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1. Introduction

Hilbert-type inequalities play a crucial role in mathematical theory, especially in areas such as
complex analysis, numerical analysis, and the qualitative theory of differential equations, along with
their applications. In recent years, numerous refinements, generalizations, extensions, and practical
uses of Hilbert’s inequality have been widely discussed in the literature. Both Hilbert’s discrete
inequality and its integral version [1, Theorem 316] have been extended in various directions (see,
for instance, [2-5]). More recently, Zhao and Debnath [6] introduced novel inverse Hilbert integral
inequalities. For example, they demonstrated that if k,/ > 1, f(0) > 0 for 0 < o < x, and g(v) > O for
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0 <v<y,then

k l ll
f f PO s > ki (f G-l ds)
(st

X ( f y(y -G g dt)a : (1.1)
0

where 5 < 0,or0 < < 1withl/8+ 1/a=1,

F(s) = S f(o)do and G(¢) = f gv)dv for s € (0,x), t € (0,y). (1.2)
0 0

In a related development, Y. H. Kim [7] introduced further generalizations of these inverse Hilbert-
Pachpatte integral inequalities. Under the conditions k,/ > 1, r < 0, f(0) > 0 for 0 < o < x, and
g(v) > 0 for 0 < v < y, he established that for§ < 0or0 < 8 < 1 and 1/ + 1/a = 1, the following
inequality holds:

x k l '
f f F*(5)G (t)dd > kl(xy)ﬁ (f (x— Fk l(s)f(s)] ds)
0

(s’+tr)ﬁ

X ( f y(y -1 [Gl—l(r)g(t)]“ dt)n , (1.3)
0

with F(s) and G(¢) as defined in (3.14).

Additionally, Z. Changjian and M. Bencze [8] established that the following inverse Hilbert integral
inequality: If K,/ > 1,7 <0, f(o) > 0for0 < o < x,and g(v) > 0 for 0 < v < y, then for 8 < 0 or
0 <pB < 1with1/8+ 1/a = 1, the following inequality holds:

k ) X @
f f FC Ej)Gﬁ(;) dids > Kl(xy)s ( fo (x—5) [F“(s)]“ds)
x( f y(y—t) [Gl‘l(t)]adt)a, (1.4)
0

where C(s, 1,8 = ([ fA@)do) " ([ ¢#av)"” , F(s) and G(1) are as defined as above.

In recent years, the theory of time scales has emerged as a fascinating and rapidly growing
branch of mathematics, attracting significant attention.  This theory was established by the
renowned mathematician Stefan Hilger [9], whose primary goal was to unify discrete and continuous
analysis [10]. The general idea of this theory is to derive new results for dynamic equations or dynamic
inequalities where the domain of the unknown function is what is known as a time scale T, defined as
an arbitrary closed subset of R (see [11, 12]). As a result, there has been a substantial increase in
the number of results obtained in this field in recent years. Among the most important topics studied
within this theory is the investigation of classical inequalities, with many researchers working to derive
more generalized forms of these inequalities using time scale calculus. These inequalities have since
become known as dynamic inequalities. Among them are the reverse Hilbert-type inequalities. Below,
we highlight some of these results, which have motivated the writing of this paper.
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In [13], the authors derived new dynamic inequalities of the inverse Hilbert-type as follows: For

hil>1,r<0andp<0Qor0O<p<l1lwithl/p+1/qg=1.1f f(n) > 0 for n € [a, x]T and g(r) > O for

€ [a, y]T are right-dense continuous functions, then the following inequality holds for s € [a, x]r and
te [aa )’]T3

AtAs

f f ([ ranan)' ([ gmar)

[(s—a) +(t—a)]r

1 X s h—1\4 q

> hl(i) (= )by — )b ( f (x—d(s))(f(s)[ f f(n)An] )As]
y p -1\ \j

[ f (y—a(r))[g(z) [ f g(r)m] )Ar] | (1.5)

Additionally, they showed that if 4(n7) > O for n € [a, x]r and k(7) > O for T € [a, y] are right-dense
continuous functions and if ® and ¥ are non-negative, concave, and supermultiplicative functions,
then, for s € [a, x]t and ¢ € [a, y]r, the following inequality is valid:

f f o[ Fapam ([’ sAD

[(s—a) +(t—a)]"

> E(pwxy)( f (x - a(s»(h( )cb[j;s;]) A)

{fo-moforl 2] )

1 1
S ? p ?
e [ ee(@ ([ hepan))’ v (¥ ([ k(r)AT)
E(p,r,x,y)=|= f —| As f — | Ar] .

