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Abstract: Countries prone to earthquakes face increasing seismic activity, often resulting in losses 
that exceed national budgets. To mitigate these losses, earthquake bonds present a promising 
alternative funding source; however, pricing them is complex, requiring simultaneous accounting for 
financial and seismic risks. Therefore, this study aimed to model earthquake bond pricing. The model 
incorporates earthquake intensity to account for rising seismic activity. It also includes depth and 
maximum magnitude as correlated dual trigger indices, making the bonds more attractive to investors, 
as claims are generated if both events occur. These three factors were modeled together as a 
compound stochastic process. The bond price was then formulated using a risk-neutral pricing 
measure with a stochastic interest rate under the Cox-Ingersoll-Ross model. Since the model lacks a 
closed-form solution, we employed an algorithm based on the Monte Carlo method for estimation. 
Through this algorithm, we showed that bond prices for terms of one to six years follow a normal 
distribution. The use of stochastic interest rates becomes significant as the bond term increases. We 
also found that earthquake intensity and bond terms negatively correlate with bond prices, while 
annual coupons positively correlate. Additionally, including dual triggers lowers claim probability 
and increases the bond demand, but is compensated by higher prices. This study can assist issuers in 
pricing earthquake bonds based on earthquake severity-maximum magnitude, depth, and 
intensity-and aid geological institutions in estimating earthquake risk in observed areas. 
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1. Introduction 

Countries whose territories are located on the world's tectonic plates have a very high risk of 
earthquakes. For example, Japan, which sits atop the confluence of four tectonic plates (Pacific, 
Philippine, Eurasian, and North American), experiences more than 1500 earthquakes every year [1]. 
Indonesia, located on the confluence of three tectonic plates (Indo-Australian, Eurasian, and Pacific), 
often faces large earthquakes. An example is the Aceh earthquake in 2004, which caused a tsunami 
that killed around 230,000 people [2,3]. In South America, Chile also has a high risk of earthquakes 
because its territory is located on the meeting point of the Nazca and South American plates. The 
most well-known of this century is the great earthquake of 2010, which caused losses of around 30 
billion USD [4,5]. 

A high earthquake risk is positively correlated with the losses experienced by the countries 
concerned. For example, the Tohoku earthquake in Japan in 2011 caused economic losses of around 235 
billion USD, making it the costliest natural disaster in history [6,7]. In Nepal, a 7.8-magnitude (M୛) 
earthquake in 2015 caused losses of around 10 billion USD, equivalent to around 50% of the 
country's GDP [8,9]. In Indonesia, the earthquake and tsunami in Sulawesi in 2018 resulted in losses 
of more than 1.6 billion USD [10]. This data shows that countries with a high risk of earthquakes 
often experience substantial financial losses because of these disasters. 

The significant losses from earthquakes experienced by these countries are often 
disproportionate to the budget they allocate to overcome them. For example, the earthquake and 
tsunami in Sulawesi in 2018 caused losses of more than 1.3 billion USD, while the Indonesian 
government only allocated around 0.4 billion USD for disaster management [11]. In Nepal, the 2015 
earthquake caused losses of around 10 billion USD, while the country's annual budget for disaster 
management was only around 0.2 billion USD [12–14]. A similar situation occurred in Haiti after 
the 2010 earthquake, which caused losses of 7.8 billion USD, with a much smaller disaster 
management budget [15]. This data shows a large gap between losses from earthquakes and the funds 
available to address their impacts. 

Earthquake financing from these countries requires new sources so that they do not only depend 
on the state budget or social assistance. One source of funds that can be used for this financing is 
earthquake bonds. This mechanism was developed from traditional earthquake insurance by the 
World Bank and several earthquake-prone countries to obtain greater risk coverage capacity and 
reduce financial pressure when claims occur [16]. In this way, the country and (re)insurers involve 
the community in the bond market to cover the risk of an earthquake jointly. In return for the 
community's willingness, significant returns from earthquake bonds that are greater than traditional 
bonds will be given to them [17]. Some countries have used earthquake bonds. For example, after the 
earthquake in 2017, Mexico issued these bonds, which raised more than 300 million USD for fast 
and efficient recovery [18]. Then, Chile used these bonds with a contingency fund of 500 million 
USD in 2018 to obtain additional funds after a major earthquake [19]. 
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Although some countries have used earthquake bonds, the number is still tiny. One reason is 
that the fair pricing process is different from traditional bonds. In addition to considering financial 
factors (e.g., interest rates), earthquake risk factors are also calculated simultaneously. Several 
studies have examined the pricing of earthquake bonds. Zimbidis et al. [20] used extreme value 
theory to model the risk of maximum magnitude from earthquakes and apply it in pricing earthquake 
bonds. Shao et al. [21] proposed an earthquake bond pricing model considering interest, inflation, 
and coupon rates. They used the maximum magnitude and depth of the earthquakes to estimate the 
trigger event. Tang and Yuan [22] modeled earthquake bond prices based on the aggregate loss 
trigger index, formulated based on distorted and risk-neutral probability measures. Hofer et al. [23] 
provided a general process for creating catastrophe bond-based protection against natural hazard 
losses, such as earthquakes, for a spatially distributed portfolio. Mistry and Lombardi [24] designed 
an earthquake bond price based on aggregate losses, using high spatial resolution hazard and 
exposure models to calculate direct economic losses for each exposed asset. Anggraeni et al. [25] 
designed a bond pricing model for funding a single earthquake based on the earthquake disaster risk 
index. Mistry and Lombardi [26] introduced a stochastic method to address uncertainty in exposure 
model attributes and asset location. The method then was applied to model the earthquake bond. Wei 
et al. [27] proposed a catastrophe bond for earthquakes with aggregate loss and maximum magnitude 
indices. Aghdam et al. [28] presented a model for pricing catastrophe bonds applied to earthquakes, 
incorporating a jump sentence to indicate damage severity and probability. Ibrahim et al. [29] 
proposed pricing models for significant earthquakes, focusing on inconstant event intensity and 
maximum magnitude. Then, Anggraeni et al. [30] developed a disaster region decomposition using 
earthquake parameters and space-time-depth-magnitude distance to price earthquake bonds for a 
single period. 

After conducting a literature review, we found gaps in previous studies regarding the pricing of 
earthquake bonds. In summary, there are no price models of earthquake bonds that use magnitude 
and depth trigger indices, which are assumed to be dependent. The assumption that the two indices 
can be dependent is crucial because this allows for a more accurate risk assessment, affects the 
frequency and number of payouts, and improves bond risk management [31]. Apart from that, no one 
has modeled the two trigger indices with intensity consideration. Involving this intensity is urgent 
because the frequency of earthquakes varies in each country each year. Furthermore, including this 
intensity increases the accuracy of the depiction of claims-triggering events and can reduce 
uncertainty in measuring earthquake risk when pricing bonds. 

Based on gap analysis from previous studies related to pricing earthquake bonds, this study aims 
to model the price of earthquake bonds using magnitude and depth trigger indices. Both triggers are 
assumed to be dependent, and their values are determined based on the earthquake's intensity. This 
intensity is designed finitely through many significant earthquakes throughout the observation time. 
Mathematically, this intensity is designed in an earthquake frequency model based on a 
homogeneous Poisson process. Then, we design the coupon and redemption value payment schemes 
into a non-binary form to assess all possible severities of earthquakes that occur within the life of the 
bond. We utilize the concept of a risk-neutral pricing measure with stochastic interest rate 
assumptions to model bond prices. This stochasticity is accommodated using the Cox-Ingersoll-Ross 
formula, which guarantees the positivity of interest rates in accordance with actual conditions in 
almost every country worldwide. After the model was designed, we carried out a sensitivity analysis 
of the variables used on earthquake bond prices, especially the sensitivity of earthquake intensity. 
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Apart from that, we also compare the results of earthquake bond price estimation based on the 
proposed model and other models. This study can be employed by earthquake bond issuers 
worldwide to price earthquake bonds that reflect the severity of the earthquake with its maximum 
magnitude, depth, and intensity. Apart from that, this study can also be used by geological 
institutions and others to estimate the risk of maximum magnitude and depth of earthquakes in the 
observation area. 

2. A brief description of earthquake bonds 

Catastrophe (CAT) bonds are insurance-linked securities in the form of bonds issued to 
overcome budget limitations and coverage capacity against the risk of catastrophic loss from the 
sponsor (insured). One example of a CAT bond is an earthquake bond, which is specifically designed 
for the risk of loss due to earthquakes. Bonds are popular in this link because bonds can provide 
significant funds quickly [32]. This advantage reduces the sudden financial burden for sponsors 
when an earthquake that causes extreme losses occurs suddenly. 

The simple structure of an earthquake bond consists of a sponsor, a special-purpose 
vehicle (SPV), and an investor [33,34]. The sponsor is typically a government entity (national or 
regional), an insurer, or a reinsurer. This sponsor is an insured party who transfers some or all of the 
risk of the earthquake to investors in the market of the bond. Then, the SPV is an independent entity 
established by the sponsor to transfer earthquake risk to investors. In summary, once the SPV is 
established, the sponsor remits the premium to the SPV, and the SPV issues earthquake bonds. The 
premiums and funds earned from the bonds are then reinvested into short-term safe securities. 
Investment income is then used for payments in earthquake bonds, one of which is for coupon 
payments (if any) to investors. Suppose the claim’s trigger event for an earthquake bond occurs 
before the payment date of the periodical coupon or the redemption value. In that case, the investor 
receives the coupon and redemption value from the SPV, whose values correspond to the percentage 
determined at the time of bond issuance [35,36]. Then, suppose the event that triggers a claim from 
an earthquake bond does not occur after the payment date of the periodical coupon and the 
redemption value. In that case, the investor receives the entire coupon and redemption value from the 
SPV [37]. The structure of this type of earthquake bond is presented visually in Figure 1. 

