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Abstract: The problem of solving the ordered one-way analysis of variance (ANOVA) (which 

consists of comparing a set of normal means) with restricted Type I and Type II error rates is 

considered in this paper. This case is more complicated than unordered one-way ANOVA because 

the detection of the monotonicity of means restrictions is necessary. To solve this issue, one of the 

possible formulations of the constrained Bayesian method (CBM) is applied here using the concept 

of directional hypotheses. The cases of known and unknown variances are examined. For unknown 

variances, the maximum likelihood ratio and Stein’s Methods were used to overcome the problem 

connected with the complexity of hypotheses. The correctness of the developed methods and high 

quality (in comparison with existing methods) of obtained results were demonstrated by computing 

results of the simulated concrete scenarios. Moreover, the offered method controlled not only one 

Type of error, as methods do, but both Type I and Type II methods. 
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1. Introduction 

The problem of comparing the means of several normally distributed random variables has 

attracted researches’ attention from the middle of the last century. Such problems arise in many 

practical applications such as when comparing treatment effects in clinical trials, or experimental 

studies to compare the effects of different experiments, or when comparing the failure rate of a machine 

with its age. In the framework of ANOVA, the problem can be formulated as follows [1]. Let us 

consider k   normal populations 
2( , )i iN    , ki ,...,1=  . Let 1,..., ii inX X   be a random sample from 

),( 2

iiN  , independent from each other. The problem is to test hypotheses 

kH  == ...: 10  vs. jiaH  :  for some ji  .                (1) 

In some studies, researchers may believe that the true means are simply ordered ( k  ...1 ) before 

observing the data. For example, the treatment means may be a sequence of increasing dose levels of 

a drug. In this case, ANOVA takes the form 

kH  == ...: 10  vs. kaH   ...: 1 ,                         (2) 

with at least one strict inequality. This statement has received considerable attention in the statistical 

literature (see, for example, [1–5]). 

The simplest case 2=k , i.e., the case with only two normal populations, called the Behrens–

Fisher problem, is well studied. For its solution, at statement (1), a simple and accurate method is 

introduced in [6,7], which gives good results in both cases whether variances are equal or not. For the 

arbitrary case; moreover, when 2k , a compact but quite good review of the methods used to solve 

problem (1) is given in [8], on the basis that there is a procedure that gives satisfactory results by the 

Type I error rate for all sample sizes, where k  and parameter configurations do not exist [8,9]. To 

improve the situation, a parametric bootstrap (PB) approach is offered in [8,9] and it is compared with 

the most promoted tests: The Welch test, the James ([10]) second-order test, and the generalized F (GF) 

test [11,12]. The comparison was realized by Type I error rate and powers using Monte Carlo 

simulation, showing that the best, based on the sample sizes, values of the error variances, and the 

number of means being compared is a PB test. A little worse is the James second-order test. The Welch 

test and the GF test have fairly poor Type I errors when the value of k  is medium or large and/or the 

sample sizes are small. In computed examples of [8], the minimum value of Monte Carlo estimates of 

Type I error rates is equal to 0.04 even when 2=k , meaning it is quite high. For other k , as a rule, it 

is greater. 

For statement (2), a one-sided studentized range test is offered in Hayter [3]. It provides 

simultaneous one-sided lower confidence bounds for the ordered pairwise comparisons ji  −  ,

kij 1  . Similar inference procedures are discussed in [13–17]. In some, the strong order of 

arranging the mathematical expectations is considered, and in others, the assumption that i ’s follow 

a simple ordering is not made. The familywise error rate (FWER) is used as an optimality criterion in 

these cases, the computation of which is complicated for large k  . To overcome this problem, the 

empirical Bayesian approach of multiple testing is offered in [1]. Its essence consists of the 

consideration of the families of hypotheses 
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0: 10 =−+ iiiH   vs. 0: 1 −+ iiiaH  , 1,...,1 −= ki ,           (3) 

from a Bayesian view point. To test (3), there is a new step-down multiple testing procedure, which is 

a step-down version of the single-step procedure [18]. It controls the familywise error rate better than 

a single-step procedure, which provides a simple comparison of each p -value with a single critical 

value. For this reason, the step-down version is more powerful than the single-step procedure. 

The heart of the single-step procedure consists of the rejection of the 0iH  hypothesis if ip , 

where ip  is 0iH  hypothesis corresponding p -value, and )1,0(  is the significant level. In the 

step-down test, the differences iiiT  −= +1  and the appropriate hypotheses are in ascending order. 

Testing hypothesis (3) begins with the largest T -value, i.e., with )1( −kT . If for some )( ikT −  hypothesis 

0)( ikH −  is accepted, then testing is stopped, and all the remaining hypotheses whose order number is 

less than )( ik −  are accepted; otherwise, 0)( ikH −  is rejected, and the )1( +i th step is transited. In [1], 

the critical constants for each stage chosen so that FWER is controlled at a pre-specified level  . 

Because the empirical Bayesian approach is used in this method, which is based on the resampling 

techniques, it asymptotically controls the FWER. 

An alternative method for testing hypothesis (2), similar to the parametric bootstrap method 

of [8] to improve the Type-I error rate, is offered in [4]. In particular, this method is an extended 

Hayter’s test [3] for heterogeneous sample sizes and variances, and uses the idea of the PB offered 

in [8], based on the simulation of the sample from the null distribution with unbiased estimators 

of the parameters. The non-significant improvement of Type I error compared to existing methods 

of the Welch test (WT) [19]), the 2E  test (which is a counterpart of the F  test in the ordered 

case [5]) and Chen’s one-stage method ([20]) for large sample sizes is shown through the modeling 

for the introduced novelty. 

For justice, it should be said that all the considered tests have quite high Type I and Type II 

error rates, the values that depend on the parameters of the problem under consideration (the values 

of k , variances and sample sizes) and their control is impossible at a predetermined level. Therefore, 

to solve problems (1) and (2), we aim to develop a method that will enable us to make a decision by 

restricting Type I and Type II error rates to a predetermined level. To achieve this goal, the CBM is 

used below [21,22]. 

The structure of the rest of the paper is as follows. The application of CBM to solve the stated 

problem is given in Section 2, where formulas and criteria for testing individual and multiple 

Hypotheses defined by (6) are given. Algorithms for computation for known and unknown variances 

are developed in Section 3. Computation results for practical examples at known and unknown 

variances when the maximum likelihood ratio and Stein’s Methods are used for overcoming the 

problem caused by complexity of hypotheses, are presented in Section 4. A short discussion of the 

obtained results is offered in Section 5, and a conclusion is presented in Section 6. 

