
 

 

AIMS Mathematics, 10(1): 159–194. 

DOI: 10.3934/math.2025009 

Received: 07 August 2024 

Revised: 25 November 2024 

Accepted: 27 November 2024 

Published: 03 January 2025 

https://www.aimspress.com/journal/Math 

 

Research article 

Higher order Weighted Random k Satisfiability ( 1,3k =    in Discrete 

Hopfield Neural Network 

Xiaoyan Liu1,2, Mohd Shareduwan Mohd Kasihmuddin2,*, Nur Ezlin Zamri3, Yunjie Chang2,4, 

Suad Abdeen2 and Yuan Gao2,5 

1 School of General Education, Guangzhou College of Technology and Business, Guangzhou 510850, 

China 
2 School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia 
3 Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 

UPM, Serdang, Selangor, Malaysia 
4 School of Computer Science and Engineering, Hunan Institute of Technology, 421002 Hengyang, 

China 

5 School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, 

610037 Chengdu, China 

* Correspondence: Email: shareduwan@usm.my; Tel: +60149442519. 

Abstract: Researchers have explored various non-systematic satisfiability approaches to enhance the 

interpretability of Discrete Hopfield Neural Networks. A flexible framework for non-systematic 

satisfiability has been developed to investigate diverse logical structures across dimensions and has 

improved the lack of neuron variation. However, the logic phase of this approach tends to overlook the 

distribution and characteristics of literal states, and the ratio of negative literals has not been mentioned 

with higher-order clauses. In this paper, we propose a new non-systematic logic named Weighted 

Random k  Satisfiability ( 1,3k = ), which implements the ratio of negative literals in higher-order 

clauses. The proposed logic, integrated into the Discrete Hopfield Neural Network, established a 

logical structure by incorporating the ratio of negative literals during the logic phase. This enhancement 

increased the network's storage capacity, improving its ability to handle complex, high-dimensional 

problems. The advanced logic was evaluated in the learning phase by various metrics. When the values 

of the ratio were 0.2r = , 0.4, 0.6, and 0.8, the logic demonstrated the potential for better performances 

and smaller errors. Furthermore, the performance of the proposed logical structure demonstrated a 

positive impact on the management of synaptic weights. The results indicated that the optimal global 

minimum solutions are achieved when the ratio of negative literals was set to 0.8r = . Compared to 

the state-of-the-art logical structures, this novel approach has a more significant impact on achieving 

global minimum solutions, particularly in terms of the ratio of negative literals. 
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1. Introduction 

Artificial intelligence (AI) refers to the simulation or approximation of human intelligence by 

software-coded heuristics. Artificial neural networks (ANNs), inspired by the intricate workings of the 

human brain, have sparked a worldwide revolution in artificial intelligence [1]. ANNs has become a 

popular standard approach to solve the optimization problems about several ranges of real-life problems 

such as in tendency forecasting of economic growth [2], the definition of “smart city” based on 

transportation [3], the distance education of university students [4], and in the business applications [5]. 

ANNs have been desired to have the ability to simulate the work that human brains do. The solid 

structure of the ANN made it limited to showing the real understanding of human brain activities. 

Although artificial intelligence excels in complex prediction tasks and most AI researchers rely on the 

ability of the ANN, it is limited in many areas, often being referred to as black-box models [6]. As 

computers can do complex work faster than humans and can store information that can help to make 

final decisions, Hopfield and Tank first added a simple variant of ANN into the Hopfield neural 

network (HNN) in 1985 [7]. The HNN consists of interconnected neurons without hidden neurons. 

Each neuron is connected through synaptic weight. HNN has the capability to access memory address 

which is called Content addressable memory (CAM). CAM is a special type of memory that can 

retrieve specific data through input content, helping network devices quickly retrieve specific data and 

improving network performance [8,9]. The HNN has two structures which are namely discrete and 

continuous [10]. Furthermore, as highlighted in other research, the Discrete Hopfield Neural Network 

(DHNN) has been a central focus due to its rapid development and wide range of applications. 

Abdullah (1992) added the logic structure named Satisfiability (SAT) into the ANN that leads DHNN 

to attain better performances obtaining the synaptic weight during the training phase [11]. SAT plays 

an important role in HNN with the storage capacity of the meaningful inspects of information. This 

unique structure of logic has the capability of transforming various problems into mathematical 

formulations. By utilizing special neurons that process a large amount of input information, the results 

from different aspects of the logic can help explain the predicted outputs. SAT is a powerful tool in 

automatic reasoning, enabling complex problem-solving across various domains in computer science 

and artificial intelligence. 