 

Figure 1. The simple structure of earthquake bonds. 
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The triggering event for earthquake bonds can generally be measured by five indices: industry, 
indemnity, parametric, model, and multiple indices. The industry index measures trigger events based 
on actual losses due to earthquakes that occur throughout the insurance or reinsurance industry. The 
indemnity index measures the triggering event based on actual losses due to the earthquake that 
occurred to the sponsor. Then, the parametric index measures the triggering event based on specific 
characteristics of the earthquake, e.g., magnitude, depth, or radius. The model index measures trigger 
events using mathematical models that have been designed by companies or agencies specialized in 
earthquake risk analysis, e.g., universities, state research agencies, or private companies such as Risk 
Management Solutions (RMS) and CoreLogic. Finally, multiple indices measure triggering events 
using more than one earthquake severity measure from the same index or different indices. Multiple 
indices provide a smaller possibility of a claim occurring than a single index [38]. It is suitable for 
use in earthquake-prone countries to make earthquake bonds more attractive to investors. The 
number of indices used in multiple indices is usually only two or three. Too many indices used in 
multiple indices make measuring trigger events too complex. For that reason, dual-triggers is still 
tolerated. 

This study uses dual-trigger indices. The characteristics measured by the severity of an 
earthquake are its maximum magnitude and depth assumed to be dependent. The uses of these 
indices have advantages, where both are objectively, quickly, and inexpensively measured. These 
advantages can speed up earthquake funding that is immediately needed when an earthquake occurs 
suddenly. The triggering events are designed based on the magnitude and depth of different types of 
earthquakes. We show the earthquake types based on magnitude and depth in Table 1. 

Table 1. The types of earthquakes based on magnitude and depth. 

Earthquake Type  

Based on Magnitude 

Magnitude Interval 

(Richter Scale, 𝑀௅) 

Earthquake Type  

Based on Depth 

Depth Interval 

(Kilometers, km) 

Nonsignificant1 Earthquake [0, 5) Shallow Earthquake [0, 70) 

Moderate Earthquake [5, 6) Intermediate Earthquake [70, 300) 

Strong Earthquake [6, 7) Deep Earthquake [300, ∞) 

Major Earthquake [7, 8)   

Great Earthquake [8, ∞)   

*Note: We classify nonsignificant earthquakes as light, minor, micro, and super micro earthquakes. 

3. The main results 

3.1. The model 

Before the model framework is explained, we determine that all variables in this study are 
modeled in (𝛩, 𝒫, 𝒫௧, P), where 𝛩 represents the sample space, 𝒫 represents the σ-algebra on 𝛩, 
𝒫௧ ⊂ 𝒫 with 𝑡 ∈ [0, 𝑇] represents increasing filtration, and P represents a probability measure on 
𝒫. In more detail, 𝑇 represents a positive integer. 
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3.1.1. Trigger processes and their distributions 

The trigger indices used for earthquake bonds in this study are parametric. Two variables 
measure this index: the maximum strength of a significant earthquake and its depth. The word 
“significant” here is crucial because it is an indication that we are only considering earthquakes 
greater than a particular magnitude rather than all the infinite number of earthquakes. In this study, 
earthquakes with a magnitude greater than or equal to 5 𝑀௅  (Richter scale) are defined as 
significant. 

We employed a compound process to model the maximum magnitude of a significant 
earthquake until time 𝑡 ∈ [0, 𝑇] in this study. This compound process consists of the frequency 
process of significant earthquakes and the magnitude process of a single significant earthquake. 
Mathematically, the compound process of the maximum magnitude of significant earthquakes is 
denoted by {ℳ௧: 𝑡 ∈ [0, 𝑇]}, which is formulated as follows: 

ℳ௧ = max
௝∈௃೟

{𝑀௝},  

where 𝐽௧ = {1, 2, 3, … , 𝑁௧} is a set of indices that represent the sequence of significant earthquakes, 
{𝑁௧: 𝑡 ∈ [0, 𝑇]}  denotes the process of significant earthquake frequencies, and {𝑀௝: 𝑗 ∈ 𝐽௧} 
represents the magnitude process of a single significant earthquake. Then, the depth of a significant 

earthquake is denoted as {𝐷௝: 𝑗 ∈ 𝐽௧}  corresponding to ൛𝑀௝: 𝑗 ∈ 𝐽௧ൟ. The depth of a significant 

earthquake of magnitude ℳ௧ until time 𝑡 is denoted by {𝒟௧: 𝑡 ∈ [0, 𝑇]}, which is formulated as 
follows: 

𝒟௧ = 𝐷ௌ, (1)

where 

𝑆 = arg max
௝∈௃೟

൛𝑀௝ൟ.  

We assume that the probability of more than one significant earthquake of magnitude ℳ௧ at the 
same depth is zero for 𝑡 ∈ [0, 𝑇]. This is because, in reality, it rarely happens. In this study, we used 
the following assumptions: 
a. {𝑁௧: 𝑡 ∈ [0, 𝑇]} follows a homogeneous Poisson process with intensity 𝜆 > 0. In simple terms, 

this means that the frequency of significant earthquakes has a constant intensity of occurrence. 
Then, there is no earthquake at time 𝑡 = 0. The frequencies of significant earthquakes between 
time intervals do not influence each other, and the frequencies of significant earthquakes depends 
on the time interval. Finally, there was no more than one significant earthquake in a very short 
time interval. The probability mass function (PMF) of 𝑁௧ is formulated as follows [39]: 

P(𝑁௧ = 𝑛) =
(𝜆𝑡)௡

𝑛!
𝑒ିఒ௧, (2)

with 𝑛 = 0, 1, 2, 3, … . 
b. {𝑀௝: 𝑗 ∈ 𝐽௧} are independent and identically distributed (i.i.d.). In simple terms, this means that 

the magnitudes between significant earthquakes do not influence each other and have the same 
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characteristics. This implies that for every 𝑗 ∈ 𝐽௧ and 𝓂 ⊂ ℝା ∪ {0}, 𝑀௝ can be referred to as 
𝑀 to write simply, 

P൫𝑀௝ ∈ 𝓂൯ = P(𝑀 ∈ 𝓂),  

and for every 𝑗ଵ ∈ 𝐽௧ , 𝑗ଶ ∈ 𝐽௧, 𝓂ଵ ⊂ ℝା ∪ {0}, and 𝓂ଶ ∈ ℝା ∪ {0}, 

P൫𝑀௝భ
∈ 𝓂ଵ, 𝑀௝మ

∈ 𝓂ଶ൯ = P(𝑀 ∈ 𝓂ଵ)P(𝑀 ∈ 𝓂ଶ).  

Note that when 𝑚 → ∞, P(𝑀 ≤ 𝑚) → 1, and when 𝑚 → −∞, P(𝑀 ≤ 𝑚) → 0. 
c. {𝐷௝: 𝑗 ∈ 𝐽௧} are i.i.d. In simple terms, this means that the depths between significant earthquakes 

do not influence each other and have the same characteristics. In other words, for every 𝑗 ∈ 𝐽௧ 
and 𝒹 ⊂ ℝା ∪ {0}, 𝐷௝  can be referred to as 𝐷 to write simply, 

P൫𝐷௝ ∈ 𝒹൯ = P(𝐷 ∈ 𝒹),  

and for every 𝑗ଵ ∈ 𝐽௧ , 𝑗ଶ ∈ 𝐽௧, 𝒹ଵ ⊂ ℝା ∪ {0}, and 𝒹ଶ ∈ ℝା ∪ {0}, 

P൫𝐷௝భ
∈ 𝒹ଵ, 𝐷௝మ

∈ 𝒹ଶ൯ = P(𝐷 ∈ 𝒹ଵ)P(𝐷 ∈ 𝒹ଶ).  

Note that when 𝑑 → ∞, P(𝐷 ≤ 𝑑) → 1, when 𝑑 → −∞, P(𝐷 ≤ 𝑑) → 0. 

d. {𝑁௧: 𝑡 ∈ [0, 𝑇]} and ൛𝑀௝: 𝑗 ∈ 𝐽௧ൟ are assumed to be independent. In simple terms, this means 

that the frequency and magnitude of significant earthquakes do not affect each other. In other 
words, for every 𝑗 ∈ 𝐽௧, 𝑡 ∈ [0, 𝑇], 𝓂 ⊂ ℝା ∪ {0}, and 𝓃 ⊂ ℕ ∪ {0}, the following equation 
holds: 

P൫𝑁௧ ∈ 𝓃, 𝑀௝ ∈ 𝓂൯ = P(𝑁௧ ∈ 𝓃)P൫𝑀௝ ∈ 𝓂൯.  

e. {𝑁௧: 𝑡 ∈ [0, 𝑇]} and ൛𝐷௝: 𝑗 ∈ 𝐽௧ൟ are assumed to be independent. In simple terms, this means 

that the frequency and depth of significant earthquakes do not affect each other. In other words, 
for every 𝑗 ∈ 𝐽௧, 𝑡 ∈ [0, 𝑇], 𝒹 ⊂ ℝା ∪ {0}, and 𝓃 ⊂ ℕ ∪ {0}, the following equation holds: 

P൫𝑁௧ ∈ 𝓃, 𝐷௝ ∈ 𝒹൯ = P(𝑁௧ ∈ 𝓃)P൫𝐷௝ ∈ 𝒹൯.  

