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Abstract: This work incorporates a hyperchaotic system with fractional order Caputo-Fabrizio
derivative. A comprehensive proof of the existence followed by the uniqueness is detailed and the
simulations are performed at distinct fractional orders. Our results are strengthened by bridging a
gap between the theoretical problems and real-world applications. For this, we have implemented
a 4D fractional order Caputo-Fabrizio hyperchaotic system to circuit equations. The chaotic behaviors
obtained through circuit realization are compared with the phase portrait diagrams obtained by
simulating the fractional order Caputo-Fabrizio hyperchaotic system. In this work, we establish a
foundation for future advancements in circuit integration and the development of complex control
systems. Subsequently, we can enhance our comprehension of fractional order hyperchaotic systems
by incorporating with practical experiments.
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1. Introduction

In recent years, fractional derivatives [1] have emerged as a valuable tool in the modeling
and analysis of complex systems in various scientific and technical disciplines. Unlike traditional
integer-order derivatives, fractional derivatives provide a more flexible and accurate framework for
representing the memory and hereditary characteristics of diverse processes. The study of fractional
derivatives encompasses various definitions tailored to specific contexts and applications. These
definitions incorporate noninteger orders, introducing nuanced interpretations crucial for modeling
complex phenomena with memory and hereditary properties. From the Riemann-Liouville [1]
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definitions to Caputo [1], Caputo-Fabrizio [2], and Atangana-Baleanu [3] definitions, each offers
distinct advantages in mathematical rigor, computational feasibility, and compatibility with diverse
physical systems. An understanding of these definitions is quite essential for effectively applying
fractional calculus across disciplines such as physics [4–6], engineering [7–9], biology [10–12], etc.,
where they are crucial in enhancing analytical precision and improving modeling efficacy. The theory
of fractional derivatives can also be applied to fractals. Fractals [13] are often characterized by
self-similarity where parts of a fractal resemble the whole structure at different scales. A fractal
derivative [14] generalizes the concept of a derivative to the irregular, non-smooth structures that
are common in fractals. In classical calculus, derivative measures the rate of change of a function.
However, in fractals, due to irregularities and infinite details, traditional differentiation methods are
not directly applicable. A two-scale fractal derivative [15] refers to the generalization of a classical
derivative, particularly in the context of fractal geometry, where the concept of smoothness and
differentiability becomes more nuanced due to self-similarity and irregularity of fractals. A two-scale
fractional derivative analyzes the rate of change over two distinct fractional orders providing insight
into the multi-scale nature of the fractal. Applications of two-scale fractal derivatives can be seen
in [16, 17].

The Caputo-Fabrizio derivative is a notable extension of the Caputo derivative, enabling a more
precise depiction of physical systems that exhibit the memory effect. This derivative has a non-
singular kernel, making it ideal for modeling real-world problems that exhibit an exponential
decay behavior. Additionally, the Caputo-Fabrizio derivative provides precise solutions to nonlinear
differential equations in a shorter amount of time. Its versatility and theoretical robustness continue to
contribute significantly to advance our understanding and application [18–20] of fractional calculus in
practical settings.

Hyperchaotic systems have undergone significant advancements since its first introduction by
Rossler [21]. These include the development of distinct systems such as one proposed by Erkan et
al. [22] in two dimensions for image encryption. A hyperchaotic system in 2D was constructed by Zhu
et al. [23] which has applications in color image encryption and pseudo-random number generation.
Tang et al. [24] gave a 2D chaotic system for secure communications. Further advancements
include 3D hyperchaotic systems studied by Li et al. [25] for a secure transmission. In this progression,
a system was developed by Zhi et al. [26] through the extension of a 3D autonomous chaotic
framework. Sahasrabuddhe and Laiphrakpam [27] studied an application of a 3D hyperchaotic
system in multiple-image encryption. Wang et al. [28] coined a dynamics in a 4D hyperchaotic
system. Nestor et al. [29] introduced a 4D hyperchaotic system encompassing dynamic analysis,
synchronization, and its application. The complex behavior of hyperchaotic systems has been widely
used in fields like information processing, electronics, neuroscience, communications, and beyond.
These applications include image encryption [30, 31], random number generation [32, 33], secure
communication [24, 34, 35], audio encryption [36], and video encryption [37].