SAT refers to determining whether there exists an assignment of variables to a Boolean formula 

that makes the formula true. SAT is of significant importance in computer science, both as a 

fundamental topic in theoretical computational complexity research and for its wide-ranging 

practical applications in fields, such as circuit design [12], software verification [13], artificial 

intelligence [14,15], and compiler optimization [16]. One of the earliest works by Abdullah proposed 

Horn satisfiability (Horn SAT) as a new concept of SAT [11]. Horn SAT has been considered a good 

representation in the field of satisfiability [17]. The behavior of Horn SAT allows the cost function to 

be zero during the learning phase and decides the dynamic of the neuron state of HNN. Despite the 

results being able to locate more than 90% of global minimum solutions, the properties of Horn SAT 

seem fixed. The results demonstrate that DHNN can be implemented by this kind of logic rule. Since 

then, several researchers have conducted a significant amount of outstanding research work on the 

improvement of the structure of logic. Kasihmuddin et al. [18] introduced a systematic logic rule 
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named 2-Satisfiability (2SAT) which consists of strictly two literals per clause. Furthermore, a training 

algorithm was implemented in the training phase of DHNN which can help to minimize the cost 

function and can also obtain the optimal synaptic weight. Thereafter, the search for this kind of optimal 

SAT has come a long way. Zhu et al. [19] extended the order of the logic into 3-Satisfiability (3SAT) 

which proposed a higher-ordered SAT. All the clauses are expressed in Disjunctive Normal Form 

(DNF), with each literal connected through Conjunctive Normal Form (CNF) within every clause. This 

study observes that, despite the use of optimized algorithms, the solution space grows exponentially 

as the size of 3SAT instances increases. Therefore, solving large 3SAT instances demands significant 

energy consumption on traditional serial electronic computers. Mansor et al. [20] discussed various 

metrics to justify the capabilities of 3SAT. Moreover, they found that when the order of a clause 

exceeds 3, it can be reduced to a combination of clauses with order 3 or lower, according to the 

reduction theorem. The logical rule was embedded into DHNN by comparing the cost function with 

the Lyapunov energy function. The synaptic weights are derived from the comparison of these two 

functions. When the number of neurons increased, the synaptic weight values seemed suboptimal and 

the number of global minimal solutions also decreased. Due to the inflexibility of the logical rules, 

DHNN always lacks universality. 

Addressing the need for varying logic clause structures during the retrieval process, Mouhoub 

et al. [21] proposed a non-systematic satisfiability approach. This method checks whether a solution 

to an SAT problem remains valid when new clauses are added and can efficiently adjust the solution 

to satisfy both the original formula and the new clauses if necessary. Sathasivam et al. [22] later 

established a new logic rule named Random k  satisfiability (RAN k SAT) where 2k = . This work 

first mentioned the formula combination consists of first-order logic and second-order logic. The 

clauses are combined using disjunction, while the literals within each clause are connected through 

conjunction. The main idea of the implementation of RANkSAT is the flexibility to represent the 

number of literals that are not limited to only one variable per clause [22]. It was proposed by 

introducing the random structure that involves first and second-order SAT logical rules. This work was 

later extended using higher orders for non-systematic logical rules. The study of Karim et al. [23], 

shows different variants of Random 3 Satisfiability (RAN3SAT). The combination structures of all 

possible clauses were all implemented in DHNN. RAN3SAT has proposed a method with a high 

variation value, high global minima ratio, and low learning error. It also concluded that the logic 

structure with 2,3k = , which means the combination contains only second-order and third-order logic 

clauses would reach a higher probability of minimizing the cost function and better management of 

synaptic weight management, which leads to lower energy. Alway et al. [24] developed another 

variation of logic structure that used second-order clauses as the domain clause in the situation of non-

systematic SAT. This special logic was named Major 2-satisfiability (MAJ2SAT) where the ratio of 

the second-order clause is larger than the ratio of the third-order clause. Notably, the overfitting occurs 

when the ratio of second-order clauses increases in MAJ2SAT. This is because when the number of 

third-order clauses decreases the probability of satisfied interpretation will also decrease. The work 

also showed that it could have a lower similarity value than the existing systematic logic rules. 

In a subsequent development, Guo et al. [25] introduced a novel logic rule named Y-Random 2 

satisfiability (YRAN2SAT), which explored stimulation data within non-systematic logic rule 

structures. This approach merged both systematic and non-systematic characteristics, combining 

logical rules with symbolic instructions, thereby significantly enhancing the effectiveness of DHNN. 