The CDF of {ℳ௧: 𝑡 ∈ [0, 𝑇]} for random 𝑁௧ is formulated is as follows: 

P(ℳ௧ ≤ 𝑚) = ෍ P(ℳ௧ ≤ 𝑚, 𝑁௧ = 𝑛)

ஶ

௡ୀ଴

= 𝑒ିఒ௧[ଵି୔(ெஸ௠)]. (3)

Proof. See Appendix A. Then, the probability that ℳ௧ ∈ (𝑚ଵ, 𝑚ଶ] with 𝑚ଵ < 𝑚ଶ is formulated as 
follows: 
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P(𝑚ଵ < ℳ௧ ≤ 𝑚ଶ) = ෍ P(𝑚ଵ < ℳ௧ ≤ 𝑚ଶ, 𝑁௧ = 𝑛)

ஶ

௡ୀ଴

= P(ℳ௧ ≤ 𝑚ଶ) − P(ℳ௧ ≤ 𝑚ଵ). (4)

Proof. See Appendix A. With similar formulation steps, the CDF of {𝒟௧: 𝑡 ∈ [0, 𝑇]} for random 𝑁௧ 
is briefly formulated as follows: 

P(𝒟௧ ≤ 𝑑) = ෍ P(𝒟௧ ≤ 𝑑, 𝑁௧ = 𝑛)

ஶ

௡ୀ଴

= P(𝐷 ≤ 𝑑). (5)

Proof. See Appendix A. Next, we model the joint CDF of {ℳ௧: 𝑡 ∈ [0, 𝑇]} and {𝒟௧: 𝑡 ∈ [0, 𝑇]} as 
follows: 

P(ℳ௧ ≤ 𝑚, 𝒟௧ ≤ 𝑑) = ෍ P(ℳ௧ ≤ 𝑚, 𝒟௧ ≤ 𝑑, 𝑁௧ = 𝑛)

ஶ

௡ୀ଴

. (6)

Then, the probability that ℳ௧ ∈ (𝑚ଵ, 𝑚ଶ] with 𝑚ଵ < 𝑚ଶ  and 𝒟௧ ∈ (𝑑ଵ, 𝑑ଶ] with 𝑑ଵ < 𝑑ଶ  are 
formulated as follows: 

P(𝑚ଵ < ℳ௧ ≤ 𝑚ଶ, 𝑑ଵ < 𝒟௧ ≤ 𝑑ଶ) = ෍ P(𝑚ଵ ≤ ℳ௧ < 𝑚ଶ, 𝑑ଵ ≤ 𝒟௧ < 𝑑ଶ, 𝑁௧ = 𝑛)

ஶ

௡ୀ଴

. (7)

3.1.2. Dynamic interest rate 

The interest rate in this study is assumed to follow the mean-reversion-square-root process 
model proposed by Cox-Ingersol-Ross [40]. In simple terms, this process guarantees the positivity of 
the interest rate if the sample of the interest rate is positive. Interest rate positivity generally applies 
to all countries in the world. There are several exceptions for Japan and Switzerland, where interest 
rates can be negative in these countries. Mathematically, the mean-reversion-square-root process for 
the interest rate is formulated as follows: 

𝑑𝑖௞ = 𝒶(𝒷 − 𝑖௞)𝑑𝑘 + ℊඥ𝑖௞𝑑𝑊௞, (8)

where {𝑖௞: 𝑘 = 1, 2, 3, … , 𝑇} is a sequence of random variables representing the interest rate at the 
end of 𝑘-th year, 𝒶 > 0 is the mean-reversion parameter, 𝒷 > 0 is the mean long-run parameter, 
ℊ > 0  is the volatility parameter, and {𝑊௞: 𝑘 = 1, 2, 3, … , 𝑇}  is the standard Weiner process 
initiated at zero under risk-neutral pricing measure Q. The positivity interest rate previously 
mentioned is guaranteed by the condition 2𝒶𝒷 ≥ ℊଶ [33]. Based on the interest rate model in Eq (8), 
the current value of one currency unit can be determined under the no-arbitrage assumption. Mathematically, 
the value at time 𝑡 = 0 of one currency unit at time 𝑇 is formulated as follows [24,41]: 

𝐵் = 𝔼୕ ቀ𝑒ି ∑ ௜ೖ
೅
ೖసభ ቚ𝒫଴ቁ, (9)
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where 𝔼୕ is the expectation under the risk-neutral pricing measure. 

3.1.3. Pricing model of earthquake bonds 

Investors of earthquake bonds will receive an annual coupon each year and redemption value at 
maturity from the SPV. Both amounts depend on the maximum magnitude and depth of the 
earthquakes that occurred until the payment date. The greater the maximum magnitude of the 
earthquake, the smaller the coupon amount and redemption value paid, and vice versa. Then, the 
shallower the earthquake's epicenter, the smaller the coupon amount and redemption value paid, 
and vice versa. The annual coupon payment proportion is let as the set {𝑐ଵ, 𝑐ଶ, 𝑐ଷ, … , 𝑐ଵହ ∈

[0,1]: 𝑐ଵ ≤ 𝑐ଶ ≤ 𝑐ଷ ≤ ⋯ ≤ 𝑐ଵହ}. Then, the proportion of the redemption value payment is let as the 
set {𝑟ଵ, 𝑟ଶ, 𝑟ଷ, … , 𝑟ଵହ ∈ [0,1]: 𝑟ଵ ≤ 𝑟ଶ ≤ 𝑟ଷ ≤ ⋯ ≤ 𝑟ଵହ}. Annual coupon payments are assumed to be 
non-protected. This assumption means that investors have the worst-case possibility of an annual 
coupon payment of none. Then, the redemption value payment is assumed to be half-protected. This 
assumption means investors have a worst-case possibility of paying the redemption value of half. 
Descriptively, the following is the payment scheme for the annual coupon and the redemption value: 
a. If the earthquake with the maximum magnitude before the payment date is of the nonsignificant 

and deep types, the investor gets 𝑟ଵ part of the redemption value and 𝑐ଵ part of the annual 
coupon. We assume 𝑐ଵ = 1 and 𝑟ଵ = 1. In other words, if the maximum magnitude of the 
earthquake until the payment date occurs is of the nonsignificant and deep earthquake types, the 
investor gets the total redemption value and the annual coupon. 

b. If the earthquake with the maximum magnitude before the payment date is of the nonsignificant 
and intermediate types, the investor gets 𝑟ଶ part of the redemption value and 𝑐ଶ part of the 
annual coupon. 

c. If the earthquake with the maximum magnitude before the payment date is of the nonsignificant 
and shallow types, the investor gets 𝑟ଷ part of the redemption value and 𝑐ଷ part of the annual 
coupon. 

d. If the earthquake with the maximum magnitude before the payment date is of the moderate and 
deep types, the investor gets 𝑟ସ part of the redemption value and 𝑐ସ part of the annual coupon. 

e. If the earthquake with the maximum magnitude before the payment date is the moderate and 
intermediate types, the investor gets 𝑟ହ part of the redemption value and 𝑐ହ part of the annual 
coupon. 

f. If the earthquake with the maximum magnitude before the payment date is of the moderate and 
shallow types, the investor gets 𝑟଺ part of the redemption value and 𝑐଺ part of the annual 
coupon. 

g. If the earthquake with the maximum magnitude before the payment date is of the strong and 
deep types, the investor gets 𝑟଻ part of the redemption value and 𝑐଻ part of the annual coupon. 

h. If the earthquake with the maximum magnitude before the payment date is of the strong and 
intermediate types, the investor gets 𝑟  part of the redemption value and 𝑐଼ part of the annual 
coupon. 

i. If the earthquake with the maximum magnitude before the payment date is of the strong and 
shallow types, the investor gets 𝑟ଽ part of the redemption value and 𝑐ଽ part of the annual 
coupon. 

j. If the earthquake with the maximum magnitude before the payment date is of the major and 
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deep types, the investor gets 𝑟ଵ଴ part of the redemption value and 𝑐ଵ଴ part of the annual 
coupon. 

k. If the earthquake with the maximum magnitude before the payment date is of the major and 
intermediate types, the investor gets 𝑟ଵଵ part of the redemption value and 𝑐ଵଵ part of the 
annual coupon. 

l. If the earthquake with the maximum magnitude before the payment date is of the major and 
shallow types, the investor gets 𝑟ଵଶ part of the redemption value and 𝑐ଵଶ part of the annual 
coupon. 

m. If the earthquake with the maximum magnitude before the payment date is of the great and deep 
types, the investor gets 𝑟ଵଷ part of the redemption value and 𝑐ଵଷ part of the annual coupon. 

n. If the earthquake with the maximum magnitude before the payment date is of the great and 
intermediate types, the investor gets 𝑟ଵସ part of the redemption value and 𝑐ଵସ part of the 
annual coupon. 

o. If the earthquake with the maximum magnitude before the payment date is of the great and 
shallow types, the investor gets 𝑟ଵହ part of the redemption value and 𝑐ଵହ part of the annual 
coupon. Because the annual coupon is non-protected, 𝑐ଵହ = 0. Then, because the redemption 
value is half-protected, 𝑟ଵହ = 0.5. 
Mathematically, the annual coupon payment schemes at the end of the 𝑘-th year with 𝑘 =

1, 2, 3, … , 𝑇 and the redemption value at the end of year 𝑇 are, respectively, formulated as follows: 

