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Abstract: This article presents the notion of the continuous case of the weighted Tsallis extropy
function as an information measure that follows the framework of continuous distribution. We
introduce this concept from two perspectives, depending on the extropy and weighted Tsallis entropy.
Various examples to illustrate the two perspectives of the weighted Tsallis extropy by examining a few
of its characteristics are presented. Some features and stochastic orders of those measures, including
the maximum value, are introduced. An alternative depiction of the proposed models concerning the
hazard rate function is provided. Furthermore, the order statistics of the weighted Tsallis extropy and
their lower bounds are considered. Moreover, the bivariate Tsallis extropy and its weighted version
are derived. Non-parametric estimators are also derived for the new measures under cancer-related
fatalities in the European Union countries data. Additionally, a pattern recognition comparison between
Tsallis extropy and weighted Tsallis extropy is presented.
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1. Introduction

In the continuous case, weighted entropy extends the concept of entropy to probability density
functions (PDFs), where each data point or event is associated with a weight or importance factor.
The formulas for the entropy and weighted entropy measures of a continuous random variable (RV) X,
which follows a corresponding PDF g(x) and weight function w(x), are given respectively, as shown in
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Shannon [1] and Guiasu [2], by:

H(X) = −

∫ ∞

−∞

g(x) ln(g(x)) dx,

Hw(X) = −

∫ ∞

−∞

w(x)g(x) ln(g(x)) dx.

A weighted measure of entropy in the continuous case is used in a number of disciplines,
including information theory, statistics, and data analysis, to quantify uncertainty while considering
the importance or significance of different data points or events within a continuous distribution.

The weighted Tsallis entropy represents an extended measure of the Tsallis entropy that
incorporates weights or importance factors for different events or outcomes in a probability distribution.
The Tsallis entropy, introduced by Tsallis [3], is a model extension of Shannon entropy [1], and is
widely employed in information theory and statistical physics (e.g., see Mohamed et al. [4], Behera
et al. [5], and Nicolis et al. [6]). In the setting of an RV X established across R, the continuous status
of Tsallis measure of entropy is obtained by

Tnβ(X) =
1

β − 1

(
1 −

∫ ∞

0
gβ(x)dx

)
, 1 , β > 0.

Recently, much literature has considered the Tsallis entropy in many applications. A non-parametric
kernel-class estimator for the Tsallis entropy was suggested by Maya et al. [7], where the observations
in question manifest a ρ-mixing dependence requirement. Moreover, under appropriate regularity
conditions, they demonstrated the estimator’s asymptotic characteristics. In order to harmonize the
definitions of Shannon, fractional entropies, and Tsallis, Balakrishnan et al. [8] put out a new concept.
This was referred to as the unified formulation of entropy or fractional Tsallis entropy.

In the continuous case, with weighted PDF gw(x) = x
E(X)g(x), where E(X) =

∫ ∞
0

xg(x)dx is the
expected value, Das [9] has presented the notion of weighted Tsallis entropy as follows:

WTnλ(X) =
1

λ − 1

(∫ ∞

0
gw(x) dx −

∫ ∞

0
(gw(x))λ dx

)
=

1
λ − 1

1 − ∫ ∞

0

(
x
E(X)

g(x)
)λ

dx
 . (1.1)

The weighted Tsallis entropy is used in many branches to quantify the degree of uncertainty measure or
information content in a distribution while considering the relative importance of different data points
or events. The selection of the entropic index λ can affect the sensitivity of the entropy measure to the
tails of the distribution, making it a flexible tool for analyzing various types of data.

For the case of continuous RV X, Lad et al. [10] presented entropy’s complementary dual, which is
known as extropy, by replacing the PDF g(x) with 1 − g(x), which is given by

Ex∗(X) = −

∫ ∞

0
(1 − g(x)) ln(1 − g(x))dx. (1.2)

Lad et al. [10] approximated (1.2) to the following

Ex(X) = −
1
2

∫ ∞

0
g2(x)dx, (1.3)
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which is the most commonly used form for the extropy measure in the literature for the case of a
continuous RV X; see, for example, Raqab and Qiu [11] and Qiu [12].

The extropy-based form of Tsallis entropy, or Tsallis extropy measure, as thoroughly examined by
Balakrishnan et al. [13], can also be explored. The Tsallis extropy under the discrete situation of an
RV X with probability vector P = (p1, . . . , pN) and support S of cardinality N is provided by

DT xλ(P) =
1

λ − 1

N∑
j=1

(1 − p j)
[
1 − (1 − p j)λ−1

]
=

1
λ − 1

N − 1 −
N∑

j=1

(1 − p j)λ
 ,

(1.4)

where λ > 0, λ , 1. Moreover, Buono et al. [14] presented a unified formulation of extropy known as
fractional Tsallis extropy, which is given by

DFT xλ,r(P) =
1

λ − 1

N∑
j=1

(1 − p j)
[
1 − (1 − p j)λ−1

] [
− log(1 − p j)

]r−1
,

where λ > 0, λ , 1, and 0 < r ≤ 1. If r = 1, then DFT xλ,1(P) returns to DT xλ(P) given in (1.4).
Furthermore, if r = 1 and λ→ 1, then DFT xλ,1(P) returns to the discrete case of extropy measure.

Mohamed et al. [15] (see also Mohamed et al. [16]) introduced the Tsallis extropy follows the
continuous case of an RV X with the support (α, β), where −∞ < α < β < ∞, by the expression

T xλ(X) =
1

λ − 1

(∫ β

α

(1 − g(x))dx −
∫ β

α

(1 − g(x))λdx
)

=
1

λ − 1

(
β − α − 1 −

∫ β

α

(1 − g(x))λdx
)
.

(1.5)

The conditions concerning λ can be encapsulated as detailed below

Λ =

λ , 1, λ > 0 when g(x) ≤ 1,
λ ∈ Z+\{1} when g(x) > 1.

(1.6)

Studying the weighted version of uncertainty measures holds a prominent place in the literature,
especially the weighted extropy and its extensions. Abdul Sathar and Nair [17] have introduced the
weighted extropy by

WEx(X) = −
1
2

∫ ∞

0
xg2(x)dx. (1.7)

Moreover, they discussed the weighted past and residual extropy measures. Additionally, the weighted
extropy, weighted past, and weighted residual extropies were defined by Balakrishnan et al. [18]. They
provided various characterization findings and limits under reversed hazard functions and monotonicity
of hazard. Bivariate and weighted variants of extropy were also shown. Gupta and Chaudhary [19]
introduced the characterization results, monotone properties, and stochastic comparison of the measure
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of general weighted extropy of ranked set sampling. Chaudhary et al. [20] proposed the weighted
versions of negative cumulative extropy and cumulative residual extropy measures. The non-parametric
estimation of weighted extropy and its extensions also take attention. Irshad et al. [21] considered
some non-parametric estimators of weighted extropy based on kernel density estimator; see also Abdul
Sathar and Nair [17]. In the case of ordered variables such as order statistics as well as k-record values,
Bansal and Gupta [22] investigated the weighted residual extropy and weighted extropy and examined
their monotone qualities, characterization findings, and a few other properties. This research for the
past extropy measure was also examined.

This paper introduces the weighted Tsallis extropy, a measure of uncertainty for continuous RVs
that incorporates both the PDF and qualitative weights of values. It presents two formulations: one
based on the extropy measure (Eq (1.2)) and another on a modified Tsallis entropy (Eq (1.1)). The
paper includes examples comparing Tsallis extropy and its weighted variant, discusses convergence
limitations, and explores stochastic order comparisons. Key results include the derivation of maximum
weighted Tsallis extropy using Lagrange multipliers, expressions for k-th order statistics based on
the beta distribution, and extensions to bivariate models. Applications also involve kernel-based non-
parametric estimation and classification problems.

1.1. Key innovations and applications

The weighted Tsallis extropy and its bivariate extensions provide insights into complex systems
with applications in pattern recognition, reliability analysis, financial modeling, survival analysis,
information theory, and signal processing, showcasing their versatility across diverse domains.

The structure of the rest portion of this consideration is as follows. In Section 2, we extract the
two concepts of the weighted Tsallis extropy from two different perspectives. Furthermore, different
examples of the two perspectives of the weighted Tsallis exteropies are presented. The properties
of those measures are studied together and separately. In Section 3, the weighted Tsallis extropy of
order statistics is given. Section 4 deals with bivariate Tsallis extropy and its weighted version. In
Section 5, we examine non-parametric estimators for the given measures. In addition, we compare
the Tsallis extropy and weighted Tsallis extropy in addressing the classification problem using pattern
recognition.

2. Weighted Tsallis extropy

In parallel with the ideas of both weighted entropy and extropy, we can define the weighted Tsallis
extropy based on two perspectives.