Furthermore, Gao et al. [26] introduced a new variation of RAN3SAT named G-Type Random 3-

Satisfiability (GRAN3SAT) that capitalized both higher-order systematic and non-systematic logical 

rules in DHNN. This was the first attempt to add both logical rules into DHNN. In this work, they 
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present all the sets of logical rule structures that have been proposed. The higher-order systematic 

logical rule provides storage capacity to GRAN3SAT, whereas the higher-order nonsystematic logical 

rule provides a more diversified third-order logical connection. Despite its wide range of conclusions 

of logic rules and various metrics discussed in the following work, this work lacks control of the clear 

distribution of the number of negative literals. Although these fruitful SAT models have yielded 

effective results in DHNN, there have been fewer outcomes regarding the discussion of the ratio of 

negative literals in the logic rules. Research in non-systematic logic has advanced the storage capacity 

of neural networks. However, there has been limited exploration into leveraging higher-order clauses 

with varying ratios of negative literals. Incorporating these higher-order clauses, which introduce 

diverse proportions of negative literals, has the potential to significantly broaden the search space and 

enhance the storage capabilities of neural networks. This represents a promising area for future 

research that could lead to more efficient and scalable neural network architectures. 

To address these challenges mentioned above, our proposed approach will provide a more flexible 

structure that incorporates first-order and third-order logic which was randomly selected with a given 

ratio of negative literals in each clause. In the rest of this paper, we propose a newly non-systematic 

satisfiability logic named Weighted Random k  Satisfiability ( 1,3k = ) ( 3r SATW ). The proposed work 

demonstrates the effectiveness of integrating the unique logical structure. The key contributions of the 

details are outlined as follows: 

(1) To formulate a logic rule named Weighted Random k  Satisfiability that proposes a structural 

feature of non-systematic satisfiability. The establishment of kth-order clauses is set randomly 

with this logic added the ratio of negative literals to the first-order logic and third-order logic 

clauses. Exhaustive Search (ES) is used to find the correct logic structure for the right number 

of negative literals. 

(2) Implementing the proposed Weighted Random k  Satisfiability in DHNN enables effective 

network governance. This proposed logical rule stores information externally and is 

considered satisfied only if all clauses are satisfiable. In the present framework, each variable 

in the logical rule is represented as a neuron. 

(3) To propose the function in the learning phase to find the minimum cost function for each 

clause that is satisfied. The combination structure of this logic has more variables and can 

provide more literals in representing neuron states in DHNN. The optimal synaptic weights 

are determined by comparing the cost function with the Lyapunov energy function. 

(4) To evaluate the capacity of the proposed network by simulated metrics. We utilized different 

metrics to evaluate the logical structure, and mentioned that the proposed logical rule has the 

capacity to perform well with lower error in the learning phase and retrieval phase. 

(5) To compare the impact of the proposed non-systematic logical rule with existing logics in 

DHNN by employing various performance metrics. Several factors are considered such as the 

management of synaptic weight, learning errors, testing errors, solution variations, and 

similarity. 

The organization of the paper is outlined as follows: The motivation of this work is elaborated in 

Section 2. The proposed formula of Weighted Random k  Satisfiability is introduced in Section 3. In 

Section 4, we integrate the right logic structure according to the predetermined ratio of negative literals. 

In Section 5, we add Weighted Random k   Satisfiability into DHNN. Various metrics are used to 

analyze the effectiveness between the proposed logic and other predetermined logic rules in Section 6. 

In Section 7, we describe the results and discuss the performance of the proposed logic by different 

metrics. The conclusion and further work are discussed in Section 8 at the end of this paper. 
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2. Weighted Random k  Satisfiability 

SAT is a Boolean algebra logical rule employed to determine if there exists an assignment of 

variables that makes a given logical formula true. This rule is fundamental in solving problems where 

the goal is to find an optimal solution or verify the feasibility of a solution within a specific set of 

constraints. By evaluating various combinations of variable assignments, the SAT can effectively 

address complex decision-making and optimization challenges. Each clause in satisfiability contains 

literals with arbitrary numbers. There are two mainstream divisions of SAT logical rules, namely 

systematic and non-systematic logic rules in DHNN. In terms of the systematic satisfiability logic, 

there are strictly 2 literals per clause in 2SAT and 3 literals per clause in 3SAT. On the other hand, in 

terms of non-systematic satisfiability, there are k  literals in each clause with 1,2,3k = . The current 

study provides a non-systematic logic named Weighted Random k  Satisfiability is determined. In 

order to introduce the novel Weighted Random k  Satisfiability in DHNN. The standard formula of 