𝒞௞ =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑐ଵ𝐶 : 0 < ℳ௞ ≤ 5, 𝒟௞ > 300,          
𝑐ଶ𝐶 : 0 < ℳ௞ ≤ 5,70 < 𝒟௞ ≤ 300,
𝑐ଷ𝐶 : 0 < ℳ௞ ≤ 5, 𝒟௞ ≤ 70,             
𝑐ସ𝐶 : 5 < ℳ௞ ≤ 6, 𝒟௞ > 300,         
𝑐ହ𝐶 : 5 < ℳ௞ ≤ 6,70 < 𝒟௞ ≤ 300,
𝑐଺𝐶 : 5 < ℳ௞ ≤ 6, 𝒟௞ ≤ 70,             
𝑐଻𝐶 : 6 < ℳ௞ ≤ 7, 𝒟௞ > 300,          
𝑐଼𝐶 : 6 < ℳ௞ ≤ 7,70 < 𝒟௞ ≤ 300,
𝑐ଽ𝐶 : 6 < ℳ௞ ≤ 7, 𝒟௞ ≤ 70,             
𝑐ଵ଴𝐶 : 7 < ℳ௞ ≤ 8, 𝒟௞ > 300,         
𝑐ଵଵ𝐶 : 7 < ℳ௞ ≤ 8,70 < 𝒟௞ ≤ 300,
𝑐ଵଶ𝐶 : 7 < ℳ௞ ≤ 8, 𝒟௞ ≤ 70,            
𝑐ଵଷ𝐶 : ℳ௞ > 8, 𝒟௞ > 300,                  
𝑐ଵସ𝐶 : ℳ௞ > 8,70 < 𝒟௞ ≤ 300,        
𝑐ଵହ𝐶 : ℳ௞ > 8, 𝒟௞ ≤ 70,                     

  

and 
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ℛ் =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑟ଵ𝑅 : 0 < ℳ் ≤ 5, 𝒟் > 300,          
𝑟ଶ𝑅 : 0 < ℳ் ≤ 5,70 < 𝒟் ≤ 300,
𝑟ଷ𝑅 : 0 < ℳ் ≤ 5, 𝒟் ≤ 70,             
𝑟ସ𝑅 : 5 < ℳ் ≤ 6, 𝒟் > 300,          
𝑟ହ𝑅 : 5 < ℳ் ≤ 6,70 < 𝒟் ≤ 300,
𝑟଺𝑅 : 5 < ℳ் ≤ 6, 𝒟் ≤ 70,             
𝑟଻𝑅 : 6 < ℳ் ≤ 7, 𝒟் > 300,          
𝑟 𝑅 : 6 < ℳ் ≤ 7,70 < 𝒟் ≤ 300,
𝑟ଽ𝑅 : 6 < ℳ் ≤ 7, 𝒟் ≤ 70,             
𝑟ଵ଴𝑅 : 7 < ℳ் ≤ 8, 𝒟் > 300,          
𝑟ଵଵ𝑅 : 7 < ℳ் ≤ 8,70 < 𝒟் ≤ 300,
𝑟ଵଶ𝑅 : 7 < ℳ் ≤ 8, 𝒟் ≤ 70,            
𝑟ଵଷ𝑅 : ℳ் > 8, 𝒟் > 300,                  
𝑟ଵସ𝑅 : ℳ் > 8,70 < 𝒟் ≤ 300,        
𝑟ଵହ𝑅 : ℳ் > 8, 𝒟் ≤ 70,                     

  

where 𝐶 ≥ 0  is the annual coupon, and 𝑅 > 0  is the redemption value. If 𝐶 = 0 , then the 
earthquake bond is called a zero-coupon earthquake bond. 

In this study, the price of earthquake bonds is formulated as the summation of the expected 
present value of the redemption value and the annual coupon. We model it using the risk-neutral 
pricing measure Q. Mathematically, the price model for 𝑇-year earthquake bonds purchased at time 
𝑡 = 0 is formulated as follows: 

𝑉 = ෍ 𝔼୕ ቀ𝒞௞𝑒ି ∑ ௜ೞ
ೖ
ೞసభ ቚ𝒫଴ቁ

்

௞ୀଵ

+ 𝔼୕ ቀℛ்𝑒ି ∑ ௜ೞ
೅
ೞసభ ቚ𝒫଴ቁ 

= ෍ ෍ ෍ 𝑐ଷ(௣ିଵ)ା௤P൫𝑚௣ < ℳ௞ ≤ 𝑚௣ାଵ, 𝑑௤ାଵ < 𝒟௞ ≤ 𝑑௤൯𝐶𝐵௞

ଷ

௤ୀଵ

ହ

௣ୀଵ

்

௞ୀଵ

 

+ ෍ ෍ 𝑟ଷ(௣ିଵ)ା௤P൫𝑚௣ < ℳ் ≤ 𝑚௣ାଵ, 𝑑௤ାଵ < 𝒟் ≤ 𝑑௤൯𝑅𝐵்

ଷ

௤ୀଵ

ହ

௣ୀଵ

, 

(10)

where 𝔼୕ is the expectation under Q, 𝐵௞ with 𝑘 = 1, 2 , 3, … , 𝑇 can be determined in Eq (9), 𝑚ଵ = 0, 
𝑚ଶ = 5, 𝑚ଷ = 6, 𝑚ସ = 7, 𝑚ହ = 8, 𝑚଺ → ∞, 𝑑ଵ → ∞, 𝑑ଶ = 300, 𝑑ଷ = 70, and 𝑑ସ = 0. 
Proof. See Appendix B. Although Eq (10) has been reduced to its simplest form, its solution cannot 
be determined analytically. However, we can approximate it numerically. It is discussed in 
Subsection 3.4. 

3.1.4. Monte Carlo algorithm to approximate the model solution 

The earthquake bond price in Eq (10) can be estimated numerically using the Monte Carlo 
method. Suppose that: 
a. 𝒮 represents the number of simulations, and 𝓈 ∈ {1, 2, … , 𝒮} is a set of indices representing 

the simulations' sequence. 
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b. 𝑉෠்
(𝓈) represents the price of earthquake bonds in the 𝓈-th simulation. 

c. ℳ𝒲,௞
(𝓈)  is a set of random numbers from the random variable ℳ௞  of size 𝒲 in the 𝓈-th 

simulation. 

d. 𝒟𝒲,௞
(𝓈)  is a set of random numbers from the random variable 𝒟௞  of size 𝒲 in the 𝓈-th 

simulation. 

e. 𝔭௣௤,௞
(𝓈)  is the value of Pቀ𝑚௣ < ℳ௞

(𝓈)
≤ 𝑚௣ାଵ, 𝑑௤ାଵ ≤ 𝒟௞

(𝓈)
< 𝑑௤ቁ in the 𝓈-th simulation with 

𝑝 = 1, 2, … ,5 and 𝑞 = 1, 2, 3. 

f. 𝐵௞
(𝓈) is the discount factor from 𝑡 = 0 to the end of the 𝑘-th year in the 𝓈-th simulation. 

In simple terms, the solution to Eq (10) can be approximated using the following equation: 

𝑉෠் = lim
𝒮→ஶ

1

𝒮 
෍ 𝑉෠்

(𝓈)

𝒮

𝓈ୀଵ

, (11)

where 

𝑉෠்
(𝓈)

= ෍ ෍ ෍ 𝑐ଷ(௣ିଵ)ା௤𝔭௣௤,௞
(𝓈)

𝐶𝐵௞
(𝓈)

ଷ

௤ୀଵ

ହ

௣ୀଵ

்

௞ୀଵ

+ ෍ ෍ 𝑟ଷ(௣ିଵ)ା௤𝔭௣௤,்
(𝓈)

𝑅𝐵்
(𝓈)

ଷ

௤ୀଵ

ହ

௣ୀଵ

. (12)

Practically, the steps for using Eqs (11) and (12) are as follows: 
a. Determine the values of 𝒮, 𝒲, 𝐶, 𝑅, 𝑇, and (𝑐௙, 𝑟௙: 𝑓 = 1,  2, … ,15). 

b. Generate 𝑁௞
(𝓈)  for each 𝑘  and 𝓈 , where 𝑁௞

(𝓈)  represents the frequency of significant 

earthquakes until the end of the 𝑘-year in the 𝓈-th simulation. 

c. Generate 𝑀௝
(𝓈)  and 𝐷௝

(𝓈) for each 𝑗 = 1, 2, … , 𝑁௞
(𝓈) , where 𝑀௝

(𝓈)  and 𝐷௝
(𝓈)  represent the 

strength and depth of the 𝑗-th earthquake in the 𝓈-th simulation, respectively. 

d. Determine the values of ℳ௞
(𝓈) and 𝒟௞

(𝓈) for each 𝑘 and 𝓈. 

e. Determine the value 𝔭௣௤,௞
(𝓈)  for each 𝑘, 𝑝, 𝑞, and 𝓈.  

f. Generate 𝑖௞
(𝓈) for each 𝑘 and 𝓈 through the random error using Eq (8), where 𝑖௞

(𝓈) is the 

interest rate at the end of the 𝑘-th year in the 𝓈-th simulation.  

g. Determine 𝐵௞
(𝓈) for each 𝑘 and 𝓈. 

h. Determine the value of 𝑉෠்
(𝓈). 

i. Determine the value of 𝑉෠்
 . 
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3.2. Model application to actual data 

3.2.1. Data description 

This section contains simulation of earthquake bond price model used in Indonesia’s 
earthquake and financial data. The data is on the significant earthquake’s magnitude and depth 
in Indonesia from January 1, 2009 to December 31, 2023. Both sets of data were sourced from 
the official website of the Meteorological, Climatological, and Geophysical Agency of the 
Republic of Indonesia (https://repogempa.bmkg.go.id/eventcatalog) on June 10, 2024. The size 
of both data is the same, namely 5153. Then, other data is on annual interest rates in Indonesia 
from 1992 to 2023. This data was accessed from the official Bank Indonesia website 
(https://www.bi.go.id/en/iru/economic-market-data/default.aspx) on June 10, 2024. The size of 
this data is 32. 

