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Abstract: In the 2016 US presidential election, the widespread propagation of false news on social
media, especially rumors against Hillary Clinton, quickly affected the emotions and decisions of
some voters, highlighting the potential impact of rumors on voters’ perceptions and election results.
An individual’s ability to identify rumor information determines their tendency to judge and spread
rumors, thus directly affecting the spread of rumors and society’s trust in information. Considering the
impact of individual identification ability on rumor propagation, this paper established a new rumor
propagation model, calculated the basic reproductive number of the model, and proved the existence of
equilibrium points in the model as well as their local and global asymptotic stability. Meanwhile, based
on Pontryagin’s maximum principle, we chose the probability of contact between ignorant individuals
and rumor spreaders, the probability of conversion of spreaders into immunized individuals, and the
contact rate between rumor spreaders and truth spreaders as the optimal control variables, and obtained
an effective strategy for reducing rumor spreading. The numerical simulation verified the results of
theoretical analysis. The findings of this study suggest that enhancing individual identification ability
can effectively slow down the propagation of rumors.
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1. Introduction

A rumor is unverified or false information that is often spread through word of mouth or social
media. For instance, during the COVID-19 pandemic, a number of false claims, such as the idea
that the virus could be cured by drinking bleach or that certain groups were immune to it, were widely
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circulated. Such false claims may lead to public panic and undermine social cohesion [1,2]. Therefore,
identifying and resisting rumors is crucial for maintaining social stability and national security [3].

Daley and Kendall conducted a dynamic analysis of rumor propagation in the 1960s and proposed
the DK (Daley—Kendall) model. This model primarily studies the spreading process of rumors in
social networks, where individuals are treated as nodes and interact with each other to spread
rumors [4, 5]. In 1973, Maki and Thompson extended the DK model and proposed the MT
(Maki—Thompson) model, which primarily focuses on the individual behaviors and network
structures’ impact on rumor propagation [6, 7]. The MT model introduces the concepts of
“susceptible”, “infected”, and “recovered” individuals, emphasizing that individuals may go through
different stages in the process of rumor propagation. Furthermore, the model takes into account the
different transmission probabilities and contact frequencies among individuals, thus providing a more
complex analysis of transmission dynamics. With these extensions, the MT model provides a deeper
understanding of how rumors spread and evolve in social networks [8]. Based on this, subsequent
researchers have studied and expanded on these two models from both external environmental and
individual psychological perspectives, considering more factors that influence rumor propagation.

In tense or anxious external environments, media and sudden situations (such as disasters, crises,
etc.) can all affect the speed of rumor propagation. People tend to seek information in times of
uncertainty, and may be more likely to believe rumors [9]. Based on the classic SIR model [10, 11],
Sejeong et al. discussed the importance of identifying rumors in social media. Due to the fact that
rumors propagate much faster in online than offline environments, researchers have studied the three
aspects of rumor diffusion (temporal characteristics, structural characteristics, and linguistic
characteristics;) in order to identify the characteristics of rumors [12]. Ozturk et al. explored the dual
role of social media in information dissemination: It can quickly be used to share useful information
but also to easily spread unverified rumors. Several design solutions have been proposed to reduce the
spread of health-related rumors. Results show that providing users with information to refute rumors
or warning them about the source of the rumors on a website can effectively reduce their spread [13].

Pan et al. considered the impact of the number of media reports and rumors on media dissemination
and established the SIDRW rumor propagation model, which found that positive media coverage can
effectively reduce but not stop the spread of rumors [14, 15]. Guo et al. considered the impact of
media coverage and time delay on rumor propagation and proposed a SEIMR rumor model with media
coverage and time delay. The results showed that media coverage plays a crucial role in reducing the
scale of rumor propagation. The greater the media penetration rate, the smaller the scale of rumor
propagation [16, 17]. Yang et al. collected basic information data on internet rumors and highly
topical public opinions; and used an improved SCIR model to analyze the propagation characteristics
of internet rumors in different stages of suspicion under a suspicion mechanism. They also analyzed
the stability of rumor propagation evolution by using time delay differential equations and punishment
mechanisms. Researchers have found that increasing recovery rates is more effective than reducing
fraud rates, and increasing eviction rates is more important than improving detection rates [18]. Yong
et al. explored the rumor dynamics in social networks during sudden situations and proposed a new
rumor propagation model called ILRDS, which takes into account that ignorant individuals may enter
a latent state based on their three different attitudes towards rumors or counter-rumors after coming
into contact with them [19].

In addition to external environmental factors, internal emotions, hesitation, and forgetfulness also
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have a certain impact on the propagation of rumors. Strong emotional drive makes it easier for people
to share rumors related to emotions. Based on the theory of emotions, Zhang et al. proposed an online
rumor propagation model to explore the impact of emotions embedded in online rumors on the
audience’s intent to spread rumors. The model was verified through quasi-experiments and
specifically focused on online rumors with positive, neutral, and negative emotional expressions. The
study provided new insights into the field of rumor research, emphasizing the importance of
individual emotions in the propagation of rumors [20]. Based on this, Li et al. proposed a new SVIR
model. In this model, an alert emotional state is added to describe an individual’s reaction to rumors.
Researchers found that individuals are more likely to spread rumors when these are closely related to
their own lives. Increasing individuals’ awareness can effectively reduce the impact of rumors [21].
Zeng et al. discussed the importance of individual emotional contagion in rumor propagation and
debunking and studied the transformation of individual emotions into group emotions by improving
the emotional model and simulating it. The results show that the emotional changes of netizens have
different cycles and trends, but the ultimate distribution is relatively stable [22].

Furthermore, researchers have discovered that the hesitation mechanism can increase the
contagion threshold and influence individual behavior, thereby changing the speed of rumor diffusion
and its ultimate impact. Xia et al. incorporated a hesitation mechanism into the SEIR model to
propose an improved model, taking into account the attractiveness and ambiguity of rumor content.
The results show that reducing ambiguity can effectively increase the transmission threshold of the
SEIR model and reduce the maximum impact of rumors, while the transmission threshold is not
related to the attractiveness of rumors [23, 24]. Chen et al. introduced the role of hesitators and rumor
debunkers, and proposed the SEIOR rumor propagation model, which combines different rumor
debunking methods, overcoming the limitations of existing models that are mostly based on a single
propagation mechanism and a single debunking method [25]. Meanwhile, the forgetting mechanism
can also lead to misunderstandings and the spread of rumors, as individuals are prone to confuse
information sources and cause inaccurate information to spread rapidly in social networks. Therefore,
based on the classic SIR model, Zhao et al. proposed a rumor propagation model that takes into
account the forgetting mechanism and studied the effects of average connectivity, forgetting rate, and
suppression rate on rumor propagation. The results show that the network topology has a significant
impact on the propagation of rumors: compared with the ER network, rumors spread faster in the BA
scale-free network, and the final rumor size is smaller; the forgetting and memory mechanisms have a
greater impact on the final size of the rumor [26–28]. Subsequently, Ding et al. proposed the
conceptual model of rumor propagation and countermeasures considering forgetfulness and
constructed an individual-level mathematical model from the perspective of competitive innovation
diffusion. The results show that counterargument strategies and counterargument forgetfulness both
affect the process and outcomes of rumor propagation and control, with complex interactions among
the various factors [29].