Fractional derivatives [1] also unfold a vast array of applications within hyperchaotic systems,
offering a dynamic toolkit to explore and harness their intricate dynamics. By incorporating derivatives
of fractional order, hyperchaotic systems can model complex behaviors that integer-order models might
not capture completely. This incorporation adds further complexity to the dynamics of hyperchaotic
systems encompassing, anomalous diffusion, nonlocal interactions, and long-range memory effects.

Yousefpour et al. [38] presented a fractional-order hyperchaotic economic system. Pan et al. [39]
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studied the chaos synchronization with two different fractional orders. Shi et al. [40] investigated
the dynamics of a fractional-order hyperchaotic system and identified its potential for use in image
encryption. The aforementioned systems facilitate the development of advanced control techniques,
synchronization strategies [41, 42], and encryption techniques for a broad spectrum of real-world
applications including confidential communications [43, 44] and image encoding [45, 46], among
others.

The following hyperchaotic system was proposed by Fu et al. [47] in 4D

d x
d t

= a (y − x) + u, x(0) = x0,

d y
d t

= c y − 10 x z, y(0) = y0,

d z
d t

= −b z + 10 x y, z(0) = z0,

d u
d t

= d y + x2, u(0) = u0, (1.1)

where a, b, c are constants, d > 0 is a variable parameter and x, y, z, u are driving variables. This
hyperchaotic system posseses stability, chaotic behavior, and many more physical properties. In their
work, experimental validation was performed using Matlab, Multisim, and STM32. The outcomes of
their experiments consistently corroborate the theoretical basis for employing this hyperchaotic system
in hands-on applications. Subsequently, utilizing the keys derived from this system’s hyperchaotic
generator, audio encoding is implemented on the STM32 integrated hardware system using a cross-
XOR mechanism. Their findings demonstrate the feasibility of the audio encoding technique utilizing
this hyperchaotic system highlighting its simplicity of implementation, nonlinear properties, and
algorithmic complexity. These attributes render it applicable not only to audio encryption but also
to image encryption, video encryption, and other related domains.

As the fractional derivatives enhance complexity in the chaotic behavior of a system, in this work,
we extend the hyperchaotic system proposed by Fu et al. [47] to a hyperchaotic system of fractional
order using the Caputo-Fabrizio derivative. The existence and uniqueness of the solution of this
fractional order hyperchaotic system are detailed and simulations are performed for different fractional
orders. This study extends beyond theoretical exploration and aims for real-world applications.
For this, we have implemented this 4D fractional order Caputo-Fabrizio hyperchaotic system into
circuit equations. We use a digital oscilloscope in Mutisim to realize the circuit and Matlab to
perform the simulations for the fractional order Caputo-Fabrizio hyperchaotic system. The chaotic
behaviors obtained through circuit realization are compared with the phase portrait diagrams obtained
by simulating the fractional order hyperchaotic system.

2. Preliminaries

Definition 1. [2] For an integrable function g on R, the Caputo-Fabrizio derivative of order ε is
given as

CFDεt (g(t)) =
Q(ε)
1 − ε

∫ t

0
exp

(
−ε(t − s)

1 − ε

)
g′(s)ds, 0 < ε < 1, (2.1)

where Q(ε) is a normalizing function such that Q(0) = 1 = Q(1).
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Definition 2. [2] Let g be a function which is integrable on R, with t > 0, 0 < ε < 1, and the
Caputo-Fabrizio fractional integral of order ε is:

ICF
ε

t {g(t)} = Ψ g(t) + ϑ

∫ t

0
g(s)ds, t > 0, (2.2)

where Ψ =
2 (1−ε)

(2−ε) Q(ε) , ϑ = 2 ε
(2−ε) Q(ε) , and Q(0) = Q(1) = 1.

3. Fractional order hyperchaotic system with Caputo-Fabrizio derivative

In this part, we extend the 4D hyperchaotic system to the fractional order hyperchaotic system
by using the Caputo-Fabrizio derivative. The fractional order hyperchaotic system with the Caputo-
Fabrizio derivative is as follows:

CF
0 D

ε(t)
0 {x(t)} = a (y − x) + u, x(0) = x0,

CF
0 D

ε(t)
0 {y(t)} = c y − 10 x z, y(0) = y0,

CF
0 D

ε(t)
0 {z(t)} = −b z + 10 x y, z(0) = z0,

CF
0 D

ε(t)
0 {u(t)} = d y + x2, u(0) = u0, (3.1)

where a, b, c are constants, d > 0 is a variable parameter, and x, y, z, and u are driving variables.