Definition 2.1. Given that X is an RV defined in (α, β), as −∞ < α < β < ∞, follows a PDF g(.). In
that case, the weighted version for Tsallis extropy can be provided in two manners as outlined below:

1) According to the extropy perspective given in (1.2), the weighted Tsallis extropy could be obtained
by replacing the PDF g(x) in (1.5) by gw(x) =

xg(x)
E(X) as follows:

WT 1
λ(X) =

1
λ − 1

(∫ β

α

(1 − gw(x))dx −
∫ β

α

(1 − gw(x))λdx
)

=
1

λ − 1

β − α − 1 −
∫ β

α

(
1 −

xg(x)
E(X)

)λ
dx

 . (2.1)
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The conditions concerning λ can be encapsulated as detailed below

Λ1 =

λ , 1, λ > 0 when gw(x) ≤ 1,
λ ∈ Z+\{1} when gw(x) > 1.

(2.2)

2) The weighted Tsallis entropy presented in (1.1) can be reformulated, for simplicity, as follows:

WTn∗λ(X) =
1

λ − 1

(∫ ∞

0

x
E(X)

g(x) dx −
∫ ∞

0

x
E(X)

gλ(x) dx
)
, (2.3)

noting that this form is in the same manner as defining the weighted extropy in (1.7), where the
weight is not raised to a power. According to the reformulated weighted Tsallis entropy given
in (2.3), the weighted Tsallis extropy could be obtained by replacing the PDF g(x) in (2.3) by
1 − g(x) as follows

WT 2
λ(X) =

1
λ − 1

(∫ β

α

x(1 − g(x))
E(X)

dx −
∫ β

α

x(1 − g(x))λ

E(X)
dx

)
=

1
λ − 1

(
β2 − α2

2E(X)
− 1 −

∫ β

α

x
E(X)

(1 − g(x))λdx
)
,

(2.4)

where the conditions on λ are given in (1.6).

In the next examples, we provide two instances of distributions possessing identical Tsallis extropy
and study the varying of weighted Tsallis extropy.

Example 2.1. Consider that the RV X follows a power distribution function, and its PDF is provided
as follows:

g(x) =
δx(δ−1)

γδ
, 0 ≤ x ≤ γ, and δ, γ > 0.

With noting that E(X) =
γ δ

1+δ
. Then, from (2.1) and (2.4), we can see that

WT 1
λ(X) =

1
λ − 1

(
γ − 1 −

∫ γ

0

(
1 − xδγ(−1−δ)(1 + δ)

)λ
dx

)
,

WT 2
λ(X) =

1
λ − 1

γ(1 + δ)
2δ

− 1 −
∫ γ

0

x(1 + δ)
γ δ

(
1 −

δx(δ−1)

γδ

)λ
dx

 .
Figure 1 shows the weighted Tsallis extropies WT 1

λ(X) and WT 2
λ(X) for a power function distribution

across various γ and δ values. Additionally, it is observable that as the disparity between γ and δ

expands, the weighted Tsallis extropies also increase.
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(a) (b)

Figure 1. The weighted Tsallis extropies of power function distribution (a) WT 1
λ(X), and (b)

WT 2
λ(X).

Example 2.2. Provided that the two RVs X1 and X2 follow the uniform distributions U(0, β) and
U(α, α + β), respectively, in considering that α, β > 0, the PDFs gX1(x) = 1

β
and gX2(x) = 1

β
. Thus,

from (1.5), we have

T xλ(X1) = T xλ(X2) =
1

λ − 1

β − 1 − β
(
1 −

1
β

)λ .
Moreover, for the weighted Tsallis extropy given in (2.4), we note that

WT 2
λ(X1) = WT 2

λ(X2) =
1

λ − 1

β − 1 − β
(
1 −

1
β

)λ ,
which are equal. But for the weighted Tsallis extropy given in (2.1) with X1 ∼ U(0, 4) and X2 ∼ U(2, 4),
we note that WT 1

λ(X1) = 9
16 and WT 1

λ(X2) = 81
128 which are different.

Remark 2.1. For the uniform distribution U(α, β), we note that

T xλ(X) = WT 2
λ(X) =

1
λ − 1

β − α − 1 + (β − α)
(
1 +

1
β − α

)λ ,
which are equal.

Example 2.3. Suppose that the two RVs X1 and X2 follow the PDFs gX1(x) = 1+x
4 , 0 ≤ x ≤ 2, and

gX2(x) = 1 − 1+x
4 , 0 ≤ x ≤ 2, respectively. Thus, from (1.5), we have T xλ(X1) = T xλ(X2) = 11

24 , which
are equal. But for the weighted Tsallis extropies given in (2.1) and (2.4), we note that WT 1

λ(X1) = 53
245 ,

WT 1
λ(X2) = 53

125 , WT 2
λ(X1) = 11

28 and WT 2
λ(X2) = 11

20 which are different.

Example 2.4. Provided that the RV X follows a piece-wise constant PDF

g(x) =

n∑
q=1

dq1[q−1,q)(x),
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in considering that dq ≥ 0, q = 1, ..., n,
∑n

q=1 dq = 1 and the function of the indicator of x on the interval
[q − 1, q) is 1[q−1,q)(x). Thus, the Tsallis form of extropy and the weighted Tsallis extropy measure of X
are, respectively,

T xλ(X) =
1

λ − 1

n − 1 −
∫ n

0

1 − n∑
q=1

dq1[q−1,q)(x)


λ

dx


=

1
λ − 1

n − 1 −
∆2λ∑
k=0

(
λ

k

)
(−1)k

∫ n

0

 n∑
q=1

dq1[q−1,q)(x)


k

dx


=

1
λ − 1

n − 1 −
∆2λ∑
k=0

(
λ

k

)
(−1)k

n∑
q=1

∫ q

q−1
dk

qdx


=

1
λ − 1

n − 1 −
∆2λ∑
k=0

(
λ

k

)
(−1)k

n∑
q=1

dk
q

 ,

WT 1
λ(X) =

1
λ − 1

n − 1 −
∆1λ∑
k=0

(
λ

k

)
(−1)k

∑n
q=1

dk
q

k

[
qk+1 − (q − 1)k+1

]
[∑n

q=1
dq

2 [2q − 1]
]k

 ,

WT 2
λ(X) =

1
λ − 1

 n2

2
∑n

q=1 dq[2q − 1]
− 1 −

∆2λ∑
k=0

(
λ

k

)
(−1)k

∑n
q=1 dk

q
[
2q − 1

][∑n
q=1 dq[2q − 1]

] ,
where

∆1λ =

{
λ, λ ∈ Z+\{1};
∞, λ , 1, λ > 0 when xg(x)

E(X) < 1, (2.5)

and

∆2λ =

{
λ, λ ∈ Z+\{1};
∞, λ , 1, λ > 0 when g(x) < 1.

(2.6)

Through the permutation d1, d2, ..., dn we obtain different distributions. Therefore, the Tsallis extropies
are equal, but, except in special cases, the weighted Tsallis extropies differ.

Example 2.5. Provided that the RV X follows a beta distribution with a and b as parameters, and
alongside PDF g(x) =

xa−1(1−x)b−1

Beta(a,b) , 0 < x < 1, where Beta(a, b) is the function of beta. Thus, the
weighted Tsallis extropies from (2.1) and (2.4) are given, respectively, by

WT 1
λ(X) = −

1
λ − 1

∆λ∑
k=0

(
λ

k

)
(−1)k

∫ 1

0

xkgk(x)
Ek(X)

dx

= −
1

λ − 1

∆λ∑
k=0

(
λ

k

)
(−1)k Beta(ka + 1, kb − k + 1)

Ek(X)Betak(a, b)

(2.7)

and
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WT 2
λ(X) = −

1
λ − 1

∆λ∑
k=0

(
λ

k

)
(−1)k

∫ 1

0

xgk(x)
E(X)

dx

= −
1

λ − 1

∆λ∑
k=0

(
λ

k

)
(−1)k Beta(ka − k + 2, kb − k + 1)

E(X)Betak(a, b)
.

(2.8)

Figure 2 shows the plots of the weighted Tsallis extropies in (2.7) and (2.8) for beta distribution across
various a and b values.

(a) (b)

Figure 2. The weighted Tsallis extropies of beta distribution (a) WT 1
λ(X), and (b) WT 2

λ(X).

In the next subsection, we will discuss some features of the proposed two versions of the weighted
Tsallis extropy.

2.1. Features of the first and second perspectives WT 1
λ(X) and WT 2

λ(X)

The next result shows the conditions of the non-negativity of weighted Tsallis extropy.

Proposition 2.1. Suppose that X is a non-negative RV (N-RV) supported with (α, β), 0 < α < β < ∞,
and PDF g(.) and cumulative distribution function (CDF) G(.). Therefore,

1) According to Eq (2.1), whenever xg(x)
E(X) ≤ 1, then the weighted Tsallis extropy retains a non-negative

value.

2) According to Eq (2.4), whenever g(x) ≤ 1, then the weighted Tsallis extropy retains a non-negative
value.