Sha et al. studied the spread of rumors in information dissemination and explored the influence of
network structure and government control. The rationality of the model was verified by numerical
simulations and epidemic data fitting, emphasizing the importance of government intervention and
improving individual discrimination in information control [30]. Li et al. studied the mechanism of
online rumor propagation, analyzed the Turing instability combined with time delay and network
structure, and proposed a strategy to manage rumor propagation by adjusting network structure and

AIMS Mathematics Volume 10, Issue 2, 2295–2320.



2298

controlling propagation factors [31]. Yuan et al. established a 2SIR rumor propagation model with a
nonlinear suppression mechanism and time delay in a bilingual environment, analyzed the stability of
the equilibrium point, basic propagation number, and optimal control in homogeneous and
heterogeneous networks, and verified the theoretical results through numerical simulations [32].

The studies on the external environmental factors, inner emotions, hesitation, and forgetfulness
that contribute to the propagation of rumors have been quite comprehensive and extensive. However,
considering the differences in individuals’ ability to identify information, studies on rumor propagation
from an information recognition perspective are relatively rare. Based on the classical SIR model,
this paper adds a class of individuals: the truth communicators. Truth communicators have good
discernment ability, can access information in a timely and effective manner, can distinguish truth from
falsehood, identify rumors, and choose to spread the truth. People who lack discernment are easily
misled and quickly spread false information, leading to the spread of rumors. Therefore, improving the
public’s discernment ability can help reduce the spread of false information and build a more rational
information environment. This paper will study the problem of rumor propagation from the perspective
of individuals’ ability to identify information, thereby expanding our understanding of the issue.

The organization of the rest of this paper is as follows: Section 2 establishes the rumor propagation
model; Section 3 determines the existence of equilibrium points, calculates the basic reproduction
number, and analyzes the stability of the rumor equilibrium point. Section 4 utilizes Pontryagin’s
maximum principle to propose an optimal control strategy; Section 5 verifies the feasibility of the
above conditions through numerical simulation; Section 6 conducts a sensitivity analysis of the model
parameters; and Section 7 is the conclusion of this paper.

2. Model building

We discuss how the total number of people in this virtual community changes over time. The total
number of people in the system at time t is represented by N(t). Based on the classical SIR model, we
divide the total population into four categories. The first category is the ignorant, representing
individuals who have never heard rumors. The second category is the rumor disseminator, those
whose information discrimination ability is not strong, who choose to believe in and spread rumors.
The third category is the truth disseminator, which represents individuals with good information
processing ability that can identify the inaccuracies in rumors and choose to disseminate true
information. The fourth type is rumor immunity, indicating individuals who have encountered
rumors, learned and reflected from them, enhanced their ability to identify them, and rejected such
rumors. They are denoted by S (t), I(t), T (t), and R(t), respectively.

The number of people entering the system per unit of time is B, assuming that these people are
ignorant people who have not heard the rumor, so B is a constant. Suppose that the contact rate
between the ignorant person and the rumor spreader is α, that is, three phenomena will occur when
the ignorant person hears the rumor: 1) Some people tend to believe unconfirmed news and thus
become the disseminators of rumors. The probability is θ1, θ1 ∈ (0, 1). 2) Some individuals have good
information processing ability and can identify the truth more accurately and pass it on to others, the
probability is θ2, θ2 ∈ (0, 1). 3) The rest of the individuals exposed to the rumor are not interested in
the rumor, and turn into rumor-immune with the probability of θ3, θ3 ∈ (0, 1); where θ1 + θ2 + θ3 = 1.

After a period of rumor contact and spread, the rumor spreader encounters truth broadcasters with
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a δ contact rate, and transforms into immunizers with a ϵ probability. At the same time, the truth
transmitter will also turn into an immune with a probability of η.

Due to factors such as population deaths, it is possible for each group to exit in the same proportion,
i.e., the population migration rate is expressed by µ.

In the above analysis, all parameters are positive. Based on the above assumptions and analysis,
the flowchart of the rumor propagation model considering individual identification ability is shown in
Figure 1:

Figure 1. SITR model of rumor propagation.

We discussed the impact of individual identification abilities on the propagation of rumors.
As shown in Figure 1, the number of individuals belonging to the groups rumor ignorant, rumor

spreader, truth spreader, and rumor immunity changes as follows:
(1) In unit time, the total number of people entering the system is B, and these people are ignorant

who have not heard the rumors. When the ignorant person come into contact with the rumor spreader,
the number of rumor spreader is θ1αS I, the number of truth spreader is θ2αS (I + T ) , and the number
of rumor immune person is θ3αS (I + T ). The number of ignorant who move out of the social group at
a µ removal rate due to reasons such as death or migration is µS . Therefore, the change of the ignorant
in unit time is B − αθ1S I − αθ2S (I + T ) − αθ3S (I + T ) − µS .

(2) In unit time, after some ignorant person come into contact with a rumor spreader, the ignorant
transforms into a rumor spreader with a probability of θ1, and the number of these is θ1αS I. The rumor
spreader contacts with the probability of δ and turns into the truth spreader, and the number of these
is δIT . Since time-sensitive spreaders lose interest in rumor spreading, rumor spreaders are converted
into immune people with a probability of ϵ, whose number is ϵI. The number of rumor spreaders
who move out of the social group at a µ removal rate due to reasons, such as death or migration is µI.
Therefore, the change of rumor spreader in unit time is αθ1 S I − δIT − ϵI − µI.

(3) In unit time, after some ignorant people come into contact with rumor spreaders and truth
spreaders, the ignorant people turn into truth spreaders with the probability of θ2, and the number of
these is θ2αS (I + T ). The rumor spreader contacts with the probability of δ and turns into the truth
spreader, and the number of these people is δIT . Since time-sensitive spreaders lose interest in rumor
spreading, rumor spreaders are converted into immune people with a probability of ϵ, whose number
is ϵI. The number of truth communicators who move out of social groups at a µ removal rate due to
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reasons, such as death or migration, is µT . Therefore, the change of the truth spreader per unit time is
αθ2S (I + T ) + δIT − ηT − µT .