2. Method of testing multiple directional hypotheses for solving the stated problem 

Without loss of generality, we can suppose that all i  ( ki ,...,1= ) are positive, because if this 

condition is not fulfilled, we can always achieve it by moving the origin. 

Let us rewrite hypothesis (1) as follows 
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0...: 1210 ==== −kH   vs. 0: iaH  , for some )1,...,1( − ki .            (4) 

where iii  −= +1 , 1,...,1 −= ki . In this case, hypothesis (2) takes the form 

0...: 1210 ==== −kH   vs. 0: iaH  , with at least one strict inequality.     (5) 

Using the concept of directional hypotheses [22–24], similarly to (3), hypothesis (4) can be 

considered as a set of directional hypotheses 

0:0 =i

iH   vs. 0: − i

iH   or 0: + i

iH  , 1,...,1 −= ki .                (6) 

Statement (6) enables us to test hypotheses (1) and (2) (which are the same as hypotheses (4) and 

(5)) simultaneously, using techniques developed in [22,23]. In particular: After testing hypothesis (6), 

if for even one value of i , the left sided hypothesis is accepted among accepted alternatives, accept 

alternative hypothesis in (4); and if all the accepted alternative hypotheses are right sided, accept 

alternative hypothesis in (5); otherwise accept the null hypothesis. 

Let us recall that for testing hypothesis (6), we have the following information: 
iini XX ,...,1  - a 

random sample from ),( 2

iiN  , ki ,...,1= , on the basis of which we compute 

 =
=

in

i ij

i

i X
n

X
1

1
 and 

2

1

2 )(
1

1
 =

−
−

=
in

j iij

i

i XX
n

S , ki ,...,1= ,         (7) 

where iX  and 
2

iS  are the i th sample mean and sample variance. 

To test hypotheses concerning parameter i  , sufficient statistics is iii XXY −= +1  , where the 

distribution is )//,|( 1

2

1

2

+++ iiiiii nnyN  , 1,...,1 −= ki , because of independence of 1+iX  and iX . 

Parameter 0=i  at basic hypothesis 
iH0 , and 0i  or 0i , at alternative hypotheses iH−

 or iH+
, 

accordingly. 

2.1. Testing a subset of individual hypotheses of (6) 

For ease of presentation and understanding, let us first consider one subset of individual 

hypotheses of (6), and for simplicity, omit index i . Let us use one of the possible formulations of 

CBM, in particular, restrictions on posterior probabilities of rejected true hypotheses (Task 7) 

considered in [22,23]. In this formulation, the Type II error rate is minimized (that means the power 

is maximized), and the Type I error rate is restricted. This means, that the statement of the problem 

is the following [21,23]: 

 
  )|()()|()()|()(max 0000

,, 0

+++−−−


++=
+−

HxPHpHxPHpHxPHpKG
 (8) 

subject to 
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  −

+−+− + 7001 )|()()|()( rHxPHpHxPHpK , 

  0

7001 )|()()|()( rHxPHpHxPHpK + ++−− , 

  +

+−+− + 7001 )|()()|()( rHxPHpHxPHpK .               (9) 

Here, for each subset of individual hypotheses of (6), the following loss functions are used 

    










=

==
;

,0

)1)(,(
1

1
jiatK

jiat

xHL ji   and 










=

==
;0

,

)0)(,(

0

2
jiat

jiatK

xHL ji            (10) 

where 
1K  is the loss of incorrectly accepted jH  when iH  is true and 0K  the loss of incorrectly 

rejected jH  at testing it versus iH , ),0,(, +−ji . 

Using the undetermined Lagrange multiplier method and the concepts of posterior probabilities, 

to solve problems (8) and (9), we have [23] 

( )








+= −−+− )|(
1

)|()|(: 0

7

01 xHpKxHpxHpKx


, 

( )








+= +− )|(
1

)|()|(: 000

7

10 xHpKxHpxHpKx


, 

( )








+= ++−+ )|(
1

)|()|(: 0

7

01 xHpKxHpxHpKx


,              (11) 

where Lagrange multipliers 7
−
, 

0

7 , and 7
+

 are determined so that in (9), the equalities hold. 

The most common criteria of estimation of the quality of testing directional hypotheses are the 

mixed directional false discovery rate ( mdFDR ) and the false acceptance rate (FAR), which have the 

following forms [21,22] 

( ) ( ) ( ) ( )0–0 |||| HyPHyPHyPHyPmdFDR ++−+− +++= ,    (12) 

and 

( ) ( )+− += HyPHyPFAR || 00
,                      (13) 

respectively. 

According to the theorems proved in [23], if the condition min177 PKqrr =+ +−
 is satisfied, where 

10  q ,  min 0min ( , , )P p H H H− += , then the following condition qmdFDR  is fulfilled, and if 

the condition min17

0

77 PKqrrr =++ +−
  is satisfied, the following condition qFARmdFDR +   is 
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fulfilled. Also, when 
0

7  is chosen so that in the second condition of (9) equality takes place, the 

following is fulfilled: 

1

0

7

min

1

K

r

P
FAR 


 ,                             (14) 

where  )(),(minmin +−= HpHpP . 

For the case of directional hypotheses, the Type I error rate (TIER) can be determined as follows 

( ) ( )00 || HyPHyPTIER +− += .                 (15) 

Comparing (12) and (15), it is clear that mdFDR TIER . 

Let us define Type II error rates (TIIER ) as follows 

( ) ( )+− += HyPHyPTIIER || 00
.                (16) 

Comparing (13) and (16), we are convincing that FAR TIIER= . Thus, to fulfill the condition 

q
K

r

P
=


1

0

7

min

1
, the following takes place qTIIERFAR = , where 10  q . 

Theorem 1. CBM 7 with restriction levels (9), to satisfy a condition 
7 7 1 0( ) / ( ( ))r r K p H q− ++  =  , 

where 10  q  , ensures a decision rule with Type I error rate less or euual to q  , ieee, with the 

condition qTIER e 

Proofe From the first and the third conditions of the restrictions of (9), we write the following 

( ) ( )
)(

1
|)(|

01

7
0

Hp
HyPHp

K

r
HyP 








− +−+

−

−
= 

= ( )+−
+

−

−


HyP
Hp

Hp

HpK

r
|

)(

)(

)( 001

7 , 

and 

( ) ( )
)(

1
|)(|

01

7
0

Hp
HyPHp

K

r
HyP 








− −+−

+

+
= 

= ( )−+
−

+

−


HyP
Hp

Hp

HpK

r
|

)(

)(

)( 001

7 . 

From here, and considering (15), we are convincing in the correctness of theorem 1. 

