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for functions within this class, which is also necessary when dealing with negative coefficients. In
addition, the growth theorem is derived, and the extreme points associated with this subclass are also
identified. Finally, the g-integral operator for harmonic functions of the form f = h + g with a positive
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1. Introduction

The study of harmonic functions is deemed an essential part of complex analysis research, which
has extensive applications in the fields of mathematical physics, fluid dynamics, and engineering.
Harmonic functions are used to model potential flows, enabling the design of streamlined structures.
Similarly, in signal processing, the properties of harmonic functions are employed to analyze
waveforms and optimize communication systems, particularly when g-calculus provides discrete
approximations or deformations [1-3]. Harmonic functions, characterized as solutions to the Laplace
equation, are of great significance due to their smoothness and extremum features within specified
domains. The subclass of harmonic functions with a positive real part is particularly significant and
has been thoroughly examined within the realms of geometric function theory and univalent
functions. These functions are associated with applications in conformal mapping and fluid dynamics,
making them an important area of research [4-6]. Recent advances have explored these harmonic
functions using various operators, among which the g-derivative operator emerged. The g-calculus,
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developed by Jackson [7] in the early twentieth century, was initially introduced as a generalization of
classical calculus, providing a discrete analogue of differentiation and integration calculus. The
g-calculus replaces the traditional derivative with a g-difference operator, providing additional
flexibility. The g-derivative operator, developed by Jackson [8], has gained considerable attention for
its ability to extend classical analytical results to a more generalized framework. The operator has
proven useful in various mathematical fields, including applications such as combinatorics,
orthogonal polynomials, and quantum theory [9-11]. The application of g-calculus to subclasses of
harmonic functions is relatively new but promising; for example, Khan et al. discussed some
important applications of the g-difference operator involving a family of meromorphic harmonic
functions [12-14]. Moreover, Elhaddad et al. investigated harmonic univalent functions involving
g-analogue operators [15, 16]. More recently, researchers have explored the applications of
g-analogue operators to harmonic functions [17-19]. The g-derivative has been successfully
employed to investigate coefficient bounds, development properties, and distortion theorems in several
subclasses of analytic functions [20-22]. Applying these findings to harmonic mappings, particularly
those with a positive real part, offers new insights into their geometric and functional properties. This
paper aims to explore a subclass of harmonic functions with a positive real part using the g-derivative
operator. By utilizing this operator, we will derive new results concerning the geometric properties of
these functions, including distortion bounds, coefficient estimates, and extremal properties. Our study
contributes to the broader understanding of harmonic mappings and demonstrates the applicability of
g-calculus in extending classical function theory into more generalized domains.

2. Materials and methods

Jakubowski et al. [23] studied the class P of all the functions of the form f = h+ g that are harmonic
in U and such that for A, g, where

h(z)=1+ Z 7" and glz) = Z bz 2.1
k=1 k=1

are analytic in U.

The class HP(B) of all functions of the form (2.1) with Re(f) > 5,0 < 8 < 1 and f(0) = 1 was
studied in [24] and later generalized by [25]. Obviously, HP(0) = HP and HP(B) C HP.

In [7,8], Jackson defined the g-derivative operator D, of a function as follows:

Y A A e
2l -¢q)
and D, f(z) = f'(0). In the case f(z) = 7", the g-derivative of f(z), where n is a positive integer, is given
by
n o_ Zn - (Zq)n _ n—1
Gz = —q) s [n],2" .
As g — 17 and n € N, we have
1 _ n
[n], = 1 q =l+qg+-+q¢"' >n (2.2)
—-q
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3. Results

In this research paper, coeflicient inequalities are derived to provide bounds on the coefficients of
the functions considered, and distortion theorems are established to describe the geometric behavior
and growth of these functions under specific conditions.

Definition 3.1. For 0 < 8 < 1, and 0 < g < 1, we denote by HP,(8) the class of all functions of the
form (2.1) that satisfy the condition

Re{qz(Dy(h(2)) + Dy(8(2))) + h(2) + g(2)} > . (3.1)

Clearly, HP,,1(0) = HP and HP,_,;(8) = HP(B). It is obvious that both classes HP,(8) and HP(5)
deal with harmonic functions with a positive real part and share properties such as coefficient bounds
and distortion theorems. Also, the g-analogue HP,(f3) introduces a deformation parameter g, allowing
for generalized representations and extending classical results. The geometric and analytical behaviors
of functions in HP,(B) vary from HP(B).