(4) In unit time, the proportion of ignorant people who were exposed to rumors and turned into
immune is θ3, and the number of these people is θ3αS (I + T ). Because timeliness spreaders lose
interest in rumor spreading, the number of some rumor spreaders converted to immunizers is ϵI, and
the number of truth spreaders converted to immunizers is ηT . Rumor immune persons move out of the
social group for several reasons at a µ rate, the number of which is µR. Therefore, the immune change
per unit time is ϵI + ηT + αθ3S (I + T ) − µR.

The meaning of each symbol in Figure 1 is shown in Table 1.

Table 1. Meaning of the parameters of the model.

Parameter Description
S (t) The number of ignorant people at time t
I(t) The number of rumor spreaders at time t
T (t) The number of truth spreaders at time t
R(t) The number of rumor immunizers at time t
B The number of people entering the system per unit of time
θ1 The probability of an ignoramus becoming a propagator per unit of time
θ2 The probability of an ignorant person becoming a truth spreader within a certain time period
θ3 The probability of an ignoramus becoming immune in a given time period
α The contact rate between the ignorant and rumor spreaders and truth spreaders
ϵ The probability of rumor spreaders becoming rumor immunizers
δ The rate of contact between rumor spreaders and truth spreaders
η The probability of truth spreaders becoming rumor immunizers
µ The migration rate per unit of time

Based on this, we drew a flowchart of the model, as shown in Figure 1, and constructed dynamic
equations such as (2.1).

dS
dt
= B − αθ1S I − αθ2S (I + T ) − αθ3S (I + T ) − µS

dI
dt
= αθ1S I − IT − ϵI − µI

dT
dt
= αθ2S (I + T ) + IT − ηT − µT

dR
dt
= ϵI + ηT + αθ3S (I + T ) − µR.

(2.1)

Where, B > 0, α > 0, θ1 > 0, θ2 > 0, θ3 > 0, ϵ > 0, δ > 0, η > 0, µ > 0.
S (0) = S 0 ≥ 0, I(0) = I0 ≥ 0, T (0) = T0 ≥ 0, R(0) = R0 ≥ 0.

3. Model analysis

Lemma 1. The closed set Ω =
{
(S , I,T,R) ∈ R4 | N ≤ B

µ

}
is the positive invariant set of the model

dynamics equation (2.1).
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Proof. We can get N = S + I + T + R, so

dN
dt
=

dS
dt
+

dI
dt
+

dT
dt
+

dR
dt
= B − µN.

It is easily shown that

N(t) =
B
µ
+ e−µt

(
N(0) −

B
µ

)
,

and then
lim
t→∞

N(t) =
B
µ
.

Thus, the positive invariant set of the model dynamics equation (2.1) is

Ω =

{
(S , I,T,R) ∈ R4 | N ≤

B
µ

}
.

3.1. Basic reproductive number R0

In epidemiology, R0 refers to the number of susceptible individuals in a population that are
successfully infected by an infectious agent during the entire duration of their infectious period when
placed in an environment composed of susceptible individuals. Similarly, this paper uses this concept
to indicate the number of ignorant individuals successfully infected by a rumor propagator while they
are in a healthy group during the period of rumor spreading. That is, when R0 < 1, the average
number of infected people per transmission cycle is less than 1, which means that the rumor will
disappear over time in the future. Instead, when R0 > 1, the rumor will not disappear over time and
will persist. Therefore, improving individual identification ability, enabling more people to realize the
truth and falsity of information, and avoiding the spread of false news will also help effectively reduce
R0 and prevent the spread of rumors. This paper will use the next-generation production matrix
method to calculate the basic reproduction number.

Let X =
(
I T R S

)T
, the model dynamics equation (2.1) can be written as

dX
dt
= F(X) − V(X). (3.1)

Where,

F(X) =


αθ1S I

αθ2S (I + T )
αθ3S (I + T )

0

 ,V(X) =


ϵI + µI + δIT
ηT + µT − δIT
µR − ηT − ϵI

αθ1S I + αθ2S (I + T ) + αθ3S (I + T ) + µS − B

 . (3.2)

Calculate the Jacobian matrices of F(X) and V(X) in Eq (3.1) separately.

∂F(X)
∂X

∣∣∣∣∣
E0

=


θ1αB
µ

0 0 0
θ2αB
µ

θ2αB
µ

0 0
θ3αB
µ

θ3αB
µ

0 0
0 0 0 0

 ,
∂V(X)
∂X

∣∣∣∣∣
E0

=


µ + ϵ 0 0 0

0 η + µ 0 0
−ϵ −η µ 0

θ1αB
µ
+ θ2αB

µ
+ θ3αB

µ
θ2αB
µ
+ θ3αB

µ
0 µ

 . (3.3)
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Thus, we can get

F(X) =
 θ1αB
µ

0
θ2αB
µ

θ2αB
µ

 ,V(X) =
(
µ + ϵ 0

0 η + µ

)
. (3.4)

Let λ be a characteristic value, then

∣∣∣λE − FV−1
∣∣∣ = ∣∣∣∣∣∣

λ − θ1αB
µ(µ+ϵ) 0

−
θ2αB
µ(µ+ϵ) λ − θ2αB

µ(µ+η)

∣∣∣∣∣∣ =
(
λ −

θ1αB
µ(µ + ϵ)

) (
λ −

θ2αB
µ(µ + η)

)
= 0. (3.5)

Thus, the basic reproductive number R0 = max{R1,R2}, where,

R1 =
θ1αB
µ(µ + ϵ)

, R2 =
θ2αB
µ(µ + η)

, R0 = max{R1,R2}. (3.6)

Define R0 = max{R1,R2} to ensure that the maximum extent and speed of the spread can be
predicted and controlled in the worst case scenario, so that effective response measures can be taken.

3.2. The existence of equilibrium points

According to the dynamic equations, the model’s equilibrium point without rumors is

E0 =
(

B
µ

0 0 0
)⊤
.

Theorem 1. If
δ(1 − θ1)T ∗2 + (1 − θ1)(ϵ + µ)T ∗ + Bθ1 α − µ(δT ∗ + ϵ + µ) > 0,

the equilibrium point E∗ = (S ∗, I∗,T ∗,R∗) exists.
Proof. Let N=0 in the model dynamics equation (2.1), and the right side is 0.

