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Abstract: Let H be a simple, undirected, connected graph represented by its adjacency matrix A. For a
vertex u ∈ V(H), the generalized Gaussian subgraph centrality of u in H is GS C(u, β) = exp

(
−βA2

)
uu

,
where β > 0 is the real number and represents the temperature. Furthermore, the generalized Gaussian
Estrada index of H is GEE(H, β) =

∑n
i=1 exp

(
−βµ2

i

)
=

∑n
u=1 GS C(u, β), where µ1, µ2, . . . , µn are the

eigenvalues of A and β > 0. This study presents new computational formulas for the GS C(u, β)
of graphs by employing an equitable partition and the star sets technique. We also investigated the
influence of the parameter β on the robustness of the formula through experiments. Additionally, we
established some bounds for GEE(H, β).

Keywords: generalized Gaussian Estrada index; generalized Gaussian subgraph centrality; statistical
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1. Introduction

For a simple, undirected, connected graph H = (V(H), E(H)), let A represent the adjacency matrix
of H, and let du denote the degree of vertex u in H. Assuming that the eigenvalues of A are µ1 > µ2 ≥

· · · ≥ µn.
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The centrality of the node study is a significant research direction in network science and graph
theory. The centrality of a node describes how important a node is in a network [1, 2]. The concept of
node centrality comes from Leavitt’s analysis of the influence between the behavior of small groups and
their mode of communication in 1951 [3]. Soon after, many scholars defined and studied the centrality
index of nodes from different perspectives, such as degree centrality [4], closeness centrality [5], energy
centrality [6], and so on [7]. The research on node centrality has excellent significance for the solution
of practical problems such as the robustness of the actual network [8], the propagation efficiency in the
control network [9], and the understanding of the structural characteristics of the network [10].

The matrix functions have become an essential mathematical tool for studying network science
[11]. The node centrality index is based on the matrix function with an adjacency matrix, including
subgraph centrality [12,13], total communicability centrality [14], Katz centrality [15], and so on [16].
The above definition of centrality gives weight to the adjacency matrix’s extreme eigenvalues (the
largest and the smallest). Such a weighting scheme is characterized by hiding the primary structural
information in other eigenvalues [17]. For example, consider a connected graph H. If the spectral
gap µ1 − µ2 is significantly large, then the matrix exponential exp(A) is primarily influenced by µ1

and its corresponding eigenvector. Consequently, the information the remaining part of the spectrum
provides is largely overlooked [18]. An exception to this is the Gaussian function exp(−A2), which
places greater emphasis on the zero eigenvalues (if they exist) and those eigenvalues that are close
to it [19]. This matrix function explores the central part of the spectrum, revealing crucial structural
information about the graphs and networks studied [17]. The zero eigenvalue and eigenvalues near zero
of A play a critical role in determining molecules’ magnetic and stability properties when A represents
the tight-binding Hamiltonian in HMO (Hückel molecular orbital) theory [20, 21]. Many chemical
reactivities are closely linked to the HOMO-LUMO gap, which corresponds to the smallest positive
and the largest negative eigenvalues of A in frontier molecular orbital theory [22–25]. For example,
the transfer of electrons from the HOMO of one molecule to the LUMO of another molecule is crucial
in various organic chemical reactions [26]. Estrada et al. defined Gaussian subgraph centrality by
exploring the influence of near-zero eigenvalues (i.e., “middle eigenvalues”) on graph structure by the
Gaussian function [17, 18].