Weighted Random k  Satisfiability is set as follows: 

a) N variables: 
1 2, , , Nx x x  , where  1,1ix  −   has the bipolar values, 1,2, ,i N=  . Each 

literal has the same opportunity to be positive or negative. 

b) Structure combinations of clauses where: 

 1 2, , , pQ r r r= ,         (1) 

 ,ir u v= ,           (2) 

3u v N+ = .           (3) 

Here, u  is the number of first-order clauses, v  is the number of third-order clauses, 1,2, ,i p= . 

c) The general formulation of the proposed logical structure of Weighted Random k  Satisfiability 

(r3SAT) is formulated as follows: 

(3) (1)

3 1 1

v u

r SAT i i i iW Q Q= ==   .         (4) 

As shown in Eq (4), (1)

iQ  and (3)

iQ  are refer to the first-order and third-order clauses, respectively. 

Each clause is combined with CNF. 

d) In each clause, literals are combined with the DNF, such structures are stated as follows: 

( )
( )

1

, 3

ik

i

i i i

A k
Q

B C D k

=
= 

  =

，
.       (5) 

Literals represent bipolar values  ,i iA A ,  ,i iB B ,  ,i iC C ,  ,i iD D , and so on. Where 
iA  

represents positive and 
iA  represents negative. In r3SAT, the ratio of the total number of negative 

literals is defined as r . The approach outlined the range of ratio is between 0.1 and 0.9. The step size 

is separated randomly. The number of negative literals n  in weighted r3SAT can be calculated as 

follows in Eq (6): 

n rN= .           (6) 
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When 0r = , it seems that there are no negative literals in every clause. This can be called monotone 

clauses [27]. Additionally, 1r =  seems that the whole weighted r3SAT is comprised of literals which 

are all negative without positive ones. The number of rN  sometimes shows the particularity that it is 

not in nature number. For example, when 0.4r =  and 9N =  shows that 3.6rN =  is not a natural 

number. The rounding function is used to deal with this kind of conflict. The rounding function means 

to get the maximum natural number which is not bigger than the real number it has been. Since rN  

must be a natural number, the number of negative literals is 3 under the condition below: 

3.6rN = .          (7) 

It can be introduced as  3.6 3=  in short. Equations (8)–(11) show examples under this condition 

when the number of negative literals is equal to 3. 

1 2 3 4 5 6 7 8 93r SAT A A A AW A A A A A     =    ,    (8) 

( )1 2 3 4 5 6 1 1 13r SAT A A A AW A A B C D=         ,    (9) 

( ) ( )1 2 3 1 1 1 2 2 23r SAT A A A BW C D B C D=          ,   (10) 

( ) ( ) ( )1 1 1 2 2 2 3 3 33r SATW B C D B C D B C D=          .   (11) 

As illustrated in the examples, the number of negative literals is consistently three. As outlined in 

Eq (8), the logical structure is composed entirely of first-order clauses, with negative literals 

randomly distributed across them. Equation (11) presents a structure consisting entirely of third-

order clauses, where negative literals are assigned to each clause but distributed randomly. 

Additionally, Eqs (9) and (10) involve both first-order and third-order clauses, with negative literals 

randomly assigned to each type. 

The logic structure of weighted r3SAT is dependent on the ratio of r  and the nature number 

N . The weight for each formula generation of any possible ( )k

iQ  for 1,3k =  is defined by Eqs (12) 

and (13) as below: 

(1)
0,

1,
i

if A

if A



= 


,        (12) 

( )

( ) ( ) ( )

( ) ( ) ( )

( )

(3)

0,

1, , ,

2, , ,

3,

i

if B C D

if B C D B C D B C D

if B C D B C D B C D

if B C D



 


      
= 

       
   

,  (13) 

where  ( ) 0,1,2,3k

i   denotes the number of negative literals in the k th-order clauses for 1,3k = . 

When the number of negative literals is equal to 0 per clause, the result of ( )k

i  is set to be 0. While 

there exists only one negative literal per clause, the value of ( )k

i  is equal to 1. It sounds self-evident 

that when the number of negative literals is equal to 1, 2, or 3. ( )k

i  is equal to the same value of the 
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number. Equation (12) mentions that in the first-order clause, when the number of negative literals is 1, 

the value of (1)

i  is equal to one. Otherwise, the value is 0. In Eq (13) which shows the clause of 

third-order, the value of (3)

i   is equal to the same value of the number of negative literals. 