2 o [ hpAn o\ [ k(m)AT
In [14], further results on the reverse Hilbert-type inequalities were established: For 4,/ > 1, p <0, or

0 < p < 1with1/p+ 1/g = 1, and for non-negative functions f € C,4([a, x]r, R") and g € C,4([a, ylT,
R™), then, for s € [a, x]t and 7 € [a, y]r, the following inequality holds:

s

where

ptq

s—ap+pt—ay )"

f f ([ ranpan)' ([ e@ar)
q(

1

hi o1 1 X s h=1\P P
> " _—aF -t ( f (0(0) — (s)) (f(s) [ f f(n)An] ] As)
(p + q) Pq a a

. , ~1\  \&
[f (p(y)—O'(l))(g(l)[f g(T)AT] ]At) : (1.7)

Additionally, they proved that if & € C,4([a, x]t, R"), k € C,4([a, y]T, R") are positive and @, ¥ are non-
negative, concave, and supermultiplicative functions, then for s € [a, x|t and ¢ € [a, y]r, the following
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inequality is valid:

IAS

fx fy o([" FapAp¥([ g(r)AT) .

Jzax’]

(qCs —ay' + pt—a)")"

. g(p’q,xy)( f (o(x) - o-(s))(h( )(D[Z ;D As)

( f (o) - a(t))(k(t)w[fgi]) Ar) , (1.8)

gq-1
q
1 q

v([ k(T)AT)]"

[ k()T

where

p-1

(D(f:h(n)An)J’”p' N B fy

[ hnAn

rtq

1 \»| ™
Q(p,q,x,y)—(pw) f

Recently, several authors have successfully extended both continuous and discrete integral inequalities
of Hilbert-type and other types to arbitrary time scales, as demonstrated in works like [15-17] and the
references they cite.

The purpose of this paper is to establish a new set of reverse inequalities of Hilbert’s type within
the framework of time scales. These results are analogous to those demonstrated in [13, 14]. The key
distinction in our results is that the numerator on the left-hand side is expressed as a sum, whereas
previous studies utilized a product of functions.

The structure of this paper is as follows: Section 2 introduces the necessary preliminaries regarding
time scale theory and presents the fundamental lemmas required for the proofs. Section 3 is dedicated
to proving the principal results of our study. Several examples are given to support our results in
Section 4.

2. Preliminaries

We outline the essential concepts and properties on time scales that are relevant to deriving our main
results.
For t € T, the forward jump operator o : T — T is defined as:

o(t)=inf{0 e T: 0> 1},
and the backward jump operator p : T — T is given by:
p(t)=sup{eT:0<rt}

Based on these, a point 7 € T with inf T < 7 < sup T is classified as:
¢ Right-scattered if o(7) > 7.
¢ Right-dense if o(7) = 7.
e Left-scattered if p(7) < 7.
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e Left-dense if p(7) = 7.
If T has a left-scattered maximum s,,, then T¥ = T — {s,,}; otherwise, T¥ = T. The function  : T — [0,
o0) defined by u(t) = o(1) — 7 is known as the graininess. For a function y : T — R, the notation y7(s)
refers to y(o(s)). In time scales calculus, the notation 7t is given by 77t = 7 N T.

For a function y : T — R, the delta derivative of y at T € T* is defined as follows: Y& > 0, where a
neighborhood U of 7 exists such that

(o) = x(O) = x*Dlo(x) - 61| < elo(x) - 6], Vo€ U.

A function y is delta-differentiable on T* if it is delta-differentiable at every 7 € T*.

A function y : T — R is right-dense continuous (rd-continuous) if it is continuous at all right-dense
points in T and has finite left-sided limits at all left-dense points in T. The class of rd-continuous
functions is denoted by C,4(T, R).

For a, b € T, and a delta differentiable function y, the delta integral of y* is defined as

b
f X (AT = x(b) — x(a).

The integration by the parts formula is:

b b
f XOENDAT = Y (DED, - f X (E (AT, a,b € T and x, € € Cru(la, blr, R). 2.1

Note:
o If T =R, then
b b
o(t) =1, u(r) =0, )(A(T) = x'(r) and f YAt = f x(mdr. 2.2)
o If T =Z, then
b b-1
o) =71+1, u(r) =1, XA(T) = Ayx(1) and f XAt = Z)((T). (2.3)

Next, we state the key inequalities and rules.

(1) Holder’s inequality [18,19] Fora,b € T, and ¢,y € C,4(T,R"), we have
b b B b !
| eononi < [ | f(r)m] [ | X“(t)At] , 2.4
where B> 1 and B~' + a™! = 1. The inequality reverses for < 0 or0 < B < 1.