For a vertex u ∈ V(G), the generalized Gaussian subgraph centrality of u [18] is defined as

GS C(u, β) = exp
(
−βA2

)
uu
,

where β > 0. Furthermore, the generalized Gaussian Estrada index of a graph [18] is defined as

GEE(H, β) =
n∑

u=1

exp
(
−βA2

)
uu
=

n∑
i=1

exp
(
−βµ2

i

)
,

where β > 0. Notice that the GS C(u, 1) and GEE(H, 1) are called the Gaussian subgraph centrality
and the Gaussian Estrada index, respectively. According to the rules of quantum mechanics, in
a network of particles, the generalized Gaussian Estrada index can be interpreted as the partition
function of the system, utilizing a Hamiltonian derived from the A2 folded spectrum method [27]. The
GEE(H, β) relates to the time-dependent Schrödinger equation involving the squared Hamiltonian,
which uncovers information in the eigenvalues close to zero [28, 29]. In recent years, with the
deepening research in network science [30–32]. Scholars have discovered that Gaussian functions
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have important applications in capturing the structural signals of graphs [33], graph classification [34],
and graph representation learning [35] in random and dynamic networks.

Equitable partition (EP) was initially introduced in [36,37] and is defined as follows. Consider H to
be a graph with n vertices, and τ to be a partition of V(H) with V1 ∪ V2 ∪ · · · ∪ Vt. If constants bi j exist
so that every vertex in the cell Vi has bi j neighbors in the cell V j for all i, j ∈ {1, 2, . . . , t}, then τ is an
EP. The matrix

(
bi j

)
t×t

is the divisor matrix of τ. Every graph G possesses EP, as the orbits of any group
of automorphisms of G create an EP [38]. EP has many applications in fields such as control theory,
chemical analysis, and data clustering [39–41]. The spectrum of (bi j)t×t is contained in that of H [37].
The matrix C serves as the characteristic matrix for τ, with its columns representing the characteristic
vectors of the subsets V1, . . . ,Vt.

The concept of the star set and the star complement was introduced by [38, 45]. For an eigenvalue
µ of the graph H with multiplicity k, a star set for µ in H is a subset of vertices X ⊆ V(H) such that
|X| = k and the induced subgraph G − X do not possess µ as an eigenvalue. In this scenario, G − X is
referred to as the star complement for µ in H. As well known, a star set exists for any eigenvalue of
any graph [46, 47]. Further investigations into star set and star complement are studied in [48, 49].

Since EP and star set exist for any eigenvalue of any graph, this study employs the methods of
EP and star set to derive new equations for the GS C(u, β) of graphs. These equations can assist in
calculating the GS C(u, β) of a large graph by utilizing the structures of a smaller graph. Moreover,
some bounds for the GS C(u, β) of H are established based on the graph parameters of H. The rest of
this paper is structured as follows. In Section 2, we give some lemmas used later. Section 3 details the
generalized Gaussian subgraph centrality calculation formula in the context of the equitable partitions
of graphs and star complements technique method. The influence of the parameter β on the robustness
of the formula is explored through experiments. Section 4 introduces some bounds for the generalized
Gaussian Estrada index using the graph parameters for graph H. Section 5 conclusions are given.

2. Preliminaries

In this paper, let I denote the identity matrix and A represent the adjacency matrix of the graph H.
For a graph H with order n that has an EP with V(H) = V1∪V2∪· · ·∪Vt, the corresponding characteristic
matrix C is an n × t matrix whose columns consist of the characteristic vectors of V1, . . . ,Vt.

Next, we present the relationship between the characteristic, adjacency, and divisor matrices.

Lemma 2.1. [36] Let τ be an EP of graph H with characteristic matrix C and divisor matrix B. Then

AC = CB.

Here is the standard for determining whether a vertex subset qualifies as a star set.

Lemma 2.2. [46, 47] Let X ⊆ V(H) and the adjacency matrix of the subgraph induced by X be AX,

and A =
(
AX T⊤

T P

)
. Then X is a star set for an eigenvalue µ of H if and only if µ is not an eigenvalue

of P and

µI − AX = T⊤(µI − P)−1T.
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Lemma 2.3. [54] Let G be a graph with n vertices and m edges. Then
n∑

i=1

d2
i ≤ m

(
2m

n − 1
+ n − 2

)
.