Because of the specific nature of the acceptance regions of CBM [21–23], it can so happen that 

making a simple decision on the basis of existed information becomes impossible, e.g., when the test 

statistic belongs to the intersection areas of the acceptance regions or does not belong to any of these 
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regions. In such a situation, it becomes impossible to make a simple decision with a specified 

confidence level on the basis of the information, and more information is required to achieve this. If 

acquiring more information is impossible, then the restriction levels in (9) must be changed until a 

simple decision can be made. When acquiring more information is possible, we appeal to the sequential 

experiment, i.e., to increase a sample size and apply Procedure A. 

Procedure A 

The statistics for testing a subset of individual hypotheses of (6) is 1i i iy x x+= − , which depends 

on two initial samples 1,..., ,...i inx x  and 1,1 1,,..., ,...i i nx x+ + . Let us denote the test statistics on the basis 

of n  observations by ,i ny . Then the sequential procedure is as follows: 

Step 1 

- if niy ,  belongs to only region 
i

− , accept hypothesis 
iH− , 

- if niy ,  belongs to only region 
i

0 , accept hypothesis 
iH0 , 

- if niy ,  belongs to only region 
i

+ , accept hypothesis 
iH+ , 

- otherwise continue sampling; collect next observations and compute new test statistics 1, +niy ; 

Step 2 

- if 1, +niy  belongs to only region 
i

− , accept hypothesis 
iH− ,  

- if 1, +niy  belongs to only region 
i

0 , accept hypothesis 
iH0 ,  

- if 1, +niy  belongs to only region 
i

+ , accept hypothesis 
iH+ , 

- otherwise, continue sampling; collect observations
 
and compute test statistics etc. 

The sampling continues until the test statistics belong to only one hypothesis acceptance region. 

Note 1: Obviously, the sample size at the beginning of the sequential test is equal to any particular 

value, i.e., *nn =  (in particular, it can be 1* =n ), and if the desired level of reliability of making a 

decision is achievable for this amount of information, this corresponds to the parallel experiment on 

which the testing process finishes. In case of continuing sampling, the parallel experiment generalizes 

to the sequential experiment naturally. 

2.2. Testing of multiple hypotheses (6) 

For testing multiple directional hypotheses (6), the concept of the total mixed directional false 

discovery rate (tmdFDR) is introduced in [23,25] 


−

=
=

1

1

k

i imdFDRtmdFDR .                              (17) 

To guarantee level q , in testing hypothesis (6), we have to consider 1k − subsets of directional 

hypotheses. Then, for each of them, we use procedure A described above to provide a level of iq  for 

i th subset of hypotheses, so that 
1

1

k

ii
q q

−

=
=  is achieved. 

We act similarly to provide a level q  for the total Type I error rate (TTIER) and for the total 
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Type II error rate (TTIIER ). Namely, we provide iq , the level of the appropriate criteria for the i th 

subset of the individual directional hypotheses. As a result, we have 


−

=
=

1

1

k

i iTIERTTIER ,                                  (18) 


−

=
=

1

1

k

i iTIIERTTIIER ,                                 (19) 

where iTIER  and iTIIER  are the Type I error rate and the Type II error rate, respectively, of the i

th subset of directional hypotheses [23,26]. 

The values of iq  in all three cases (for tmdFDR, for TTIER, and for TTIIER ) can be chosen 

to be equal, i.e., )1/( −= kqqi   or different, e.g., inversely proportional to the informational 

distances between the tested hypotheses in the subsets of directional hypotheses [23]. 

To test multiple hypotheses, two family-wise error rates, type I (
IFWER ) and type II (

IIFWER ), 

are used (see, for example, [26–28]), which are the same as TTIER  and TTIIER  in the considered 

case, i.e., we have 
ITTIER FWER=  and 

IITTIIER FWER= . 

In all three considered cases, with the restriction of tmdFDR, TTIER, and TTIIER
 
on the desired 

levels, we use the above described sequential Procedure A, where the sampling continues until a simple 

decision is made for all the subsets of multiple hypotheses (6). The stopping rules remain the same as 

in [23]. Theorems 3.2 and 3.3 of the work [23], proving the appropriateness of the stopping rule, are 

in force for the considered directional hypotheses as well. 

As mentioned in [24], “Currently, in many real-life applications, we indeed encounter situations 

where the number of individual hypotheses in the set of multiple hypotheses (6) is very big, i.e., when 

data is big. In such a situation, determination of Lagrange multipliers for each subset of an individual 

hypothesis requires a long time for computation. Though the computation of Lagrange multipliers is 

completed in the preparatory stage before making a decision, still the reduction of computation time is 

important for many practical applications from the operational and cost considerations.” For this 

purpose, Theorem 4 is proved in [24] in accordance with the testing of all of subsets of individual 

hypotheses of (6) and can be used once with the same Lagrange multipliers, determined for a subset 

of individual hypothesis with lowest divergence among directional hypotheses at the level 

)1/( −= kqqi , satisfying condition qq
k

i i =
−

=

1

1
 provides the total mixed directional false discovery 

rate (17), as well as the total Type I error rate (18) and the total Type II error rate (19), restricting all 

of them with level q . 

3. Algorithms for computation 

3.1. Variances are known 

Let us suppose that the variances of iX  that is 
2

i , ki ,...,1= , are known. To realize the above 

developed method, the concretization of distribution laws of the statistics iY  at hypotheses 
)0(

iH , 
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)(−

iH  and 
)(+

iH  is necessary, i.e., it is necessary to determine densities )|( )0(

ii Hyp , )|( )(−

ii Hyp , and 

)|( )(+

ii Hyp . 

As mentioned in the above iY  is normally distributed. Therefore, taking into account the 

intervals of definition of the mathematical expectation at different hypotheses, we can suppose that  

),0|()|( 2)0(

iiii yNHyp =  at 
)0(

iH  and )|( )(−

ii Hyp  and )|( )(+

ii Hyp  are the truncated normal 

densities ),0( 21

0 iN −
 ( 0  known) over )0,(−  and ),0( + , respectively [23,29]. Here, 

nn iiii //)( 22

1

22  =+= + , were )( 2

1

22

++= iii  . Thus, we have [24] 








−


=

2

2
0

2
exp

2
)|(

i

i

i

ii

ynn
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
, 

( )
=








−










 −
−


= 

−

−

0

2

22
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2
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2
exp
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2
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2
)|( i
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i
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ii d
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




 

( )( )
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
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n
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


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
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

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

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( )







−




+
=

n

u
u

n

n

i
i

i
2

exp
2

2 2

0

0

0 




.                    (20) 

For these distributions, hypotheses acceptance regions (11) for observations iy are the following [23] 
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Here, n   is the quantity of iy   on the basis of which hypothesis (6) is tested using sequential 

Procedure A,  )/( 0 += nynu iii , and )(  is the standard normal distribution function. 