Proof. 1) Given xg(x)
E(X) ≤ 1, then, if λ > 1(λ < 1), we obtain

0 ≤
∫ β

α

(1 −
xg(x)
E(X)

)λdx ≤ (≥)
∫ β

α

(1 −
xg(x)
E(X)

)dx = β − α − 1.

Thus, when λ > 1 (λ < 1) in Eq (2.1), we obtain

WT 1
λ(X) =

1
λ − 1

β − α − 1 −
∫ β

α

(
1 −

xg(x)
E(X)

)λ
dx

 ≥ 0.
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2) Given g(x) ≤ 1, then, if λ > 1(λ < 1), we obtain

0 ≤
∫ β

α

x(1 − g(x))λ

E(X)
dx ≤ (≥)

∫ β

α

x(1 − g(x))
E(X)

dx =
β2 − α2

2E(X)
− 1.

Thus, when λ > 1 (λ < 1) in Eq (2.4), we obtain

WT 2
λ(X) =

1
λ − 1

(
β2 − α2

2E(X)
− 1 −

∫ β

α

x (1 − g(x))λ

E(X)
dx

)
≥ 0.

�

In what follows, the behavior of WT 1
λ(X) and WT 2

λ(X) as λ approaches 1 can be examined using
L’Hôpital’s rule, as outlined below:

1) From (2.1), we obtain

lim
λ→1

WT 1
λ(X) = lim

λ→1

1
λ − 1

β − α − 1 −
∫ β

α

(
1 −

xg(x)
E(X)

)λ
dx


= lim

λ→1
−

∫ β

α

(
1 −

xg(x)
E(X)

)λ
ln

(
1 −

xg(x)
E(X)

)
dx

= −

∫ β

α

(
1 −

xg(x)
E(X)

)
ln

(
1 −

xg(x)
E(X)

)
dx = WEx1(X),

(2.9)

where WEx1(X) = −
∫ β

α

(
1 − xg(x)

E(X)

)
ln

(
1 − xg(x)

E(X)

)
dx.

2) From (2.4), we obtain

lim
λ→1

WT 2
λ(X) = lim

λ→1

1
λ − 1

(
β2 − α2

2E(X)
− 1 −

∫ β

α

x(1 − g(x))λ

E(X)
dx

)
= lim

λ→1
−

∫ β

α

x(1 − g(x))λ

E(X)
ln

x(1 − g(x))λ

E(X)
dx

= −

∫ β

α

x(1 − g(x))
E(X)

ln
x(1 − g(x))
E(X)

dx = WEx2(X),

(2.10)

where WEx2(X) = −
∫ β

α

x(1−g(x))
E(X) ln x(1−g(x))

E(X) dx.

Remark 2.2. To present the weighted case of the extropy measure in (1.2), we can do two cases: First,
we can replace 1 − g(x) with 1 − xg(x). Second, we can replace 1 − g(x) with x(1 − g(x)). Therefore,
we can express the weighted extropy in the following two ways:

1) First perspective

WEx∗(X) = −

∫ ∞

0
(1 − xg(x)) ln(1 − xg(x))dx. (2.11)

2) Second perspective

WEx∗(X) = −

∫ ∞

0
x(1 − g(x)) ln x(1 − g(x))dx. (2.12)
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Moreover, we can see that when E(X) = 1, the two weighted Tsallis extropy presented in (2.9)
and (2.10) will turn to weighted extropy given in (2.11) and (2.12), respectively. The literature
deals with the weighted extropy given in (1.7). Therefore, according to the definition of extropy, we
can consider that WEx1(X) and WEx2(X) are alternative perspectives of the weighted extropy when
E(X) , 1.

Proposition 2.2. Consider an N-RV X supported in (α, β), 0 < α < β < ∞.

1) From (2.1), under the condition xg(x)
E(X) ≤ 1 and 1 , λ > 0, then WT 1

λ(X) ≤ 1.

2) From (2.4), under the condition g(x) ≤ 1 and 1 , λ > 0, then WT 2
λ(X) ≤ 1.

Proof. 1) From (2.1), by using Bernoulli’s inequality, and under the conditions xg(x)
E(X) ≤ 1 and 1 , λ >

0, we have

WT 1
λ(X) =

1
λ − 1

β − α − 1 −
∫ β

α

(
1 −

xg(x)
E(X)

)λ
dx


≤

1
λ − 1

(
β − α − 1 −

∫ β

α

(
1 − λ

xg(x)
E(X)

)
dx

)
= 1.

2)

WT 2
λ(X) =

1
λ − 1

(
β2 − α2

2E(X)
− 1 −

∫ β

α

x(1 − g(x))λ

E(X)
dx

)
≤

1
λ − 1

(
β2 − α2

2E(X)
− 1 −

∫ β

α

x(1 − λg(x))
E(X)

dx
)

= 1.

�

In the following proposition, we can represent the two versions of weighted Tsallis extropy in
relation to the function of hazard rate ξ(x) =

g(x)
G(x)

, G(x) = 1 −G(x).

Proposition 2.3. Consider a N-RV X with the supporting (α, β), 0 < α < β < ∞. Then, we have

1) An alternative way of expressing the weighted Tsallis extropy as presented in (2.1), using ξ(x), is
provided by

WT 1
λ(X) =

1
λ − 1

β − α − 1 −
∆1λ∑
k=0

(
λ

k

) ∫ β

α

(
−xg(x)
E(X)

)k

dx


=
−1
λ − 1

1 +

∆1λ∑
k=1

(
λ

k

)
(−1)k

kEk(X)
E(Xk

kξ
k−1(Xk)))

 .
(2.13)

2) An alternative way of expressing the weighted Tsallis extropy given in (2.4), using ξ(x), is provided
by

WT 2
λ(X) =

1
λ − 1

β2 − α2

2E(X)
− 1 −

∆2λ∑
k=0

(
λ

k

) ∫ β

α

x(−g(x))k

E(X)
dx


=
−1
λ − 1

1 +

∆2λ∑
k=1

(
λ

k

)
(−1)k

kE(X)
E(Xkξ

k−1(Xk)))

 ,
(2.14)
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such that ∆1λ and ∆2λ are defined in (2.5) and (2.6), respectively, and the PDF of the RV Xk is
kG

k−1
(x)g(x) for all 1 ≤ k < ∞.

Definition 2.2. Consider N-RVs X1 and X2 with the supporting (α, β), with noting that 0 < α < β < ∞.
Therefore, X1 is considered smaller than X2 in weighted Tsallis form of extropy- j of order λ, X1 ≤WT jλ

X2, if WT jλ(X1) ≤ WT jλ(X2), j = 1, 2.

As per the findings by Shaked and Shanthikumar [23], we will employ certain stochastic orders,
namely stochastic order (≤S T ) and dispersive order (≤DIS ) (representing the variability distribution
order). Additionally, the preceding orders signify the following:

Lemma 2.1. Consider N-RVs X1 and X2 with the supporting (α, β), 0 < α < β < ∞, which follow
CDFs G1 and G2, respectively. Furthermore, let g1 as well as g2 be the corresponding PDFs and G−1

1
as well as G−1

2 be their right continuous inverses, respectively (quantile functions). Then

(1) If X1 and X2 share a common finite left endpoint in their supports, then the condition X1 ≤DIS X2

implies X1 ≤S T X2 (cf. Jeon et al. [24]).

(2) If X1 ≤S T X2, then G1(x) ≤ G2(x) and G1(x) ≥ G2(x), for all x, and G−1
1 (u) ≤ G−1

2 (u), for all
u ∈ (0, 1). Moreover, X1 ≤S T X2 if and only if E(ϕ(X1)) ≤ E(ϕ(X2)), which remains valid for all
increasing functions ϕ(.), assuming the expectations exist (cf. Qiu [12]).

(3) If X1 ≤DIS X2, then g1(G−1
1 (u)) ≥ g2(G−1

2 (u), ∀ u ∈ (0.1) (cf. Qiu [12]).

Theorem 2.1. Consider N-RVs X1 and X2 with the supporting (α, β), 0 < α < β < ∞, which follow
CDFs G1 and G2, respectively. Finally, let X1 ≤DIS X2. Then, under the conditions xg1(x)

E(X1) ≤ 1, and

0 ≤ G−1
2 (u)
E(X2) ≤

G−1
1 (u)
E(X1) , we get X1 ≥WT 1

λ
(≤WT 1

λ
)X2, if λ1 ≥ (≤)1. Moreover, under the condition g1(x) ≤ 1

and 0 ≤ G−1
1 (u)
E(X1) ≤

G−1
2 (u)
E(X2) , we get X1 ≥WT 2

λ
(≤WT 2

λ
)X2, if λ1 ≥ (≤)1.

Proof. From (2.1), we get

(λ − 1)WT 1
λ(X1) = β − α − 1 −

∫ β

α

(
1 −

xg1(x)
E(X1)

)λ
dx

= β − α − 1 −
∫ 1

0

(
1 −

G−1
1 (u)g1(G−1

1 (u))
E(X1)

)λ
1

g1(G−1
1 (u))

du.