3.2.2. Estimating Cox-Ingersoll-Ross model parameters 

This section begins by estimating the Cox-Ingersoll-Ross force of interest model parameters in 
Eq (8). To estimate these parameters, we use a discrete version of the model with one time step as 
follows [21]: 

𝑖𝓀ାଵ − 𝑖𝓀 = 𝒶(𝒷 − 𝑖𝓀) + ℊඥ𝑖𝓀𝜀𝓀, (13)

where 𝜀𝓀 for all 𝓀 = 1, 2, 3, … 𝑇 − 1 are independent and have a normal distribution N(0, 1). To 
estimate the parameters of Eq (13), we perform the ordinary least squares (OLS) method proposed by 
Kladivko [42]. The first step is to reformulate Eq (13) as follows: 

𝑖𝓀ାଵ − 𝑖𝓀

ඥ𝑖𝓀

=
𝒶𝒷

ඥ𝑖𝓀

− 𝒶ඥ𝑖𝓀 + ℊ𝜀𝓀. (14)

The solution to Eq (14) is obtained by solving the following minimization problem: 

min. ෍(ℊ𝜀𝓀)ଶ

்ିଵ

𝓀ୀଵ

= min. ෍ ቆ
𝑖𝓀ାଵ − 𝑖𝓀

ඥ𝑖𝓀

−
𝒶𝒷

ඥ𝑖𝓀

+ 𝒶ඥ𝑖𝓀ቇ

ଶ்ିଵ

𝓀ୀଵ

= min.(y − Xb)ଶ,  

where 
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y =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑖ଶ − 𝑖ଵ

ඥ𝑖ଵ

𝑖ଷ − 𝑖ଶ

ඥ𝑖ଶ

𝑖ସ − 𝑖ଷ

ඥ𝑖ଷ

⋮
𝑖் − 𝑖்ିଵ

ඥ𝑖்ିଵ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, X =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1

ඥ𝑖ଵ

−ඥ𝑖ଵ

1

ඥ𝑖ଶ

−ඥ𝑖ଶ

1

ඥ𝑖ଷ

−ඥ𝑖ଷ

⋮ ⋮
1

ඥ𝑖்ିଵ

−ඥ𝑖்ିଵ
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, and b = ቂ
𝒶𝒷
𝒶

ቃ.  

Briefly, the estimated parameter b is as follows: 

b෠ = (XᇱX)ିଵXᇱy. (15)

In other word, 

𝒶ො = 𝑏ଶ,ଵ and 𝒷෡ =
𝑏ଵ,ଵ

𝑏ଶ,ଵ
,  

where 𝑏𝓅,𝓆 is the element of b in the 𝓅-th row and 𝓆-th column with 𝓅 = 1, 2 and 𝓆 = 1. Then, 

ℊෝଵ is obtained from the following equation: 

ℊෝ = ඩ
1

𝑇 − 2
෍(ℊ𝜀𝓀 − 𝑦ത)ଶ

்ିଵ

𝓀ୀଵ

= ඩ
1

𝑇 − 2
෍ ቆ

𝑖𝓀ାଵ − 𝑖𝓀

ඥ𝑖𝓀

−
𝒶ො𝒷෡

ඥ𝑖𝓀

+ 𝒶ොඥ𝑖𝓀 − 𝑦തቇ

ଶ்ିଵ

𝔱ୀଵ

, (16)

where 𝑦ത is the average of ℊ𝜀𝓀 with 𝓀 = 1, 2, 3, … , 𝑇 − 1. Based on the data we use, by applying 
Eqs (15) and (16), we obtain 𝒶ො = 0.20845, 𝒷෡ = 0.08285, and ℊෝ = 0.10944. 

3.2.3. Estimating significant earthquake intensity 

To estimate 𝜆, the OLS method can be used. In summary, the estimate of 𝜆, denoted 𝜆መ, is 
formulated as follows [39]: 

𝜆መ =
𝒩

𝒯
, (17)

where 𝒯 is the length of the observation time, and 𝒩 is the number of significant earthquakes 
during the observation time. The length of the observation time can have specific units, e.g., days, 
months, or years. We chose the unit of year to match the term of earthquake bonds, which also have 
units of years. Based on the data obtained, the values were 𝒩 = 5153  and 𝒯 = 15  years. 

Therefore, we obtain 𝜆መ =
ହଵହଷ

ଵହ
≈ 343.3333 significant earthquakes per year. 
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3.2.4. Fitting earthquake magnitude and depth distributions 

This section involves identifying the theoretical distribution to represent the data distribution of 
significant earthquake magnitudes and depths in Indonesia. This identification was performed using 
the Anderson-Darling test with a 0.01 level of significance, and the analysis was carried out using 
EasyFit Professional software version 5.5. Briefly, using this software, the most significant 
distribution representing significant earthquake magnitude is the Weibull distribution (𝛼, 𝛽, 𝛾) with 
𝛼ො = 0.99308, 𝛽መ = 0.41869, and 𝛾ො = 5. Meanwhile, for significant earthquake depths, the most 
significant is the generalized Pareto distribution (GPD) (𝜉, 𝜎) with 𝜉መ = 0.4672 and 𝜎ො = 46.902. 
In other words, we have a null hypothesis for the goodness-of-fit test between magnitude and depth 
data distributions as follows: 

P(𝑀 ≤ 𝑚) = 1 − 𝑒
ି൬

௠ିఊ
ఉ

൰
ഀ

≈ 1 − 𝑒
ିቀ

௠ିହ
଴.ସଵ଼଺ଽ

ቁ
బ.వవయబఴ

 (18)

and 

P(𝐷 ≤ 𝑑) = 1 − ൬1 + 𝜉
𝑑

𝜎
൰

ି
ଵ
క

≈ 1 − ൬1 + 0.4672
𝑑

46.902
൰

ି
ଵ

଴.ସ଺଻ଶ
, (19)

where 𝑚 ≥ 5 and 𝑑 ≥ 0. The Weibull and generalized Pareto distributions have test values 
of 3.6689 and 147.73, respectively. With a critical value of 3.9074, the null hypothesis for the fitting 
test between the Weibull and significant earthquake magnitude data distributions is not rejected, 
while the fitting test between the Weibull and significant earthquake depth data distributions is 
rejected. These results show that the distribution of significant earthquake magnitude data in 
Indonesia can be represented by the Weibull distribution (0.99308, 0.41869, 5). In contrast, 
the distribution of significant earthquake depth data in Indonesia cannot be represented by the 
GPD (2.1406, 100.4). Although the distribution of earthquake depth data does not match the GPD, 
we tolerate this mismatch in the context of numerical simulations as conducted by Shao et al. [21]. 
The primary focus in this section is on model validation using a simulation approach. Therefore, this 
discrepancy does not reduce the reliability of the simulation results because the method used is 
designed to produce valid results. 

3.2.5. Estimating earthquake bond prices 

Equation (11) is used to approximate the earthquake bond prices. We assume that the number of 
simulations is 𝒮 = 100,000 and the number of generated ℳ௞ and 𝒟௞ values is 𝒲 = 100. Then, 
the annual coupon is 𝐶 = 0.1 USD, the redemption value is 𝑅 = 1 USD, and the term is 𝑇 = 3 

years. The estimation of earthquake bond prices in this study assumes that 𝑐ଵ = 1, 𝑐ଶ =
ଵଷ

ଵସ
, 𝑐ଷ =

ଵଶ

ଵସ
, 

𝑐ସ =
ଵଵ

ଵସ
, 𝑐ହ =

ଵ଴

ଵସ
, 𝑐଺ =

ଽ

ଵସ
, 𝑐଻ =

଼

ଵସ
, 𝑐଼ =

଻

ଵସ
, 𝑐ଽ =

଺

ଵସ
, 𝑐ଵ଴ =

ହ

ଵସ
, 𝑐ଵଵ =

ସ

ଵସ
, 𝑐ଵଶ =

ଷ

ଵସ
, 𝑐ଵଷ =

ଶ

ଵସ
, 

𝑐ଵସ =
ଵ

ଵସ
, 𝑐ଵହ = 0 , 𝑑ଵ = 1 , 𝑑ଶ =

ଶ଻

ଶ଼
, 𝑑ଷ =

ଶ଺

ଶ଼
, 𝑑ସ =

ଶହ

ଶ଼
, 𝑑ହ =

ଶସ

ଶ଼
, 𝑑଺ =

ଶଷ

ଶ଼
, 𝑑଻ =

ଶଶ

ଶ଼
, 𝑑଼ =

ଶଵ

ଶ଼
, 

𝑑ଽ =
ଶ଴

ଶ଼
, 𝑑ଵ଴ =

ଵଽ

ଶ଼
, 𝑑ଵଵ =

ଵ଼

ଶ଼
, 𝑑ଵଶ =

ଵ଻

ଶ଼
, 𝑑ଵଷ =

ଵ଺

ଶ଼
, 𝑑ଵସ =

ଵହ

ଶ଼
, and 𝑑ଵହ =

ଵସ

ଶ଼
. Based on determining 
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parameters, the price of earthquake bonds at time 𝑡 = 0  resulting from the 𝒮  simulation is 
visualized in a histogram in Figure 2. 15.692% of results exceeded the mean plus standard deviation, 
while 15.801% of results were below the mean minus standard deviation. The remaining 68.507% 
fell between these two limits. These percentages are an indication that the simulation results are 
normally distributed. Then, the skewness of the results is 0.2159, and the kurtosis is 3.1029. The 
skewness value is close to zero and the kurtosis value is close to three, which also indicates that the 
simulation results are normally distributed. The indication of normality can also be seen in the 𝒮 
simulation of bond pricing results with a term of one to six years, whose histograms are also 
illustrated in Figure 2. Finally, based on the average of the simulation results obtained, the estimated 
price of earthquake bonds at 𝑡 = 0 is 𝑉෠ଷ = 0.5033 USD. Further details are presented in Table 2. 