The Lagrange multipliers are determined so that in condition (9), the equalities hold. For the 

solution of the relevant equations, the suitable probability integrals are computed by the Monte-Carlo 

method (see, for example, [21,23]). 
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3.2. Variances are not known 

Let us suppose that the variances of iX  that is 
2

i , ki ,...,1= , are not known. In this case, we 

can consider two methods based on the maximum likelihood ratio and Stein’s method [30–34]. The 

essence of these methods consist of the following. In the maximum likelihood ratio approach, the 

density with unknown parameters’ values is replaced with the maximum of the density over all possible 

values of these parameters at the truth of testing hypotheses, computed by existing samples. Stein’s 

method integrates the density over unknown parameters using special measures to obtain the density 

of the maximum invariant statistic, which can then be used to analyze the problems; for example, to 

find the uniformly most powerful invariant test [32]. 

The method based on the maximum likelihood ratio can be applied when the numbers of 

observations 
in , ki ,...,1= , are large, which enable us to divide every subset of the observations into 

two parts 
imii xx ,1, ,...,  and 

ii nimi xx ,1, ,...,+ , where 
ii nm  . Using 

im  observations, 
2

1

22

++= iii SSS , 

1,...,1 −= ki , estimators of the variance 
2

i  of the statistics iii XXY −= +1  are computed and are used 

in formulae (20) and (21) instead of 
2

i . Statistics 
iu  are computed using observations 

ii nimi xx ,1, ,...,+ , ki ,...,1= , to make decisions based on hypotheses acceptance regions (21) when testing 

hypothesis (6). 

When applying Stein’s method, to average the influence of 
2

i , it is necessary to use a priori 

distribution of 
2

iS , which is difficult to determine functionally with known parameters at the 

considering case. Therefore, we conduct the following: Construct a confidence interval of 
2

1

22

++= iii SSS  with the given confidence probability −1  ( 10  ) and assume that 
2

iS  takes 

values from this interval according to a uniform distribution. 

Finding confidence intervals of 
2

iS , 1,...,1 −= ki  is not difficult. It looks like: 

2

,

22

, UiiLi SS  ,                               (22) 
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where 
2

,1 −im  is a quantile of the  -th order of the chi-square distribution with degree of freedom 

1−im . 

To overcome the uncertainty in the densities (20) caused by not knowing the value of the variance, 

we are averaging the effect of the variance on these densities by integrating them over the confidence 

interval of the variance with uniform density. In this case, conditional distribution densities (20) take 

the form 
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Hypotheses acceptance regions (11) take the following form using these denotations: 
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where the Lagrange multipliers are determined, so that in conditions (9), the equalities hold. 
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4. Computation results 

To compare the offered method with the known ones, we present computation outcomes of the 

examples considered in ([4], p. 26, Tables 2 and 6) in Tables below where the results are obtained by 

the method offered above (see Item 3.1) and the Hayter PB method. As a priori probabilities, we take 

3/1)()()( 0 === +− HpHpHp , coefficient 40 =  for the results given in Tables 1–5, and 130 =  for 

Stein’s method for true alternative hypotheses the results of which are given in Table 6. To keep 

mdFDR, TIER, and TIIER at 05.0=q , to test individual hypotheses of (6), we have to choose 

the following restriction levels in (9) for each subset of the hypotheses: 
0

7 7 7 0.0083(3)r r r− += = = . 

To test multiple hypotheses with the 1−k  subset of individual hypotheses for ensuring the same 

restriction levels of the criteria tmdFDR, TTIER, and TTIIER , we have to choose the following 

restriction levels: 
0

7 7 7 0.0083(3) / ( 1)r r r k− += = = − . To test of all subsets of individual hypotheses, we 

use one and the same Lagrange multipliers, which are determined for a subset of individual 

hypotheses with the lowest divergence among directional hypotheses [24]. Because of 31=−k , the 

restriction levels in (9) are equal to )7(0027.0 . For the solution of equations (9), the necessary 

probability integrals are computed by the Monte Carlo method with a sample size equal to 5,000 

(see, for example, [21,35]). The obtained values of the Lagrange multipliers are: 7 5.625− =  , 

0

7 0.965194702148438 = , and 7 2.34375+ = . The values of TTIER, TTIIER, and tmdFDR are 

computed by the Monte Carlo simulation of random sequences with 5,000 observations. The codes 

for all necessary computations are written in MATLAB R2021b. 

When using CBM, principle complexity does not arise when the problem dimension 

increases [21,22]. The computation time required to make a decision in CBM is equal to the time 

required for the classical Bayes method. The time required to determine the Lagrange multipliers 

certainly increases, but it is realized at the preparatory stage and does not directly affect the 

decision-making time. 

4.1. Variances are known 

Computational results, when variances are known, are given in Table 1 (null hypotheses are true) and 

Table 2 (alternative hypotheses are true) for different in  and i , 4,3,2,1=i . From here, it is seen that 

for all computed combinations, tmdFDRTTIER=  and they all are significantly less than the type I error 

rate of the Hayter PB method given in [4]. The powers for all computed combinations are equal to 1 and 

significantly surpass the appropriate values of the Hayter PB method. The offered method perfectly 

distinguishes one- and two-sided alternatives whose possibility is not discussed in ([4] p. 26, Table 2). 
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Table 1. Comparison of type-I errors at 4=k  (variances are known, null hypotheses are true). 