Under the conditions of the theorem, we conclude that the 1st and 2nd integrals are positive. Thus, if
X1 ≤DIS X2, then Lemma 2.1 guarantees that

(λ − 1)WT 1
λ(X1) = β − α − 1 −

∫ 1

0

(
1 −

G−1
1 (u)g1(G−1

1 (u))
E(X1)

)λ
1

g1(G−1
1 (u))

du

≥ β − α − 1 −
∫ 1

0

(
1 −

G−1
1 (u)g1(G−1

1 (u))
E(X1)

)λ
1

g2(G−1
2 (u))

du

≥ β − α − 1 −
∫ 1

0

(
1 −

G−1
2 (u)g2(G−1

2 (u))
E(X2)

)λ
1

g2(G−1
2 (u))

du

= (λ − 1)WT 1
λ(X2).
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Therefore, X1 ≥WT 1
λ

(≤WT 1
λ
)X2, if λ1 ≥ (≤)1. Similarly, from (2.4), we get

(λ − 1)WT 2
λ(X1) = β − α − 1 −

∫ β

α

x
E(X1)

(1 − g1(x))λ dx

= β − α − 1 −
∫ 1

0

G−1
1 (u)
E(X1)

(
1 − g1(G−1

1 (u))
)λ

du.

Under the conditions of the theorem, we conclude that the 1st and 2nd integrals are positive. Thus, if
X1 ≤DIS X2, then Lemma 2.1 guarantees that

(λ − 1)WT 2
λ(X1) = β − α − 1 −

∫ 1

0

G−1
1 (u)
E(X1)

(
1 − g1(G−1

1 (u))
)λ 1

g1(G−1
1 (u))

du

≥ β − α − 1 −
∫ 1

0

G−1
2 (u)
E(X2)

(
1 − g1(G−1

1 (u))
)λ 1

g2(G−1
2 (u))

du

≥ β − α − 1 −
∫ 1

0

G−1
2 (u)
E(X2)

(
1 − g2(G−1

2 (u))
)λ 1

g2(G−1
2 (u))

du

= (λ − 1)WT 2
λ(X2).

Therefore, X1 ≥WT 2
λ

(≤WT 2
λ
)X2, if λ1 ≥ (≤)1. �

Remark 2.3. The two mutually exclusive conditions 0 ≤ G−1
2 (u)
E(X2) ≤

G−1
1 (u)
E(X1) and 0 ≤ G−1

1 (u)
E(X1) ≤

G−1
2 (u)
E(X2) mean

that either X1 ≥WT 1
λ

(≤WT 1
λ
)X2, or X1 ≥WT 2

λ
(≤WT 2

λ
)X2, or both measures of information do not satisfy

this stochastic order.

The subsequent theorem illustrates how a change (modification) influences the weighted Tsallis
extropies of an RV.

Theorem 2.2. Consider N-RVs X1 and X2 with the supporting (α, β), 0 < α < β < ∞, which follow
CDFs G1 and G2, respectively. If X2 = ψ(X1) as ψ is the status of a continuous function with the
derivative ψ′(x) where E(X2

2) < 1. If |ψ′(x)| ≥ 1, then WT 1
λ(X1) ≤ WT 1

λ(X2) and WT 2
λ(X1) ≤ WT 2

λ(X2),
respectively.

Proof. Using the Jacobian transformation for X2 = ψ(X1) and X1 = ψ−1(X2), we have Jψ(X2) = |dX1
dX2
| =

|
dψ−1(X2)

dX2
|. Using the chain rule for the function ψ and its inverse ψ−1, we have: dX1

dX2
= 1

dψ(X1)
dX1

= 1
ψ′(ψ−1(X2)) .

Hence, gX2(x) = gX1(ψ
−1(x))| 1

ψ′(ψ−1(x)) |. Thus, from (2.1), we get

(λ − 1)WT 1
λ(X2) = β − α − 1 −

∆1λ∑
k=0

(
λ

k

) ∫ β

α

(
−xg2(x)
E(X2)

)k

dx

= β − α − 1 −
∆1λ∑
k=0

(
λ

k

)
(−1)k

Ek(X2)

∫ β

α

xkgk
2(x)dx

= β − α − 1 −
∆1λ∑
k=0

(
λ

k

)
(−1)k

Ek(ψ(X1))

∫ 1

0
ukgk−1

1 (u)
(

1
|ψ′(u)|

)k−1

du,
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similarly, from (2.4), we get

(λ − 1)WT 2
λ(X2) =

β2 − α2

2E(X)
− 1 −

∆2λ∑
k=0

(
λ

k

) ∫ β

α

x(−g2(x))k

E(X2)
dx

=
β2 − α2

2E(X)
− 1 −

∆2λ∑
k=0

(
λ

k

)
(−1)k

E(X2)

∫ β

α

xgk
2(x)dx

=
β2 − α2

2E(X)
− 1 −

∆2λ∑
k=0

(
λ

k

)
(−1)k

E(ψ(X1))

∫ 1

0
ugk−1

1 (u)
(

1
|ψ′(u)|

)k−1

du,

and the remaining part of the proof follows a similar approach to Theorem 1 in Ebrahimi et al. [25]. �

2.2. Further features of the first perspective WT 1
λ(X)

In this subsection, the maximum weighted Tsallis extropy given in (2.1) can be obtained in the
following result.

Theorem 2.3. Consider an N-RV X with the support (α, β), with the consideration that 0 < α < β < ∞
follows PDF f . Hence, from (2.1) with gw(x) =

xg(x)
E(X) , X has the maximum weighted Tsallis extropy

WT 2
λ(X) if and only if the PDF g(x) =

E(X)
x(β−α) = 1

x(ln β−lnα) .

Proof. From (2.1), we obtain

WT 1
λ(X) =

1
λ − 1

(∫ β

α

(1 − gw(x))dx −
∫ β

α

(1 − gw(x))λdx
)
,

constraint to ∫ β

α

gw(x)dx = 1. (2.15)

We can achieve the maximization of WT 1
λ(X) by employing the Lagrange multipliers method in the

following manner:

G(X) =
1

λ − 1

(∫ β

α

(1 − gw(x))dx −
∫ β

α

(1 − gw(x))λdx
)

+ η

(∫ β

α

gw(x)dx − 1
)
.

Differentiating G(X) with respect to gw(x) and then equating to zero, we obtain

dG(X)
dgw(x)

= 0 =
1

λ − 1

(
−1 + λ(1 − gw(x))λ−1

)
+ η,

therefore, we get

gw(x) = 1 −
(
1
λ

+ η
1 − λ
λ

) 1
λ−1

. (2.16)

To find the value of η, we substitute (2.16) in the constraint (2.15), thus

η =
λ

1 − λ

(1 − 1
β − α

)λ−1

−
1
λ

 . (2.17)

Substituting (2.17) in (2.16), it holds that g(x) =
E(X)

x(β−α) = 1
x(ln β−lnα) . �
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Theorem 2.4. Consider an N-RV X with the supporting (α, β), with considering that 0 < α < β < ∞

follows PDF f . Then, from (2.1) and (1.1), assuming that β − α ≥ 2, we obtain

1) WT 1
λ(X) ≤ WTnλ(X), when 0 < λ < 2.

2) WT 1
λ(X) ≥ WTnλ(X), when λ > 2.

Proof. From (2.1) and (1.1), we get

WTnλ(X) −WT 1
λ(X) =

1
λ − 1

(
2 − (β − α) −

∫ β

α

gλw(x)dx +

∫ β

α

(1 − gw(x))λdx
)
.

Hence, the Lagrange function can be expressed as

G(X) = WTnλ(X) −WT 1
λ(X) + η

(∫ β

α

gw(x)dx − 1
)
.

Subsequently, the derivative concerning gw(x) is dG(X)
dgw(x) = −λ

λ−1

(
gλ−1

w (x) + (1 − gw(x))λ−1
)

+ η, with the
vanishing equation gλ−1

w (x) + (1 − gw(x))λ−1 = τ, τ is a constant, and the remaining part of the proof
shall follow a similar approach as presented in Balakrishnan et al. [13]. �

Figure 3 shows the comparison between WT 1
λ(X), WT 2

λ(X), and T Enλ(X) of the power function
distribution, which ensures the results in Theorem 2.4.

(a) (b)

Figure 3. WT 1
λ(X), WT 2

λ(X) and T Enλ(X) of power function distributions with (a) γ = 3 and
δ = 2, and (b) γ = 7 and δ = 5.

Now, for the specific choice of λ = 2, we can obtain the following result.