(2) Jensen’s inequality [18,20] For a,b € T, and c¢,d € R. Suppose that { € C,4([a, b, (c,d)), and
n € Cy(la, blt, R*) with fab n(s)As > 0. If ® € C((c,d), R) is convex, in which case

cp[ff n<s)§<s>As] _ Lmoonas 2

7 n(s)as [ (s

The inequality reverses if @ is concave.
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(3) Power rule for integration [21] For a,s € T with s > a, and { € Cy([a, s]t, R). If 0 <m < 1,
then

m—1

o (s) m o (s) o (1)
( I (T)AT) >m f (1) ( I (Q)AQ) AT. (2.6)

(4) Inequality of means [22] Let A > 0, w; > Ofori=1,2,...n,and Y}, w; = 1. In that case

ﬁ sit < (Zn: w,-sf]ﬂ , 5 >0. 2.7)
i=1 i=1

The inequality reverses for A < 0.
3. Main results

In this section, we establish our main results.

Theorem 3.1. Leta, s, t,x,y e T,0< p,qg<1,r>0,1<0,andB <00r0<pB < 1withl/B+1/a =1,
f e Cu(la, x]t, RY), and g € C,4([a, ylr, R"). Suppose that F(s) and G(t) are defined as follows:

F(s) = fs f(e)Ao fors € [a,x]r, and G(t) = f g(mAT fort € [a,y]r, (3.1

where o € [a, slt and T € [a, t]r. In this case

ff (LF” (5))” + [G” (D) AtAs

(tT(S) ~a)i + (00~ a)?

> D(r,l,p,q,ﬂ,x,y)( f (x—s)(f(s)[F"(s)]P—l)“As)a

y .\
( f -0 (e 1G7 1) Ar) : (3.2)

where N | |
D(r,l,p,q,B,x,y) =2) 7" pg(x—a)s (y—a)’.

Proof. Using inequality (2.6), it follows that

T (s) p o (s) o(0) p-1
( f(Q)AQ) >p f f(@)( f(s)As) Ao

FP (o (9)
T () ‘

p FO[F (@) Ao, (3.3)

a

and

o (1) q (1) o (T) q-1
Gil(o () = (f g(T)AT) chf g(T)(f g(t)At) At
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o (1)
= q f g [Glo ()] Ar. (3.4)
Then, we have
o (s) r
[FP(o(s)]" > |p f© [F(o )] AQ) ; (3.5)
and ) o .
[GI(o ()] = |q f g(0) [G(o ()]"! AT] : (3.6)

Adding (3.5) and (3.6), and raising the result to the (2/r)-th power (r > 0), we observe that

2
(1) o
q f g [G7 ()" AT]) }

2
| o (1) N
q f g [G7 (D))" AT]) } : (3.7)

[F7 (o (5)) + G (o ()]

+

\%

a(s)
{([p FO[F7 @] Ao

2

1 a(s)
27 {(5 [p F@F @V Ao

+_
2

Using the inequality (2.7) of power means, we deduce that

o

A

s < (a)lsf + a)zsz) :

s7'sy (3.8)

Now, by setting 51 = p [ f(©) [F7@]" " Ao, 5 = ¢ [ g@ [G"@)1*" AT, w; = w, = 1/2, and
A=r>0in (3.8), we get

rol

1 o (1) 1 T
q f g G (M) AT])

r

+ —

1 a(s)
(— [p F@F @I Ao| +

2

1

2

(s) 7 (1)
> (P ) [F (@] AQ) (q f g [G7 (D))" AT) - (3.9

Substituting (3.9) into (3.7), we have

a(s)

[F" (o (s) + G (o ()] > 231%1( f@[F @] AQ)

()
X ( f' g(0) [GT ()" AT) . (3.10)

Applying the reverse of (2.4) on fa 7 f©) [F7(0)]"" Ao, with B and a, we get

a(s) . a(s) @ %
FQIF @) Ao 2 (0 (s) - a)} ( f (F@[F @) Ag) . (3.11)

a

AIMS Mathematics Volume 10, Issue 2, 2254-2276.
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Similarly, we have

1

o (1) () @
f ¢ G @) AT 2 (0 (1) — a)? ( f (5@ [G"(T)]‘f“)”AT) - (3.12)

Using (3.11) and (3.12) in (3.10), we have

2 ) | o (s) N
[FP" (o (5)) + G (o (t)]" = 27 pq(o(s)—a)? (f (f@F @) AQ)

1

() @
x (o (1) = a)? ( f (g(r)[G“(r)V‘l)"AT) : (3.13)