σ n CBM at u=0.05 AN α HPB AH 

TTIER tmdFL Nominal α=0.05 

[1,2,2,3] [12,12,12,12] 0.0190 0.0190 12.04 at H0 

11.89 at H0 

11.93 at H0 

0.0508 H0(5) 

[2,2,2,2] [12,12,12,12] 0.0082 0.0082 11.93 at H0 

12.07 at H0 

11.96 at H0 

0.0528 H0(5) 

[1,2,2,3] [6,8,10,12] 0.0081 0.0081 11.88 at H0 

11.93 at H0 

12.00 at H0 

0.0444 H0(5) 

[2,2,2,2] [6,8,10,12] 0.0136 0.0136 11.98 at H0 

11.87 at H0 

11.91 at H0 

0.0476 H0(5) 

[3,2,2,1] [6,8,10,12] 0.0109 0.0109 12.10 at H0 

11.96 at H0 

11.95 at H0 

0.0484 H0(5) 

[1,2,2,3] [6,6,6,6] 0.0082 0.0082 11.94 at H0 

11.97 at H0 

11.96 at H0 

0.0516 H0(5) 

[2,2,2,2] [6,6,6,6] 0.0054 0.0054 12.07 at H0 

12.00 at H0 

11.97 at H0 

0.0484 H0(5) 

[1,2,2,3] [6,3,3,6] 0.0135 0.0135 11.86 at H0 

11.94 at H0 

11.91 at H0 

0.0460 H0(5) 

[2,2,2,2] [6,3,3,6] 0.0136 0.0136 11.96 at H0 

11.90 at H0 

12.07 at H0 

0.0428 H0(5) 

[1,2,2,3] [3,3,3,3] 0.0109 0.0109 11.97 at H0 

12.02 at H0 

11.91 at H0 

0.0424 H0(5) 

[2,2,2,2] [3,3,3,3] 0.0217 0.0217 11.92 at H0 

11.88 at H0 

11.99 at H0 

0.0344 H0(5) 

[1,2,2,3] [2,3,2,3] 0.0082 0.0082 11.96 at H0 

12.01 at H0 

12.00 at H0 

0.0368 H0(5) 

Continued on next page 
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σ n CBM at u=0.05 AN α HPB AH 

TTIER tmdFL Nominal α=0.05 

[2,2,2,2] [2,3,2,3] 0.0136 0.0136 11.88 at H0 

12.00 at H0 

11.97 at H0 

0.0336 H0(5) 

[3,2,2,1] [2,3,2,3] 0.0136 0.0136 11.89 at H0 

11.95 at H0 

11.98 at H0 

0.0424 H0(5) 

Note: AN: Average number of observations necessary for making a decision; α HPB: Type-I Error Rate for 

Hayter PB Test; α≡TTIER: Type I error rate for CBM; AH: Accepted hypotheses; H0(5): basic hypothesis 

of (5) is accepted. 

Table 2. Powers comparison table at 4=k  (variances are known, alternative hypotheses are true). 

n σ μ CBM at u=0.05 AN Hayter

PB 

Nomin

al 

α=0.05 

AH 

TTIER Power tmdFL TTIIER Power 

[6,8,10,12] [2,2,2,2] [0,0,0,2] 0.0107 1 0.0107 0 11.99 at H0 

11.88 at H0 

1.64 at H+ 

0.6388 Ha(5) 

  [0,0,0.7,1.3] 0.0052 1 0.0052 0 11.99 at H0 

4.955 at H+  

5.4 at H+ 

0.2976 Ha(5) 

  [0,1,2,3] 0 1 0 0 3.92 at H+ 

3.41 at H+ 

3.01 at H+ 

0.7700 Ha(5) 

  [-2,0,0,0] 0.0188 1 0.0188 0 2.028 at H+ 

11.88 at H0 

11.91 at H0 

0.4864 Ha(5) 

  [-1.3,-0.7,0,0] 0.0078 1 0.0078 0 7.35 at H+ 

4.95 at H+ 

11.92 at H0 

0.2600 Ha(5) 

  [-3,-2,-1,0] 0 1 0 0 3.957 at H+ 

3.45 at H+ 

3.05 at H+ 

0.7700 Ha(5) 

 [1,2,2,3] [0,0,0,2] 0.0107 1 0.0107 0 11.93 at H0 

11.98 at H0 

2.029 at H+ 

0.8020 Ha(5) 

Continued on next page 
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n σ μ CBM at u=0.05 AN Hayter

PB 

Nomin

al 

α=0.05 

AH 

TTIER Power tmdFL TTIIER Power 

  [0,0,0.7,1.3] 0.0052 1 0.0052 0 11.92 at H0 

4.93 at H+ 

7.15 at H+ 

0.3384 Ha(5) 

  [0,1,2,3] 0 1 0 0 2.92 at H+ 

3.37 at H+ 

3.84 at H+ 

0.7356 Ha(5) 

  [-2,0,0,0] 0.0080 1 0.0080 0 1.63 at H+ 

11.99 at H0 

11.95 at H0 

0.2836 Ha(5) 

  [-1.3,-

0.7,0,0] 

0 1 0 0 4.98 at H+ 

5.10 at H+ 

12.03 at H0 

0.2080 Ha(5) 

  [-3,-2,-1,0] 0 1 0 0 2.98 at H+ 

3.39 at H+ 

3.85 at H+ 

0.7356 Ha(5) 

 [3,2,2,1] [0,0,0,2] 0.0107 1 0.0107 0 11.94 at H0 

11.91 at H0 

1.40 at H+ 

0.7574 Ha(5) 

  [0,0,0.7,1.3] 0.0026 1 0.0026 0 12.07 at H0 

5.07 at H+ 

4.23 at H+ 

0.2210 Ha(5) 

  [0,1,2,3] 0 1 0 0 5.29 at H+ 

3.42 at H+ 

2.52 at H+ 

0.6724 Ha(5) 

  [-2,0,0,0] 0.0027 1 0.0027 0 2.53 at H+ 

12.04 at H0 

12.03 at H0 

0.1886 Ha(5) 

  [-1.3,-

0.7,0,0] 

0 1 0 0 11.23 at H+ 

5.05 at H+ 

11.96 at H0 

0.1108 Ha(5) 

  [-3,-2,-1,0] 0 1 0 0 5.35 at H+ 

3.43 at H+ 

2.48 at H+ 

0.6724 Ha(5) 

Continued on next page 
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n σ μ CBM at u=0.05 AN Hayter

PB 

Nomin

al 

α=0.05 

AH 

TTIER Power tmdFL TTIIER Power 

[6,8,10,12] [2,2,2,2] [0,0,0,-2] 0.0054 1 0.0054 0 12.01 at H0 

11.96 at H0 

2.28 at H- 

- Ha(4) 

  [0,0,-

0.7,1.3] 

0.0104 1 0.0130 0 11.87 at H0 

8.56 at H- 

1.70 at H+ 

- Ha(4) 

  [0,-1,2,3] 0 1 0 0 6.15 at H- 

1.33 at H+ 

3.07 at H+ 

- Ha(4) 

  [-2,0,1,0] 0 1 0 0 2.01 at H+ 

3.42 at H+ 

4.68 at H- 

- Ha(4) 

  [-

1.3,0.7,0,0] 

0.0052 1 0.0052 0 1.99 at H+ 

8.41 at H- 

11.97 at H0 

- Ha(4) 

  [-3,2,-1,0] 0 1 0 0 1.03 at H+ 

1.77 at H- 

3.09 at H+ 

- Ha(4) 

Note: AN: Average number of observations necessary for making a decision; α HPB: Type-I Error Rate for Hayter 

PB Test; α≡TTIER: Type I error rate for CBM; AH: Accepted hypotheses; Ha(5): Alternative hypothesis of (5) is 

accepted; Ha(4): Alternative hypothesis of (6) is accepted. 