Theorem 2.5. Consider an N-RV X with the supporting (α, β), 0 < α < β < ∞, which follows PDF g
and weighted PDF gw(x) =

xg(x)
E(X) . Then, from (2.1), when λ = 2, we have

WT 1
2 (X) ≈ 1 − gw(µw) +

1
2

g′′w(µw)Var(Xw),

where µw = E(Xw) =
∫ β

α
xgw(x)dx < ∞, and Var(Xw) = E(Xw − µw)2 < ∞.
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Proof. From (2.1), when λ = 2, we get

WT 1
2 (X) =

1
2 − 1

(
β − α − 1 −

∫ β

α

(1 − gw(x))2dx
)

= β − α − 1 −
∫ β

α

(1 + g2
w(x) − 2gw(x))dx

= β − α − 1 − (β − α) −
∫ β

α

g2
w(x)dx + 2

= 1 −
∫ β

α

g2
w(x)dx

= 1 − E(gw(Xw)).

(2.18)

In what follows, an approximate expression for the weighted Tsallis extropy is derived using the Taylor
series. To achieve this, the approximation of E(gw(Xw)) is obtained as follows:

E(gw(Xw)) ≈ E
[
gw(µw) + (Xw − µw)g′w(µw) +

1
2

(Xw − µw)2g′′w(µw)
]

= gw(µw) +
1
2

g′′w(µw)Var(Xw).
(2.19)

Thus, using (2.18) and (2.19), we have

WT 1
2 (X) ≈ 1 − gw(µw) +

1
2

g′′w(µw)Var(Xw).

�

2.3. Further features of the second perspective WT 2
λ(X)

This subsection will discuss the results of the weighted Tsallis extropy given in (2.4) when λ = 2.

Theorem 2.6. Given independent N-RVs X and Y with the supporting (α, β), 0 < α < β < ∞ follow
PDF gX and gY , respectively. Then, from (2.4), when λ = 2, we have

WT 2
2 (X + Y) ≥ 1 − 2 [(Ex(X))(WEx(Y)) + (Ex(Y))(WEx(X))] ,

where Ex(X) and WEx(X) are defined in (1.3) and (1.7), respectively.

Proof. From (2.4), when λ = 2, we have

WT 2
2 (X) =

1
2 − 1

(
(β2 − α2)

2E(X)
− 1 −

∫ β

α

x(1 − g(x))2

E(X)
dx

)
=

(β2 − α2)
2E(X)

− 1 −
∫ β

α

x
E(X)

(1 + g2(x) − 2g(x))dx

=
(β2 − α2)

2E(X)
− 1 −

(β2 − α2)
2E(X)

−

∫ β

α

xg2(x)dx + 2

= 1 −
∫ β

α

xg2(x)dx

= 1 + 2WEx(X).

(2.20)
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Given that X as well as Y are independent N-RVs, the density function of R = X + Y is provided for
r > 0 as follows: gR(r) =

∫ r

α
gX(x)gY(r− x)dx. From (2.20), utilizing Jensen’s inequality (see Kharazmi

et al. [26]), we get

WT 2
2 (X + Y) = 1 −

∫ β

α

r
[∫ r

α

gX(x)gY(r − x)dx
]2

dr

≥ 1 −
∫ β

α

r
∫ r

α

g2
X(x)g2

Y(r − x)dxdr

= 1 −
∫ β

α

g2
X(x)

∫ β

x
rg2

Y(r − x)drdx

= 1 −
∫ β

α

g2
X(x)

∫ β

α

(r + x)g2
Y(r)drdx

= 1 −
[
(
∫ β

α

g2
X(x)dx)(

∫ β

α

rg2
Y(r)dr) + (

∫ β

α

xg2
X(x)dx)(

∫ β

α

g2
Y(r)dr)

]
= 1 − 2 [(Ex(X))(WEx(Y)) + (Ex(Y))(WEx(X))] .

�

Remark 2.4. Specifically, when X and Y exhibit independence and identical distribution as outlined
in Theorem 2.6, we obtain that

WT 2
2 (X) ≥ 1 − 4(Ex(X))(WEx(X)).

3. Weighted Tsallis extropy of order statistics

This section will explore the two suggested models of weighted Tsallis extropy of order statistics.
Consider the n independently and identically in distribution (i.i.d) N-RVs X1, X2, ..., Xn with the support
(α1, β1), 0 < α1 < β1 < ∞, following PDF g and CDF F. The ordered RVs X1:n ≤ X2:n ≤ · · · ≤ Xn:n

are known as order statistics, with the k-th order statistic denoted as Xk:n, where 1 ≤ k ≤ n. For more
details, see David and Nagaraja [27] and Wang et al. [28]. Then, from (2.1) and (1.1), the weighted
Tsallis extropies of the k-th order statistic are provided, respectively, as follows:

1) Similarly to (2.1), the weighted Tsallis extropy measure of the k-th order statistic is expressed as

WT 1
λ(Xk:n) =

1
λ − 1

(∫ β1

α1

(1 − gwk:n(x))dx −
∫ β1

α1

(1 − gwk:n(x))λdx
)

=
1

λ − 1

β1 − α1 − 1 −
∫ β1

α1

(
1 −

xgk:n(x)
E(Xk:n)

)λ
dx

 , (3.1)

where the conditions on λ can be summarized by

Λ1 =

λ , 1, λ > 0 when gwk:n(x) ≤ 1,
λ ∈ Z+\{1} when gwk:n(x) > 1,

(3.2)

and gk:n(x) =
Gk−1(x)G

n−k
(x)g(x)

Beta(k,n−k+1) , E(Xk:n) =
∫ β1

α1
xgk:n(x)dx.
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2) Similarly to (2.4), the weighted Tsallis extropy measure of the k-th order statistic is expressed as

WT 2
λ(Xk:n) =

1
λ − 1

(∫ β1

α1

x(1 − gk:n(x))
E(Xk:n)

dx −
∫ β1

α1

x(1 − gk:n(x))λ

E(Xk:n)
dx

)
=

1
λ − 1

(
β2

1 − α
2
1

2E(Xk:n)
− 1 −

∫ β1

α1

x
E(Xk:n)

(1 − gk:n(x))λdx
)
,

(3.3)

where the conditions on λ are

Λ =

λ , 1, λ > 0 when gk:n(x) ≤ 1,
λ ∈ Z+\{1} when gk:n(x) > 1.

(3.4)

In the subsequent theorems, we will present the weighted Tsallis extropy of the k-th order statistic in
another perspective.

Theorem 3.1. Consider the n i.i.d N-RVs X1, X2, ..., Xn with the support (α1, β1), 0 < α1 < β1 < ∞,
following PDF g and CDF F. Then, from (3.1), the weighted Tsallis extropy of the k-th order statistic
is expressed as

WT 1
λ(Xk:n) =

1
λ − 1

β1 − α1 − 1 −
∆1λ∑
j=0

(
λ

j

)
(−1) jBeta(k j − j + 1, n j − k j + 1)
(Beta(k, n − k + 1)E(G−1(Uk:n))) j

× E((G−1(Vn)) j(g(G−1(Vn))) j−1)
)
,

where the RV Vn follows a beta distribution with parameters k j − j + 1 and n j − k j + 1 (i.e, Beta(k j −
j + 1, n j− k j + 1)). Moreover, for the weighted Tsallis extropy which follows a U(0, 1) distribution, we
get

WT 1
λ(Uk:n) =

−1
λ − 1

∆1λ∑
j=0

(
λ

j

)
(−1) jBeta(k j + 1, n j − k j + 1)

(Beta(k, n − k + 1)E(Uk:n)) j ,

where ∆1λ is defined in (2.5).

Proof. From (3.1), the weighted Tsallis extropy of the k-th order statistic can be derived as

WT 1
λ(Xk:n) =

1
λ − 1

β1 − α1 − 1 −
∫ β1

α1

(
1 −

xgk:n(x)
E(Xk:n)

)λ
dx


=

1
λ − 1

β1 − α1 − 1 −
∆1λ∑
j=0

(
λ

j

)
(−1) j

(Beta(k, n − k + 1)E(G−1(Uk:n))) j

×

∫ 1

0
(G−1(u)) j(g(G−1(u))) j−1uk j− j(1 − u)n j−k jdu

)
,

(3.5)

then the result follows. Furthermore, from (3.1) and under U(0, 1) distribution, we get

WT 1
λ(Uk:n) =

−1
λ − 1

∆1λ∑
j=0

(
λ

j

)
(−1) j

(Beta(k, n − k + 1)E(Uk:n)) j

∫ 1

0

(
u uk−1(1 − u)n−k

) j
du

=
−1
λ − 1

∆1λ∑
j=0

(
λ

j

)
(−1) j

(Beta(k, n − k + 1)E(Uk:n)) j

∫ 1

0
uk j(1 − u)n j−k jdu,

then the result follows. �
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Theorem 3.2. Consider the n i.i.d N-RVs X1, X2, ..., Xn with the support (α1, β1), 0 < α1 < β1 < ∞,
following PDF g and CDF F. Then, from (3.3), the weighted Tsallis extropy of the k-th order statistic
is expressed as

WT 2
λ(Xk:n) =

1
λ − 1

 β2
1 − α

2
1

2E(Xk:n)
− 1 −

∆2λ∑
j=0

(
λ

j

)
(−1) jBeta(k j − j + 1, n j − k j + 1)
E(G−1(Uk:n))(Beta(k, n − k + 1)) j

× E((G−1(Vn))(g(G−1(Vn))) j−1)
)
,

where the RV Vn follows a beta distribution with parameters k j − j + 1 and n j − k j + 1 (i.e, Beta(k j −
j + 1, n j− k j + 1)). Moreover, for the weighted Tsallis extropy which follows a U(0, 1) distribution, we
get

WT 2
λ(Uk:n) =

−1
λ − 1

∆2λ∑
j=0

(
λ

j

)
(−1) jBeta(k j + 2, n j − k j + 1)
E(Uk:n)(Beta(k, n − k + 1)) j ,

where ∆2λ is defined in (2.6).