Now, setting s, = (o (s) — a)%, s> = (o (1) — a)% ,w; =wy =1/2,and 1 =1 < 01n (3.8), we get

(0 (s) —a)? L (o)~ PYAY
2 2 '

(¢ -0 0 -af) = (

Hence,

(3.14)

c@-af @o-ab)
2 T 2 '

(o (s) - a)flf (o () - a)/lf > (
From (3.14) in (3.13), we get

1

2 2 1Y\’ 2 2yt
[F7 (o () + G7(@ )] > 2rpq(—) (¢ -k + @0 -al)

2

(s) . \*
x( f (f@[F @) A@)
) i
x( fﬂ (g(T)[G‘T(T)]q_l)aAT). (3.15)

Dividing (3.15) by (o (s) = @)7 + (o (1) - a)? )7 > 0, we get

[FP" (0 (s)) + G (0 ()]

1

(c@-af +@n-a7)

1

- a(s) @ @
> 7 pq( f (f@[F @)™ Ag)

o (1) %
x( f (s 1G7 @) AT) . (3.16)
Integrating both sides of (3.16), we obtain
f f [F"" (0 (5)) + G (0 ()]’
(0 -a)? + (@) - a)F)

AtAs

1
1
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1

- X a(s) o @
> @7 pq( f [ f (f@[F @) Ag] As]

1

(0] E3
x[ f ' [ f (g(‘r) [G“(T)]q—l)“m] At]. (3.17)

1

Applying the reverse of (2.4) to fa ' [ fa ) ( f [F )] _l)a AQ] " As with B and a, we get

1

X[ rols) . e S0 . ;
f [ f (f@F @) AQ] As > (x—a)t ( f (f@[F @) AQAS) . (318)

Similarly, we have

(1) % ) i
f y [ f (s [Gf’(r)]"‘l)“Ar] At (y - )b ( f } f (s [G%)]‘f‘l)”ATAt) . (19

Using (3.18) and

Applying (2.1) to

we get

where v(s) = s —

AIMS Mathematics

(3.19)in (3.17), we get

f f [F(c (5) + G*"( )] ArAs
(o () - a)ﬁ+(a<r>—a)ﬁ)

1

2-r 1 o (s) 1@ ¢
> (27 pq(x—a) ( f f (f@F @) AQAS)
. Y (1) o %
X (y — a)? ( f f (g(T) [Gf’(r)]q‘l) ATAt) . (3.20)
([ (r@1Fe @) so)as with

a a

a(s) o
o= [ (f@lF@r ) a0 ad =1,

X T () o
[ [ rorer) sms

W(s) f (r@F @) ag| - f (s =) (FO [F7 (1) As

[ @=s(roEmer) as G321)

x. Similarly, we have
y o) o Y o
f f (s@ G @) Arar = f o =0 (s [6701"")" Ar. (3.22)

Volume 10, Issue 2, 2254-2276.
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Using (3.21) and (3.22) in (3.20), we have

f f [FP(o (s) + G (@@l
[ () -7 + (@) -a)7 |

~ o

1

)% pg(x - a) ( f (x =) (f& F 1) As)a

\%

e .\
X (y—a) ( f -0 (e 1G7 1" At)

= D(r,l,p,q,ﬁ,x,w( f (x—s)(f(s)[F“(s)]p—‘)“As)y

y Y
x( f -0 (e® G671 Az) ,

which is (3.2). |

In the subsequent theorems, we assume the existence of two functions, ® and ¥, which are real-
valued, non-negative, concave, and supermultiplicative functions defined on R*. (A function G is
termed supermultiplicative if it satisfies: G (¢7) > G ()G (1), Vg, T € R"))

Theorem 3.2. Leta,s,t,x,yeT,r, 1,8, a, f, g F, and G be as in Theorem 3.1. Suppose that h(o) for
o € la, slt, and k() for T € [a, t]T are positive rd-continuous functions. Define

H(S)Zfsh(Q)AQ and K(l):fk(T)AT. (3.23)

Then, for s € [a, x|t and t € [a, y]r, we have

AtAs

f f ([PF () +[T<fo<z)>]>
() = @)F + (o) - a)ﬁ]

£(s)
; E(”ﬁ”)(f (X_S)(h() [h( )D S)
g(®)
( f (y—t))(k(r)\?[k()]) At) : (3.24)

1 1

we( ((OH (DY ) fy Y& Y Y
E(r,1, =2 ——= A —=| At] . 3.25
(LB x.y) = (fa(H(,(s)) | (Fee (325)

Proof. On the basis of the given assumptions and applying inverse Jensen’s inequality, we have
o ()
H7(s) [ ho)fiG Ao )
()
" @b

where

O(F(s)) = @

AIMS Mathematics Volume 10, Issue 2, 2254-2276.