Subsequently, the total number of negative literals can be calculated by the summaries in Eq (14) as 

follows: 

(1) (3)

1 1

u v

i i

i i

  
= =

= +  .         (14) 

Note that the total weight of negative literals   is equivalent to the total number of negative literals 

present in the weighted r3SAT formulation. One of the most important things during this step is to 

make sure that Eq (15) can be satisfied. 

0rN − = .          (15) 

Building on the established framework of r2SAT [28], the Genetic Algorithm (GA) was utilized 

to identify the optimal logical structure for each possible combination, with the goal of minimizing the 

fitness function as defined in Eq (15) during the logic phase. In the context of this study, the fitness 

function is further introduced as a key method for effectively minimizing Eq (15) within the logic 

phase, offering a systematic approach to refining the logical structure through iterative optimization. 

The structure of 3r SATW  represents first and third-order clauses combined with non-redundant literals. 

As mentioned before, the step size for the ratio is limited to 0.1 while the range of the ratio is between 

0.1 to 0.9. The generation of r3SAT is shown in Figure 1. It is worth mentioning that although the 

correct 3r SATW   can be generated, the condition determined by Eq (15) often cannot be satisfied. 

Additional conditions must be imposed during the logic phase to ensure that a valid solution for this 

distribution exists. The random literals must be generated based on the value of the input N  while 

the weight of the logic is evaluated according to the value of weight i  in each cause. ES is used to 

generate the correct number of literals in each clause with a linear function [29]. The ratio of negative 

literals is determined by a specified value. After the generation of these literals, they are randomly 

distributed across the first-order and third-order logic clauses. The detailed process of this generation 

will be discussed in the following section. After that, the structure of 3r SATW  seems established. 

 

Figure 1. Flowchart generating Weighted Random 3 Satisfiability ( 3r SATW ). 
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3. Logic generation of Weighted Random 3 Satisfiability 

In the following work, ES is employed to address the problem of determining the distribution of 

negative literals in both first-order and third-order logic. In contrast, the studies in [28,30] utilized 

Genetic Algorithms (GA) because GA is well-suited for solving continuous optimization problems due 

to its balanced operators for exploration and exploitation. If GA successfully optimizes the resulting 

fitness function, the outcomes will generally be at least suboptimal in most cases [30]. GA was 

employed to propose a structured logic phase, serving as an organized framework for assigning the 

distribution of negative literals in an unbiased manner [28]. Although GA can handle continuous 

problems, this usually involves discretizing real variables or using special encoding schemes, which 

may increase complexity and reduce efficiency [28]. Hassanat A, et al. [31] mentioned that GA usually 

uses fixed mutation rates and crossover operations, which may show poor adaptability to some 

problems. ES is an algorithmic strategy that tries all possible solutions in the solution space of a 

problem one by one to find the optimal solution or a solution that satisfies certain conditions [32]. This 

approach usually ensures that the global optimal solution is found. The ES method has been used in 

beam angle optimization [33]. The proposed approach utilizes ES to solve the problem, owing to its 

reliability in converging toward optimal solutions. To assess the quality of the solutions, a fitness 

function is employed, which quantifies the number of negative literals. This fitness function is 

mathematically formulated in Eq (16), providing a clear metric for solution evaluation and guiding the 

optimization process: 

3r SATWf rN = − ,          (16) 

when 
3

0
r SATWf = , the fitness function reached the optimal value of 

3r SATWf . It also illustrates that Eq (15) 

is satisfied and the correct structure of 3r SATW  should be generated. On the other hand, 
3

0
r SATWf   

illustrates that the solution of the function is not satisfied, ES failed to find the correct structure of the 

logic mentioned and it will also fail to obtain the correct number of negative literals. 

While GA will repeat from the initialization process when 
3

0
r SATWf    until 

3
0

r SATWf =   is 

achieved or until a specified number of iterations which has been restricted in advance. The algorithm 

ES is utilized to get the correct number without duplication testing each possible solution in the 

solution space of a problem sequentially to identify the optimal solution or a solution that meets 

specific criteria. For example, in the case where 0.5r =   and 9N =  , while    4.5 4rN = =   is a 

nature number, ES would find a solution satisfies 4 =  to achieve 
3

0
r SATWf =  in the case of Eq (16). 