B − αθ1S I − αθ2S (I + T ) − αθ3S (I + T ) − µS = 0
αθ1S I − δIT − ϵI − µI = 0
αθ2S (I + T ) + δIT − ηT − µT = 0
ϵI + ηT + αθ3S (I + T ) − µR = 0.

(3.7)

We can get, 

S ∗ =
ϵ + µ + δT ∗

αθ1

R∗ =
ηT ∗ + αθ3S (I + T ) + ϵI∗

µ

I∗ =
µ2 [

(αBθ1 − ϵb∗)µ + ((ϕ + δ)θ1 + γ)Bα(α∗ + γ + ϵ)
]

α2(ϵ + µ)
[
θ1ϕ + T ∗

] .

(3.8)

And the solution of T satisfies

aT ∗3 + bT ∗2 + cT ∗ + d = 0. (3.9)

Where,
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
a = α2δ2A2(θ1 + θ2)
b = 2α2A2A1δθ2 − (α2θ2S δ + ((−A2 − 1)µ − A2ϵ − η)δα − δ2µ)αθ1

c =
(
(Bθ1α + µA1)δ + αA2A2

1αθ2 −
(
Sα2A1θ2 + (−Bδθ1 − A1(η + µ))α − δµA1

)
αθ1

)
d = (Bθ1α + µA1)A1αθ2.

(3.10)

In the above formula, A1 = µ + ϵ, A2 = 1 − θ1. Dividing both sides of Eq (3.9) by a yields:

(T ∗)3 +
b
a

(T ∗)2 +
c
a

T ∗ +
d
a
= 0. (3.11)

Let the following formula be true T ∗ = x − b
3a , we can get

x3 + px + q = 0. (3.12)

among

p =
3ac − b2

3a2 , q =
27a2d − 9abc + 2b2

27a2 . (3.13)

The solution is 

x1 =
3

√
−

q
2
+

√(q
2

)2
+

( p
3

)3
+

3

√
−

q
2
−

√(q
2

)2
+

( p
3

)3

x2 = ω
3

√
−

q
2
+

√(q
2

)2
+

( p
3

)3
+ ω2

3

√
−

q
2
−

√(q
2

)2
+

( p
3

)3

x3 = ω
2

3

√
−

q
2
+

√(q
2

)2
+

( p
3

)3
+ ω

3

√
−

q
2
−

√(q
2

)2
+

( p
3

)3
.

(3.14)

Among

ω =
−1 +

√
3i

2
. (3.15)



T ∗1 =
3

√
−

q
2
+

√(q
2

)2
+

( p
3

)3
+

3

√
−

q
2
−

√(q
2

)2
+

( p
3

)3
−

b
3a

T ∗2 = ω
3

√
−

q
2
+

√(q
2

)2
+

( p
3

)3
+ ω2

3

√
−

q
2
−

√(q
2

)2
+

( p
3

)3
−

b
3a

T ∗3 = ω
2

3

√
−

q
2
+

√(q
2

)2
+

( p
3

)3
+ ω

3

√
−

q
2
−

√(q
2

)2
+

( p
3

)3
−

b
3a
.

(3.16)

Discarding the imaginary numbers yields the final result:
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T ∗1 =
3

√
−

q
2
+

√(q
2

)2
+

( p
3

)3
+

3

√
−

q
2
−

√(q
2

)2
+

( p
3

)3
−

b
3a
. (3.17)

To achieve T ∗ > 0, one must fulfill−q
2 > 0,−q

2 >

√(
q
2

)2
+

(
p
3

)3
, b

3a < 0. When a > 0, b < 0, c <
0, d < 0, b > ac, we can get b2 < abc, 2b2 < 9abc, 27a2d − 9abc + 2b2 < 0. Thus, −q

2 > 0.When

b2 > 3ac, p < 0, we can get −q
2 >

√(
q
2

)2
+

(
p
3

)3
.

Upon summarizing, we can conclude that when[
δ(1 − θ1)T ∗2 + (1 − θ1)(ε + µ)T ∗ + Bθ1

]
α − µ(δT ∗ + ε + µ) > 0. (3.18)

is ture, the equilibrium point E∗ = (S ∗, I∗,T ∗,R∗) exists.

3.3. Stability of equilibrium points

Theorem 2. When R1 < 1, R2 < 1 is true, the equilibrium point E0 of the system is locally
asymptotically stable.
Proof. The calculations show that the Jacobian matrix at the equilibrium point E0 of the model 1
without rumors is:

J(E0) =


−µ −αB

µ
−
αθ2B
µ

−
αθ3B
µ

0 αθ1B
µ
− ε − µ 0 0

0 αθ2B
µ

αθ2B
µ
− η − µ 0

0 ε + αθ3B
µ

η + αθ3B
µ

−µ

 . (3.19)

Then the characteristic equation of matrix J(E0) can be expressed as

|λE − J(E0)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣
λ + µ αB

µ
αθ2B
µ
+ αθ3B

µ
0

0 λ − αθ1B
µ
+ ε + µ 0 0

0 −
αθ2B
µ

λ − αθ2B
µ
+ η + µ 0

0 −ε − αθ3B
µ

−η − αθ3B
µ

λ + µ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.20)

Based on the characteristic equation, the eigenvalues of the matrix J(E0) are found to be

λ1 = λ2 = −µ < 0.

If
αθ1B
µ
− ϵ − µ < 0,

αθ2B
µ
− η − µ < 0,

then
R1 < 1, R2 < 1.

leads to
λ3 < 0, λ4 < 0.

Therefore, according to the Routh—Hurwitz (RH) criterion, when

R1 < 1, R2 < 1.
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is true, the equilibrium point

E0 =

(
B
µ
, 0, 0, 0

)
of the system is locally asymptotically stable.
Theorem 3. When µ ≥ αS , µ ≥ α(θ2 + θ3)S , E0 is globally asymptotically stable.
Proof. We can construct a Lyapunov function L(t) = I(t) + T (t) + R(t), such that

L′(t) = I′(t) + T ′(t) + R′(t)
= αθ1S I − δIT − ϵI − µI

+ αθ2S (I + T ) + δIT − ηT − µT

+ ϵI + ηT + αθ3S (I + T ) − µR
= (αS − µ)I + [α(θ2 + θ3)S − µ]T − µR.