3. Calculation of generalized Gaussian subgraph centrality for graph

We formulate the generalized Gaussian subgraph centrality using the EP for graph H and compute
its values with a smaller order matrix as follows.

Theorem 3.1. Suppose that H has an EP with V(G) = V1 ∪ V2 ∪ · · · ∪ Vt and V1 = {u}, then

GS C(u, β) = (exp(−βB2))V1V1 ,

where B is the divisor matrix of EP.

Proof. Consider C and B as the characteristic and divisor matrices of EP, respectively. According to
Lemma 2.1, then

exp(−βA2)C =
∞∑

k=0

1
k!

(−β)kA2kC = C
∞∑

k=0

1
k!

(−β)kB2k = C exp(−βB2).

Since V1 = {u}, we get

(exp−βA2)uu = (exp(−βA2)C)uV1 = (C exp(−βB2))uV1 = (exp(−βB2))V1V1 .

Hence

GS C(u, β) = (exp(−βA2))uu = (exp(−βB2))V1V1 .

□

Let H1 and H2 be two graphs; the join of H1 and H2 is the graph H1 ⊗ H2 such that V (H1 ⊗ H2) =
V (H1) ∪ V (H2) and E (H1 ⊗ H2) = E (H1) ∪ E (H2) ∪ {xy : x ∈ V (H1) and y ∈ V (H2)}. Furthermore,
if H2 is a complete graph K1, then H1 ⊗ K1 is also called a cone over H1 [38].

Theorem 3.2. Let H1 be an r-regular graph on n vertices and H = H1 ⊗ K1. If u ∈ V(K1), then

GS C(u, β) =
−r +

√
r2 + 4n

2
√

r2 + 4n
exp

−2r2 + 4n + 2r
√

r2 + 4n
4

β


+

r +
√

r2 + 4n

2
√

r2 + 4n
exp

−2r2 + 4n − 2r
√

r2 + 4n
4

β

 .
Proof. Since H has an EP with V(H) = {u} ∪ V(H1), it follows that the divisor matrix of EP is B =(
0 n
1 r

)
. By matrix diagonalization, we have

B = S
 r+
√

r2+4n
2 0
0 r−

√
r2+4n
2

 S−1,
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where the eigenvalues of divisor matrix B are µ1(B) = r+
√

r2+4n
2 and µ2(B) = r−

√
r2+4n
2 , respectively.

Let

S =
−r+

√
r2+4n

2 − r+
√

r2+4n
2

1 1

 ,
and

S−1 =

 1
√

r2+4n
r+
√

r2+4n
2
√

r2+4n

− 1
√

r2+4n
−r+
√

r2+4n
2
√

r2+4n

 .
So, we can obtain

B2 = S
 2r2+4n+2r

√
r2+4n

4 0
0 2r2+4n−2r

√
r2+4n

4

 S−1.

Therefore,

exp
(
−βB2

)
= S

exp
(
−2r2+4n+2r

√
r2+4n

4 β
)

0

0 exp
(
−2r2+4n−2r

√
r2+4n

4 β
) S−1

= S


1

√
r2+4n

exp
(
−2r2+4n+2r

√
r2+4n

4 β
)

r+
√

r2+4n
2
√

r2+4n
exp

(
−2r2+4n+2r

√
r2+4n

4 β
)

− 1
√

r2+4n
exp

(
−2r2+4n−2r

√
r2+4n

4 β
)
−r+
√

r2+4n
2
√

r2+4n
exp

(
−2r2+4n−2r

√
r2+4n

4 β
) .

According to Theorem 3.1, we have

GS C(u, β) =
−r +

√
r2 + 4n

2
√

r2 + 4n
exp

−2r2 + 4n + 2r
√

r2 + 4n
4

β


+

r +
√

r2 + 4n

2
√

r2 + 4n
exp

−2r2 + 4n − 2r
√

r2 + 4n
4

β

 .
□

Next, we calculate the generalized Gaussian subgraph centrality for a windmill graph by Theorem
3.2.