3.1. Existence & uniqueness

We present a thorough proof establishing the existence of a unique solution for the 4D fractional
order Caputo-Fabrizio hyperchaotic system.

Theorem 1. If for some constans k1, k2, k3, k4, the functions V1(t, x), V2(t, y), V3(t, z), V4(t, u) satisfy the
condition given below:

‖V1(t, x1) − V1(t, x2)‖ ≤ k1‖x1(t) − x2(t)‖,
‖V2(t, y1) − V2(t, y2)‖ ≤ k2‖y1(t) − y2(t)‖,
‖V3(t, z1) − V3(t, z2)‖ ≤ k3‖z1(t) − z2(t)‖,
‖V4(t, u1) − V4(t, u2)‖ ≤ k4‖u1(t) − u2(t)‖, (3.2)

where

V1(t, x) = a (y − x) + u,

V2(t, y) = c y − 10 x z,

V3(t, z) = −b z + 10 x y,

V4(t, u) = d y + x2. (3.3)

The conditions given by Eq (3.2) are Lipschitz conditions. The above conditions are contractions if
ki < 1, i = 1, 2, 3, 4.
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Proof. To begin, we start with V1. Let x1, x2 be two distinct functions.

‖V1(t, x1) − V1(t, x2)‖ = ‖(a y − a x1 + w) − (a y − a x2 + w)‖
= ‖a(x1 − x2)‖
≤ a ‖x1 − x2‖. (3.4)

Let a = k1, and we have ‖V1(t, x1) − V1(t, x2)‖ ≤ k1 ‖x1 − x2‖. This shows the Lipschitz condition
holds for V1(t, x). In addition, if k1 < 1, then it is a contraction.

Next, consider

‖V2(t, y1) − V2(t, y2)‖ = ‖(c y1 − 10 x z) − (c y2 − 10 x z)‖
= ‖c y1 − 10 x z − c y2 + 10 x z‖

≤ c ‖y1 − y2‖. (3.5)

Taking c = k2, we have ‖V2(t, y1) − V2(t, y2)‖ ≤ k2 ‖y1 − y2‖. This proves the Lipschitz condition for
V2(t, y). Also, if k2 < 1, then it is a contraction.

Now, consider

‖V3(t, z1) − V3(t, z2)‖ = ‖(−b z1 + 10 x y) − (−b z2 + 10 x y)‖
‖ − b z1 + 10 x y + b z2 − 10 x y‖

‖ − b(z1 − z2)‖
≤ b‖z1 − z2‖. (3.6)

Taking b = k3, we have ‖V3(t, z1) − V3(t, z2)‖ ≤ k3 ‖z1 − z2‖. This proves the Lipschitz condition for
V3(t, z). Further, if k3 < 1, then it is a contraction.

Also,
‖V4(t, u1) − V4(t, u2)‖ ≤ k4‖u1 − u2‖. (3.7)

This shows that the functions V1, V2, V3, and V4 satisfy the Lipschitz condition. �

We now demonstrate the existence of the model configurations by applying a fixed-point hypothesis.
To achieve this, we employ the method outlined in [48]. Consider the system given by Eq (3.1)

x(t) − x(0) = CF
0 Iαt V1(t, x),

y(t) − y(0) = CF
0 Iαt V2(t, y),

z(t) − z(0) = CF
0 Iαt V3(t, z),

u(t) − u(0) = CF
0 Iαt V4(t, u). (3.8)

Employing (2.2), the equations given by (3.8) evolve as:

x(t) = x(0) + ΨV1(t, x) + ϑ

∫ t

0
V1(s, x)ds,

y(t) = y(0) + ΨV2(t, y) + ϑ

∫ t

0
V2(s, y)ds,
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z(t) = z(0) + ΨV3(t, z) + ϑ

∫ t

0
V3(s, z)ds,

u(t) = u(0) + ΨV4(t, u) + ϑ

∫ t

0
V4(s, u)ds. (3.9)

This is then followed by the presentation of the recursive method:

xn(t) = ΨV1(t, xn−1) + ϑ

∫ t

0
V1(s, xn−1)ds,

yn(t) = ΨV2(t, yn−1) + ϑ

∫ t

0
V2(s, yn−1)ds,

zn(t) = ΨV3(t, zn−1) + ϑ

∫ t

0
V3(s, zn−1)ds,

un(t) = ΨV4(t, un−1) + ϑ

∫ t

0
V4(s, un−1)ds, (3.10)

with x(0) = x0, y(0) = y0, z(0) = z0, and u(0) = u0.
The difference between the successive terms is given as:

