is used to describe the size of the hidden state dimension. Now, define fNSDE as below:

dX(t) = µθ(t, X(t))dt + σθ(t, X(t))dB∗(t), t ∈ (0,T ],
X(0) = X0 = ζθ(γ),
Y(t) = αθX(t) + βθ, t ∈ [0,T ],

(2.3)

where
X(t) : [0,T ]→ Rx

is a latent variable such that each generative path of Y(t) can approximate Ytrue in some probabilistic
sense. In fact, (2.3) is an extension of the NSDE generator shown in the paper [5, (3)]. However, this
extension is non-trivial because we change the noise driving mechanism from pure Brownian motion
to fBm so that (2.3) can generate a time series with long-range dependency, therefore better simulating
the target path of CATL’s closing stock price.

Remark 2.1. The existence and uniqueness of the latent variable X(t) can be guaranteed by imposing
some mild conditions, such as the global-Lipschitz condition, on drift and diffusion terms for SDE, see;
e.g., [4]. Particularly, Hayashi et al. have proven in [4, Theorem V.1] that when

H >
1
2
,

µθ and σθ have multi-layer perceptron (MLP) network structures with the tanh activation function; the
strong solution X(t) is existence and uniqueness. Moreover, the globally Lipschitz network (drift term
and diffusion term) in (2.3) ensures that the price dynamics do not exhibit wild, unbounded behavior.
It guarantees that the model behaves smoothly, preventing the model from overfitting to noise or large
market swings [27], thus providing more reliable and stable predictions for stock prices.

In order to further efficiently simulate relationships between widely separated time points, we
additionally incorporate the self-attention module into the generator.

Self-attention. Let
∆t = T/n

with n being a positive integer number. Denote by

Y := (Y(t1), · · · ,Y(ti), · · · ,Y(tn)) ∈ Rm×n

the value of Y(t) at time point
ti := i∆t, i = 1, · · · , n,

where Y(ti) ∈ Rm. Let W1,W2 ∈ R
m×m be the learned weight matrices. Define

ϕ1(Y(ti)) := W1Y(ti), ϕ2(Y(ti)) := W2Y(ti).
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Set

τ j,i :=
exp(si j)∑n

i=1 exp(si j)
, si j := ϕ1(Y(ti))Tϕ2(Y(t j)),

where τ j,i stands for the extent to which the model attends to the i-th time point when generating
Y(t j) [28]. In other words, τ j,i represents an attention weight coefficient between ti and t j,
i, j = 1, · · · , n. Let

ϕ3(Y(ti)) := W3Y(ti), ϕ4(Y(ti)) := W4Y(ti)

with W3,W4 ∈ R
m×m denoting the other two learned weight matrices. Define the output of the attention

layer by
Z := (Z(t1),Z(t2), · · · ,Z(ti), · · · ,Z(tn)) ∈ Rm×n

with

Z(ti) := ϕ4
( n∑

k=1

τi,kϕ3(Y(tk))
)
.

Next, we aim to combine this output with Y(ti) to increase global relations. Precisely denote the final
output by

O = (O(t1), · · · ,O(ti), · · · ,O(tn))

with
O(ti) = ϵZ(ti) + Y(ti),

where ϵ is a learnable scalar parameter and it is initialized as 0. It is notable that introducing the
learnable ϵ allows the network to first rely on the information in the local neighborhood (because this
is easier), and then gradually learns to assign more weights of non-local cues.

Define the continuous version of O by

O(t) : [0,T ]→ Rm,

where the initial value
O(0) := O0 = Y(0).

Each sample path of O(t) is infinite dimensional. O(t) will be regarded as inputs to the discriminator.
We now briefly describe discriminator.

Discriminator. Let

ξρ : Rm → Rh, fρ : [0,T ] × Rh → Rh, gρ : [0,T ] × Rh → Rh×m, qρ ∈ Rh,

where ξρ, fρ, gρ, qρ are all global-Lipschitz neural networks parameterised collectively by ρ, and the
dimension h is a hyperparameter representing the size of hidden state. The discriminator is expressed
as another NSDE of the form: for H(t): [0,T ]→ Rh,

dH(t) = fρ(t,H(t))dt + gρ(t,H(t))dO(t), t ∈ (0,T ],
H(0) = ξρ(O0),

D = qρ · H(T ),
(2.4)
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where gρ(t,H(t))dO(t) denotes the Riemann-Stieltjes integral related to O(t). The value D ∈ R is a
function of the terminal hidden state H(T ). It is the discriminator’s score for real versus fake. In order
to intuitively see how the extended fNSDE-Net works, we present its flowchart in Figure 3.