Table 2 demonstrates that the expected annual coupon each year is positive. This positivity 
indicates that, on average, investors will always receive an annual coupon every year. Then, annual 
coupon expectations always decrease every year. This decrease happens because the longer the term 
of an earthquake bond, the higher the possibility of a significant earthquake event. Then, the higher 
the possibility, the smaller the investor receiving the annual coupon. As a result, the expected value 
of the annual coupon continuously decreases every year. 

Table 2. Details of earthquake bond price estimations with a term of three years in Indonesia. 

Payment Value (USD) Present Value (USD) 
Expected coupon in year 1 0.0197 0.0185 
Expected coupon in year 2 0.0146 0.0129 
Expected coupon in year 3 0.0116 0.0096 
Expected redemption value in year 3 0.5579 0.4623 

𝑉෠ଷ 0.5033 
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Figure 2. Histogram displaying the results of 100,000 simulations for calculating 
earthquake bond prices with a term of one (a), two (b), three (c), four (d), five (e), and 
six (f) years. 
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4. Discussion 

4.1. Sensitivity analysis 

We first analyze how the difference between the earthquake bond price is estimated using 
constant and stochastic interest rates. The stochastic interest rate model and its parameters are given 
in Subsection 4.2. Then, the constant interest rate used is 0.0583. This value is adjusted to the actual 
interest rate in Indonesia at the beginning of 2024. Using Eq (11) and the same values of other 
variables in Subsections 4.2 to 4.4, the analysis results of prices in earthquake bonds with one- to 
seven-year terms under both interest rate assumptions are visualized in Figure 3. Figure 3 illustrates 
that if the term of the earthquake bond is long, the difference in bond prices with the two 
assumptions of constant and stochastic interest rates tends to be more significant. Suppose the 
earthquake bond price with the constant interest rate is the approximate value for the earthquake 
bond price with the stochastic interest rate. In that case, the absolute percentage errors (APE) of the 
approximations for one to five years are 0.4722%, 0.9050%, 1.2710%, 1.6378%, 1.9182%, 2.2085%, 
and 2.4319%, respectively. These APE values are crucial for large amounts of money in bonds. 

 

Figure 3. The prices in earthquake bonds with one to seven-year terms under constant 
and stochastic interest rate assumptions. 

Next is a sensitivity analysis of the annual significant earthquake intensity on earthquake bond 
prices. We make the intensity a set {25, 50, 75, … , 375, 400}. Using Eq (11) and the same values of 
other variables as in Subsections 4.2 to 4.4, the analysis results of the influence of significant 
earthquake intensity on earthquake bond prices with one- to five-year terms are given visually in 
Figure 4. Figure 4 demonstrates that the greater the intensity of a significant earthquake, the lower 
the price of earthquake bonds, and vice versa. This case makes sense, where the possibility of losing 
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the coupon and redemption value of earthquake bonds will be high if the intensity of the significant 
earthquake is also high. As a result, investor demand for bonds is low, so bond prices are also low. 

 

Figure 4. Earthquake bond prices with one- to five-year terms under the intensity of 
{25, 50, 75, … , 375, 400} earthquakes per year. 

Next is an analysis of the influence of the annual coupon amount of earthquake bonds on its 
prices. We make the number of annual coupons into the set {0, 0.025, 0.05, … , 0.225, 0.25} USD. 
We estimate the earthquake bond price for each annual coupon value on a one- to five-year 
earthquake bond using Eq (11). Except for the coupon value, the other variable values are the same 
as in Subsections 4.2 to 4.4. The analysis results of the influence of the annual coupon on earthquake 
bond prices are illustrated visually in Figure 5. Figure 5 demonstrates that the higher the annual 
coupon amount of the earthquake bond, the higher its price, and vice versa. This case makes sense, 
where if the annual coupon amount is high, there is a high demand from investors for the bond. As a 
result, bond prices are also high. 
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Figure 5. One- to five-year earthquake bond prices with an annual coupon of 
{0, 0.025, 0.05, … , 0.225, 0.25} USD. 

The following is an analysis of how the term of the earthquake bond affects its price. The 
analysis results are displayed visually in Figures 4 and 5. Figures 4 and 5 demonstrate that the price 
of an earthquake bond decreases with its term and vice versa. This case makes sense, where the 
possibility of losing the coupon and redemption value of the earthquake bond will be high if the bond 
term is long. As a result, investor demand for these bonds is low, so bond prices are also low. 

The last is an analysis of the influence of the correlation rates between the magnitude and depth 
of earthquakes on earthquake bond prices. We set this correlation to {−1, −0.8, −0.6, … , 0.8, 1}. We 
estimate the earthquake bond price for each correlation rate in terms of one to five years using 
Eq (11). We also assume that the other variable values are the same as in Subsections 4.2 to 4.4. The 
results of the analysis of these correlation rate effects on earthquake bond prices are illustrated in 
Figure 6. Figure 6 demonstrates the correlation rates significantly affect the earthquake bond prices. 
The more negative the correlation rates between magnitude and depth, the smaller the earthquake 
bond prices, and vice versa. This trend makes sense because when the correlation rates between 
magnitude and depth are highly negative, the potential for severe damage due to earthquakes is more 
significant. As a result, the perceived risk of harm increases significantly. Investors, therefore, will 
view the bond as riskier, reducing demand for the bond. As a result, bond prices decrease as investors 
seek higher returns to compensate for the greater risk or avoid purchasing such bonds altogether. 
These findings support the urgency of using the assumed link between magnitude and depth in 
modeling earthquake bond prices used in this study. 
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Figure 6. One- to five-year earthquake bond prices with correlation rates between 
magnitude and depth {−1, −0.8, −0.6, … , 0.8, 1}. 

4.2. Model comparison 

The earthquake bond pricing model with the maximum magnitude and depth trigger indices in 
this study (which we will call model A) is compared with the model with the maximum magnitude 
trigger index only (which we will call model B). The payment schemes of the annual coupon and the 
redemption value of the earthquake bonds in model B are, respectively, formulated as follows: 

𝒞௞ =

⎩
⎪
⎨

⎪
⎧

𝑐ଵ𝐶 : 0 < ℳ௞ ≤ 5,
𝑐ଶ𝐶 : 5 < ℳ௞ ≤ 6,
𝑐ଷ𝐶 : 6 < ℳ௞ ≤ 7,
𝑐ସ𝐶 : 7 < ℳ௞ ≤ 8,
𝑐ହ𝐶 : ℳ௞ > 8,       

  

and 

ℛ் =

⎩
⎪
⎨

⎪
⎧

𝑟ଵ𝑅 : 0 < ℳ் ≤ 5,
𝑟ଶ𝑅 : 5 < ℳ் ≤ 6,
𝑟ଷ𝑅 : 6 < ℳ் ≤ 7,
𝑟ସ𝑅 : 7 < ℳ் ≤ 8,
𝑟ହ𝑅 : ℳ் > 8,        

  

where 𝑘 = 1, 2, 3, . . . , 𝑇.  Then, the earthquake bond price at time 𝑡 = 0  from model B is 
formulated as follows: 
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𝑉 = ෍ 𝔼୕ ቀ𝒞௞𝑒ି ∑ ௜ೞ
ೖ
ೞసభ ቚ𝒫଴ቁ

்

௞ୀଵ

+ 𝔼୕ ቀℛ்𝑒ି ∑ ௜ೞ
೅
ೞసభ ቚ𝒫଴ቁ, 

= ෍ ෍ 𝑐௣𝐶P൫𝑚௣ < ℳ௞ ≤ 𝑚௣ାଵ൯𝐵௞

ହ

௣ୀଵ

்

௞ୀଵ

+ ෍ 𝑟௣𝑅P൫𝑚௣ < ℳ் ≤ 𝑚௣ାଵ൯𝐵்

ହ

௣ୀଵ

. 

(20)

The proof of Eq (20) can be carried out similarly to the proof of Eq (10). Next, using both models, 
we calculate the earthquake bond price for one to five years using the similar way as in Eqs (11) 
and (12). We use 𝑐ଵ = 1, 𝑐ଶ = 0.75, 𝑐ଷ = 0.5, 𝑐ସ = 0.25, 𝑐ହ = 0, 𝑟ଵ = 1, 𝑟ଶ = 0.875, 𝑟ଷ =

0.75, 𝑟ସ = 0.625, and 𝑟ହ = 0.5. With the same variable values as in Subsections 4.2 to 4.4, the 
results of estimating earthquake bond prices with models A and B are displayed visually in Figure 7. 
Figure 7 demonstrates that the estimated earthquake bond price obtained from model A is always 
higher than that obtained from model B. In other words, using two trigger indices tends to make 
earthquake bond prices higher than using one index. This case makes sense, where earthquake bonds 
with two trigger indices have a lower possibility of claims occurring than those with one trigger 
index. As a result, earthquake bonds with two trigger indices tend to have higher demand than bonds 
with one trigger index. As a result, the price of earthquake bonds with two trigger indices tends to be 
higher than those with one trigger index. 