4e2e Variances are not known 

4.2.1. Computational results obtained by the maximum likelihood ratio 

Computational results obtained by the method involving the maximum likelihood estimator of 

the unknown variances, are given in Table 3 (null hypotheses are true) and Table 4 (alternative 

hypotheses are true). The computations give us the same results as we had in the case of the known 

variances, that is, the reliabilities of the decisions in CBM are significantly higher than the results 

obtained by the Hayter PB method [4]. However, the number of observations required to make a 

decision is greater in CBM for this case than for the case when variances are known. One circumstance 

is noteworthy: Calculating the variance estimator with less than 5–6 observations is not recommended 

due to the low accuracy of the obtained results in statistics. Nevertheless, in the calculated examples, 

even when the number of observations is 2–3, the reliability of the decisions is quite high. In our 

opinion, the reason for this, in addition to the high reliability of the CBM, lies in the relatively large 
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number of observations used to make a decision. 

Table 3. Comparison of Type-I errors, 4=k   (unknown variances are estimated by 

maximum likelihood method, null hypotheses are true). 

σ n CBM at u=0.05 AN α HPB AH 

TTIER tmdFL Nominal 

α=0.05 

[1,2,2,3] [12,12,12,12] 0.0190 0.0190 11.90 at H0 

11.96 at H0 

11.93 at H0 

0.0508 H0(5) 

[2,2,2,2] [12,12,12,12] 0.0055 0.0055 12.03 at H0 

12.03 at H0 

12 at H0 

0.0528 H0(5) 

[1,2,2,3] [6,8,10,12] 0.0054 0.0054 11.99 at H0 

11.99 at H0 

11.99 at H0 

0.0444 H0(5) 

[2,2,2,2] [6,8,10,12] 0.0163 0.0163 11.91 at H0 

11.90 at H0 

11.95 at H0 

0.0476 H0(5) 

[3,2,2,1] [6,8,10,12] 0.0191 0.0191 12.01 at H0 

11.93 at H0 

11.95 at H0 

0.0484 H0(5) 

[1,2,2,3] [6,6,6,6] 0.0163 0.0163 11.99 at H0 

11.87 at H0 

11.95 at H0 

0.0516 H0(5) 

[2,2,2,2] [6,6,6,6] 0.0217 0.0217 11.79 at H0 

12.05 at H0 

11.89 at H0 

0.0484 H0(5) 

[1,2,2,3] [6,3,3,6] 0.0082 0.0082 11.99 at H0 

12.03 at H0 

11.95 at H0 

0.0460 H0(5) 

[2,2,2,2] [6,3,3,6] 0.0245 0.0245 12 at H0 

11.85 at H0 

11.88 at H0 

0.0428 H0(5) 

[1,2,2,3] [3,3,3,3] 0.0190 0.0190 12.02 at H0 

11.85 at H0 

12.02 at H0 

0.0424 H0(5) 

[2,2,2,2] [3,3,3,3] 0.0164 0.0164 11.94 at H0 

12.04 at H0 

11.98 at H0 

0.0344 H0(5) 

Continued on next page 
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σ n CBM at u=0.05 AN α HPB AH 

TTIER tmdFL Nominal 

α=0.05 

[1,2,2,3] [2,3,2,3] 0.0163 0.0163 11.93 at H0 

11.88 at H0 

11.89 at H0 

0.0368 H0(5) 

[2,2,2,2] [2,3,2,3] 0.0163 0.0163 11.96 at H0 

11.95 at H0 

11.96 at H0 

0.0336 H0(5) 

[3,2,2,1] [2,3,2,3] 0.0164 0.0164 11.94 at H0 

11.95 at H0 

11.97 at H0 

0.0424 H0(5) 

Note: AN: Average number of observations necessary for making a decision; α HPB: Type-I Error Rate for 

Hayter PB Test; α≡TTIER: Type I error rate for CBM; AH: Accepted hypotheses; H0(5): basic hypothesis 

of (5) is accepted. 

Table 4. Power comparison table, 4=k   (unknown variances are estimated by the 

maximum likelihood method, alternative hypotheses are true). 

n σ μ CBM at u=0.05 AN HayterPB 

Nominal 

α=0.05 

AH 

TTIER Power Power TTIIER Power 

[6,8,10,12] [2,2,2,2] [0,0,0,2] 0.008 1 0.008 0 11.95 at H0 

11.91 at H0 

2.16 at H+ 

0.6388 Ha(5) 

  [0,0,0.7,1.3] 0.01 1 0.01 0 11.94 at H0 

7.79 at H+ 

7.70 at H+ 

0.2976 Ha(5) 

  [0,1,2,3] 0 1 0 0 4.28 at H+ 

2.89 at H+ 

2.13 at H+ 

0.7700 Ha(5) 

  [-2,0,0,0] 0.0054 1 0.0054 0 4.28 at H+ 

11.98 at H0 

11.96 at H0 

0.4864 Ha(5) 

  [-1.3,-0.7,0,0] 0 0.9948 0 0.0052 6.10 at H+ 

6.01 at H+ 

11.94 at H0 

0.2600 Ha(5) 

  [-3,-2,-1,0] 0 1 0 0 2.74 at H+ 

3.73 at H+ 

3.43 at H+ 

0.7700 Ha(5) 

Continued on next page 
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n σ μ CBM at u=0.05 AN HayterPB 

Nominal 

α=0.05 

AH 

TTIER Power Power TTIIER Power 

 [1,2,2,3] [0,0,0,2] 0.0054 1 0.0054 0 11.89 at H0 

11.97 at H0 

8.63 at H+ 

0.8020 Ha(5) 

  [0,0,0.7,1.3] 0.0105 1 0.0105 0 11.87 at H0 

5.98 at H+ 

8.78 at H+ 

0.3384 Ha(5) 

  [0,1,2,3] 0 1 0 0 1.93 at H+ 

2.55 at H+ 

2.92 at H+ 

0.7356 Ha(5) 

  [-2,0,0,0] 0.0054 1 0.0054 0 3.77 at H+ 

11.97 at H0 

12.01 at H0 

0.2836 Ha(5) 

  [-1.3,-0.7,0,0] 0.0078 1 0.0078 0 4.91 at H+ 

3.69 at H+ 

11.95 at H0 

0.2080 Ha(5) 

  [-3,-2,-1,0] 0 1 0 0 2.56 at H+ 

2.74 at H+ 

4.37 at H+ 

0.7356 Ha(5) 

 [3,2,2,1] [0,0,0,2] 0 0.9919 0 0.0081 11.99 at H0 

12.05 at H0 

1.12 at H+ 

0.7574 Ha(5) 

  [0,0,0.7,1.3] 0.0026 1 0.0026 0 11.97 at H0 

5.16 at H+ 

3.06 at H+ 

0.2210 Ha(5) 

  [0,1,2,3] 0 1 0 0 4.70 at H+ 

2.17 at H+ 

2.39 at H+ 

0.6724 Ha(5) 

  [-2,0,0,0] 0.0081 1 0.0081 0 2.71 at H+ 

11.98 at H0 

11.97 at H0 

0.1886 Ha(5) 

  [-1.3,-0.7,0,0] 0 1 0 0 9.09 at H+ 

7.84 at H+ 

12.01 at H0 

0.1108 Ha(5) 

  [-3,-2,-1,0] 0 1 0 0 4.33 at H+ 

2.04 at H+ 

1.84 at H+ 

0.6724 Ha(5) 

Continued on next page 
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n σ μ CBM at u=0.05 AN HayterPB 