Figure 3. Flowchart of extended fNSDE-Net.

Remark 2.2. The well-posedness of SDE shown in (2.4) can be guaranteed since fρ and gρ are global
Lipschitz [5]. The construction of the discriminator (2.4) is inspired by the formulation of NCDE
shown in [29] with respect to the control O(t). Especially, we mention that the discriminator (2.4) is
driven by fBm, which is different from the classical discriminator [5, (5)] driven by pure Brownian
motion.

With the model specified, we are now in a position to focus on the data training. Suppose we
observe an irregularly sampled time series

y = (y0, · · · , yi, · · · , yn)

from Ytrue. Denote the linear interpolation of y by ŷ(t) such that

ŷ(ti) = yi, i = 0, · · · , n,

and define Ĥ(t) by following SDE:

dĤ(t) = fρ(t, Ĥ(t))dt + gρ(t, Ĥ(t))dŷ(t), t ∈ (0,T ],
Ĥ(0) = ξρ(ŷ(t0)),

D̂ = qρ · Ĥ(T ),
(2.5)

where gρ(t, Ĥ(t))dŷ(t) is the Riemann-Stieltjes integral, depending on the regularity of ŷ(t).
The training loss function applied in this work is the Wasserstein loss, which is a common loss

function in GAN, see, e.g., [30, 31]. Let

Oθ : (γ, B∗(t)) 7→ O(t)

be the overall action of the generator with self-attention. Let

Dρ : O(t) 7→ D
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represent the overall action of the discriminator. Similarly, let

D̂ρ : ŷ 7→ D̂

denote the overall action of the system (2.5). Then the generator is optimized by

min
θ
{E[Dρ(Oθ(γ, B∗(t)))]},

and the discriminator is optimized by

max
ρ
{E[Dρ(Oθ(γ, B∗(t)))] − E[D̂ρ(ŷ)]},

where E[·] stands for the expection. Training is performed via stochastic gradient descent [32]
techniques as usual.

3. Numerical experiments

This section is devoted to comparing the extended fNSDE-Net with several other network models
through numerical experiments to highlight the superior performance of the proposed method in terms
of fitting and generalization. Before doing this, we first normalize the observed data y using the
MinMaxScaler provided by the Sciket-learn preprocessing library to avoid excessively large and
unstable weight value distributions during the calculation process. Specifically, we define yscaled

according to y as below:

yscaled :=
y −min{y}

max{y} −min{y}
.

The MinMax scaler is chosen here because it preserves the shape of the dataset without introducing
any distortion, and Tee et al. [33] have employed this technique to normalize the data.

We select the stock closing prices of CATL from May 28, 2023, to May 28, 2024, a total of 242
data points, as observations. Therefore,

yscaled = (yscaled(1), · · · , yscaled(242)).

Moreover, considering the timeliness of stocks, we intend to make short-term predictions of stock
prices and use the last small part of the dataset as a testing set to demonstrate the generalization
performance of the proposed method. Specifically, we take the first J1 := 236 data for training and the
remaining J2 := 6 data for testing. Define

{xk
train( j)} j=1,··· ,J1 ∈ R

J1×1

and
{xk

test( j)} j=1,··· ,J2 ∈ R
J2×1

as the numerical solutions generated by the extended fNSDE-Net corresponding to the k-th sample of
the training set and the testing set, respectively, where k = 1, · · · ,M with M being the total number
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of generated sample paths. Let the sample mean of xk
train(·) and xk

test(·) at the j-th time point be x̄train( j)
and x̄test( j), where x̄train( j) and x̄test( j) are defined by

x̄train( j) :=
1
M

M∑
k=1

xk
train( j), j = 1, · · · , J1; x̄test( j) :=

1
M

M∑
k=1

xk
test( j), j = 1, · · · , J2.

The relative fitting error and generalization error are expressed as follows:

e f :=

(∑J1
j=1
(
yscaled( j) − x̄train( j)

)2) 1
2(∑J1

j=1 yscaled( j)2) 1
2

, eg :=

(∑J2
j=1
(
yscaled(236 + j) − x̄test( j)

)2) 1
2(∑J2

j=1 yscaled(236 + j)2) 1
2

.