Example 3.3. The Fs = K1 ⊗ (sK2) is also called the windmill graph with order 2s + 1. The spectra of
Fs are

{
1±
√

8s+1
2 ,−1[m], 1[m−1]

}
[38]. From Theorem 3.2, if u ∈ V(K1), where its degree is 2s, then

GS C(u, β) =
−1 +

√
8s + 1

2
√

8s + 1
exp

− √8s + 1 + 4s + 1
2

β


+

1 +
√

8s + 1

2
√

8s + 1
exp

 √8s + 1 − 4s − 1
2

β

 .
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The eigenvalues of Fs are known; we have

GEE (Fs, β) = (2s − 1) exp (−β) + exp
(
−

√
8s + 1 + 4s + 1

2
β

)
+ exp

( √
8s + 1 − 4s − 1

2
β

)
.

If v ∈ V(sK2), where their degree is 2. Obviously, the GS C(v, β) values of these vertices are the
same, then

GS C(v, β) =
1
2s

(2s − 1) exp (−β) +
1 +
√

8s + 1

2
√

8s + 1
exp

− √8s + 1 + 4s + 1
2

β


+
−1 +

√
8s + 1

2
√

1 + 8s
exp

 √8s + 1 − 4s − 1
2

β

 .
We further give the generalized Gaussian subgraph centrality formula of a class multicone graph by

Theorem 3.2.

Example 3.4. The Rs,n = K1 ⊗ (sCn) is called the multicone graph with order sn + 1, where n ≥ 3.
If s > 1, the spectra of Rs,n are {1 ±

√
sn + 1, 2 cos 2kπ

n
[s]
, 2[s−1]}, where k = 1, 2, · · · , n − 1. If s = 1,

the spectra of Rs,n are {1 ±
√

n + 1, 2 cos 2kπ
n }, where k = 1, 2, · · · , n − 1 [50]. From Theorem 3.2, if

u ∈ V(K1), where its degree is sn, then

GS C(u, β) =
−1 +

√
sn + 1

2
√

sn + 1
exp

(
−

(
2 + sn + 2

√
sn + 1

)
β
)

+
1 +
√

sn + 1

2
√

sn + 1
exp

(
−

(
2 + sn − 2

√
sn + 1

)
β
)
.

The eigenvalues of Rs,n are known; we have
Case 1. If s = 1, then

GEE
(
R1,n, β

)
=

n−1∑
k=1

exp
(
−4 cos2 2kπ

n
β

)
+ exp

(
−

(
2 + n + 2

√
n + 1

)
β
)

+ exp
(
−

(
2 + n − 2

√
n + 1

)
β
)
.

If v ∈ V(sCn), where their degree is 3. Obviously, the GS C(v, β) values of these vertices are the
same, then

GS C(v, β) =
1
n

(
GEE(R1,n, β) −GS C(u, β)

)
=

1
n

 n−1∑
i=1

exp
(
−4 cos2 2kπ

n
β

)
+

1 +
√

n + 1

2
√

n + 1
exp

(
−

(
2 + n + 2

√
n + 1

)
β
)

+

√
n + 1 − 1

2
√

n + 1
exp

(
−

(
2 + n − 2

√
n + 1

)
β
) .

Case 2. If s > 1, then

GEE
(
Rs,n, β

)
=s

n−1∑
k=1

exp
(
−4 cos2 2kπ

n
β

)
+ exp

(
−

(
2 + sn + 2

√
sn + 1

)
β
)

+ exp
(
−

(
2 + sn − 2

√
sn + 1

)
β
)
+ (s − 1) exp (−4β) .
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If v ∈ V(sCn), where their degree is 3. Obviously, the GS C(v, β) values of these vertices are the
same, then

GS C(v, β) =
1
sn

(
GEE

(
Rs,n, β

)
−GS C(u, β)

)
=

1
sn

s
n−1∑
k=1

exp
(
−4 cos2 2kπ

n
β

)
+ (s − 1) exp (−4β) +

1 +
√

sn + 1

2
√

sn + 1
exp

(
−

(
2 + sn + 2

√
sn + 1

)
β
)

+

√
sn + 1 − 1

2
√

sn + 1
exp

(
−

(
2 + sn − 2

√
sn + 1

)
β
) .