 

Figure 7. Earthquake bond price estimates for one to five years using models A and B. 
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5. Conclusions 

This study aims to model the price of earthquake bonds using maximum magnitude and depth 
trigger indices. Both triggers are assumed to be dependent to enable more accurate risk assessment 
and higher revenue payments. Apart from that, the values of both triggers are determined based on 
the earthquake's intensity. Intensity addresses rising seismic activity, while depth and magnitude are 
designed as dual-trigger events that can enhance the bond's appeal. All three factors are modeled 
simultaneously using a compound process of earthquake frequency, magnitude, and depth. Then, we 
design a coupon payment scheme and redemption value into a non-binary form to assess all possible 
severities of earthquakes that occur within the life of the bond. To model bond prices, we use the 
concept of a risk-neutral pricing measure with stochastic assumptions of interest rates. This 
stochasticity is accommodated using the Cox-Ingersoll-Ross model, which guarantees the positivity 
of interest rates in accordance with actual conditions in almost every country worldwide. 

After the model was designed, we carried out a sensitivity analysis of the variables used in 
earthquake bond prices. There is a notable difference between earthquake bond prices with stochastic 
versus constant interest rates. The longer the bond's term, the more pronounced the price difference 
becomes. We then found that the greater the term and the earthquake intensity, the lower the price of 
earthquake bonds, and vice versa. It makes sense, as the possibility of losing the coupon and 
redemption value of the earthquake bond is higher when both the term and intensity are also high. As 
a result, investor demand for bonds decreases, and bond prices also decline. We also found that the 
higher the annual coupon amount of the earthquake bond, the higher the price of the bond, and vice 
versa. It makes sense, as a higher annual coupon amount leads to greater demand from investors for 
the bond, resulting in higher bond prices. Additionally, we found that the more negative the 
correlation between magnitude and depth, the lower the earthquake bond prices, and vice versa. It 
occurs because a highly negative correlation indicates a higher potential for damage, increasing 
perceived risk and reducing demand for the bonds. These findings emphasize the importance of 
considering the relationship between magnitude and depth in modeling earthquake bond prices. 
Finally, we compared the results of estimating earthquake bond prices based on the proposed model 
with another model using one trigger. The results show that using two trigger indices tends to make 
earthquake bond prices higher than using just one trigger index. It is reasonable, as earthquake bonds 
with two trigger indices have a lower likelihood of claims occurring than those with one trigger 
index. As a result, earthquake bonds with two trigger indices tend to have higher demand and, 
consequently, higher prices than those with one trigger index. 

This study can be employed by earthquake bond issuers worldwide to price earthquake bonds 
that reflect the severity of the earthquake with its maximum magnitude, depth, and intensity. Apart 
from that, this study can also be used by geological institutions and others to estimate the risk of 
maximum magnitude and depth of earthquakes in the observation area. This study has areas for 
improvement, such as measuring the severity of the earthquake geologically and financially. 
Considering aggregate loss can be an opportunity for future study. Additionally, the inflation rate to 
obtain actual returns is not included, which also presents a chance for future study. 
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Appendix A 

Proof of Eq (3) 

The cumulative distribution function (CDF) of {ℳ௧: 𝑡 ∈ [0, 𝑇]} is formulated as follows: 

P(ℳ௧ ≤ 𝑚) = ෍ P(ℳ௧ ≤ 𝑚, 𝑁௧ = 𝑛)

ஶ

௡ୀ଴

= ෍ P(𝑁௧ = 𝑛)P(ℳ௧ ≤ 𝑚|𝑁௧ = 𝑛)

ஶ

௡ୀ଴

. (A1)

Recall that ൛𝑀௝: 𝑗 ∈ 𝐽௧ൟ are i.i.d., and {𝑁௧: 𝑡 ∈ [0, 𝑇]} and ൛𝑀௝: 𝑗 ∈ 𝐽௧ൟ are independent. Then, for a 

fixed number 𝑛 = 0, 1, 2, 3, … , the CDF of {ℳ௧: 𝑡 ∈ [0, 𝑇]} is formulated as follows [43]: 

P(ℳ௧ ≤ 𝑚|𝑁௧ = 𝑛) = P ൬max
௝∈௃೟

൛𝑀௝ൟ ≤ 𝑚ฬ𝑁௧ = 𝑛൰ = P ൬max
𝒿∈𝒥

൛𝑀𝒿ൟ ≤ 𝑚൰ 

= P(𝑀ଵ ≤ 𝑚, 𝑀ଶ ≤ 𝑚, … , 𝑀௡ ≤ 𝑚) = P(𝑀ଵ ≤ 𝑚)P(𝑀ଶ ≤ 𝑚) … P(𝑀௡ ≤ 𝑚) 

= P௡(𝑀 ≤ 𝑚), 

(A2)

where 𝒥 = {1, 2, … , 𝑛}. Substitute Eq (A2) into (A1) so that: 

P(ℳ௧ ≤ 𝑚) = ෍ P(𝑁௧ = 𝑛)P௡(𝑀 ≤ 𝑚)

ஶ

௡ୀ଴

. (A3)

Substitute Eq (2) into (A3) to obtain the following equation: 

P(ℳ௧ ≤ 𝑚) = ෍
(𝜆𝑡)௡

𝑛!
𝑒ିఒ௧P௡(𝑀 ≤ 𝑚)

ஶ

௡ୀ଴

= ෍
[𝜆𝑡P(𝑀 ≤ 𝑚)]௡

𝑛!
𝑒ିఒ௧

ஶ

௡ୀ଴

 

= ෍
[𝜆𝑡P(𝑀 ≤ 𝑚)]௡

𝑛!
𝑒ିఒ௧

ஶ

௡ୀ଴

𝑒ఒ௧[ଵି୔(ெஸ௠)]

𝑒ఒ௧[ଵି୔(ெஸ௠)]
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=
1

𝑒ఒ௧[ଵି୔(ெஸ௠)]
෍

[𝜆𝑡P(𝑀 ≤ 𝑚)]௡

𝑛!
𝑒ିఒ௧୔(ெஸ௠)

ஶ

௡ୀ଴

= 𝑒ିఒ௧[ଵି୔(ெஸ௠)]. 

Proof of Eq (4) 

The probability that ℳ௧ ∈ (𝑚ଵ, 𝑚ଶ] is formulated as follows: 

P(𝑚ଵ < ℳ௧ ≤ 𝑚ଶ) = ෍ P(𝑚ଵ < ℳ௧ ≤ 𝑚ଶ, 𝑁௧ = 𝑛)

ஶ

௡ୀ଴

 

= ෍ P(𝑁௧ = 𝑛)P(𝑚ଵ < ℳ௧ ≤ 𝑚ଶ|𝑁௧ = 𝑛)

ஶ

௡ୀ଴

 

= ෍ P(𝑁௧ = 𝑛)[P(ℳ௧ ≤ 𝑚ଶ|𝑁௧ = 𝑛) − P(ℳ௧ ≤ 𝑚ଵ|𝑁௧ = 𝑛)

ஶ

௡ୀ଴

] 

= ෍[P(𝑁௧ = 𝑛)P(ℳ௧ ≤ 𝑚ଶ|𝑁௧ = 𝑛) − P(𝑁௧ = 𝑛)P(ℳ௧ ≤ 𝑚ଵ|𝑁௧ = 𝑛)]

ஶ

௡ୀ଴

 

= ෍ P(𝑁௧ = 𝑛)P(ℳ௧ ≤ 𝑚ଶ|𝑁௧ = 𝑛)

ஶ

௡ୀ଴

− ෍ P(𝑁௧ = 𝑛)P(ℳ௧ < 𝑚ଵ|𝑁௧ = 𝑛)

ஶ

௡ୀ଴

 

= P(ℳ௧ ≤ 𝑚ଶ) − P(ℳ௧ ≤ 𝑚ଵ). 

 

Proof of Eq (5) 

The CDF of {𝒟௧: 𝑡 ∈ [0, 𝑇]} is formulated as follows: 

P(𝒟௧ ≤ 𝑑) = P(𝐷ௌ ≤ 𝑑) = ෍ ෍ P(𝐷ௌ ≤ 𝑑, 𝑆 = 𝑠, 𝑁௧ = 𝑛)

௡

௦ୀଵ

ஶ

௡ୀ଴

.  

The equation can be expanded as follows: 

P(𝒟௧ ≤ 𝑑) = ෍ ෍ P(𝑁௧ = 𝑛)P(𝑆 = 𝑠|𝑁௧ = 𝑛)P(𝐷ௌ ≤ 𝑑|𝑆 = 𝑠, 𝑁௧ = 𝑛)

௡

௦ୀଵ

ஶ

௡ୀ଴

. (A4)

Since {𝑀௝: 𝑗 ∈ 𝐽௧} and {𝑁௧: 𝑡 ∈ [0, 𝑇]} are independent, and 𝑆 = 𝑠 given 𝑁௧ = 𝑛  indicates that 

𝑀௦ is the maximum value ൛𝑀𝒿: ∈ 𝒥ൟ with 𝒥 = {1, 2, 3, … , 𝑛}, we have the following: 
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P(𝑆 = 𝑠|𝑁௧ = 𝑛) = P ൬𝑀௦ = max
𝒿∈𝒥

൛𝑀𝒿ൟ൰.  

Recall that {𝑀௝: 𝑗 ∈ 𝐽௧} is i.i.d. so that the probability that 𝑀௦ is the maximum value ൛𝑀𝒿: 𝒿 ∈ 𝒥ൟ 

is the same for each 𝑠 ∈ 𝒥, namely 
ଵ

௡
. It can be mathematically expressed as follows: 

P(𝑆 = 𝑠|𝑁௧ = 𝑛) = P ൬𝑀௦ = max
𝒿∈𝒥

൛𝑀𝒿ൟ൰ =
1

𝑛
. (A5)

Then, since {𝐷௝: 𝑗 ∈ 𝐽௧} and {𝑁௧: 𝑡 ∈ [0, 𝑇]} are independent, and 𝐷ௌ ≤ 𝑑 given 𝑆 = 𝑠 and 𝑁௧ =

𝑛 indicates that the depth of an earthquake with maximum strength 𝑀௦ = max
𝒿∈𝒥

൛𝑀𝒿ൟ is not more 

than 𝑑, we have the following: 

P(𝐷ௌ ≤ 𝑑|𝑆 = 𝑠, 𝑁௧ = 𝑛) = P(𝐷௦ ≤ 𝑑).  