τ1n = xn(t) − xn−1(t) = Ψ[V1(t, xn−1) − V1(t, xn−2)] + ϑ

∫ t

0
[V1(s, xn−1) − V1(s, xn−2)]ds,

τ2n = yn(t) − yn−1(t) = Ψ[V2(t, yn−1) − V2(t, yn−2)] + ϑ

∫ t

0
[V2(s, yn−1) − V2(s, yn−2)]ds,

τ3n = zn(t) − zn−1(t) = Ψ[V3(t, zn−1) − V3(t, zn−2)] + ϑ

∫ t

0
[V3(s, zn−1) − V3(s, zn−2)]ds,

τ4n = un(t) − un−1(t) = Ψ[V4(t, un−1) − V4(t, un−2)] + ϑ

∫ t

0
[V4(s, un−1) − V4(s, un−2)]ds.

(3.11)

Note that

xn(t) =

n∑
i=1

τ1i(t), yn(t) =

n∑
i=1

τ2i(t), zn(t) =

n∑
i=1

τ3i(t), un(t) =

n∑
i=1

τ4i(t). (3.12)

Proceeding in a similar manner, we will evaluate

‖τ1n(t)‖ = ‖xn(t) − xn−1(t)‖

=

∥∥∥∥∥∥Ψ[V1(t, xn−1) − V1(t, xn−2)] + ϑ

∫ t

0
[V1(s, xn−1) − V1(s, xn−2)]ds

∥∥∥∥∥∥ . (3.13)

Applying the triangular inequality on Eq (3.13) gives:

‖xn(t) − xn−1(t)‖ ≤ Ψ ‖[V1(t, xn−1) − V1(t, xn−2)]‖ + ϑ

∫ t

0
‖[V1(s, xn−1) − V1(s, xn−2)]ds‖ . (3.14)
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Since the function V1(x, t) satisfies the Lipschtiz condition, we have:

‖xn(t) − xn−1(t)‖ ≤ Ψk1 ‖xn−1) − xn−2]‖ + ϑk1

∥∥∥∥∥∥
∫ t

0
[V1(s, xn−1) − V1(s, xn−2)]ds

∥∥∥∥∥∥ . (3.15)

This gives

‖τ1n(t)‖ ≤ Ψk1

∥∥∥τ1(n−1)(t)
∥∥∥ + ϑk1

∫ t

0

∥∥∥τ1(n−1)(s)
∥∥∥ ds. (3.16)

The following results can be obtained by proceeding the same approach

‖τ2n(t)‖ ≤ Ψk2

∥∥∥τ2(n−1)(t)
∥∥∥ + ϑk2

∫ t

0

∥∥∥τ2(n−1)(s)
∥∥∥ ds,

‖τ3n(t)‖ ≤ Ψk3

∥∥∥τ3(n−1)(t)
∥∥∥ + ϑk3

∫ t

0

∥∥∥τ3(n−1)(s)
∥∥∥ ds,

‖τ4n(t)‖ ≤ Ψk4

∥∥∥τ4(n−1)(t)
∥∥∥ + ϑk4

∫ t

0

∥∥∥τ4(n−1)(s)
∥∥∥ ds. (3.17)

Theorem 2. The fractional order hyperchaotic sysyem (3.1) has a solution, if we are able to find t0

with the following constraint:
Ψki + ϑki t0 < 1, i = 1, 2, 3, 4.