2264

o) V@ A
e Lo ]
h(o)Ao
D(H(s)) oo [f(@)]
3.26
2 THw Jy "O% | (320
Similarly, "
V(K (1)) : g(1)
Y(G (1) > k(T)¥ AT. 3.27
© W)z == | ko [k()] (3.27)

Using (3.26) and (3.27), and applying the mean inequality and the reverse of (2.4), we get for r > 0
and/ <0

DH(s) (O0) @) '
( o J, @) [@]Ag)
WK (1) (o) 2(®) '
+( Ko (1) o ka )\P[k()]A )

2 (O(H(s)) (W [f(@)] )
27 A
= (H%s) O s

WK (1) (70 ¢(7)
X( K70 J, ()T[ko]m)

L D(H(5)) e @) l
ORI (f (h( )@[h( )D AQ)

WK (1)) e ¢(7) 1
X K7() () = ay (f (k( )\P[k( )D AT)

2

( ) (09 = @) + (@) - @) |
OH(5)) [ 7O (0 ;
“TH(s) (f (”‘D[h( >D AQ)

WK (1) [ [0 ) -
K (f (k( W[k( >D AT) 29

Dividing both sides of (3.28) by [(o(s) - a)? + (o (t) - a)%] > 0, we obtain

(QEV + HGTOD) o, DH(5)) ( f“”( (o) [f(g)]) Q)l

(DE (N + [F(GT ()’

\%

\%

v
T

() -af + @0 -aF] ) o)

(K7 (1) 7 g(1) 1

% Ko (1) (fa ( ( )T[k( )D AT) . (3.29)

Integrating both sides of (3.29), we get

f f (PET(NY + [FGT@NI)
() - )7 +<a<r)—a>ﬂ]
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2l-r
> 277

* D(H(s)) f"“)( [f(@)]) A) A
fa Ho(s) ( @150 |) 29 A
WK () (70 4(7) ;
X L K7(0) ([, (k( )‘I’[k( )D AT) At]. (3.30)

Applying the reverse of (2.4) to f * QA7) ( fa ) (h(g)d) [f N )]) AQ) As, with @ and 3, we obtain

H(s) h()
| e o]«
‘L Ha'(s) ( . (Q)(D h(Q) 9% S
(o OV V(o [£© :
> f(( Ho(s) )As) (f (f (h( )@[h(g)l) AQ)AS) . (3.31)

Similarly, we have
fy WK (1) ( f"‘” (k( )\P[g( )D AT)I .
« K@ \Ja k(7)

(WK (1)) oy o0 )\ 1
- f (( K7 (1) ) At] (f (f ("(T)‘P[@D AT)AI) - (332)

Using (3.31) and (3.32) in (3.30), we get

f f (OE W) + VGO
(09 =@ + (@) - a)¥|

oy (D(HO—(S)) B )/13( x( O’(S)( [f(Q)]) ) )zlr

2% A D Ao| A
= fa((ms)) s ff @70y ]) 2¢)AS

(DY N7 (oo | €0 :
Xfa (( Ko (1) ) A’) (f (f (k( Hj[k( )D AT)AI)

X a(s) %

E(r LB, x,y) ( f ( f (h( )@[ﬁg]) AQ)AS)

V(o g(1)
([ ([ 22 se)a) @3

Applying integration by parts on f ( (T(s) (h( )(D[ﬁé’))]) Ag) As with

0'(s)
u(o(s)) = (h( )D [Z EQ;]) and vA(s) = 1,

J AL e 55 efos = oo ([ e 555]) ]

AIMS Mathematics Volume 10, Issue 2, 2254-2276.
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osporlf2]
- f (x_s)(h(s)q)[m )D 39

where v(s) = 5 — x.
Similarly, we have

e gt >D ) f ( lg()])
L(f; (k( )\P[k() At = -0 k()Y k() At. (3.35)

Using (3.34) and (3.35) in (3.33), we have

f Y ([RF ()] + G0 >*
((o(9) = @)F + (1) - a)* ]

[
(ool

which is (3.24). O

AtAs

The following theorems deal with slight variants of the inequality (3.24) given in Theorem 3.2.