Remark 1. More studies of eigenvalues of multicone graphs (e.g., K1 ⊗ (sKn), K1 ⊗ (sCn) ) are shown
in [38]. Similar to the proof of examples 3.3 and 3.4, these graphs’ generalized Gaussian subgraph
centrality can be immediately obtained from the conclusion of Theorem 3.2. In addition, for some
classes of graphs, such as the transitive graph (e.g., Kn, Petersen graph) and the large symmetries
graph (e.g., Dandelion graph, Cayley tree), the quotient matrix of the graphs used by Theorem 3.1
will be much smaller than the order of the adjacency matrix, so the convergence rate may be faster
when using Theorems 3.1 and 3.2 to calculate the generalized Gaussian subgraph centrality than the
adjacency matrix.

Furthermore, we discuss the influence of the parameter β on the robustness of the generalized
Gaussian subgraph centrality by calculating the parameter β change in examples 3.3 and 3.4. First,
we give the change of the value of the generalized Gaussian subgraph centrality with the windmill and
wheel graphs, respectively, by the formulas in examples 3.3 and 3.4, as shown in Tables 1 and 2 (the
results are to be retained to four decimal places).

Table 1. Values of GS C(u, β) are obtained for windmill graph Fs.

Graph du β = 0.5 β = 0.7 β = 1 β = 1.5 β = 2
F3 6 0.0856 0.0372 0.0110 0.0015 0.0001

2 0.5156 0.4181 0.3780 0.1861 0.1128
F4 8 0.0366 0.0116 0.0021 0.0001 -

2 0.5341 0.4355 0.3221 0.1953 0.1184
F5 10 0.0155 0.0035 0.0004 - -

2 0.5470 0.4472 0.3311 0.2008 0.1218
F6 12 0.0065 0.0011 0.0001 - -

2 0.5564 0.4553 0.3372 0.2045 0.1241
F7 14 0.0027 0.0003 - - -

2 0.5634 0.4611 0.3416 0.2072 0.1257
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Table 2. Values of GS C(u, β) are obtained for wheel graph R1,n.

Graph du β = 0.5 β = 0.7 β = 1 β = 1.5 β = 2
R1,3 3 0.4517 0.3729 0.2759 0.1673 0.1015

3 0.4517 0.3729 0.2759 0.1673 0.1015
R1,4 4 0.3385 0.2485 0.1570 0.0731 0.0341

3 0.5670 0.5390 0.5196 0.5076 0.5033
R1,5 5 0.2470 0.1619 0.0861 0.0301 0.0105

3 0.4596 0.3838 0.3094 0.2360 0.1893
R1,6 6 0.1783 0.1035 0.0459 0.0119 0.0031

3 0.4404 0.3490 0.2518 0.1501 0.0905
R1,7 7 0.1274 0.0652 0.0239 0.0045 0.0008

3 0.4552 0.3788 0.3075 0.2425 0.2055

Sandwich coordination compounds, also known as metallocenes, are a fascinating class of
organometallic compounds characterized by a metal atom sandwiched between two cyclopentadienyl
anions [51]. The molecular graph for metallocenes can be represented as R2,5 = K1 ⊗ (2C5), where K1

stands for a transition metal (e.g., iron atoms, chromium atom), and C5 represents the cyclopentadienyl
ring [52]. Like ferrocene and chromocene, many molecular structures can be represented by the
molecular graph R2,n of the molecular sandwich structure. Therefore, our discussion on the influence of
parameter β of generalized Gaussian subgraph centrality may further explain the physical and chemical
properties of the molecular map of the sandwich structure, as shown in Table 3.