Proof. As proved that the Lipschtiz condition holds for V1(t, x), V2(t, y), V3(t, z), V4(t, u). Therefore,
from Eqs (3.16) and (3.17), using the recursive method, we have:

‖τ1n(t)‖ ≤ ‖xn(0)‖ [Ψ k1 + ϑ k1 t]n ,

‖τ2n(t)‖ ≤ ‖yn(0)‖ [Ψ k2 + ϑ k2 t]n ,

‖τ3n(t)‖ ≤ ‖zn(0)‖ [Ψ k3 + ϑ k3 t]n ,

‖τ4n(t)‖ ≤ ‖un(0)‖ [Ψ k4 + ϑ k4 t]n . (3.18)

This confirms that the previously mentioned solutions do indeed exist. Furthermore, to validate
that the specified functions are solutions of the fractional order hyperchaotic system with the Caputo-
Fabrizio derivative, let us assume

Wn = xn(t) − (x(t) − x(0)),
Gn = yn(t) − (y(t) − y(0)),
Hn = zn(t) − (z(t) − z(0)),
En = un(t) − (u(t) − u(0)).

(3.19)

So then,

x(t) − x(0) = xn(t) −Wn(t),
y(t) − y(0) = yn(t) −Gn(t),
z(t) − z(0) = zn(t) − Hn(t),

AIMS Mathematics Volume 10, Issue 2, 2415–2443.



2422

u(t) − u(0) = un(t) − En(t).
(3.20)

Therefore,

‖Wn(t)‖ =

∥∥∥∥∥∥Ψ[V1(t, xn) − V1(t, xn−1)] + ϑ

∫ t

0
[V1(s, xn) − V1(s, xn−1)]ds

∥∥∥∥∥∥
≤ Ψ ‖V1(t, xn) − V1(t, xn−1)‖ + ϑ

∫ t

0
‖V1(s, xn) − V1(s, xn−1)‖ ds

≤ Ψ k1 ‖xn − xn−1‖ + ϑk1 ‖xn − xn−1‖ t. (3.21)

Applying the results in a recursive manner gives

‖Wn(t)‖ ≤ (Ψ + ϑ t)n+1 kn+1
1 . (3.22)

Then, at t0 we have:
‖Wn‖t=t0 ≤ (Ψ + ϑ t0)n+1 kn+1

1 . (3.23)

At n→ ∞ in Eq (3.23),
‖Wn(t)‖ → 0.

In the similar manner,
‖Gn(t)‖ → 0, ‖Hn(t)‖ → 0, ‖En(t)‖ → 0.

Further, to establish the uniqueness of the solution for the system (3.1), we assume that there exists
another solution to this system, given by x1, y1, z1, u1. Then,

x(t) − x1(t) = Ψ[V1(t, x) − V1(t, x1)] + ϑ

∫ t

0
[V1(s, x) − V1(s, x1)]ds. (3.24)

Taking norm on Eq (3.24) gives:

‖x(t) − x1(t)‖ ≤ Ψ ‖[V1(t, x) − V1(t, x1)]‖ + ϑ

∫ t

0
‖[V1(s, x) − V1(s, x1)]‖ ds. (3.25)

As V1(t, x) satisfies the Lipschtiz condition, we have

‖x(t) − x1(t)‖ ≤ Ψk1 ‖[x(t) − x1(t)]‖ + ϑ

∫ t

0
k1 ‖x(t) − x1(t)]‖ ds, (3.26)

which gives
‖x(t) − x1(t)‖ (1 − Ψ k1 − ϑ k1 t) ≤ 0. (3.27)

�

Theorem 3. If the condition given below holds, then the hyperchaotic system has a unique solution

(1 − Ψ k1 − ϑ k1 t) > 0. (3.28)
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Proof. From Eq (3.27), we have

‖x(t) − x1(t)‖ (1 − Ψ k1 − ϑ k1 t) ≤ 0,

and if the following also holds:
(1 − Ψ k1 − ϑ k1 t) > 0,

then this is possible only if
‖x(t) − x1(t)‖ = 0.

Hence, x(t) = x1(t). Similarly, y(t) = y1(t), z(t) = z1(t), and u(t) = u1(t). �

3.2. Numerical solutions for defined model

To solve the fractional order 4D hyperchaotic system with the Caputo-Fabrizio derivative
numerically, we follow the method as briefed in [49].