Nominal 

α=0.05 

AH 

TTIER Power Power TTIIER Power 

[6,8,10,12] [2,2,2,2] [0,0,0,-2] 0.0054 1 0.0054 0 11.99 at H0 

12.067 at H0 

2.097 at H- 

- Ha(5) 

  [0,0,-0.7,1.3] 0.0027 0.9973 0.0027 0.0027 12.04 at H0 

11.38 at H- 

1.98 at H+ 

- Ha(4) 

  [0,-1,2,3] 0 1 0 0 4.06 at H- 

1.12 at H+ 

2.49 at H+ 

- Ha(4) 

  [-2,0,1,0] 0 1 0 0 1.96 at H+ 

4.47 at H+ 

5.65 at H- 

- Ha(4) 

  [-1.3, 0.7, 0,0] 0.0026 1 0 0.0026 2.29 at H+ 

8.74 at H- 

11.97 at H0 

- Ha(4) 

  [-3,2,-1,0] 0 1 0 0 1.003 at H+ 

1.90 at H- 

3.81 at H+ 

- Ha(4) 

Note: AN: Average number of observations necessary for making a decision; α HPB: Type-I Error Rate for Hayter 

PB Test; α≡TTIER: Type I error rate for CBM; AH: Accepted hypotheses; Ha(5): Alternative hypothesis of (5) is 

accepted; Ha(4): Alternative hypothesis of (6) is accepted. 

4.2.2. Computational results obtained by Stein’s method 

Computational results obtained by the Stein’s method when the uniform distributions are used as 

a priori distributions of the unknown variances, are given in Table 5 (null hypotheses are true) and 

Table 6 (alternative hypotheses are true). The obtained results are very reliable. The probabilities of 

incorrect decisions are equal to zero, which are provided by the big number of observations necessary 

for making decisions when alternative hypotheses are true. 
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Table 5. Comparison of type-I errors, 4=k  (Stein’s method, null hypotheses are true). 

σ n CBM at u=0.05 AN α HPB AH 

TTIER tmdFL Nominal 

α=0.05 

[1,2,2,3] [12,12,12,12] 0 0 2 at H0 

2 at H0 

4.18 at H0 

0.0508 H0(5) 

[2,2,2,2] [12,12,12,12] 0 0 2 at H0 

2 at H0 

1 at H0 

0.0528 H0(5) 

[1,2,2,3] [6,8,10,12] 0 0 2 at H0 

1 at H0 

6.05 at H0 

0.0444 H0(5) 

[2,2,2,2] [6,8,10,12] 0 0 1.03 at H0 

1.54 at H0 

1 at H0 

0.0476 H0(5) 

[3,2,2,1] [6,8,10,12] 0 0 1 at H0 

2 at H0 

1 at H0 

0.0484 H0(5) 

[1,2,2,3] [6,6,6,6] 0 0 2 at H0 

2 at H0 

2.25 at H0 

0.0516 H0(5) 

[2,2,2,2] [6,6,6,6] 0 0 2 at H0 

2 at H0 

1 at H0 

0.0484 H0(5) 

[1,2,2,3] [6,3,3,6] 0 0 1 at H0 

1 at H0 

1 at H0 

0.0460 H0(5) 

[2,2,2,2] [6,3,3,6] 0 0 1 at H0 

1 at H0 

1 at H0 

0.0428 H0(5) 

[1,2,2,3] [3,3,3,3] 0 0 1 at H0 

1 at H0 

2 at H0 

0.0424 H0(5) 

[2,2,2,2] [3,3,3,3] 0 0 1 at H0 

1 at H0 

1 at H0 

0.0344 H0(5) 

[1,2,2,3] [2,3,2,3] 0 0 1 at H0 

1 at H0 

13.25 at H0 

0.0368 H0(5) 

Continued on next page 
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σ n CBM at u=0.05 AN α HPB AH 

TTIER tmdFL Nominal 

α=0.05 

[2,2,2,2] [2,3,2,3] 0 0 1 at H0 

1 at H0 

1 at H0 

0.0336 H0(5) 

[3,2,2,1] [2,3,2,3] 0 0 1 at H0 

1 at H0 

13.81 at H0 

0.0424 H0(5) 

Note: AN: Average number of observations necessary for making a decision; α HPB: Type-I Error Rate for 

Hayter PB Test; α≡TTIER: Type I error rate for CBM; AH: Accepted hypotheses; H0(5): basic hypothesis of 

(5) is accepted. 

Table 6. Power comparison table, 4=k  (Stein’s method, alternative hypotheses are true). 

n σ μ CBM at u=0.05 AN HayterPB 

Nominal 

α=0.05 

AH 

Power TTIER, 

tmdFL 

TTIIER Power 

[6,8,10,12] [2,2,2,2] [0,0,0,2] 1 0 0 390.42 at H0 

389.50 at H0 

169.46 at H+ 

0.6388 Ha(5) 

  [0,0,0.7,1.3] 1 0 0 390 at H0 

621.5 at H+ 

3001 at H+ 

0.2976 Ha(5) 

  [0,1,2,3] 1 0 0 350.90 at H+ 

242.40 at H+ 

480.70 at H+ 

0.7700 Ha(5) 

  [-2,0,0,0] 1 0 0 79.62 at H+ 

390 at H0 

121.54 at H0 

0.4864 Ha(5) 

  [-1.3,-0.7,0,0] 1 0 0 137.50 at H+ 

65.13 at H+ 

650.86 at H0 

0.2600 Ha(5) 

  [-3,-2,-1,0] 1 0 0 1085.50 at H+ 

146.60 at H+ 

1014.75 at H+ 

0.7700 Ha(5) 

Continued on next page 
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n σ μ CBM at u=0.05 AN HayterPB 