Remember that {𝐷௝: 𝑗 ∈ 𝐽௧} are i.i.d. so that:  

P(𝐷ௌ ≤ 𝑑|𝑆 = 𝑠, 𝑁௧ = 𝑛) = P(𝐷௦ ≤ 𝑑) = P(𝐷 ≤ 𝑑). (A6)

Substitute Eqs (A5) and (A6) into (A4) to obtain the following equation: 

P(𝒟௧ ≤ 𝑑) = ෍ ෍ P(𝑁௧ = 𝑛)
1

𝑛
P(𝐷 ≤ 𝑑)

௡

௦ୀଵ

ஶ

௡ୀ଴

= P(𝐷 ≤ 𝑑) ෍ P(𝑁௧ = 𝑛)

ஶ

௡ୀ଴

= P(𝐷 ≤ 𝑑).  

Appendix B 

The value at time 𝑡 = 0 of the annual coupon in year 𝑘 and the redemption value in year 𝑇 
of the earthquake bond modeled using the risk-neutral pricing measure Q  are, respectively, 
formulated as follows: 

ℭ௞ = 𝔼୕ ቀ𝒞௞𝑒ି ∑ ௜ೞ
ೖ
ೞసభ ቚ𝒫଴ቁ (A7)

and 

ℜ் = 𝔼୕ ቀℛ்𝑒ି ∑ ௜ೞ
೅
ೞసభ ቚ𝒫଴ቁ, (A8)

where 𝔼୕ is the expectation under Q. To solve Eqs (A7) and (A8), we refer to Cox and Pedersen [44], 
where the joint process of the maximum magnitude and depth of earthquakes maintains its original 
distributional characteristics even after transitioning from the probability measure P to the 
risk-neutral measure Q. Under the risk-neutral pricing measure Q, events dependent only on financial 
variables are independent of those related to earthquake risk variables. Consequently, Eq (A7) can be 
rewritten as follows: 

ℭ௞ = 𝔼୕ ቀ𝒞௞𝑒ି ∑ ௜ೞ
ೖ
ೞసభ ቚ𝒫଴ቁ 
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 = 𝔼୕(𝒞௞|𝒫଴)𝔼୕ ቀ𝑒ି ∑ ௜ೞ
ೖ
ೞసభ ቚ𝒫଴ቁ 

 = 𝔼୔(𝒞௞|𝒫଴)𝔼୕ ቀ𝑒ି ∑ ௜ೞ
ೖ
ೞసభ ቚ𝒫଴ቁ 

 

= 𝔼୔(𝑐ଵ𝐶1{଴ழℳೖஸହ,𝒟ೖவଷ଴଴} + 𝑐ଶ𝐶1{଴ழℳೖஸହ,଻଴ 𝒟ೖஸଷ଴଴} + 𝑐ଷ𝐶1{଴ழℳೖஸହ,𝒟ೖஸ଻଴} + ⋯

+ 𝑐ଵଷ𝐶1{ℳೖவ଼,𝒟ೖவଷ଴ } + 𝑐ଵସ𝐶1{ℳೖவ଼,଻଴ழ𝒟ೖஸଷ଴଴} + 𝑐ଵହ𝐶1{ℳೖவ଼,𝒟ೖஸ଻଴}|𝒫଴)𝐵௞ 

 

= [𝑐ଵ𝐶P(0 < ℳ௞ ≤ 5, 𝒟௞ > 300) + 𝑐ଶ𝐶P(0 < ℳ௞ ≤ 5,70 < 𝒟௞ ≤ 300)

+ 𝑐ଷ𝐶P(0 < ℳ௞ ≤ 5, 𝒟௞ ≤ 70) + ⋯ + 𝑐ଵଷ𝐶P(ℳ௞ > 8, 𝒟௞ > 300)

+ 𝑐ଵସ𝐶P(ℳ௞ > 8,70 < 𝒟௞ ≤ 300) + 𝑐ଵହ𝐶P(ℳ௞ > 8, 𝒟௞ ≤ 70)]𝐵௞ 

 

= [𝑐ଵP(0 < ℳ௞ ≤ 5, 𝒟௞ > 300) + 𝑐ଶP(0 < ℳ௞ ≤ 5,70 < 𝒟௞ ≤ 300)

+ 𝑐ଷP(0 < ℳ௞ ≤ 5, 𝒟௞ ≤ 70) + ⋯ + 𝑐ଵଷP(ℳ௞ > 8, 𝒟௞ > 300)

+ 𝑐ଵସP(ℳ௞ > 8,70 < 𝒟௞ ≤ 300) + 𝑐ଵହP(ℳ௞ > 8, 𝒟௞ ≤ 70)]𝐶𝐵௞ 

 = ෍ ෍ 𝑐ଷ(௣ିଵ)ା௤P൫𝑚௣ < ℳ௞ ≤ 𝑚௣ାଵ, 𝑑௤ାଵ < 𝒟௞ ≤ 𝑑௤൯𝐶𝐵௞

ଷ

௤ୀଵ

ହ

௣ୀଵ

, 

where 𝑚ଵ = 0,  𝑚ଶ = 5,  𝑚ଷ = 6,  𝑚ସ = 7,  𝑚ହ = 8,  𝑚଺ → ∞,  𝑑ଵ → ∞,  𝑑ଶ = 300,  𝑑ଷ = 70, 
and 𝑑ସ = 0. Then, Eq (A8) can be rewritten as follows: 

ℜ் = 𝔼୕ ቀℛ்𝑒ି ∑ ௜ೞ
೅
ೞసభ ቚ𝒫଴ቁ 

 = 𝔼୕(ℛ்|𝒫଴)𝔼୕ ቀ𝑒ି ∑ ௜ೞ
೅
ೞసభ ቚ𝒫଴ቁ 

 = 𝔼୔(ℛ்|𝒫଴)𝔼୕ ቀ𝑒ି ∑ ௜ೞ
೅
ೞసభ ቚ𝒫଴ቁ 

 
= 𝔼୔(𝑟ଵ𝑅1{଴ழℳ೅ஸହ,𝒟೅வଷ଴଴} + 𝑟ଶ𝑅1{଴ழℳ೅ஸହ,଻଴ழ𝒟೅ஸଷ଴଴} + 𝑟ଷ𝑅1{଴ழℳ೅ஸହ,𝒟೅ஸ଻଴} + ⋯

+ 𝑟ଵଷ𝑅1{ℳ೅வ଼,𝒟೅வଷ଴଴} + 𝑟ଵସ𝑅1{ℳ೅வ଼,଻଴ழ𝒟೅ஸଷ଴଴} + 𝑟ଵହ𝑅1{ℳ೅வ଼,𝒟೅ஸ଻଴}|𝒫଴)𝐵் 

 

= [𝑟ଵ𝑅P(0 < ℳ் ≤ 5, 𝒟் > 300) + 𝑟ଶ𝑅P(0 < ℳ் ≤ 5,70 < 𝒟் ≤ 300)

+ 𝑟ଷ𝑅P(0 < ℳ் ≤ 5, 𝒟் ≤ 70) + ⋯ + 𝑟ଵଷ𝑅P(ℳ் > 8, 𝒟் > 300)

+ 𝑟ଵସ𝑅P(ℳ் > 8,70 < 𝒟் ≤ 300) + 𝑟ଵହ𝑅P(ℳ் > 8, 𝒟் ≤ 70)] 𝐵் 
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= [𝑟ଵP(0 < ℳ் ≤ 5, 𝒟் > 300) + 𝑟ଶP(0 < ℳ் ≤ 5,70 < 𝒟் ≤ 300)

+ 𝑟ଷP(0 < ℳ் ≤ 5, 𝒟் ≤ 70) + ⋯ + 𝑟ଵଷP(ℳ் > 8, 𝒟் > 300)

+ 𝑟ଵସP(ℳ் > 8,70 < 𝒟் ≤ 300) + 𝑟ଵହP(ℳ் > 8, 𝒟் ≤ 70)]𝑅𝐵் 

 = ෍ ෍ 𝑟ଷ(௣ିଵ)ା௤P൫𝑚௣ < ℳ் ≤ 𝑚௣ାଵ, 𝑑௤ାଵ < 𝒟் ≤ 𝑑௤൯𝑅𝐵்

ଷ

௤ୀଵ

ହ

௣ୀଵ

. 

The price of earthquake bonds is modeled as the sum of ℭ௞ with 𝑘 = 1, 2, 3, … , 𝑇 and ℜ், which 
is mathematically written as follows: 

𝑉 = ෍ ℭ௞

்

௞ୀଵ

+ ℜ் 

= ෍ ෍ ෍ 𝑐ଷ(௣ିଵ)ା௤P൫𝑚௣ < ℳ௞ ≤ 𝑚௣ାଵ, 𝑑௤ାଵ < 𝒟௞ ≤ 𝑑௤൯𝐶𝐵௞

ଷ

௤ୀଵ

ହ

௣ୀଵ

்

௞ୀଵ

 

+ ෍ ෍ 𝑟ଷ(௣ିଵ)ା௤P൫𝑚௣ < ℳ் ≤ 𝑚௣ାଵ, 𝑑௤ାଵ < 𝒟் ≤ 𝑑௤൯𝑅𝐵்

ଷ

௤ୀଵ

ହ

௣ୀଵ

. 
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