(3.21)

Therefore, when µ ≥ αS , µ ≥ α(θ2 + θ3)S is true, L′(t) is also true.
Theorem 4. When A3C2 − B4 > 0, C1 − B5 > 0, A1 + B3 > θ1B1, µ + η − θ2B1 − B4 > 0 is true, E∗ is
locally asymptotically stable.
Proof. The Jacobian matrix of E∗

J(E∗) =


−αI∗ − µ −αS ∗ −αθ2S ∗ −αθ3S ∗

αθ1I∗ αθ1S ∗ − ϵ − µ − δT ∗ −δI∗ 0
αθ2(I∗ + T ∗) αθ2S ∗ + δT ∗ αθ2S ∗ + δI∗ − µ − η 0
αθ3(I∗ + T ∗) ϵ + αθ3S ∗ η + αθ3S ∗ −µ

 . (3.22)

Let
B1 = αS ∗, B2 = αI∗, B3 = δT ∗, B4 = δI∗, B5 = αT ∗,

then the characteristic equation of J(E∗) is

|λE − J(E∗)| =

∣∣∣∣∣∣∣∣∣∣∣
λ + B2 + µ B1 A3B1 0
−θ1B2 λ + A1 − θ1B1 + B3 B4 0

−θ2B2 − θ2B5 −θ2B1 − B3 λ + µ + η − θ2B1 − B4 0
−θ3B2 − θ3B5 −ϵ − θ3B1 −η − θ3B1 λ + µ

∣∣∣∣∣∣∣∣∣∣∣ = 0. (3.23)

It is known that λ1 = −µ < 0, let

C1 = B2 + µ, C2 = A1 + B3 = θ1B1, C3 = λ + η + µ − θ2B1 − B4,

then

|λE − J(E∗)| =

∣∣∣∣∣∣∣∣∣
λ +C1 B1 A3B1

−θ1B2 λ +C2 B4

−θ2B2 − θ2B5 −θ2B1 − B3 λ +C3

∣∣∣∣∣∣∣∣∣ = 0. (3.24)

The remaining eigenvalues satisfy the equation:

|λE − J(E∗)| = a3λ
3 + a2λ

2 + a1λ + a0 = 0. (3.25)
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Where

a3 = 1,
a2 = C1 +C2 +C3,

a1 = [(B2 + B5)A2 + B4] θ2 + B2θ1B1 + B3B4 + (C2 +C3)C1 +C2C3,

a0 =
[
A2B2

1B2θ1θ2 + [(A2C2 − B4)B2 + A2C2B5 + B4(C1 − B5)] θ2+

B2θ1(A2B3 +C3)] B1 +C1(B3B4 +C2C3).

When the conditions A3C2−B4 > 0, C1−B5 > 0, A1+B3 > θ1B1, µ+η−θ2B1−B4 > 0 are satisfied,
then the following must also be true: a0 > 0, a1a2 − a3a0 > 0. According to the Routh—Hurwitz
criterion, the equilibrium point E∗ where rumors spread is locally asymptotically stable.
Theorem 5. If R0 > 1, the equilibrium point of system E∗ is globally asymptotically stable.
Proof. Create the Lyapunov function.

W ′(t) = [(S (t) − S ∗(t)) + (I(t) − I∗(t)) + (T (t) − T ∗(t)) + (R(t) − R∗(t))] . (3.26)

W ′(t) = 2 [(S (t) − S ∗(t)) + (I(t) − I∗(t)) + (T (t) − T ∗(t)) + (R(t) − R∗(t))]
×

[
S ′(t) + I′(t) + T ′(t) + R′(t)

]
= 2 [(S (t) − S ∗(t)) + (I(t) − I∗(t)) + (T (t) − T ∗(t)) + (R(t) − R∗(t))]
×

[
B − µS − µI − µT − µR

]
.

(3.27)

Because E∗ exists, and B − µS − µI − µT − µR = 0 is equal to
B = µS ∗ − µI∗ − µT ∗ − µR∗ = 0, thus,

W ′(t) = 2 [(S (t) − S ∗(t)) + (I(t) − I∗(t)) + (T (t) − T ∗(t)) + (R(t) − R∗(t))]
×

[
µS ∗ − µI∗ − µT ∗ − µR∗ − µS − µI − µT − µR

]
= −2µ [(S − S ∗) + (I − I∗) + (T − T ∗) + (R − R∗)] ≤ 0.

(3.28)

Therefore, according to the Lyapunov—Lasalle invariant set principle, E∗ is globally asymptotically
stable.

4. Optimal control analysis

The main role of optimal control in rumor propagation is to effectively reduce the spread speed and
influence of rumors through means such as monitoring, information intervention, and public education,
thereby maintaining social stability and information accuracy.

Based on the above-mentioned rumor-spreading model, three control objectives were proposed.
That is, within a certain control time interval, on the one hand, the contact rate between the ignorant
and the rumor spreaders should be controlled so that the number of rumor spreaders decreases
gradually. Increasing the contact rate between rumor spreaders and truth spreaders makes the number
of truth spreaders grow larger. On the other hand, the number of rumor spreaders who are
transforming into truth spreaders is increasing; the research institute is studying the corresponding
optimal control problem.
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Therefore, the three proportional constants α, ϵ, δ in the model are replaced with the control
variable α(t), ϵ(t), δ(t). Use control parameter α(t) to control the proportion of naive individuals who
are transformed into rumor spreaders. When rumors spread, ordinary individuals lack good
information discrimination ability and find it difficult to effectively identify the authenticity of
information. Therefore, through education, people’s ability to identify rumors should be enhanced,
and they should be trained to effectively recognize false information, thereby reducing the spread of
misleading information. Control parameter ϵ(t) will reduce the number of rumor spreaders and
increase the number of immune individuals. Because individuals pay more attention to and identify
with the rumors they are interested in, these rumors spread at a higher speed and to a wider extent in
social networks. Therefore, the government and relevant institutions should proactively release
transparent information and respond promptly to public concerns. As a result, the proportion of rumor
spreaders will decrease. Control parameter δ(t) can make rumor spreaders more likely to become
truth spreaders. In an environment with an abundance of information, individuals may selectively
receive information that conforms to their preconceived notions, while ignoring or rejecting facts that
refute rumors, leading to the continued spread of rumors on social networks. Therefore, the
government can set up a reward system to encourage those who actively spread the truth, enhancing
their sense of participation and enthusiasm.

Based on the above analysis, the definition of the objective function is as follows:

J(α, ϵ, δ) =
∫ t

0

[
I(t) + T (t) +

c1

2
α2(t) +

c2

2
ϵ2(t) +

c3

2
δ2(t)

]
dt. (4.1)

Seeking the optimal control strategy to minimize the objective functional within the control period,
while satisfying the following state equation:

S ′ = B − α(t)θ1S I − α(t)θ2S (I + T ) − α(t)θ3S (I + T ) − µS ,
I′ = α(t)θ1S I − δ(t)IT − ϵ(t)I − µI,

T ′ = α(t)θ2S (I + T ) + δ(t)IT − ηT − µT,

R′ = ϵ(t)I + ηT + α(t)θ3S (I + T ) − µR.