Consider the 4D hyperchaotic system with the Caputo-Fabrizio derivative of fractional order ε, 0 <
ε < 1,

CF
0 D

ε(t)
0 {x(t)} = a (y − x) + u, x(0) = x0,

CF
0 D

ε(t)
0 {y(t)} = c y − 10 x z, y(0) = y0,

CF
0 D

ε(t)
0 {z(t)} = −b z + 10 x y, z(0) = z0,

CF
0 D

ε(t)
0 {u(t)} = d y + x2, u(0) = u0. (3.29)

We take into account the following general equation:

CFDεt P(t) = ω(t, P(t)), t ≥ 0, P(0) = P0, (3.30)

where P(t) = {x(t), y(t), z(t), u(t)}, and P(0) = {x(0), y(0), z(0), u(0)}.
Proceeding as referred in [50], we rewrite Eq (3.30) as

P(t) − P(0) =
1 − ε
M(ε)

ω(t, P(t)) +
ε

Q(ε)

∫ t

0
ω (s, P(s))ds. (3.31)

At t = tn+1, Eq (3.31) is written as

P(tn+1) − P(0) =
1 − ε
Q(ε)

ω(tn, P(tn)) +
ε

Q(ε)

∫ tn+1

0
ω(s, P(s))ds. (3.32)

Also at t = tn, Eq (3.31) gives

P(tn) − P(0) =
1 − ε
Q(ε)

ω (tn−1, P(tn−1)) +
ε

Q(ε)

∫ tn

0
ω (s, P(s))ds. (3.33)

From Eqs (3.32) and (3.33), we get

P(tn+1) − P(tn) =
1 − ε
Q(ε)

[ω (tn, P(tn)) − ω (tn−1, P(tn−1))] +
ε

Q(ε)

∫ tn+1

tn
ω(s, P(s))ds. (3.34)
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Lagrange polynomial interpolation on ω(s, P(s)) gives

ω (s, P(s)) =
s − tm−1

tm − tm−1
ω (tm, Ptm) +

s − tm

tm−1 − tm
ω (tm−1, Ptm−1). (3.35)

Substituting ω (s, P(s)) in Eq (3.34) gives

Pn+1 − Pn =
1 − ε
Q(ε)

[ω (tn, P(tn)) − ω (tn−1, P(tn−1))] +
ε

Q(ε)∫ tn+1

tn

(
ω (tn, Pn)

h
(s − tn−1) −

ω (tn−1, Pn−1)
h

(s − tn)
)

ds. (3.36)

On taking h = tn − tn−1 and solving, we get

Pn+1 = P0 +

(
1 − ε
Q(ε)

+
3h

2 Q(ε)

)
ω (tn, P(tn)) −

(
1 − ε
Q(ε)

+
ε h

2 Q(ε)

)
ω(tn−1, P(tn−1)). (3.37)

In a similar way, we have

xn+1 = x0 +

(
1 − ε
Q(ε)

+
3h

2 Q(ε)

)
V1(tn, x(tn)) −

(
1 − ε
Q(ε)

+
ε h

2 Q(ε)

)
V1(tn−1, x(tn−1)), (3.38)

where V1(t, x) = a (y − x) + u.

yn+1 = y0 +

(
1 − ε
Q(ε)

+
3h

2 Q(ε)

)
V2(tn, y(tn)) −

(
1 − ε
Q(ε)

+
ε h

2 Q(ε)

)
V2(tn−1, y(tn−1)), (3.39)

where V2(t, y) = c y − 10 x z.

zn+1 = z0 +

(
1 − ε
Q(ε)

+
3h

2 Q(ε)

)
V3(tn, z(tn)) −

(
1 − ε
Q(ε)

+
ε h

2 Q(ε)

)
V3(tn−1, z(tn−1)), (3.40)

where V3(t, z) = −b z + 10 x y.

un+1 = u0 +

(
1 − ε
Q(ε)

+
3h

2 Q(ε)

)
V4(tn, u(tn)) −

(
1 − ε
Q(ε)

+
ε h

2 Q(ε)

)
V4(tn−1, u(tn−1)), (3.41)

where, V4(t, u) = d y + x2.
The numerical solutions of the fractional order 4D hyperchaotic system with the Caputo-Fabrizio

derivative defined by Eq (3.1) are obtained from Eqs (3.38)–(3.41).

3.3. Simulations

The simulations are performed for different fractional orders. The parameter values [47] are taken
as a = 35, b = 3, c = 12. The initial conditions are taken as x(0) = y(0) = z(0) = u(0) = 1. Further, we
consider three different values for the variable parameter d (10, 17, and 22).

• In Figures 1–3, the numerical simulations are performed for the fractional order ε = 0.95, 0.97,
and 0.99, respectively, with d = 10.
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• In Figures 4–6, the numerical simulations are performed for the fractional order ε = 0.95, 0.97,
and 0.99, respectively, with d = 17.
• In Figures 7–9, the numerical simulations are performed for the fractional order ε = 0.95, 0.97,

and 0.99, respectively, with d = 22.