Theorem 3.3. Let s,t,x,y,a € T, r,1,B, a, f, and g be as in Theorem 3.1, and let H, K, h(0), and k(t)
be as in Theorem 3.2. Define

1 5 1 !
F(s):%f h(o)f(0)Ao and G(t):mf k(t)g(T)AT. (3.36)

Then for s € [a, x]r and t € [a, y]r, we have

AtAs

f T (REHTWT + MG DK 9%
© (e@-a)f + o) - a)ﬁ)

> QrLB.x.y) ( f (x = 5) [A()HP(f(s)]" AS)Q

L
x( f (v = 1) [P ()" Ar) : (3.37)

where

Q(r,1,B.x,y) = () (x—a)? (y— a)?.
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Proof. Using the hypotheses of Theorem 3.3 and the inverse Jensen’s inequality, we find that

T ()
cD( s f h(@)f(Q)AQ)

(€]
> s | e

D(F7(s))

From (3.38), we get
OF7(s)H(s) 2 f " h()®(f(0))Ao-
Analogously, a
P(GT (K (1) > f " k(T)¥(g(1)AT.
We then have a

o (s) r
[DF(HH ()] > ( f h(Q)CD(f(Q))AQ) ,

and

r

o ()
PG K ()] = ( f k(T)‘I’(g(T))AT) :
Combining (3.41) and (3.42) and raising the result to the (2/r)-th power (r > 0), we get

(IDE ()H ()] + G (DK ()]

1\ 2
U(S) r o (f) iy
{ h(0)@(f (Q))AQ) ( f k(T)¥(g())At ) ] }

1\ 2
2 7 (s) r 1 (0 r
. {[5 ( f h(0)®(f (Q))AQ) > ( fﬂ k(T)‘I’(g(T))AT)] } :

By applying (3.8) to the right-hand side of (3.43), we observe

\%

(DFT(SHH ()] + [PGT DK (D))
) a(s) o ()
> 2 ( f h(Q)CD(f(Q))AQ) ( f k<r>T<g<r)>Ar).

T (s)

Applying the reverse of (2.4) to f h(0)®(f(0))Ap, with 8 and a, we get

1
a

a(s) | o ()
f h(@)®(f(0)Ag = (o (s) — a)? ( f [H(@)@(f(e)]" AQ) :

Similarly, we obtain

2

o (1) . o (1)
f k()Y (g(T)AT 2 (0 (1) — a)? ( f [k(T)‘P(g(T))]aAT) :

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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Using (3.45) and (3.46) in (3.44), we have
([D(F7(s)H ()] + [‘P(G”(I)K‘T(t)]r)%

1

) ] o (s) I
> 27 (o(s)—a) ( f [(@)@(f(e)]” AQ)

1
a

1 ®
X (o (t) — a)? ( f [k(T)P(g(T))]" AT) ) (3.47)
Using (3.14) in (3.47), we get

([DET(SHHT ()] + [FG KT (D))’

> 27 (%) (s - a)F + (o (f) - a)%)7

Rl=

a () a o (1)
X( f [H(@)P(f(e)]" AQ) ( f [k(1)¥(g()]" AT . (3.48)

Dividing (3.48) by (" (s) = @)% + (o () —a)? )’ > 0, we have
(DF(sHH(5)]" + (G (KT (D)])
(0 - + @0 -a)F)

> OF ( f ™ o )] A@)n ( f " ke Ar)a . (3.49)
Integrating both sides of (3.49), we obetain
f (O W) 9 + MG OK™ O
(@ -aF +@@)- a)ﬁ)

- X a(s) é
> <2)h( | ( [ oover Ag) As)
y (1) i
X(f (f [k(T)P(g(T))]" AT) At]. (3.50)

1

By again applying the reveres of (2.4) to f ( f U(S) [(0)D(f(0))]* Ag)n As with 8 and «, we get

AtAs

X a(s) : X (s) é
f ( f [h(@)D(f (Q))]QAQ) As > (x— a)? ( f [(@)D(f (Q))]GAQAS) : (3.51)

Similarly, we have

: ) i 0 i
f ) ( fﬂ [k(D)¥(g(r)]" AT) At > (y - a)b ( f ' fO [k(D)¥(g(0)]" ATAt) . (3.52)
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Using (3.51) and (3.52) in (3.50), we obtain

As

f (Y (QE()H ()] + G (OKT (D) As
‘e (0 -a)F + @ ®-a)F)

20-r 1 x o (s) i
> )7 (x—a) ( f f [A(0)D(f(0))]* AQAS)
. Y () i
X (y — a)? ( f f [k(T)¥(g(T))]" ATAZ) . (3.53)