(4.2)

And the initial conditions

S (0) = S 0, I(0) = I0,T (0) = T0,R(0) = R0. (4.3)

Therefore, α(t), ϵ(t), δ(t) is a measurable function, where α(t), ϵ(t), δ(t) ∈ U and 0 ≤ α(t), ϵ(t), δ(t) ≤
1, ∀t ∈ [0, t f ], t f frepresents the end of the time interval being controlled, assuming that the starting
point of the controlled time interval is the zero hour. U represents the allowable set, while c1 and c2, c3

represent the control strength and importance of the two control measures.

4.1. The existence of optimal control

Theorem 6. Under the condition that the model dynamics equation (2.1) and initial conditions are
satisfied, there exists an optimal control µ∗ = (α∗, ϵ∗, δ∗) ∈ U such that the following equation holds:

J(α∗, ϵ∗, δ∗) = min J(α(t), ϵ(t), δ(t)), α(t), ϵ(t), δ(t) ∈ U. (4.4)
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Proof. According to the classical optimal control literature, in order to prove the existence of optimal
control, it is sufficient to verify the following five conditions:

(1) Both the control variable and the state variable are nonnegative.
(2) The set of admissible sets U is a convex set and a closed set.
(3) The integrand in the objective functional is a convex function defined on the admissible set U.
(4) The right-hand side of the state system is a linearly bounded function of the control variables and

state variables.
(5) There are constants d1, d2 > 0 and g > 1 such that the integrand in the objective functional is:

L(t;α; ϵ; δ) ≜ I(t) + T (t) +
c1

2
α2(t) +

c2

2
ϵ2(t) +

c3

2
δ2(t). (4.5)

And satisfies:

L(t;α; ϵ; δ) ≥ d1

(
|α|2 + |ϵ |2 + |δ|2

) g
2
− d2. (4.6)

Only when all five of the above conditions are met can the existence of optimal control be proven.
Conditions (1)–(3) are clearly met, and now we only need to prove conditions (4) and (5).

Given N(t) = S (t) + I(t) + T (t) + R(t) and upper bounds N(t) for the state variables, the following
equation holds: 

S ′ < B,

I′ < θ1αS (t)I(t),
T ′ < θ2αS (t)(I(t) + T (t)) + δI(t)T (t),
R′ < θ3αS (t)(I(t) + T (t)) + ϵI(t) + ηT (t).

(4.7)

Then, condition (4) holds. For the final condition: L(t;α; ϵ; δ) ≥ d1

(
|α|2 + |ϵ |2 + |δ|2

) g
2
− d2. Take

d1 = min
{

c1
2 ,

c2
2 ,

c3
2

}
and any d2 ∈ R

+, g = 2 and it also satisfies the condition.

4.2. Optimal control strategy

In order to better control rumor propagation, optimal control will be implemented. We can define a
Hamiltonian function with a penalty term as follows:

H = I(t) + T (t) +
c1

2
α2(t) +

c2

2
ϵ2(t) +

c3

2
δ2(t)

+ λ1
[
B − α(t)θ1S I − α(t)θ2S (I + T ) − α(t)θ3S (I + T ) − µS

]
+ λ2

[
α(t)θ1S I − δ(t)IT − ϵ(t)I − µI

]
+ λ3

[
α(t)θ2S (I + T ) + δ(t)IT − ηT − µT

]
+ λ4

[
ϵ(t)I + ηT + α(t)θ3S (I + T ) − µR

]
− ω11α(t) − ω12(1 − α(t)) − ω21ϵ(t)
− ω22(1 − ϵ(t)) − ω31δ(t) − ω32(1 − δ(t)).

(4.8)

Where ωi j(t) ≥ 0 is the punishment operator that satisfies:

ω11(t)α∗ = ω12(t)(1 − α∗) = 0,
ω21(t)ϵ∗ = ω22(t)(1 − ϵ∗) = 0,
ω31(t)δ∗ = ω32(t)(1 − δ∗) = 0.

(4.9)
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Theorem 7. There exists a consistent variable λi (i = 1, 2, 3, 4) that satisfies:



λ′1 = λ1
[
α(t)θ1I + α(t)θ2(I + T ) + α(t)θ3(I + T ) + µ

]
− λ2θ1α(t)I − (λ3θ2 + λ4θ3)α(t)(I + T ),

λ′2 = −1 + λ1 [α(t)θ1S + α(t)θ2S + α(t)θ3S ]
− λ2

[
θ1α(t)S − δ(t)T − ϵ(t) − µ

]
− λ3 [θ2α(t)S + δ(t)T ] − λ4 [θ3α(t)S + ϵ(t)] ,

λ′3 = −1 + λ1 [α(t)θ2S + α(t)θ3S ] + λ2δ(t)I
− λ3

[
θ2α(t)S + δ(t)I − η − µ

]
− λ4

[
θ3α(t)S + η

]
,

λ′4 = λ4µ.

(4.10)

Furthermore, the expression for optimal control is given by (α∗, ϵ∗, δ∗).



α∗ = min
(
1,max

(
0,

1
c1

[λ1 (θ1S I + θ2S (I + T ) + θ3S (I + T ))

−λ2θ1S I − (λ3θ2 + λ4θ3) S (I + T ) + ω11 − ω12]))

ϵ∗ = min
(
1,max

(
0,

1
c2

[(λ2 − λ4) I + ω21 − ω22]
))

δ∗ = min
(
1,max

(
0,

1
c3

[(λ2 − λ3) IT + ω31 − ω32]
))
.

(4.11)

Proof. According to Pontryagin’s maximum principle, by calculating the reciprocal of each state
variable to the Hamiltonian operator, a system of covariates can be obtained. The covariate system is:

λ′1 = −
∂H
∂S
, λ′2 = −

∂H
∂I
, λ′3 = −

∂H
∂T
, λ′4 = −

∂H
∂R
. (4.12)

The definite solution condition for a cooperative system is λi(t f ) = 0, i = 1, 2, 3, 4. Let us now
discuss how to obtain the optimal conditions. Taking the partial derivative of the Hamiltonian operator
H with respect to the state variable U = (α, ϵ, δ) and setting the derivative equal to zero yields:



∂H
∂α
= c1α(t) − [λ1 (θ1S I + (θ2 + θ3)(S (I + T )))

+ λ2θ1S I + (λ3θ2 + λ4θ3) S (I + T ) − ω11 + ω12
]
= 0

∂H
∂ϵ
= c2ϵ(t) − λ2I + λ4I − ω21 + ω22 = 0

∂H
∂δ
= c3δ(t) − λ2IT + λ3IT − ω31 + ω32 = 0.