Table 3. Values of GS C(u, β) are obtained for multicone graph R2,n.

Graph du β = 0.5 β = 0.7 β = 1 β = 1.5 β = 2
R2,3 6 0.1783 0.1035 0.0459 0.0119 0.0034

3 0.4404 0.3490 0.2518 0.1501 0.0905
R2,4 8 0.0903 0.0405 0.0122 0.0017 0.0002

3 0.5564 0.5253 0.5076 0.5010 0.5001
R2,5 10 0.0445 0.0152 0.0030 0.0002 -

3 0.4544 0.3770 0.3042 0.2337 0.1885
R2,6 12 0.0214 0.0055 0.0007 - -

3 0.4392 0.3465 0.2499 0.1494 0.0903
R2,7 14 0.0164 0.0019 0.0001 - -

3 0.4565 0.3788 0.3071 0.2424 0.2055

As seen from the results in Tables 1, 2, and 3. When β = 1 is used as the basis for calculating
the generalized Gaussian subgraph centrality, F7 requires more digits to compute. As the number
of Fn nodes increases, higher precision is required to obtain the results for Fn. Therefore, when
β ≤ 0.7, the result is conducive to the numerical analysis of the graph (network) and structural
analysis. From a chemical analysis perspective, taking the molecular structure of ferrocene as an
example, nodes with a higher degree are prone to substitution reactions, which correspond to nodes
with generalized Gaussian subgraph centrality values close to 0. Therefore, appropriately increasing β
may be beneficial in identifying the positions of atoms that are prone to substitution. So, the parameter
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β plays a significant role in understanding how variations in the molecular configuration can impact
the reactivity and stability of metallocenes.

Below is the generalized Gaussian subgraph centrality formula for the graph, which utilizes a star
set of graphs.

Theorem 3.5. Let X ⊆ V(H) and the adjacency matrix of the subgraph induced by X be AX. Consider

X as a star set corresponding to an eigenvalue µ of graph H, and A =
(
AX T⊤

T P

)
. Suppose that

Q = P − µI, C = Q−1TT⊤ + Q. Then,
(1) For any vertex u ∈ X, we have

GS C(u, β) =
∑

u1,u2∈Nu(X̃)

(
C−1

(
exp

(
− (C + µI)2 β

)
− exp

(
−µ2β

)
I
)

Q−1
)

u1u2

+ exp
(
−µ2β

)
,

where Nu(X̃) denotes the set of all adjacent vertices of u in X̃ = V(H)\X.
(2) For any v ∈ X̃ = V(H)\X, we can obtain

GS C(v, β) =
(
exp

(
−µ2β

)
Q−1TT⊤C−1 +

(
I − Q−1TT⊤C−1

)
exp

(
− (C + µI)2 β

))
vv
.

Proof. According to Lemma 2.2 and C = Q−1TT⊤ + Q = Q−1
(
TT⊤ + Q2

)
, we can obtain

A − µI =
(
AX − µI T⊤

T Q

)
=

(
I 0

−Q−1T I

) (
0 T⊤

0 C

) (
I 0

Q−1T I

)
.

Since TT⊤ + Q2 is positive definite and C is nonsingular, it follows that

A = S
(
µI 0
0 C + µI

)
S−1,

where

S =
(

I 0
−Q−1T I

) (
I T⊤C−1

0 I

)
=

(
I T⊤C−1

−Q−1T I − Q−1TT⊤C−1

)
,

S−1 =

(
I −T⊤C−1

0 I

) (
I 0

Q−1T I

)
=

(
I − T⊤C−1Q−1T −T⊤C−1

Q−1T I

)
.