The separation of the value ( )k

i   for 1,3k =   in each kind of clause should be shown under the 

condition of absolutely two negative literals in the first-order clause and two negative literals in the 

third-order clause. Finally, it can be concluded that the possible structure 3r SATW  will be generated as 

follows: 

( ) ( )1 2 3 1 1 1 2 2 23r SATW A A A B C D B C D     =    .   (17) 

Equation (17) shows the example of  0.5 0.1,0.9r =  . While excessive cases where 0r =  or 1r =  

exist, it indicates that there are no negative literals or that the whole logic is filled with negative literals 

monotonously. Monotone clauses can result in an inefficient solution to properly managing the 

synaptic weights. A clause is considered monotone if it contains only unnegated variables or only 
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negated variables [34]. Since a first-order clause has only one satisfied interpretation, its presence has 

minimal impact on the overall structure of the logic when dealing with negative form literals. The logic 

phase in Algorithm 1 presents the pseudocode for generating the randomly weighted 3-SAT logic phase. 

4. Weighted r3SAT in the Discrete Hopfield Neural Network 

The effectiveness of DHNN primarily relies on its ability to store information, which is crucial 

for solving optimization problems. Researchers have demonstrated that this capability can be applied 

to a wide range of problems due to its versatility in addressing complex issues [24–26]. The 

fundamental rule for the update of neurons is shown as follows: 

(3)

,

1,

1,

n

ijk j i

ji

k

kS
W S S

otherwise








=

−

 ,        (18) 

where 
ijkW  denotes the synaptic weight between neuron i , neuron j  and neuron k . The weight 

presents the strength of the connections between neurons [26]. iS  denotes the state of neuron i  and 

i  is a predetermined threshold value. The property of the synaptic weights for two neurons in the 

state is always symmetric which has the feature that (2) (2)

ij jiW W= , (3)

ijkW  have the same value for all 

permutation combinations with i j k   , and has no self-connection (2) (2) (2) 0ii jj kkW W W= = =  , 

(3) (3) (3) 0iii jjj kkkW W W= = =  . The predetermined threshold i   is always determined as 0i =   which 

means that the energy in DHNN decreases uniformly [28]. The primary purpose of implementing 

3r SATW  in DHNN is to reduce logical inconsistency. Our main objective of this work is to minimize the 

cost function, ideally driving it to zero. This is accomplished by minimizing the network's cost function. 

The cost function 
3r SATWE  for the implementation of the logic 3r SATW  into DHNN can be formulated 

as shown in Eq (19) below: 

3

3 1
(3) (1)

1 11 1
r SAT

v u

W ij ij

i ij j

E Q Q
= == =

   
= +   

   
   ,       (19) 

where u   is the number of first-order clauses and v   is the number of third-order clauses. The 

inconsistency of 
( )k

ijQ
 ( 1,3k = ) is determined as follows: 

( )

( )
(1,3)

1
1 ,

2

1
1 ,

2

i

i

A i

ij

A i

S if A

Q

S if A


+

= 
 − 


.        (20) 

Here, 
iAS   is the neuron state and 

iA   comprised of bipolar literals  1,1iA  −  . To achieve a 

minimized cost function that approaches zero, the DHNN must identify at least one interpretation that 

satisfies the conditions and yields the result of 
3

0
r SATWE =  . The formulation of probability ( P  ) of 
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finding the satisfactory interpretation is presented in Eq (21) below [22]. 
1

1
2k

 
− 

 
 is the probability 

of satisfying the k th-order clauses. 

3 3

1 1
( 0) 1 1

2 2r SAT

v u

WP E
   

= = − −   
   

.      (21) 

The value of 
3r SATWE  depends on the number of unsatisfied clauses in 3r SATW . When the number of 

unsatisfied clauses increases, the value of 
3r SATWE   also increases. The minimum value of 

3r SATWE  

indicates the structure is minimized and the optimal values of the synaptic weights are obtained. 

3
0

r SATWE =  indicates that all the clauses in this logic are satisfied. It is ensured that the DHNN can 

converge to the correct final state. According to Wan Abdullah's method (WA) [11], the synaptic 

weights of the neurons can be determined by comparing the coefficients of the cost function with the 

Lyapunov energy function of the DHNN. The values of the synaptic weights can be stored in the 

Content Addressable Memory (CAM). Equation (22) represents the network's local field. 