Proof. The proof proceeds in a manner analogous to Theorem 3.1. �

The following findings establish a lower bound for the weighted Tsallis extropy of order statistics.

Theorem 3.3. Consider the n i.i.d N-RVs X1, X2, ..., Xn with the support (α1, β1), 0 < α1 < β1 < ∞,
following PDF g and CDF F. Then, from (3.1) and under the conditions gwk:n(x) ≤ 1 and λ < 1, we
obtain

WT 1
λ(Xk:n) ≥

1
λ − 1

β1 − α1 − 1 −
∆1λ∑
j=0

(
λ

j

)
(−1) jBeta(k j − j + 1, n j − k j + 1)
(Beta(i, n − i + 1)E(G−1(Uk:n))) j

× D j−1E((G−1(Vn)) j)),

where D = g(d) and d = sup{x : g(x) ≤ D} is the mode. On the other hand, under the conditions
gwk:n(x) ≤ 1 and λ > 1, we obtain

WT 1
λ(Xk:n) ≤

1
λ − 1

β1 − α1 − 1 −
∆1λ∑
j=0

(
λ

j

)
(−1) jBeta(k j − j + 1, n j − k j + 1)
(Beta(i, n − i + 1)E(G−1(Uk:n))) j

× D j−1E((G−1(Vn)) j)).

Proof. From (3.1) and under the conditions gwk:n(x) ≤ 1 and λ < 1, we have

WT 1
λ(Xk:n) =

1
λ − 1

(∫ β1

α1

(1 − gwk:n(x))dx −
∫ β1

α1

(1 − gwk:n(x))λdx
)

=
1

λ − 1

β1 − α1 − 1 −
∫ β1

α1

(
1 −

xgk:n(x)
E(Xk:n)

)λ
dx


=

1
λ − 1

β1 − α1 − 1 −
∫ β1

α1

1 − xGk−1(x)G
n−k

(x)g(x)
Beta(k, n − k + 1)E(Xk:n)


λ

g(x)
g(x)

dx

 .
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Put G(x) = u, then

WT 1
λ(Xk:n) =

1
λ − 1

β1 − α1 − 1 −
∫ 1

0

(
1 −

G−1(u)uk−1(1 − u)n−kg(G−1(u))
Beta(k, n − k + 1)E(Xk:n)

)λ
×

du
g(G−1(u))

)
.

If g(x) ≤ D and λ < 1 (i.e. 1
λ−1 < 0), we obtain

WT 1
λ(Xk:n) ≥

1
λ − 1

β1 − α1 − 1 −
∫ 1

0

(
1 −

G−1(u)uk−1(1 − u)n−kD
Beta(k, n − k + 1)E(Xk:n)

)λ du
D


=

1
λ − 1

β1 − α1 − 1 −
∆1λ∑
j=0

(
λ

j

)
(−1) j

(Beta(k, n − k + 1)E(G−1(Uk:n))) j

× D j−1
∫ 1

0
(G−1(u)) juk j− j(1 − u)n j−k jdu

)
=

1
λ − 1

(β1 − α1 − 1 −
∆1λ∑
j=0

(
λ

j

)
(−1) jBeta(k j − j + 1, n j − k j + 1)
(Beta(k, n − k + 1)E(G−1(Uk:n))) j D j−1E((G−1(Vn)) j)).

The proof of the second part of the theorem, i.e., when λ > 1, is obvious. This proves the theorem. �

Theorem 3.4. Consider the n i.i.d N-RVs X1, X2, ..., Xn with the support (α1, β1), 0 < α1 < β1 < ∞,
following PDF g and CDF F. Then, from (3.3) and under the conditions gk:n(x) ≤ 1 and λ < 1, we
have

WT 2
λ(Xk:n) ≥

1
λ − 1

 β2
1 − α

2
1

2Ek:n(X)
− 1 −

∆2λ∑
j=0

(
λ

j

)
(−1) j

E(G−1(Uk:n))(Beta(k, n − k + 1)) j

× D j−1E((G−1(Vn)))),

where D = g(d) and d = sup{x : g(x) ≤ D} is the mode. On the other hand, under the conditions
gk:n(x) ≤ 1 and λ > 1, we obtain

WT 1
λ(Xk:n) ≤

1
λ − 1

 β2
1 − α

2
1

2Ek:n(X)
− 1 −

∆2λ∑
j=0

(
λ

j

)
(−1) j

E(G−1(Uk:n))(Beta(k, n − k + 1)) j

× D j−1E((G−1(Vn)))).

Proof. The proof proceeds in a manner analogous to Theorem 3.3. �

4. Bivariate Tsallis extropy and its weighted version

In this section, the bivariate Tsallis extropy and its weighted counterpart will be introduced.
Consider independent N-RVs X and Y with the support (α1, β1) and (α2, β2), where 0 < α1 < β1 < ∞,
0 < α2 < β2 < ∞ , follow PDF gX and gY , respectively, and joint PDF gX,Y . Then, then bivariate Tsallis
extropy of (X,Y) is provided by

T xλ(X,Y) =
1

λ − 1

(∫ β2

α2

∫ β1

α1

(1 − gX,Y(x, y))dxdy −
∫ β2

α2

∫ β1

α1

(1 − gX,Y(x, y))λdxdy
)

=
1

λ − 1

(
(β1 − α1)(β2 − α2) − 1 −

∫ β2

α2

∫ β1

α1

(1 − gX,Y(x, y))λdxdy
)
,

(4.1)
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where the conditions on λ can be summarized by

Λ =

λ , 1, λ > 0 when gX,Y(x, y) ≤ 1,
λ ∈ Z+\{1} when gX,Y(x, y) > 1.

(4.2)

Remark 4.1. We can obtain the multi-Tsallis extropy of the N-dimensional vector in the same manner
given in (4.1), as follows

T xλ(X1, X2, ..., XN) =
1

λ − 1

(∫ β1

α1

∫ β2

α2

...

∫ βN

αN

(1 − gX1,X2,...,XN (x1, x2, ..., xN))dxN ...dx2dx1

−

∫ β1

α1

∫ β2

α2

...

∫ βN

αN

(1 − gX1,X2,...,XN (x1, x2, ..., xN))λdxN ...dx2dx1

)
=

1
λ − 1

((β1 − α1)(β2 − α2)...(βN − αN) − 1

−

∫ β1

α1

∫ β2

α2

...

∫ βN

αN

(1 − gX1,X2,...,XN (x1, x2, ..., xN))λdxN ...dx2dx1

)
,

(4.3)

where the conditions on λ can be summarized by

Λ =

λ , 1, λ > 0 when gX1,X2,...,XN (x1, x2, ..., xN) ≤ 1,
λ ∈ Z+\{1} when gX1,X2,...,XN (x1, x2, ..., xN) > 1.

(4.4)

Noting that
∫ β2

α2

∫ β1

α1
xygX,Y(x, y), dx, dy = E(XY), and similarly to Section 2, the bivariate weighted

Tsallis extropy can be considered from two perspectives as follows:

1) According to the extropy perspective, the bivariate weighted Tsallis extropy is expressed as

WT 1
λ(X,Y) =

1
λ − 1

∫ β2

α2

∫ β1

α1

(
1 −

xygX,Y(x, y)
E(X Y)

)
dxdy −

∫ β2

α2

∫ β1

α1

(
1 −

xygX,Y(x, y)
E(X Y)

)λ
dxdy


=

1
λ − 1

(∫ β2

α2

∫ β1

α1

dxdy −
∫ β2

α2

∫ β1

α1

xygX,Y(x, y)
E(X Y)

dxdy

−

∫ β2

α2

∫ β1

α1

(
1 −

xygX,Y(x, y)
E(X Y)

)λ
dxdy


=

1
λ − 1

(β1 − α1)(β2 − α2) − 1 −
∫ β2

α2

∫ β1

α1

(
1 −

xygX,Y(x, y)
E(X Y)

)λ
dxdy

 ,
(4.5)

where the conditions on λ can be summarized by

Λ1 =

λ , 1, λ > 0 when gX,Y(x, y) ≤ 1,
λ ∈ Z+\{1} when gX,Y(x, y) > 1.