Then

exp
(
−βA2

)
= S

exp
(
−µ2β

)
I 0

0 exp
(
− (C + µI)2 β

) S−1

=

(
I T⊤C−1

−Q−1T I − Q−1TT⊤C−1

) exp
(
−µ2β

)
I 0

0 exp
(
− (C + µI)2 β

) S−1

=

 exp
(
−µ2β

)
I T⊤C−1 exp

(
− (C + µI)2 β

)
− exp

(
−µ2β

)
Q−1T exp

(
− (C + µI)2 β

)
− Q−1TT⊤C−1 exp

(
− (C + µI)2 β

) S−1.
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Therefore, we can obtain the generalized Gaussian subgraph centrality of H as follows:
(1) For any vertex u ∈ X, we can obtain

GS C(u, β) =
∑

u1,u2∈Nu(X̃)

(
C−1

(
exp

(
− (C + µI)2 β

)
− exp

(
−µ2β

)
I
)

Q−1
)

u1u2

+ exp
(
−µ2β

)
,

where Nu(X̃) denotes the set of all adjacent vertices of u in X̃ = V(H)\X.
(2) For any vertex v ∈ X̃, we can obtain

GS C(v, β) =
(
exp

(
−µ2β

)
Q−1TT⊤C−1 +

(
I − Q−1TT⊤C−1

)
exp

(
− (C + µI)2 β

))
vv
.

□

Remark 2. The emergence of the star complement technique is a method to study the problem of
graph space and graph isomorphism. However, it is still challenging to find the maximal graphs
corresponding to nice star complements; literature [53] still gives some small µ-rank (the value of
t = n − s is as small as possible, where s is the multiplicity of the eigenvalues of µ) graphs with good
structural characteristics. The order of the matrices of these small µ-rank graphs is much smaller than
that of the adjacency matrices. Therefore, Theorem 3.5 can significantly improve the convergence rate
of calculating the centrality of generalized Gaussian subgraphs in theory. However, we cannot find a
good way to obtain nice star complements of graphs, which is also our future research direction.

4. Bounds of generalized Gaussian Estrada index

In this section, we get some bounds of the generalized Gaussian Estrada index based on the count
of vertices and edges in graph H. We determine the bounds of GEE(H, β) by some graph parameters
as follows.

Theorem 4.1. Let H be a graph with n vertices and m edges, then√
n − 4βm + n(n − 1)e−

4βm
n ≤ GEE(H, β) ≤ n − 2βm − 1 − ω + eω,

whereω =
√

2mβ2 + mβ2
(

2m
n−1 + n − 2

)
and the equality mentioned above is valid if and only if H � Kn.

Proof. According to the generalized Gaussian Estrada index definition, we have

GEE2(H, β) =
n∑

i=1

e−2βµ2
i + 2

∑
1≤i< j≤n

e−βµ
2
i e−βµ

2
j .

From the arithmetic-geometric inequality
∑n

i=1 xi

n ≥
n
√∏n

i=1 xi for positive number x, in which equality
holds if and only if x1 = x2 = · · · = xn. For

∑n
i=1 µ

2
i = 2m, we can obtain

2
∑

1≤i< j≤n

e−βµ
2
i e−βµ

2
j ≥ n(n − 1)

 ∏
1≤i< j≤n

e−βµ
2
i e−βµ

2
j


2

n(n−1)

= n(n − 1)

 n∏
1≤i≤n

e−βµ
2
i


2
n

= n(n − 1)
(
e−β

∑n
i=1 µ

2
i

) 2
n
= n(n − 1)e−

4βm
n .
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From the expansion of Taylor series e−x =
∑∞

k=0
(−x)k

k! and e−x ≥ 1−x for positive number x, it follows
that

∞∑
k=2

(−x)k

k!
=

∞∑
k=0

(−x)k

k!
− (1 − x) = e−x − (1 − x) ≥ 0.

So we can obtain

n∑
i=1

e−2βµ2
i =

n∑
i=1

∞∑
k=0

(
−2βµ2

i

)k

k!
= n − 4βm +

n∑
i=1

∞∑
k=2

(
−2βµ2

i

)k

k!
≥ n − 4βm.