(3) (2) (1)

1, , 1, 1,

n n n

ijk j k ij j i

k k i j j j i

i

j i j

H W S S W S W
=  =  = 

= + +   .     (22) 

DHNN utilized an activation function of the Hyperbolic Tangent Activation Function (HTAF) to enable 

the convergence of final neuron states because of its non-linear properties. According to the value of 

Eq (22), Eq (23) is the generated final neuron states. 

( )
(3) (2) (1)
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1, 0

1,
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otherwise

=  =  = 


+ + 

= 
−

  
.  (23) 

The initial state and the updated state of the neuron is represented as iH  and ( )iH t  as shown in 

Eqs (22) and (23). (1)

iW , (2)

ijW , and (3)

ijkW  represent the synaptic weights of the first-order, second-order 

and third-order in DHNN, respectively. The equation for HTAF is shown in Eq (24) by Mansor [35]: 

tanh( )
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H H
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e e
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−

−

−
=

+
,        (24) 

and the neuron states are updated by Eq (25) below: 

( )
( )1, tanh 0

1,

i

i

H
S t

otherwise

 
= 

−

.       (25) 

When the evaluation of the cost function primarily depends on the stable state of the neurons, its 

minimum corresponds to the optimal solution for the given structure. An analysis conducted by Ma 

et al. [36] demonstrated that the Lyapunov energy is finite and can attain a minimum energy value, 

further supporting the convergence of the system to an optimal state. The Lyapunov function is 

formulated as follows: 
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(3) (2) (1)

1 1, , 1, 1 1, 1

1 1

3 2

n n n n n n

W ijk i j k ij i j i

i k k i j j j i i j j i i

L W S S S W S S W
= =  =  = =  =

= − − −      .  (26) 

After the calculation of all the solution states for the 
WL , the result can be concluded that the minimum 

of all the 
WL  can be obtained by the number of clauses. The minimum value can be calculated as 

follows: 

min 1 1

8 2
WL v u= + ,         (27) 

where u  and v  show the number of first-order and third-order logic. Equation (27) demonstrates 

that finding the minimum value of the Lyapunov function does not require the use of ES; instead, it 

can be determined based on the number of first- and third-order clauses. This equation provides a 

simpler method for calculating the minimum value. Furthermore, the optimal synaptic weights can be 

derived from the coefficients of the functions when 
3

0
r SATWE =  or 

1
(1 ) 0

2 iAS =  per clause. 

Otherwise, the synaptic weights would be obtained randomly. When min

WL  is the expected global 

minimum energy solution of the DHNN, the final state will also be converged to the lowest energy of 

the neuron states. The converges of the final neuron state are calculated using Eq (28): 

min

W WL L Tol−  ,         (28) 

where Tol  is a predetermined value of tolerance. Although the smaller the tolerance value the better, 

it can always be set as 0.001Tol =  [23]. 

Algorithm 1 illustrates the implementation of Weighted Random 3 Satisfiability into DHNN. 

Equation (28) determines the condition that can be used to detect the behavior of satisfying 3r SATW . 

Figure 2 illustrates the schematic diagram showing the implementation of 3r SATW  in DHNN. The main 

block represented shows the first-order and third-order clauses after adding the ratio of negative literals. 

Inside the higher-order logic block, the blue, yellow, and pink lines indicate the connections between 

the neurons. The diagram consists of the learning phase and the retrieval phase. The clauses are selected 

randomly during the learning phase for 3r SATW   and then converted into Boolean algebra 

representation. 
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Algorithm 1: Pseudocode of DHNN-Weighted r3SAT. 

Input: Initialize the number of literals N  and the ratio of negative literals r ; 

Output: Global minimum solutions or local minimum solutions 

1 Initialization: Generate initial neuron states; ## {Logic phase} 

2 Calculate the right number of negative literals by Eq (14) 

3 Select all the logic combinations of 3r SATW  

4 Calculate the number of first and third-order clauses; 

5 for 1i =  to N  

6  select the optimal solution of rN  using ES; 

7  if 0rN − =  do 

8   calculate the fitness using Eq (16) 

9  else 

10   return to line 3 

11  end if  

12 end for  

13 store the best solution achieved 
3

0
r SATWf =  

14 for 0i =  to c  ## {Learning phase} 

15  if 
3

0
r SATWE =  

16   Calculate the synaptic weight using WA method 

17   Store synaptic weight in CAM 

18  else 

19   Generate the synaptic weight randomly 

20   end if 

21 end for 

22 Calculate the global minimum energy min

WL  using Eq (27) 

23 Initialize the final neuron state randomly   ## {Retrieval phase} 

24 for 0i =  to c  

25  Calculate the local field by Eq (22) 

26  Update the neuron state using HTAF by Eq (24); 

27  Calculate the final neuron energy WL  by Eq (26) 

28  if 
min

W WL L Tol−   

29   Global minimum solutions; 

30  else 

31   Local minimum solutions; 

32  end if 

33 end for 
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Figure 2. Schematic diagram for DHNN-weighted r3SAT. 