We further denote by ﬁq(ﬁ) the subclass of HP,(f) such that the functions hand gin f = h + g
are of the form

[

hz) =1- Z a7 and g(z) = - Z byZ* (3.2)
k=1

k=1
witha; > 0 and by > O forall k > 1.

In the following theorem, we prove that the condition (3.1) is sufficient for a harmonic function f
of the form (2.1) to be in the class HP ().

Theorem 3.2. Let f = h + g be given by (2.1). Additionally, let

-5
where 0 < g < 1and0 < B < 1. Then, f € HP,[).

00 Zf: i
320 ] + 1) < 1, (33)
k=1

Proof. We show that the inequality (3.3) is a sufficient condition for f to belong to HP, (). Per the
requirement (3.1), we must demonstrate that if (3.3) is satisfied, then

I1 =B+ qz(Dy(h(2)) + Dy(8(2))) + h(z) + g(2)| = |1 + B = q2(Dy(h(2)) + Dy(8(2))) — h(z) — g(2)| > 0.
(3.4)

Substituting 4 and g in (3.4) yields by (3.3),

I = B + qz2(Dy(h(2)) + Dy(8(2))) + h(2) + g(2)| — [1 + B = qz(Dy(h(z)) + Dy(8(2))) — h(z) — g(2)l

00 k
2-B+ Z[ qi] (ax + b
k=1 \i=0

bl

k=1 \i=0

k

20-p -2 [Z qf) (lael + eIzl
k=1

i=0

%
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[e) Zi{: i
> 21-p){1- °7 (lal + el | > 0.
= -5
The harmonic mappings
L P e
f@ =1+ = +nd, (3.5)
o Zicod'

where

Dl + ) = 1,
k=1

show that the coeflicient bound given by (3.3) is sharp. Therefore, the functions f of the form (3.5) are
in the class HP,(B) because

N Zf:o q _ N _
2, T2l + 1o = ) (bl + bd) = 1.
-B
k=1 k=1
O
Next, we obtain the coefficient estimate for a function f of the form (3.2).
Theorem 3.3. Let f = h + g be given by (3.2). Then f € HP,(B) if and only if
o Xiod'
D= gl + i) < 1. (3.6)
k=1 1-5

Proof. The “if part” follows from Theorem 3.2 upon noting that if f = h + g € HP,(p) are of the
form (3.2), then f € HP,(B).
Suppose that f € HP (). Then, we find from (3.1) that

00 k
Re{l —Z[Zqi](ak+bk)zk} >ﬁ,Z€U’q€ (0’1),0 SIB< 1.

k=1 \i=0

If we choose z to be real and let z — 17, we get

00 k
1—2( q")(awbk)zxf,

k=1 \'i=0
or equivalently,
0 k
Z[Z q"](ak +b)<1-p,
k=1 \'i=0
which is precisely assertion (3.6) of the theorem. O

Theorem 3.4. Let f € ﬁq(ﬁ), then

l—l_ﬁrélf(z)|ﬁl+i;'§

1+g¢g

r, lzZ=r<l. (3.7)
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Proof. We prove that the right-hand inequality and the left-hand inequality are similar.

taking the absolute value, f we obtain

F@I < 1+ (@ + bl
k=1

< 1+ Z(ak + br
1 _ﬁ Zl =0 q
< 1+q2 = bor
< 1+ ! _'Br.
1+¢
The following result follows from Theorem 3.2.
Corollary 3.5. If f € HP (), then
1-5
fwelwl < 5 +q} c f(0),

where 0 < g<1and0<pB < 1.

Theorem 3.6. Set

k k

Let f € HP,($3),

(3.8)

1- 1=
@) =1 L2 and a0 =1- < Bo for k=12,

2ic0 4 i=0 94
Then, f € ﬁq(ﬁ) if and only if it can be expressed in the form

f@) = Z(thk + Yi&k)
g

(3.9)

where x; > 0, y¢ > 0 and Y2 (xx + yr) = 1. In particular, the extreme points of ﬁq(ﬁ) are hy and g.