Applying intgration by parts on fa ' fa ) [h(0)D(f(0))]" AoAs with

o (s)
W (s) = f [H@)D(f@)] Ao and vA(s) = 1,

we get

X a(s)
f f [H)D(F@)]* AoAs

= () f [(@)@(f(e)]" Ao| - f (s = 2) [A(HD(f(s)]" As

_ f (= ) [HDF($)] As, (3.54)

where v(s) = s — x. Similarly, we have

Y o (1) "y
ff [k(T)‘I’(g(T))]aATNZf(‘/—l)[k(f)‘?(g(t))]am- (3.55)

Using (3.54) and (3.55) in (3.53), we find

As

f* Y (DETHT () + MG OK O
“ (e -af + @@ -a)F)

> )7 (x—ay ( f (x = 5) [A($)D(f ()] AS)

e L
X (y—t9)? ( f (v — 1) [k (g)]" At)

1
a

= QLB xy) ( f (x = 5) [A($)D(f ()] AS)

y @
x ( f O - 1) [k ¥ (g1)]" Ar) -
This completes the proof. O
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4. Examples

To illustrate the results, we state the corresponding theorems given in the previous sections for the
special cases of T =R and T = Z.

Example 4.1. Given T =R in Theorem 3.1, a, s,t,x,y e R,r> 0,1 <0,0< p,g < 1,and B < 0 or
0 <pB < 1suchthat 1/ + 1/a = 1. Suppose that F(s) and G(t) are given by:

F(s) = fs f(o)do fors € [a,x] and G(t) = f g(nydr for t € [a,y],

where o € |a, s] and T € [a,t]. In that case
2
F”’(s)+G‘"(t) ]

f f [(s a)/3+(t a)B ][

> pq(x-a) ( f (x = 5) (f(s) [F(s)1)" ds)

dtds

E3

1
y o\
X (y - a)} ( f o -0 (s [GN*™) dt) . @.1)
Remark 4.2. In the context of inequality (4.1), consider the limits as r — 0" and | — 0~. We find that

C(FP(s) + Gtﬂ(r))L
llm _
r—0 2

( . F”’(s)+Gq’(t))]
I ————

= exp|lim >

r—0

[ 1 r r
= exp 1r—>0 (m d—(FP (s) + G? (Z‘)))]

= [FP(5).G'(1)]> : , 4.2)

and

. ((s—a)é’ +(z—a>%’)}
lim

-0 2
3 . 11 (s—a)%+(t—a)%
= el T
1 d
= exp[%l_%l((s_a)ﬁ AP ﬁ((s_a)ﬁ +(t—a)ﬁ))]
= (s— a)ﬁ (- a)ﬁ . (4.3)
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Thus, incorporating these results into (4.1), we get:
XY EP(s) - GI(t
f f ()-GO g
a Ja (s—a)k-(t—a)r

> pq(x-a) [ f (x = 9)(f(9) [F(s)]f’-l)“ds]“

e T
X (y - a)? [ f -0 (e®GH1) dr] :

This result can be recognized as an inverse inequality similar to the reverse Hilbert-type
inequality (1.1) established by Zhao [6, Theorem 2.1, for a = 0].

Example 4.3. Consider T = 7Z in Theorem 3.1, with a, s,t,x,y € Z,r > 0,1 < 0,0 < p,qg < 1, and
B <00r0 < B < 1suchthat 1/B+ 1/a = 1. Let {f;} and {g,} be non-negative sequences of real

numbers, and define
s—1 t—1
Fs:an and G,:ZgT.

Then

Z‘:’Zl: [FP'(s + 1) + G (t + 1)]7

s=a 1=a [(s+1—a)ﬁ +(t+1—a)ﬁ]

x—1 P
> (2)% pq(x — a)/lj (y - a)/lf [Z(x _ (f(s) [F(s + 1)],,_1)0]

y-1 ¢
X (Z(y - (g [G(r + 1)]6“)”] : (4.4)

Example 4.4. Let T = R in Theorem 3.2, where s,t,x,y,a € R, r, L, B, a, f, g, F, and G are as in
Example 4.1. Assume that h(o), for o € [a, s] and k() for T € [a, t] are two positive functions. Define

H(s) = f sh(g)dg and K(t) = f k(t)dr.