A series of numerical experiments are conducted, including ablation studies and comparisons with
the classical NSDE-GAN method originally proposed by Kidger et al. [5] to show the effectiveness of
our model. The more details on hyperparameter settings and implementation of our method, see the
code available at https://github.com/JHUNAI/EfNSDE.

Table 2 presents the numerical results of fitting error e f and generalization error eg for different
models.

Table 2. Comparison of fitting and generalization errors under different models.

Model name Sample number M
Fitting error Generalization error

e f eg

20 3.9345E-2 1.7802E-2
50 3.8949E-2 1.7411E-2

(1) Extended fNSDE-Net 100 3.8620E-2 1.6755E-2
200 3.8416E-2 1.6681E-2
500 3.8105E-2 1.6504E-2
20 4.7400E-2 5.8727E-2
50 4.7294E-2 5.8364E-2

(2) fNSDE-GAN 100 4.6915E-2 5.8077E-2
200 4.6428E-2 5.6454E-2
500 4.6421E-2 5.6288E-2
20 3.5433E-2 3.3715E-2
50 3.5173E-2 3.2636E-2

(3) NSDE-self attention GAN 100 3.5060E-2 3.2636E-2
200 3.5012E-2 3.1751E-2
500 3.4942E-2 3.0443E-2
20 4.0648E-2 8.9443E-2
50 3.9968E-2 8.4752E-2

(4) NSDE-GAN 100 3.9752E-2 8.2404E-2
200 3.9357E-2 7.7452E-2
500 3.9167E-2 7.5393E-2

Among these models, (1) represents our proposed model; (2) is the model developed by Hayashi
et al. [4], which differs from model (1) in that it does not include a self-attention module; (3) is another
model that differs from ours in that it uses standard Brownian motion instead of the fBm applied in our
model; and (4) is the pure NSDE-GAN model proposed by Kidger et al. [5]. Based on the numerical
results shown in Table 2, we can draw the following conclusions:
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i) Compared with models (2) and (4), our model demonstrates clear advantages in terms of both
fitting error and generalization error. Specifically, for a given sample size, the calculation error of our
model is smaller.

ii) Compared with model (3), although our model is slightly inferior in terms of fitting error, it shows
significant superiority in the calculation of generalization error. In other words, the generalization error
computed using model (1) is notably smaller than that obtained from model (3).

Also shown in Figure 4 are 10 sample trajectories generated by different models to intuitively
illustrate the fitting and generalization performance of each model. Next, we further investigate the
fitting and generalization error performance of different models from the perspective of strong and
weak errors. These two errors will be calculated using the last time points of the training and testing
sets as examples. The strong and weak errors of fitting and generalization are defined as follows:

estrong
f :=

( 1
M

M∑
k=1

|yscaled(J1) − xk
train(J1)|2

) 1
2
, eweak

f :=
∣∣∣∣ 1M

M∑
k=1

(yscaled(J1) − xk
train(J1))

∣∣∣∣,
estrong

g :=
( 1

M

M∑
k=1

|yscaled(242) − xk
test(J2)|2

) 1
2
, eweak

g :=
∣∣∣∣ 1M

M∑
k=1

(yscaled(242) − xk
test(J2))

∣∣∣∣.
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Figure 4. Evolution simulation under different models. (a): Extended fNSDE-Net. (b):
fNSDE-GAN. (c): NSDE-self attention GAN. (d): NSDE-GAN.

Note that the weak error is related to the approximation of the probability law of the solution, while
the strong error measures the deviation from the solution trajectory. Table 3 presents the strong and
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weak error behaviors of different models, where models (1)–(4) are consistent with those in Table 2.
From Table 3, the following conclusions can be drawn:

i) Compared with models (2) and (4), our model (i.e., model (1)) exhibits smaller fitting and
generalization errors in both strong and weak senses, indicating that our model has higher
computational accuracy.

ii) Although the strong and weak fitting error calculations of model (3) are slightly better than
those of our proposed model (i.e., model (1)), its strong and weak generalization error calculations are
significantly worse. Therefore, our proposed model shows a clear overall advantage.

This once again demonstrates the effectiveness of the extended fNSDE-Net.

Table 3. Error comparison under different models.