Nominal 

α=0.05 

AH 

Power TTIER, 

tmdFL 

TTIIER Power 

 [1,2,2,3] [0,0,0,2] 1 0 0 390.33 at H0 

390.42 at H0 

100.38 at H+ 

0.8020 Ha(5) 

  [0,0,0.7,1.3] 1 0 0 390.25 at H0 

1074.33 at H+ 

1500.67 at H+ 

0.3384 Ha(5) 

  [0,1,2,3] 1 0 0 140.80 at H+ 

205.80 at H+ 

522.33 at H+ 

0.7356 Ha(5) 

  [-2,0,0,0] 1 0 0 27.44 at H+ 

390.22 at H+ 

554.44 at H0 

0.2836 Ha(5) 

  [-1.3,-0.7,0,0] 1 0 0 353.50 at H+ 

3563 at H+ 

2156 at H0 

0.2080 Ha(5) 

  [-3,-2,-1,0] 1 0 0 573.50 at H+ 

297.25 at H+ 

580 at H+ 

0.7356 Ha(5) 

 [3,2,2,1] [0,0,0,2] 1 0 0 390.58 at H0 

389.83 at H0 

122.69 at H+ 

0.7574 Ha(5) 

  [0,0,0.7,1.3] 1 0 0 391.25 at H0 

275.69 at H+ 

359.75 at H+ 

0.2210 Ha(5) 

  [0,1,2,3] 1 0 0 2070.50 at H+ 

671.33 at H+ 

600.67 at H+ 

0.6724 Ha(5) 

  [-2,0,0,0] 1 0 0 74.15 at H+ 

390.33 at H0 

75.38 at H0 

0.1886 Ha(5) 

  [-1.3,-0.7,0,0] 1 0 0 1567.67 at H+ 

174.25 at H+ 

8.50 at H0 

0.1108 Ha(5) 

Continued on next page 
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n σ μ CBM at u=0.05 AN HayterPB 

Nominal 

α=0.05 

AH 

Power TTIER, 

tmdFL 

TTIIER Power 

  [-3,-2,-1,0] 1 0 0 3582 at H+ 

790.50 at H+ 

1384 at H+ 

0.6724 Ha(5) 

[6,8,10,12] [2,2,2,2] [0,0,0,-2] 1 0 0 390.5 at H0 

391.67 at H0 

127.92 at H- 

- Ha(4) 

[6,8,10,12] [2,2,2,2] [0,0,-0.7,1.3] 1 0 0 389.2 at H0 

959.4 at H- 

76.17 at H+ 

- Ha(4) 

  [0,-1,2,3] 1 0 0 2801 at H- 

26.5 at H+ 

287.5 at H+ 

- Ha(4) 

  [-2,0,1,0] 1 0 0 46 at H+ 

72.33 at H+ 

868.2 at H- 

- Ha(4) 

  [-1.3, 0.7, 0,0] 1 0 0 213 at H+ 

4592 at H- 

65 at H0 

- Ha(4) 

  [-3,2,-1,0] 1 0 0 32 at H+ 

318.27 at H- 

452 at H0 

- Ha(4) 

Note: AN: Average number of observations necessary for making a decision; α HPB: Type-I Error Rate for Hayter 

PB Test; α≡TTIER: Type I error rate for CBM; AH: Accepted hypotheses; Ha(5): Alternative hypothesis of (5) is 

accepted; Ha(4): Alternative hypothesis of (6) is accepted. 

5. Discussion 

The offered method of solving the ANOVA problem, for known and unknown variances of the 

results, with restricted Type I and Type II error rates based on CBM gives very reliable results that 

surpass the methods of today. It is a sequential method that requires a set of observations to make a 

decision, the number of which is especially large in Stein’s method in the case of true alternative 

hypotheses. Nevertheless, due to the large practical application of the ANOVA problem and the fact 

that, in many cases, the number of data is quite large, and the requirements for the accuracy of the 

decisions are high, we consider the results to be important and to deserve high attention. 

It is worth noting that the CBM method using the maximum likelihood method requires more 

observations than the same CBM method using Stein’s method to test the null hypothesis; this situation 

is reversed when testing alternative hypotheses. In this case, using Stein's method requires more 
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observations than using the maximum likelihood method. The reason lies in the use of different values 

of 0 . It should be noted that the increase of 0  causes the increase in the quantity of observations 

necessary to make a decision and, accordingly, the increase of the accuracy of made decisions [24,33]. 

The computing results obtained by CBM and the Hayter PB methods are given in Tables 1–6. In 

order to compare the results obtained by these methods, 05.0=q  is taken in CBM, since in Hayter PB 

methods, the calculations have been realized for a Type I error rate of α=0.05 (see Tables 2–4, 6 in [4]). 

Since each scenario has four normal population correspondences, i.e., 4=k  , we have to test three 

hypotheses each time (see (6)). In each case under consideration, the true hypotheses are determined by 

the values of iii  −= +1 , 1,...,1 −= ki . Therefore, in each scenario, three hypotheses (from the set of 

hypotheses 0H  , 
−H   and 

+H  ) are accepted, and depending on i  , 1,...,1 −= ki  , the values of the 

criteria TTIER , TTIIER  , tmdFDR , and TTIIERPower −=1   are computed. The values criteria 

TTIER and tmdFDR are given when null hypotheses are true in all three cases (see Tables 1, 3, and 

5), and the values all four considered criteria TTIER, TTIIER , tmdFDR, and TTIIERPower −=1  

are given when the alternative hypothesis is true even for one of the three cases. In the columns n ,  , 

and   , the values of sample sizes for considered normal populations, standard deviations, and 

mathematical expectations, respectively, are given for each considered case. The second to last the final 

column contains the results obtained by Hayter PB methods from [4], and the last column contains each 

scenario in the CBM accepted hypotheses defined by (5) or (6). The column AN (average number) 

contains the average number of observations necessary to make a decision in CBM (averaged over the 

results of 5,000 experiments). 

From the results of these Tables, the superiority of CBM over Hayter PB methods is evident. 

Moreover, unlike the Hayter PB method, CBM enables us to distinguish (4) and (5), which are the 

same as (1) and (2). 

6. Conclusions 

The problem of testing hypotheses concerning the means of a set of normally distributed random 

variables at the restriction of both Type I and Type II error rates are considered in this paper. To solve 

the stated problem, one of the possible statements of CBM is used. In order to overcome the difficulties 

related to the complexity of testing hypotheses caused by not knowing the values of the variances of 

random variables, the maximum likelihood and Stein’s methods are used. The ability to limit Type I 

and Type II error rates and other relevant criteria to the required level is shown for the developed 

algorithms. The latter is confirmed by the calculation results of practical examples by simulating 

different scenarios. 
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