Then for s € [a, x] and t € [a, Y], we have

142
[PFN] +[FG)]” )7 ]

[

2
(s—a)P +(t-a) P
2

> Ey(B,x,Y) (f (x— ) (h( ) [ZES;]) ds)

B 8()
(f(y r))(k(t)‘l’[k()]) d) , 4.5)
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where

([ (oHDY V([ (REay Y
Bolpxn = U ( H(s) ) ds] U ( K1) ) dt) |
Remark 4.5. In (4.5), let r — 0" and | — 0~. We then note that

[DF(N]" + [‘I’(G(t))]r)}’

lim

r—0 2
B [ (1 [<1>(F(S))]’+[‘I’(G(t))]r)]
= exp|lim|—In

»r—>0 r 2

= exp|(lim 1 -i([®(F(S))]’+[‘P(G(t))]’)
- p,HO [DF ()] + [P(G@)I" dr
= [DF(s)PGD)]". (4.6)

Hence, from (4.3) and (4.6), we get
f ) f O(F(s)) - ‘P(G(t) dtd
s
a (s—a) - (t — a)?
o[ ooponf 2]

([o-oforliG] o)

This is just a reversed version of the Hilbert-type inequality established by Zhao [6, Theorem 2.2, for
a=0].

Example 4.6. Suppose that T = Z in Theorem 3.2, where s,t,x,y,a € Z, r, L, B, a, { fs}, {8}, Fs, and G,
are as in Example 4.3. Assume that {hs} and {k,} are two positive sequences of real numbers Define

Hs:sz_llhn and Kt:ikf.

Then
| yZl (DF(s + D] + PG + D))
s=a t=a [(s+1—a)/3+(t+l—a)]
> E(r,1a,pB,x, y)(Z(x— S)(h( )@[ﬁ?]) )
(1)
[Z(y ~1) (k(t)‘P [ 0 D ]
where

2r O(H(s + 1)) P (L Y(K(r + 1))
ErlBxy)=@)F (Z( His+1) )) (Z‘( KGi+1) )] '

t=a
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Example 4.7. Given T =R in Theorem 3.3, where s,t,x,y,a € R, r, I, B, a, f, and g, are as in
Example 4.1. Assume that H, K, h(o), and k(t) are as in Corollary 4.4 and define

1 $ 1 !
FO) = s f ho)fede and G() = s f K(D)g(r)dr.

Then, for s € [a, x] and t € [a,y], we have

2
[PEFHS] +H[PGOK D] )% ]

f f ——dtds
a va [(s—a)%’] —a)P ] :

2

> (x—a) (y- a)f ( f (x = ) [A()D(f ()] ds)”

v s
X( f o= [k(t)‘l’(g(t))]”dt) : 4.7)

Remark 4.8. In the context of inequality (4.7), as r — 0" and | — 07, we observe that

lim [[LEGDHE)T + [‘1’(G(t)1<(t)]’)L
lim 2
_ . (1 [DF(s)H(s)]" + [‘P(G(I)K(t)]’)]
= exp|lim ;ln >

lim ! . 4
=0 [DF(NH()]" + [V(GOKO] dr
= [HSKOOF())PGO] . (4.8)

r—0

= exp [OF(sNH()]" + [P(GOK(D])

Thus, from (4.3) and (4.8), we derive
f * (7 H()K(OD(F(s)P(G(@) dtds

«  (s—a)-(—a)

> (x—a) (y—a)? ( f (x = 5) [A()D(f ()] ds)”

1
y a
X ( f o = 0 [k()P(gO)]" dt) :
This result corresponds to a reversed version of the Hilbert-type inequality, as established by Zhao [6,
Theorem 2.3, for a = 0.].

Example 4.9. Given T = Z in Theorem 3.3, with s,t,x,y,a € Z and r, |, B, a, {f}, and {g,} are as
described Example 4.3. Assume the sequences {h,}, {k,;}, H,, and K, are as outlined in Example 4.6.
Define

1 s—1 1 t—1
FS:E;hnfn and G,:E;lqg,.
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Then
Z Z (D(F(s + 1)H(s + D" + [¥(G(t + DK(t + 1)]')7
s=a 1=a ((s+1—a)/3+(t+1—a)ﬂ)l
< @QF (x—a)i (y-ays (Z(x — 5) [, D( fs)]“J
y 3
X (Z(y -1 [k»P(g»]“] ,
where

1 1

2r OH(Gs+ DYV (S (P(K(+ 1))
ErLpoxy) = ()7 (Z( His+1) )] (Z( K(+1) )] '

s=a I=a
5. Conclusions

In this article, we utilized the inverse Holder’s inequality and inverse Jensen’s inequality to discuss
and prove several novel generalizations of inverse Hilbert-type inequalities. Our exploration covered
both discrete and continuous forms of these inequalities, providing a unified approach that bridges the
gap between different calculus settings.

For future work, we plan to further generalize these results by applying alpha-conformable
fractional derivatives on time scales, allowing for a deeper exploration of fractional calculus within
this framework. Additionally, we aim to extend our findings to the context of diamond-alpha calculus.
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