Model name M
Fitting error Generalization error

estrong
f eweak

f estrong
g eweak

g

20 5.2861E-2 4.2061E-2 2.9049E-2 2.4837E-2
50 5.1636E-2 4.0871E-2 2.6982E-2 2.1333E-2

(1) Extended fNSDE-Net 100 5.0316E-2 3.9981E-2 2.5961E-2 2.0830E-2
200 4.9159E-2 3.8864E-2 2.5106E-2 2.0426E-2
500 4.7349E-2 3.6976E-2 1.9838E-2 1.6932E-2
20 6.8522E-2 5.5937E-2 8.4207E-2 8.1136E-2
50 6.1988E-2 4.8794E-2 8.0765E-2 7.7156E-2

(2) fNSDE-GAN 100 6.1498E-2 4.8245E-2 7.6402E-2 7.3110E-2
200 5.7023E-2 4.4401E-2 6.8641E-2 6.4960E-2
500 5.6688E-2 4.4183E-2 4.4331E-2 3.8602E-2
20 4.9445E-2 3.8345E-2 5.6734E-2 5.3025E-2
50 4.5934E-2 3.5982E-2 4.7741E-2 4.3452E-2

(3) NSDE-self attention GAN 100 4.5888E-2 3.5705E-2 4.5020E-2 4.0167E-2
200 4.5851E-2 3.5352E-2 3.9213E-2 3.3771E-2
500 4.5147E-2 3.4774E-2 3.4439E-2 2.7835E-2
20 6.4158E-2 5.0280E-2 1.5875E-1 1.5684E-1
50 5.9664E-2 4.5697E-2 1.5429E-1 1.5263E-1

(4) NSDE-GAN 100 5.1682E-2 4.0272E-2 1.1995E-1 1.1781E-1
200 5.1026E-2 4.0197E-2 7.8652E-2 7.5465E-2
500 5.0226E-2 3.9292E-2 7.2844E-2 6.9530E-2

4. Bermuda option pricing

This section aims at valuing a vanilla Bermuda call option based on the observed information y of
CATL’s stock price and the simulated paths in the testing set

{xk
test(·)}, k = 1, · · · ,M.

Note that the Bermuda option is halfway between American and European options, and it can be
exercised at a set of prescribed dates within the horizon. The main purpose of this section is to provide
an effective way for pricing Bermuda options derived from CATL stock prices. The principal idea
is motivated by the LSM method proposed by Longstaff et al. [6], which is a dynamic programming
method based on iteratively selecting an optimal policy to estimate a continuation value that determines
the optimal exercise strategy. However, unlike [6], our underlying asset prices (i.e., the simulated stock
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price paths) are not driven by a geometric Brownian motion (GBM), but are instead computed by a new
method proposed in this paper. Next, we intend to use the simulated stock price data in the testing set
to value the Bermuda option at the time (denoted as t0) corresponding to the observation value y j=238,
and use this as a numerical example to describe the pricing procedure in detail.

Denote the time stamp corresponding to the observed data y j=239, · · · , y j=242 by t1, · · · , t4. Let the
strike price K := 200, interest rate r := 0.5. For the sake of clarity, we take 10 sample paths as
an example to demonstrate the pricing algorithm. Let S j

i be the stock price on the i-th sample path
generated at time j, where i = 1, · · · , 10, j = t1, · · · , t4. Suppose that the exercise waiting time is an
equidistant interval

δt := 0.25.

In Table 4, we present the simulated values of CATL stock price from t1t4 using the extended fNSDE-
Net.

Table 4. Simulated stock path.

Path

Price Time
t1 t2 t3 t4

1 201.88 202.27 202.64 203.03
2 205.73 206.27 206.80 207.29
3 203.71 204.24 204.74 205.25
4 200.48 200.73 201.02 201.36
5 199.54 199.81 200.18 200.52
6 200.85 201.25 201.60 201.94
7 200.90 201.35 201.87 202.33
8 203.06 203.51 203.94 204.38
9 198.98 199.28 199.70 200.04
10 202.23 202.73 203.18 203.69

According to the LSM pricing rule [6], at the final exercise date, t4, the option should be exercised
if it is in-the-money. However, before the final exercise date, the optimal strategy is to compare the
immediate intrinsic value with the expected cash flow from the continuation value, and exercise the
option if the intrinsic value is larger.

The cashflow at time t4 is calculated as (K − S t4
i ), for i = 1, · · · , 10, and the relevant results are

presented in Table 5.

Table 5. Cashflow at t4.