(4.13)

Find the optimal control expression from this:
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

α∗ =
1
c1

[λ1 (θ1S I + θ2S (I + T ) + θ3S (I + T ))

− λ2θ1S I − (λ3θ2 + λ4θ3) S (I + T ) + ω11 − ω12
]

ϵ∗ =
1
c2

[(λ2 − λ4)I + ω21 − ω22]

δ∗ =
1
c3

[(λ2 − λ3)IT + ω31 − ω32] .

(4.14)

To obtain the optimal control without the punishment term ω11, ω12, the final expressions of the
three optimal controls will be considered separately.

First, consider option α∗, considering the following three scenarios:
(1) On set0 < α∗(t) < 1, let ω11(t) = ω12(t) = 0, so the optimal control is

α∗ =
1
c1

[λ1 (θ1S I + θ2S (I + T ) + θ3S (I + T ))

−λ2θ1S I − (λ3θ2 + λ4θ3) S (I + T )] . (4.15)

(2) On set α∗(t) = 1, let ω11(t) = 0 have

1 = α∗ =
1
c1

[λ1 (θ1S I + θ2S (I + T ) + θ3S (I + T ))

− λ2θ1S I − (λ3θ2 + λ4θ3) S (I + T )
−ω12] . (4.16)

(3) On set α∗(t) = 0, let ω12(t) = 0 have

0 = α∗ =
1
c1

[λ1 (θ1S I + θ2S (I + T ) + θ3S (I + T ))

− λ2θ1S I − (λ3θ2 + λ4θ3) S (I + T )
+ω11] . (4.17)

Therefore, the final expression for the optimal control α∗(t) is:

α∗ = min
{

1,max
{

0,
1
c1

[λ1 (θ1S I + θ2S (I + T ) + θ3S (I + T ))

− λ2θ1S I − (λ3θ2 + λ4θ3) S (I + T )
+ω11 − ω12]}} . (4.18)

Similarly, the final expression of the optimal control ϵ∗(t), δ∗(t) is:

ϵ∗ = min
{

1,max
{

0,
1
c2

[(λ2 − λ4)I + ω21 − ω22]
}}
. (4.19)
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δ∗ = min
{

1,max
{

0,
1
c3

[(λ2 − λ3)IT + ω31 − ω32]
}}
. (4.20)

Therefore, the optimal control system is

S ′ = B − α(t)θ1S I − α(t)θ2S (I + T ) − α(t)θ3S (I + T ) − µS
I′ = α(t)θ1S I − δ(t)IT − ε(t)I − µI

T ′ = α(t)θ2S (I + T ) + δ(t)IT − ηT − µT

R′ = ε(t)I + ηT + α(t)θ3S (I + T ) − µR
λ′1 = λ1[α(t)θ1I + α(t)θ2(I + T ) + α(t)θ3(I + T ) + µ]

− λ2θ1α(t)I − (λ3θ2 + λ4θ3)α(t)(I + T )
λ′2 = −1 + λ1[α(t)θ1S + α(t)θ2S + α(t)θ3S ]

− λ2[θ1α(t)S − δ(t)T − ε(t) − µ]
− λ3[θ2α(t)S + δ(t)T ] − λ4[θ3α(t)S + ε(t)]

λ′3 = −1 + λ1[α(t)θ2S + α(t)θ3S ] + λ2δ(t)I
− λ3[θ2α(t)S + δ(t)I − η − µ] − λ4[θ3α(t)S + η]

λ′4 = λ4µ.

and
S (0) = S 0, I(0) = I0, T (0) = T0, R(0) = R0,

λi(t f ) = 0 for i = 1, 2, 3, 4.

5. Numerical simulation

To analyze the stability and periodicity of the model dynamics equation (2.1), numerical
simulations were conducted using optimization algorithms. Suppose we are analyzing the spread of
rumors on a social media platform. Every day, many new users join this platform, and some of them
post and spread rumors. Suppose that 2,000 new users join the platform every day, and they have no
idea about its content. Some users began to spread false information on the platform by forwarding
rumors, commenting, and giving likes. Each rumor spreader can come into contact with 10 ignorant
people every day, and there is a 1% probability of converting these ignorant people into new
spreaders. Meanwhile, 5% of the rumor spreaders no longer participate in spreading rumors or stop
using social media every day, resulting in a decrease in their number. During this process, 2,000 new
users join the platform every day, which is the number of people entering the system per unit time, B.
If 5% of the rumor spreaders no longer participate in spreading or stop using social media every day,
this is the exit rate of the social group within a unit of time. The statement that each rumor spreader
can come into contact with 10 ignorant people every day indicates the probability of contact between
ignorant people and rumor spreaders. In this paper, the numerical simulation of the model dynamics
equation (2.1) was carried out based on the parameter values from relevant similar literature, and the
rationality of the theoretical analysis results and conclusions mentioned above was verified.
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5.1. Numerical simulation of system stability

In the relevant literature, there is no uniform standard for the range of values of model parameters,
and in most cases, these parameters are limited to positive numbers. Therefore, we referred to the
numerical values in the existing literature and combined the requirements of stability conditions to
set the parameter values in the numerical simulation. Through numerical simulations, we verified
the rationality of the theoretical results. Meanwhile, we simulated the parameter values and optimal
control, and the simulation results further supported our conclusions.

First, the stability of the equilibrium point is analyzed, as shown in Figures 2 and 3. Then, the
effects of various parameters in the model dynamics equation (2.1) on the model were discussed, as
shown in Figures 4–6.

Let B = 1, α = 0.7, θ1 = 0.5, θ2 = 0.3, θ3 = 0.2, ϵ = 0.3, δ = 0.6, η = 0.2, µ =
0.7 and calculate the following: R1 = 0.5 < 1,R2 = 0.3 < 1. As shown in Figure 2, it can be seen that
the number of I(t),T (t),R(t) tends to approach 0 while the number of S (t) tends to approach 1. In other
words, in an idealized rumor propagation model, as time goes on, the number of rumor spreaders will
eventually disappear, S (t) will ultimately equal the total number of individuals in the rumor system,
and individuals in the system will tend to stabilize. This means that rumors have a limited lifespan, and
they eventually die out as the group’s perception changes and the transmission channels break down.
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Figure 2. Stability of equilibrium point E0.
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Figure 3. Stability of equilibrium point E∗.