By substituting the mentioned formula and solving for GEE(H, β), we obtained

GEE2(H, β) ≥ n − 4βm + n(n − 1)e−
4βm

n ,

then

GEE(H, β) ≥
√

n − 4βm + n(n − 1)e−
4βm

n ,

where β > 0.
We also give an upper bound by Lemma 2.3.

GEE(H, β) = n − 2βm +
n∑

i=1

∞∑
k=2

(
−βµ2

i

)k

k!

≤ n − 2βm +
∞∑

k=2

1
k!

n∑
i=1

∣∣∣βµ2
i

∣∣∣k
≤ n − 2βm +

∞∑
k=2

1
k!

 n∑
i=1

β2µ2
i

k/2

≤ n − 2βm +
∞∑

k=2

1
k!

(
2mt2 + mt2

(
2m

n − 1
+ n − 2

))k/2

= n − 2βm − 1 − ω +
∞∑

k=0

ωk

k!

= n − 2βm − 1 − ω + eω,

where ω =
√

2mβ2 + mβ2
(

2m
n−1 + n − 2

)
.

Based on the previous derivation, it is evident that equality holds if and only if graph H has all
eigenvalues equal to zero. This condition is only satisfied by the empty graph Kn.

□

Next, we give another simple lower bound for GEE(H, β).
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Theorem 4.2. Let H be a graph with n vertices and m edges, then

GEE(H, β) ≥ n − 2βm,

the equality holds if and only if H � Kn.

Proof. Similar to the analysis of Theorem 4.1, we have

GEE(H, β) =
n∑

i=1

∞∑
k=0

(
−βµ2

i

)k

k!
= n − 2βm +

n∑
i=1

∞∑
k=2

(
−βµ2

i

)k

k!

From the expansion of Taylor series e−x =
∑∞

k=0
(−x)k

k! and e−x ≥ 1−x for positive number x, it follows
that

∞∑
k=2

(−x)k

k!
=

∞∑
k=0

(−x)k

k!
− (1 − x) = e−x − (1 − x) ≥ 0.

Consequently, for any ϵ ∈ [0, 1], we have

GEE(H, β) ≥ n − 2βm + ϵ
n∑

i=1

∞∑
k=2

(
−βµ2

i

)k

k!

= n − 2βm − ϵn + 2βmϵ + ϵ
n∑

i=1

∞∑
k=0

(
−βµ2

i

)k

k!

= (1 − ϵ)n + 2(ϵ − 1)βm + ϵ GEE(H, β).

For ϵ < 1, it follows that

GEE(H, β) ≥
(1 − ϵ)n + 2(ϵ − 1)βm

1 − ϵ
= n − 2βm.

Based on the previous derivation, it is evident that equality holds if and only if graph H has all
eigenvalues equal to zero. This condition is only satisfied by the empty graph Kn. □

5. Conclusions

The Estrada index and subgraph centrality for exploring network structure and properties focus
more on the influence of extreme eigenvalues on network structure and properties. Unlike the well-
known Estrada index and subgraph centrality, GS C(u, β) and GEE(H, β), under the Gaussian function
definition, assign more weight to zero eigenvalues (if they exist) and near-zero eigenvalues to the
network structure. At the same time, GS C(u, β) and GEE(H, β) are highly related to frontier orbital
theory in quantum chemistry, so studying GS C(u, β) and GEE(H, β) is valuable. In this paper, since
every graph has EP and a star set, against this background, we give some new formulas to calculate
GS C(u, β). We can obtain GS C(u, β) formulas using a smaller matrix than the adjacency matrix. The
influence of the parameter β on the robustness of the formula is explored through experiments. In
addition, we also give some bounds for GEE(H, β). Based on the above research and recent research
results, our future work will study GS C(u, β) and GEE(H, β) of random and dynamic graphs.
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