(a) (b)

(c)

(d) (e)

Figure 1. Phase portrait of the 4D fractional order Caputo-Fabrizio hyperchaotic system
defined by Eq (3.1) simulated at ε = 0.95 with a = 35, b = 3, c = 12, d = 10.
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(a) (b)

(c)

(d) (e)

Figure 2. Phase portrait of the 4D fractional order Caputo-Fabrizio hyperchaotic system
defined by Eq (3.1) simulated at ε = 0.97 with a = 35, b = 3, c = 12, d = 10.
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(a) (b)

(c)

(d) (e)

Figure 3. Phase portrait of the 4D fractional order Caputo-Fabrizio hyperchaotic system
defined by Eq (3.1) simulated at ε = 0.99 with a = 35, b = 3, c = 12, d = 10.
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(a) (b)

(c)

(d) (e)

Figure 4. Phase portrait of the 4D fractional order Caputo-Fabrizio hyperchaotic system
defined by Eq (3.1) simulated at ε = 0.95 with a = 35, b = 3, c = 12, d = 17.
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(a) (b)

(c)

(d) (e)

Figure 5. Phase portrait of the 4D fractional order Caputo-Fabrizio hyperchaotic system
defined by Eq (3.1) simulated at ε = 0.97 with a = 35, b = 3, c = 12, d = 17.
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(a) (b)

(c)

(d) (e)

Figure 6. Phase portrait of the 4D fractional order Caputo-Fabrizio hyperchaotic system
defined by Eq (3.1) simulated at ε = 0.99 with a = 35, b = 3, c = 12, d = 17.
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(a) (b)

(c)

(d) (e)

Figure 7. Phase portrait of the 4D fractional order Caputo-Fabrizio hyperchaotic system
defined by Eq (3.1) simulated at ε = 0.95 with a = 35, b = 3, c = 12, d = 22.
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(a) (b)

(c)

(d) (e)

Figure 8. Phase portrait of the 4D fractional order Caputo-Fabrizio hyperchaotic system
defined by Eq (3.1) simulated at ε = 0.97 with a = 35, b = 3, c = 12, d = 22.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Phase portrait of the 4D fractional order Caputo-Fabrizio hyperchaotic system
defined by Eq (3.1) simulated at ε = 0.99 with a = 35, b = 3, c = 12, d = 22.

4. Circuit implementation of the hyperchaotic system

This part of our research delves into the practical realm by constructing analog circuits that
implement our hyperchaotic system enabling experimental validation. Starting with the theoretical
basis established by the system (3.1), we methodically transform these theoretical equations
into practical circuit implementations. Translating the hyperchaotic system into physical circuits
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necessitates meticulous attention to the behavioral dynamics of the system, verifying the results
accurately. This reflects the fundamentals of the theoretical system truthfully, replicating its chaotic
behavior. Our goal is to close the gap between theory and practical implementation, therefore, offering
a strong interface for observation and investigation.

In this research, the circuit is designed using operational amplifiers (LF353N), resistors,
multipliers (AD633), and capacitors all powered by a ±15 V supply. The circuit analysis equations,
derived from the hyperchaotic system, are detailed in [47]. The circuit diagrams representing the
hyperchaotic system are as follows in Figures 10–14:

Figure 10. Representation of the variable x through circuit diagram.

Figure 11. Representation of the variable y through circuit diagram.

Figure 12. Representation of the variable z through circuit diagram.
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Figure 13. Representation of the variable u through circuit diagram.

Figure 14. Feedback circuit representing the hyperchaotic system.

Figure 15 show the chaotic behavior of the hyperchaotic system obtained through circuit implemetation
using Multisim. Further, figures 16-19 show the comparison between the phase portrait behavior of the
hyperchaotic system at fractional order ε = 0.99 and the chaotic behavior of the hyperchaotic system
through circuit realization simulated by Multisim.
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(a) Chaotic behavior at d = 10 (b) Chaotic behavior at d = 10

(c) Chaotic behavior at d = 17 (d) Chaotic behavior at d = 17

(e) Chaotic behavior at d = 22 (f) Chaotic behavior at d = 22

Figure 15. Chaotic behavior of circuit implementation of hyperchaotic system simulated by
Multisim at distinct values of the variable parameter d.
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(a) Chaotic behavior through circuit realization
simulated by Multisim

(b) Phase portrait behavior of fractional
Caputo-Fabrizio hyperchaotic system

Figure 16. Phase portrait behavior of the defined model at ε = 0.99 and the chaotic behavior
of the hyperchaotic system through circuit realization simulated by Multisim.