Similarly, let B = 1, α = 0.6, θ1 = 0.6, θ2 = 0.1, θ3 = 0.3, ε = 0.4, δ = 0.2, η = 0.2, µ = 0.3,
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and calculate A3C2 − B4 > 0, C1 − B5 > 0, A1 + B3 > θ1B1, µ + η − θ2B1 − B4 > 0, where
the parameter values are set to satisfy the conditions of Theorem 4. At this point, Figure 3 clearly
shows that the equilibrium point E∗ where rumor spreads is locally asymptotically stable under these
parameters.

From Figure 3, it can be seen that in the early stages of rumor propagation, individuals with different
levels of awareness have different perceptions of the rumor. Therefore, the number of I(t),T (t) will
drop sharply in a short period of time and then stabilize, while the number of R(t) will rise sharply in a
short period of time and reach a peak, then start to decline and eventually stabilize. The above trends
indicate that rumors are manageable over time, but they will not disappear and will continue to exist.

To investigate the impact of different parameter values on rumor propagation in the model dynamics
equation (2.1), we plotted the relationship between parameter changes and changes in the number of
cabins, and drew conclusions from the resulting graph.

The following Figure 4 shows the variation of the number of I(t) with different values of parameters
α, δ, ε, θ1. As shown in the chart, α, θ1 is positively correlated with I(t), while δ, ε is negatively
correlated with I(t). Therefore, in order to reduce the number of I(t), the value of α, θ1 needs to be
reduced and the value of δ, ε needs to be increased.
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Figure 4. The effect of parameters α, δ, ε, θ1 on the number of I(t).

The following Figure 5 shows the variation of the number of T (t) with different values of α, δ, η,
and θ2. As shown in the chart, α, δ, and θ2 are positively correlated with T (t), while η is negatively
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correlated with T (t). Therefore, to increase T (t), the values of α, δ, and θ2 need to be increased, and
the value of η needs to be reduced.
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Figure 5. The effect of parameters α, δ, η, and θ2 on the number of T (t).

The following Figure 6 shows the variation trend of the number of R(t) with different values of α,
ε, η, and θ3. As shown in the figure, α, ε, η, and θ3 are positively correlated with R(t). Therefore, in
order to increase R(t), the values of α, ε, η, and θ3 need to be increased.

In summary, to reduce the spread of rumors in society, it is necessary to reduce the contact rate
between ignorant people and rumor spreaders, increase the probability of rumor spreaders transforming
into truth spreaders, and raise the immunity rate. Therefore, to reduce the spread of rumors, we will
control the spread of rumors by controlling the value of parameter α, ε, δ.

5.2. Optimal control analysis

Figure 7 was created by varying the values of α, ε, and δ.
Because optimal control primarily controls the population density of rumor spreaders and truth

spreaders, Figure 7 shows I(t),T (t). It is clearly evident that the optimal control outperforms the
intermediate control and the single control. Under optimal control, the number of rumor spreaders
eventually decreases to zero, while the number of truth spreaders gradually increases, effectively
controlling the spread of rumors.
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In real life, we can take specific measures to control parameters and the spread of rumors. Therefore,
the government should promote the use of information verification websites and tools, so that the
public can easily verify information they receive. Meanwhile, the government can strengthen the
rumor reporting mechanism, encourage users to report false information, and promptly handle and
delete false content, thus effectively suppressing the spread of rumors.
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Figure 6. The effect of parameters α, ε, η, and θ3 on the number of R(t).
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6. Sensitivity analysis

To discuss the impact of parameters α, ε, β, and η on R1 and R2, we analyzed the basic reproductive
numbers

R1 =
θ1αB
µ(µ + ε)

, R2 =
θ2αB
µ(µ + η)

and created a three-dimensional relationship graph, as shown in Figures 8 and 9.
We can calculate

∂R1

∂α
=
θ1B
µ(µ + ε)

> 0,
∂R1

∂ε
= −

εθ1αB
µ(µ + ε)2 < 0. (6.1)

The above formula shows that when α increases, the basic reproduction number R1 also increases,
indicating that as the contact rate between ignorants and rumor spreaders increases, the number of
rumor spreaders will also increase. On the other hand, when ϵ increases, R1 decreases, which
indicates that the probability of rumor spreaders becoming immune is higher, and the number of
rumors in the system will be fewer. Therefore, reducing the contact rate between ignorant people and
rumor spreaders, and increasing the probability of transforming spreaders into immune individuals,
can effectively reduce the spread of rumors and control them.

∂R2

∂α
=
θ2B
µ(µ + η)

> 0, (6.2)

∂R2

∂η
= −

εθ2αB
µ(µ + η)2 < 0. (6.3)

The above formula shows that when α increases, the basic reproduction number R2 also increases,
indicating that as the rate of contact between ignorants and truth spreaders increases, the number of
truth spreaders will also increase. On the other hand, when η increases, R2 decreases, which indicates
that the probability of truth spreaders becoming immune increases, and the number of immune
individuals increases accordingly. Therefore, increasing the exposure rate of uninformed individuals
to truth spreaders and increasing the probability of transforming spreaders into immunized individuals
can effectively reduce the spread of rumors and control them.

Figure 8. 3D plot of basic reproductive numbers R1 and α, ε
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Figure 9. 3D plot of basic reproductive numbers R2 and α, η

7. Conclusions

This paper builds on the classic SIR model and takes into account the individual’s ability to
process information in rumor spreading, establishing the SITR model. It analyzes the basic
reproduction number, equilibrium point, and stability of rumors, and takes optimal control strategies.
Through numerical simulations, the theoretical results are verified.

The main conclusions of this paper are as follows:
(1) When the basic reproduction number R < 1 is reached, rumors in the system will disappear over

time; when the basic reproduction number R > 1 is reached, rumors in the system will not disappear
and will eventually reach a stable state.

(2) Reducing the contact rate between S (t) and I(t) increasing the probability of I(t) converting to
T (t) and raising the probability of spreaders becoming immune can all help to suppress the spread of
rumors to varying degrees.

(3) While effective measures such as market regulation and dissemination of correct knowledge can
control the spread of rumors, they cannot completely prevent them.

Rumors are a complex social phenomenon that involves various environments and factors, and
further research on the subject is needed. This article conducted a preliminary exploration of the
impact of individual differences in discernment ability on rumor propagation. In addition to the
changes in different compartments considered in this paper, the influence of hesitant individuals on
rumor spreading or the effect of the interaction between external environment and individual
psychology on rumor spreading can also be introduced. Besides, the model in this paper assumes that
everyone acts in the same way, which has certain limitations, because an individual’s behavior may be
influenced by various factors such as cultural background and social roles. It is expected that future
research can further refine model building and validation, provide more effective strategies for
suppressing rumor propagation, and provide a healthy information environment for society.
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