Path

Cashflow Time
t1 t2 t3 t4

1 – – – 3.03
2 – – – 7.29
3 – – – 5.25
4 – – – 1.36
5 – – – 0.52
6 – – – 1.94
7 – – – 2.33
8 – – – 4.38
9 – – – 0.04
10 – – – 3.69
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The fitting data for computing intrinsic value and continuation value at time t3 are shown in Table 6,
where R j

i represents the discounted cashflow on the i-th sample path generated at time j, and the
multiplier e−rδt is used as the discount factor.

Table 6. Fitting data at t3.
Path Rt3

i S t3
i

1 3.03 × e−rδt 202.64
2 7.29 × e−rδt 206.80
3 5.25 × e−rδt 204.74
4 1.36 × e−rδt 201.02
5 0.52 × e−rδt 200.18
6 1.94 × e−rδt 201.60
7 2.33 × e−rδt 201.87
8 4.38 × e−rδt 203.94
9 – –
10 3.69 × e−rδt 203.18

The intrinsic value at time t3 is calculated as (K − S t3
i ). The continuation value for each sample

path at time t3 is computed using the least squares method with power polynomial basis functions,
based on S t3

i and the cashflow at t4. It is worth noting that Samanez et al. [34] demonstrated that power
polynomials provide better approximation performance than other types of basis functions in the LSM
method. Additionally, note that the 9-th path does not need to be considered, as it is out-of-the-money
(i.e., S t3

9 − K < 0). The calculated data for the continuation value and intrinsic value at t3 are shown in
Table 7, and the cashflow can be updated by comparing these two values, as shown in Table 8.

Table 7. Value comparison at t3.
Path Continuation Intrinsic
1 2.71 2.64
2 6.44 6.80
3 4.61 4.74
4 1.22 1.02
5 0.44 0.18
6 1.76 1.60
7 2.00 1.87
8 3.89 3.94
9 – –
10 3.20 3.18
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Table 8. Cashflow: t3 to t4.

Path

Cashflow Time
t1 t2 t3 t4

1 – – 0.00 3.03
2 – – 6.80 0.00
3 – – 4.74 0.00
4 – – 0.00 1.36
5 – – 0.00 0.52
6 – – 0.00 1.94
7 – – 0.00 2.33
8 – – 3.94 0.00
9 – – 0.00 0.04
10 – – 0.00 3.69

Repeating the backward process like t4 to t3 and comparing the continuation as well as intrinsic
values at time t2 and t1 (see Tables 9–13 for intermediate calculation results) allow obtaining the
cashflow matrix shown in Table 14 and the optimal stopping time on each sample path; see Table 15.
Now, the intrinsic value at time t0 is computed by

(y j=238 − K) = 1.56,

and the continuation value is calculated via Table 14, i.e., this continuation value is

1
10
(
e−4rδt × (3.03 + 1.36 + 0.52 + 1.94 + 2.33 + 0.04 + 3.69)

+ e−3rδt × 3.94 + e−2rδt × 4.23 + e−rδt × 5.73
)
= 1.8889.

Hence, the option valuation at time t0 is

max{1.56, 1.8889} = 1.8889.

Table 9. Fitting data at t2.
Path Rt2

i S t2
i

1 3.03 × e−2rδt 202.27
2 6.80 × e−rδt 206.27
3 4.74 × e−rδt 204.24
4 1.36 × e−2rδt 200.73
5 – –
6 1.94 × e−2rδt 201.25
7 2.33 × e−2rδt 201.35
8 3.94 × e−rδt 203.51
9 – –
10 3.69 × e−2rδt 202.73
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Table 10. Value comparison at t2.
Path Continuation Intrinsic
1 2.43 2.27
2 6.00 6.27
3 4.16 4.24
4 1.12 0.73
5 – –
6 1.56 1.25
7 1.65 1.35
8 3.52 3.51
9 – –
10 2.83 2.73

Table 11. Cashflow: t2 to t4.