Proof. For functions f of the form (3.9), we have

(o8]

) 1 —
f@= Z(thk +y8) =1 - Z T
k=1

k=1 i=0 4

k &
l.(ka + W),

Then
o wk

Z Zl_‘)q [ (i + )| = Z(xk+yk)—1
lO

and so f € m’q(ﬁ). Conversely, suppose f € HPq(B). Set

Zl Oq Zf‘{:o qi

Xp = (4 and Vun = bk.
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Then by Theorem 3.2,0 < x; < land 0 <y, <1, (k = 1,2,...). Consequently, we obtain

(o8]

F@ = ) (e + yige)

k=1
as required. O

Definition 3.7. For a function f € PH,(B), the 6 — q- neighborhood of f is defined by

A
=

Nig(f) = {F : F@) = 1= ) (A + 1BIZ) and > [kl — Ad + Ibe — Bil) <
k=1 k=1

In particular, for the constant function I(z) = 1, we immediately have

Neg® = {f © f@ = 1= >dald + 1bi?) and Y WKldal + o) < 6}
k=1 k=1
Theorem 3.8. Let § = (1 — B)\q. Then HP () C N; ,(I).
Proof. Suppose that f € ﬁq(ﬂ), then we have
(o9 1 (o0
DKL ad + bd) = = qlkly(ad + i)
k=1 7%=
1 S k
< = > a)aid + b
7%= =
1
< —-(1-p)=0
q
Hence, f € Ny (D). O
We now examine the convex combination of ﬁq B).
Theorem 3.9. Let the functions f; defined as
f](Z) =1- Z ak,jzk - Z bk,jZk,ak,j > O, bk,j >0 (310)

k=1 k=1

be in the class ﬁq(ﬂ) forevery j=1,2,--- L., then the function

¢
&) = Zﬂjfj(Z)

J=1

is also in the class ﬁq(ﬁ), where Zf.: (i =1
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Proof. According to the definition of &, we can write

00 t 00 4
ER)=1-) (Zﬂjak,j]zk - (Zujbk,j]z_k
=1 \j=1 =1 \j=1

Further, since f; are in ﬁq(ﬁ) forevery j=1,2,---,¢. Then by (3.6),we have

IA
—_
|
=

Hence, the proof is complete. O
Corollary 3.10. The class ﬁq(ﬁ) is closed under convex combination.

In the following definition, we define the g-integral operator for the harmonic functions f = h + g
with a positive real part.

Definition 3.11. Let f = h + g be defined by (3.2); then the g-integral operator F, : HP(B) — HP(B)
is defined by the relation

[c+1], (. [c+1], (*
Fy(2) = gy f t“h(tyd,t + zCTf t°g(t)d,t,(c > -1),z €U, (3.11)
0 0

where [al, is the g-number defined by (2.2).

Definition 3.11 leads us to

[e+1], (. < ¢ [c+1], (*F
F,(2) = i qfo {t —Z +k}dt_z"—“qfo {brtet*} d t

k=1
1 [Se]
a1 S agrd) - S a1 -0 Y ey ) ]
n=0 k=1 n=0

1
e :1 N Z be((1 - g)z Z(zq”)”"

[C + 1 o N ¢+k+1 [c + 1]‘1 N c+k+1
zet [c+1 ZA c+k+1]q z¢+1 kZ::l c+k+1]q biz
o [e+1], [c+ 1], .
=1- _ >-1,0 <1, 1. 3.12
;[c+k+1]q Z[c+k+1]q ¢ <4 I < ( )

Next, we show that the class ﬁq(ﬁ) is closed under the g-integral operator defined by (3.11).
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Theorem 3.12. Let f = h + g be given by (3.2) and f € HPy(p), then F is defined by (3.11) and also
belongs to HP ,(5).

Proof. From the series representation of F, defined by (3.12), we see that

c+k c ct+k

lc+k+1l,~le+1l,=> 4=y =Y >0,
i=0 i=0

i=c+1

then —_<e < 1. Therefore,

[c+k+1]4
YN oq [e+1] [c+ 1]
D= ol + bl
1= [c+k+1], [c+k+1],
(o] k i
< 1":0" (] + 1bel) < 1.
k=1 -B
Hence, F, € ﬁq(ﬁ). i

4. Conclusions

Using the g-derivative operator, we thoroughly investigated a subclass of harmonic functions with
a positive real part, denoted as HP,(5). A rigorous mathematical characterization of this class was
achieved by developing sufficient and necessary coefficient conditions, especially for negative
coefficients. The results expand on previous findings and apply them to g-calculus. The growth
theorem and extreme points of HP,(5) were established, providing greater insight into the geometric
and analytical features of these harmonic functions. Introducing the g-integral operator for functions
f = h + g with a positive real part showcases the versatility of g-calculus in studying harmonic
functions due to its wide applications in mathematical physics and dynamics. The g-integral operator
simplifies certain calculations, such as evaluating g-series and solving g-deformed differential
equations, by providing closed-form solutions that would otherwise require tedious summation or
numerical methods. Furthermore, it provides new analytical tools for exploring geometric and
structural properties in g-deformed systems, highlighting its potential in advancing research in
complex dynamics and quantum mechanics.
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