(a) Chaotic behavior through circuit realization
simulated by Multisim

(b) Phase portrait behavior of fractional Caputo-Fabrizio
hyperchaotic system

Figure 17. Phase portrait behavior of the model for fractional order ε = 0.99 and the chaotic
behavior of the hyperchaotic system through circuit realization simulated by Multisim.
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(a) Chaotic behavior through circuit realization
simulated by Multisim

(b) Phase portrait behavior of fractional Caputo-Fabrizio
hyperchaotic system

Figure 18. Phase portrait behavior of the model for fractional order ε = 0.99 and the chaotic
behavior of the hyperchaotic system through circuit realization simulated by Multisim.

(a) Chaotic behavior through circuit realization
simulated by Multisim

(b) Phase portrait behavior of fractional Caputo-Fabrizio
hyperchaotic system

Figure 19. Phase portrait behavior of the model for fractional order ε = 0.99 and the chaotic
behavior of the hyperchaotic system through circuit realization simulated by Multisim.

5. Discussion on the results

As the parameter d in the hyperchaotic system defined by Eq (3.1) is chosen to be variable, so we
consider three different values for d, i.e., d = 10, 17, and 22.

• Figures 1–9 show the simulations for the 4D fractional order Caputo-Fabrizio hyperchaotic
system for d = 10, 17, 22 for different fractional orders ε = 0.95, 0.97, and 0.99.
• Figures 10–13 depict the circuit diagrams to represent the driving variables.
• Figure 14 depicts the feedback circuit to represent the hyperchaotic system.
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• Figure 15 shows the chaotic behavior of circuit implementation of the hyperchaotic system
simulated by Multisim for distinct values of d.
• Figures 16–19 show a comparison between the phase portrait behavior of the hyperchaotic system

at fractional order ε = 0.99 and the chaotic behavior obtained as a result of circuit realization.
• The comparison observed from the Figures 16–19 show the compatibility of the fractional order

Caputo-Fabrizio hyperchaotic system with the circuit realization for fractional order ε = 0.99.

6. Conclusions

This research extends a hyperchaotic system given by Eq (1.1) to fractional order using the
Caputo-Fabrizio derivative. The existence of a unique solution for the 4D fractional order Caputo-
Fabrizio hyperchaotic system given by Eq (3.1) is proved and this system is solved numerically.
Figures 1–9 show the simulations that are performed for different fractional orders, i.e., ε = 0.95, 0.97,
and 0.99. We have also designed analog circuits that implement our chaotic system, enabling
experimental validation. Figures 10–13 depict the circuit diagrams to represent the driving variables,
and Figure 14 depicts the feedback circuit to represent the hyperchaotic system. Figure 15 shows
the chaotic behavior of circuit implementation of the hyperchaotic system simulated by Multisim
for distinct values of d. From Figures 16–19, we observe the comparison between the phase
portrait behavior of the hyperchaotic system for fractional order ε = 0.99 and the chaotic behavior
obtained as a result of circuit realization. These figures show the compatibility of the fractional order
Caputo-Fabrizio hyperchaotic system with the chaotic behavior obtained through circuit realization
for fractional order ε = 0.99, hence, bridging a gap between simulation and real-world application.
This subsequent circuit implementation revealed that the theoretical predictions closely match the
experimental findings when ε = 0.99. The figures demonstrate the alignment between the theoretical
and experimental outcomes. Fu et al. [47] demonstrated that the audio encryption method based on the
hyperchaotic system (1.1) is viable and this approach can be applied to the encryption of audio, images,
videos, and other data types. As fractional derivatives introduce increased complexity, this work
demonstrates that fractional order hyperchaotic system (3.1) can offer stronger security. By showcasing
the chaotic dynamics, we establish a foundation for future advancements in circuit integration and the
development of complex control systems. Consequently, the findings of this research are expected to
drive advancement in concepts and implementation across various scientific domains.
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