Path

Cashflow Time
t1 t2 t3 t4

1 – 0.00 0.00 3.03
2 – 6.27 0.00 0.00
3 – 4.23 0.00 0.00
4 – 0.00 0.00 1.36
5 – 0.00 0.00 0.52
6 – 0.00 0.00 1.94
7 – 0.00 0.00 2.33
8 – 0.00 3.94 0.00
9 – 0.00 0.00 0.04
10 – 0.00 0.00 3.69

Table 12. Fitting data at t1.
Path Rt1

i S t1
i

1 3.03 × e−3rδt 201.88
2 6.27 × e−rδt 205.73
3 4.23 × e−rδt 203.71
4 1.36 × e−3rδt 200.48
5 – –
6 1.94 × e−3rδt 200.85
7 2.33 × e−3rδt 200.90
8 3.94 × e−2rδt 203.06
9 – –
10 3.69 × e−3rδt 202.23
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Table 13. Value comparison at t1.
Path Continuation Intrinsic
1 2.17 1.88
2 5.53 5.73
3 3.72 3.71
4 1.06 0.48
5 – –
6 1.35 0.85
7 1.39 0.90
8 3.15 3.06
9 – –
10 2.46 2.23

Table 14. Cashflow: t1 to t4.
Path t1 t2 t3 t4

1 0.00 0.00 0.00 3.03
2 5.73 0.00 0.00 0.00
3 0.00 4.23 0.00 0.00
4 0.00 0.00 0.00 1.36
5 0.00 0.00 0.00 0.52
6 0.00 0.00 0.00 1.94
7 0.00 0.00 0.00 2.33
8 0.00 0.00 3.94 0.00
9 0.00 0.00 0.00 0.04
10 0.00 0.00 0.00 3.69

Table 15. Stopping time.
Path t1 t2 t3 t4

1 0 0 0 !

2 ! 0 0 0
3 0 ! 0 0
4 0 0 0 !

5 0 0 0 !

6 0 0 0 !

7 0 0 0 !

8 0 0 ! 0
9 0 0 0 !

10 0 0 0 !

In the pricing process described above, we used the LSM pricing framework with extended
fNSDE-Net to price a vanilla Bermuda call option. Next, we conduct numerical experiments to
compare the reliability of the option price estimates obtained using the LSM with NSDE-GAN against
those obtained using our method under different sample sizes. Specifically, we compare the standard
deviations (SD) and the lengths of the confidence intervals (CI) for the option price estimates.

Table 16 presents the numerical comparison results, from which it is evident that, for a given sample
size, the standard deviation of the estimator calculated using LSM with extended fNSDE-Net (our
method) is smaller than that obtained using LSM with NSDE-GAN method. This indicates that our
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method is more stable. Furthermore, the length of the confidence interval of the option estimator
calculated by our method is shorter than that of the LSM with NSDE-GAN method, suggesting that
the estimator obtained by our method is more reliable.

Table 16. Comparison of methods with different sample sizes.

Sample numbers (M)
Our proposed method NSDE-GAN

Price SD CI length Price SD CI length

20 2.1928 1.8059 1.6904 15.3661 4.8111 4.5033
50 2.6658 1.9921 1.1323 14.1392 4.5948 2.6116
100 3.0678 2.0957 0.8317 14.6104 4.6390 1.8409
200 2.8267 1.9452 0.5425 15.2146 4.7021 1.3113
500 2.8022 1.8484 0.3248 15.1332 4.3830 0.7702
1000 2.7498 1.7992 0.2233 14.8670 4.5773 0.5681
2000 2.7427 1.8617 0.1633 15.1411 4.6163 0.4049
5000 2.7661 1.9128 0.1061 15.0703 4.5138 0.2503
10000 2.7640 1.8487 0.0725 14.9494 4.4896 0.1760

5. Conclusions

This paper proposes a new numerical method called extended fNSDE-Net, which is based on GANs
with self-attention modules and fNSDE to generate and predict CATL’s stock price. This new method
not only generates multiple sample paths for the initial input in the sense of probability but also retains
the long-term memory characteristics of the generated samples. Numerical experiments show the
effectiveness of this new method. Additionally, we calculated the price of Bermuda options derived
from stock price paths using the LSM method. The detailed pricing process is demonstrated, and
the effectiveness of our pricing method is validated through comparative experiments. Regarding the
limitations of this paper, we assume that the drift and diffusion terms of both the generator NSDE
and the discriminator NSDE are globally Lipschitz continuous. However, this assumption is made
primarily for the convenience of proving the well-posedness of the corresponding NSDE. If we replace
the global Lipschitz condition with a weaker, non-global Lipschitz condition, the corresponding NSDE
could potentially represent more complex dynamic models. However, this would also complicate the
theoretical analysis, which is a topic for our future research.
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