(4.6)
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2) According to the weighted Tsallis entropy (weighted generalized entropy) perspective, the
weighted Tsallis extropy is expressed as

WT 2
λ(X,Y) =

1
λ − 1

(∫ β2

α2

∫ β1

α1

xy(1 − gX,Y(x, y))
E(X Y)

dxdy −
∫ β2

α2

∫ β1

α1

xy(1 − gX,Y(x, y))λ

E(X Y)
dxdy

)
=

1
λ − 1

(∫ β2

α2

∫ β1

α1

xydxdy −
∫ β2

α2

∫ β1

α1

xygX,Y(x, y)
E(X Y)

dxdy

−

∫ β2

α2

∫ β1

α1

xy(1 − gX,Y(x, y))λ

E(X Y)
dxdy

)
=

1
λ − 1

(
(β2

1 − α
2
1)(β2

2 − α
2
2)

4E(X Y)
− 1 −

∫ β2

α2

∫ β1

α1

xy(1 − gX,Y(x, y))λ

E(X Y)
dxdy

)
,

(4.7)

where the conditions on λ are given in (4.2).

Example 4.1. Let us examine (X,Y) as a bivariate beta RV and a joint PDF

gX,Y(x, y) =
1

Beta(a, b, c)
xa−1(y − x)b−1(1 − y)c−1, 0 < x < y < 1, a, b, c > 0,

where the bivariate beta function Beta(a, b, c) =
Γ(a)Γ(b)Γ(c)

Γ(a+b+c) . Then, from (4.1) and (4.5), the bivariate
Tsallis extropy and its weighted version are given, respectively, by

T xλ(X,Y) =
1

λ − 1

(
−

∫ ∫
0<x<y<1

(1 − gX,Y(x, y))λdxdy
)

=
−1
λ − 1

∆2λ∑
k=0

(
λ

k

)
(−1)k

Betak(a, b, c)

∫ ∫
0<x<y<1

gk
X,Y(x, y)dxdy

=
−1
λ − 1

∆2λ∑
k=0

(
λ

k

)
(−1)k

Betak(a, b, c)

∫ ∫
0<x<y<1

xka−k(y − x)kb−k(1 − y)kc−kdxdy

=
−1
λ − 1

∆2λ∑
k=0

(
λ

k

)
(−1)kBeta(ka − k + 1, kb − k + 1, kc − k + 1)

Betak(a, b, c)
.
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WT 2
λ(X,Y) =

1
λ − 1

(
−

∫ ∫
0<x<y<1

xy(1 − gX,Y(x, y))λ

E(X Y)
dxdy

)
=
−1
λ − 1

∆2λ∑
k=0

(
λ

k

)
(−1)k

E(X Y)Betak(a, b, c)

∫ ∫
0<x<y<1

xygk
X,Y(x, y)dxdy

=
−1
λ − 1

∆2λ∑
k=0

(
λ

k

)
(−1)k

E(X Y)Betak(a, b, c)

∫ ∫
0<x<y<1

xka−k+1y(y − x)kb−k × (1 − y)kc−kdxdy

=
−1
λ − 1

∆2λ∑
k=0

(
λ

k

)
(−1)k

E(X Y)Betak(a, b, c)

∫ ∫
0<x<y<1

xka−k+1(y − x + x)(y − x)kb−k

× (1 − y)kc−kdxdy

=
−1
λ − 1

∆2λ∑
k=0

(
λ

k

)
(−1)k

E(X Y)Betak(a, b, c)

[∫ ∫
0<x<y<1

xka−k+1(y − x)kb−k+1(1 − y)kc−kdxdy

+

∫ ∫
0<x<y<1

xka−k+2(y − x)kb−k(1 − y)kc−kdxdy
]

=
−1
λ − 1

∆2λ∑
k=0

(
λ

k

)
(−1)k

Betak(a, b, c)
[Beta(ka − k + 2, kb − k + 2, kc − k + 1)

+Beta(ka − k + 3, kb − k + 1, kc − k + 1)] .
Where ∆1λ and ∆2λ are specified in (2.5) and (2.6), respectively. Figure 4 shows the plots of
the bivariate Tsallis extropy and its weights given in (4.1), (4.5), and (4.7) for the bivariate beta
distribution with parameters a = 2, b = 3, and c = 4.

Figure 4. The Tsallis extropy and its weights of the bivariate beta distribution with a = 2,
b = 3, and c = 4.

5. Applications

In this section, we will apply the two measures of weighted Tsallis extropy to non-parametric
estimation using a kernel function. Additionally, we will demonstrate their application in a pattern
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recognition context.

5.1. Non-parametric estimation

The estimation with a non-parametric procedure of the weighted measures of information has been
presented in many references, for example, Chakraborty et al. [29], which utilized kernel and non-
kernel procedures. In this section, the non-parametric estimators for the weighted Tsallis extropy are
proposed. To achieve this, we applied the kernel density estimation for the PDF as defined in [30]
and [31]. Therefore, from (2.1) and (2.4), the non-parametric kernel estimation for WT 1

λ(X) and
WT 2

λ(X) are given, respectively, by

WT 1
λ,n(R) =

1
λ − 1

β − α − 1 −
∫ β

α

(
1 −

rgn(r)
En(R)

)λ
dr

 , (5.1)

WT 2
λ,n(R) =

1
λ − 1

(
β2 − α2

2En(R)
− 1 −

∫ β

α

r(1 − gn(r))λ

En(R)
dr

)
, (5.2)

where En(R) =
∫ β

α
rgn(r)dr, gn(r) = 1

nhn

∑n
i=1 k

(
r−Ri
hn

)
, k(r) is the kernel function, and hn is the bandwidth,

where n hn −→ ∞ when n −→ ∞.

In our study, we choose the Gaussian kernel k(r) = 1
√

2π
e−

r2
2 with examining the performance of the

kernel estimator for the weighted Tsallis extropy defined in (5.1) and (5.2), involves evaluating it with
a power distribution characterized by parameters γ = 3 and δ = 1 with theoretical values WT 1

λ(X) = 5
9

and WT 2
λ(X) = 2

3 . Moreover, we generated the sample n from the autoregressive model of order 1 in
the time series (AR(1)) with a correlation coefficient of 0.5; see Figure 5.

Table 1 and Figure 6 show the weighted Tsallis extropy estimators WT 1
λ,n(R) and WT 2

λ,n(R) with
λ = 2. Therefore, we observe that as the sample size n increases, the estimators tend towards the
theoretical values.

Table 1. Weighted Tsallis extropy estimators WT 1
λ,n(R) and WT 2

λ,n(R) with λ = 2.

n WT 1
λ,n(R) WT 2

λ,n(R)
hn = 0.5 hn = 1 hn = 1.5 hn = 2 hn = 0.5 hn = 1 hn = 1.5 hn = 2

5 0.208199 0.62635 0.603008 0.586261 0.584359 0.803122 0.828114 0.848743
10 0.590792 0.615449 0.599275 0.585895 0.701696 0.784638 0.8169 0.843064
15 0.575866 0.607945 0.595744 0.583639 0.671134 0.764188 0.806439 0.837324
20 0.568561 0.610035 0.599936 0.587147 0.665514 0.76413 0.807878 0.838456
25 0.548026 0.606418 0.598457 0.586151 0.640561 0.754436 0.803231 0.835926
30 0.540067 0.606657 0.600135 0.587579 0.632793 0.753208 0.803392 0.836166
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Figure 5. Generated AR(1) sample with correlation coefficient 0.5.

(a)

(b)

Figure 6. Weighted Tsallis extropy estimators with λ = 2: (a) WT 1
λ,n(R), and (b) WT 2

λ,n(R).
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5.2. Real data set

In this subsection, we explore the practical applicability of the suggested estimator for weighted
Tsallis extropy in real-life scenarios. The data set provides information concerning cancer-related
fatalities in the European Union countries; see [32]. Figures 7 and 8 show the data and analysis of
European Union countries’ deaths from cancer. We choose the Gaussian kernel k(r) = 1

√
2π

e−
r2
2 with

examining the performance of the kernel estimator for the weighted Tsallis extropy defined in (5.1)
and (5.2), which involves evaluating it with a power distribution characterized by parameters γ = 300
and δ = 1 with theoretical values WT 1

λ(X) = 0.9955 and WT 2
λ(X) = 0.9966. Figure 9 shows the

weighted Tsallis extropy estimators WT 1
λ,n(R) and WT 2

λ,n(R) with λ = 2. Therefore, we observe that as
the bandwidth hn increases, the estimators tend towards the theoretical values. In addition, we can see
how the two estimators are close to each other.

Figure 7. Fatalities resulting from cancer across European Union nations.
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Figure 8. Analysis of the Fatalities resulting from cancer across European Union nations.

Figure 9. Weighted Tsallis extropy estimators of the deaths from cancer in countries within
the European Union, with λ = 2.
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5.3. Classification issue through the identification of patterns

In this subsection, we will use the discrete form of weighted Tsallis extropy and compare it with
the Tsallis extropy given in (1.4) to address the classification problem using pattern recognition. In the
discrete case of an RV X with a probability vector (p1, . . . , pN), support S of cardinality N, and weight
wp, we can define the two perspectives of weighted Tsallis extropy as follows:

DWT 1
λ(P) =

1
λ − 1

 N∑
j=1

(1 − wp p j) −
N∑

j=1

(1 − wp p j)λ
 , (5.3)

DWT 2
λ(P) =

1
λ − 1

 N∑
j=1

wp(1 − p j) −
N∑

j=1

wp(1 − p j)λ
 , (5.4)

where λ > 0, and λ , 1.
We tackle a classification problem using weighted Tsallis extropy models. The Iris dataset, as

reported in [33], is the subject of our investigation. Furthermore, we compare our findings to the
methods for the Tsallis extropy put forward by Balakrishnan et al. [13]. Three flower varieties—Iris
Setosa, Iris Versicolor, and Iris Virginica—need to be categorized. A dataset consisting of 150 samples
is employed, with 50 examples distributed equally across the categories. Each flower’s sepal length
(B1), sepal width (B2), petal length (B3), and petal width (B4) are measured in centimeters. As indicated
in Table 2, 40 specimens of each iris species are chosen, and a sample with the greatest and lowest
values is found to establish an interval number model. An unidentified test sample is represented
by each entry in the dataset. It is believed that (6.5, 3, 4.9, 1.8), which originates from the Virginica
species, is the selected singleton sample data.

Table 2. (i) The statistical model’s interval numbers; (ii) Kang’s method-based probability
distributions.

(i) Item B1 B2 B3 B4

Setosa [4.4,5.8] [2.3,4.4] [1.0,1.9] [0.1,0.6]
Versicolour [4.9,7.0] [2.0,3.4] [3.0,5.1] [1.0,1.7]
Virginica [4.9,7.9] [2.2,3.8] [4.5,6.9] [1.4,2.5]
(ii) Item B1 B2 B3 B4

P(Setosa) 0.270571 0.27477 0.145978 0.156327
P(Versicolour) 0.419584 0.351607 0.429446 0.373669
P(Virginica) 0.309845 0.373622 0.424576 0.470003

Then, using the method of Kang et al. [34], which is based on the similarity in interval numbers, we
produce four distinct probability distributions. Furthermore, the equation defines how similar they are.

τ(Y1,Y2) =
1

1 + M Iv(Ω1,Ω2)
, (5.5)

where τ is the backing coefficient. The gap between the intervals Ω1 = [r1, r2] was calculated in one
case with M set to 5.The formula Ω2 = [t1, t2] is acquired by

Iv(Ω1,Ω2) =

[(r1 + r2

2

)
−

( t1 + t2

2

)]2
+

1
3

[(r1 − r2

2

)2
+

( t1 − t2

2

)2
]
. (5.6)
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For interval Ω2, we use individual values from the selected sample; for interval Ω1, we use the intervals
given in Table 2(i) to create probability distributions. Each of the four detected qualities produces three
resemblance values, which are further normative to provide a distribution of probabilities, as seen in
Table 2(ii). Our measures for these probability distributions are then evaluated throughout λ = 4,
as shown in Table 3(i). Because the exponential function is monotonic, we choose Ξ(y) = e−y as
the baseline weight function, from which we normalize the weights. For instance, the process yields
Table 3(ii) for the petal length in relation to the Tsallis extropy and weighted Tsallis extropy in (1.4),
(5.3), and (5.4) correspondingly (notice that we take the weight wp = 1

3 ) as:

Ξ(B3) =
e−DT xλ(B4)

e−DT xλ(B1) + e−DT xλ(B2) + e−DT xλ(B3) + e−DT xλ(B4) ,

Ξ(B3) =
e−DWT 1

λ (B4)

e−DWT 1
λ (B1) + e−DWT 1

λ (B2) + e−DWT 1
λ (B3) + e−DWT 1

λ (B4)
,

Ξ(B3) =
e−DWT 2

λ (B4)

e−DWT 2
λ (B1) + e−DWT 2

λ (B2) + e−DWT 2
λ (B3) + e−DWT 2

λ (B4)
.

Table 3. (i) Tsallis extropy and weighted Tsallis extropy; (ii) the weights with λ = 4.

(i) Item B1 B2 B3 B4

DT xλ(P) 0.458847 0.464228 0.417479 0.42019
DWT 1

λ(P) 0.262516 0.263642 0.255125 0.255393
DWT 2

λ(P) 0.152949 0.154743 0.13916 0.140063
(ii) Item Ξ(B1) Ξ(B2) Ξ(B3) Q(B4)
DT xλ(P) 0.245322 0.244005 0.255683 0.254991
DWT 1

λ(P) 0.249163 0.248882 0.251011 0.250944
DWT 1

λ(P) 0.248443 0.247998 0.251893 0.251665

Consequently, the final probability distribution for DT xλ(P) is as follows when λ = 4 is chosen:

P(S etosa) = 0.210608, P(Versicolour) = 0.393811, P(Virginica) = 0.395581,

and for DWT 1
λ(P):

P(S etosa) = 0.211673, P(Versicolour) = 0.393619, P(Virginica) = 0.394708,

and for DWT 2
λ(P):

P(S etosa) = 0.211477, P(Versicolour) = 0.393655, P(Virginica) = 0.394868,

The selected flower was then determined to belong to the class with the biggest probabilities, which
is Iris Virginica. Consequently, in this instance, a precise conclusion was reached.

Using this approach, we analyzed all 150 samples across λ = 4, with fifty specimens from each
species. Our findings indicate that, according to our evaluations, the method’s overall recognition rates
stay at 94.66%, as shown in Table 4. It is clear that when matched to the Tsallis extropy technique, our
method performs similarly.
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Table 4. The recognition rates of the Tsallis extropy and weighted Tsallis extropy methods.

Approach Setosa Versicolour Virginica Overall
DT xλ(P) 100% 98% 86% 94.66%
DWT 1

λ(P) 100% 98% 86% 94.66%
DWT 2

λ(P) 100% 98% 86% 94.66%

6. Conclusions and future work

In this study, we have built upon the concepts of extropy, as the dual of entropy, and weighted
Tsallis entropy to derive two perspectives of weighted Tsallis extropy. We have provided several
examples to illustrate the principles introduced in this work. Some examples show a comparison
between Tsallis extropy and weighted Tsallis extropy. Key features of the first and second perspectives
of weighted Tsallis extropy, such as non-negativity, bounds, and stochastic orders, have been discussed.
Additionally, we have explored the relationship between weighted Tsallis extropy and weighted
extropy. We proposed an alternative representation of the models in terms of the hazard rate function.
Furthermore, we investigated the maximum weighted Tsallis extropy for the first perspective, WT 1

λ(X).
Our models were extended to order statistics, and their bounds were analyzed in terms of the beta
distribution. We also introduced bivariate Tsallis extropy and its weighted version. Moreover,
we discussed non-parametric estimators for the new measures using simulations and real data to
demonstrate their performance and effectiveness. Finally, we performed a comparison between Tsallis
extropy and weighted Tsallis extropy in the context of classification problems using pattern recognition.

There are practical circumstances when this measure is also connected to the past to assess the
uncertainty of the previous lifetime of an item that failed at a certain period, as the weighted Tsallis
extropy cannot be applied to an RV that has already survived for a while. Therefore, we can extend this
study to the residual and past cumulative cases of weighted Tsallis extropy. Additionally, it is possible
to build the weighted Tsallis extropy-based goodness of fitting test and compare its results with those
of other well-known tests. The weighted Tsallis extropy for the order statistics has been covered.
However, more research is needed on its application in identifying other ordered variables, such as the
record values, which could lead to additional properties. In addition, exploring the properties of the
proposed measure in the concomitants of order statistics and record values setup remains another area
of interest. Moreover, in the continuous case, we can derive the fractional Tsallis extropy measure
proposed by Buono et al. [14] and discuss its weighted version. Research on the aforementioned
subjects is still in progress; the findings will be released in a different publication.

The quality and accuracy of weighted Tsallis extropy depend significantly on the selection
of weights, with poorly defined or subjective weights potentially leading to biased or unreliable
results. Additionally, calculating weighted Tsallis extropy, particularly in higher dimensions or
bivariate extensions, can be computationally intensive due to complex integrals and the need for
precise kernel-based or numerical methods. Convergence to theoretical limits may also be slow or
uncertain, especially with small sample sizes, sparse data, or extreme weights. Overcoming these
challenges requires careful data preparation, robust methodologies for weight selection, computational
optimization, and domain-specific adjustments to enhance the utility and applicability of weighted
Tsallis extropy and its extensions.
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