Figure 3 demonstrates the flowchart of weighted r3SAT in DHNN. The presentation illustrates 

how weighted r3SAT is progressed obtaining the synaptic weight in the learning phase. It also indicates 

the retrieval phase of r3SAT in DHNN. The analysis presented herein confirms the objective of 

weighted r3SAT is to determine the neuron states that meet the requirements satisfied by the cost 

function given in Eq (20). Note that optimal global solution is a strong assumption for a general 

unconstrained optimization problem. However, the primary advantage of using neural networks is their 

powerful representational capabilities. Therefore, the global minimal solution is a reasonable 

assumption in DHNN. After selecting the negative literals for each clause, the optimal synaptic weight 

can be obtained by optimizing the neurons. The acquired synaptic weights are then used to access the 

desired information during the retrieval phase. 
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Figure 3. Flowchart of Weighted Random 3SAT in DHNN. 

5. Experimental setup 

The following work proposed various performance metrics to evaluate the logic output across all 

phases. The purpose is to judge the effectiveness of adding the ratio into weighted r3SAT. 

5.1 Simulation platform 

All simulations were conducted using Python 3 on a 64-bit Windows 11 operating system. All 

experiments were performed on the same computer with the same compiler. The neuron states were 

generated randomly by the neuron  1,1iS  − . In the learning phase, the ratios of negative literals are 

generated by the algorithm ES. Although ES may require significant computational time, it ensures the 

optimal number of negative neurons. The primary objective of ES is to determine the correct number 

of negative literals. Third-order clauses in DHNN are crucial for capturing non-linear relationships 

among variables, thereby extending two-way interactions. These clauses facilitate the handling of 

complex data patterns, thereby enhancing the accuracy of the models [37]. Several simulations were 

conducted to evaluate the effectiveness of the proposed satisfiability in both the learning and retrieval 

phases. Three distinct simulations are discussed in this study, which vary in terms of the number of 

logic combinations, neurons, and clauses. Additionally, different ratios of negative literals were also 

tested. Error analysis and neuron similarity analysis are utilized to estimate third-order clause 

performance in DHNN. 
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5.2 Parameters assignments 

The proposed model will undergo three parts: the logic phase, the learning phase, and the retrieval 

phase. Each specific detail of the simulations is as below: 

a) Different numbers of literals and clauses. The objective of the logic phase is to obtain the 

right or at least the optimal weighted value of   in the subsequent section. The effectiveness 

of different logic orders is assessed using various metrics during the learning phase. 

b) Various ranges of ratios. Different ratio means different numbers of negative literals which 

can be used to evaluate the impact on 3r SATW . The performance metrics at every phase can 

be evaluated and the effects of parameter alterations on 3r SATW  can be determined. 

c) Different logic structures. The proposed approach shows several existing well-known logic 

rules that are used to compare with 3r SATW  in terms of the flexibility analysis of logic rules. 

Comparisons were performed using different ranges of neuron numbers as well as different 

metrics for the mentioned logic rules. 

In the logic phase, ES is implemented to obtain the right number of negative literals. To avoid the 

early convergence of the algorithm, the size of the neuron population is set to 100. The higher number 

of neurons will lead to a high risk of gaining optimal global solutions [38]. When the ratio of negative 

literals during the logical phase is determined, the number of negative literals is also confirmed. 

Tables 1–3 show the list of parameters that are used in each phase of weighted r3SAT. The proposed 

model includes three components: the learning phase, retrieval phase, and testing phase. Table 1 shows 

the parameters involved in the logic phase. Tables 2 and 3 present the parameters used in the learning 

phase and the testing phase. ES will be implemented in the logic phase to obtain the correct number of 

negative literals. The number of    can be obtained by the rounding function of  rN   while the 

literals mentioned in the retrieval and testing phase are both generated randomly. 

Table 1. List of parameters used in 3r SATW . 

Parameter Parameter value 

Number of neurons, N  15 100N   

Weighted ratio, r   0.1,0.9 [36] 

Step of the ratio, r  0.1 [24] 

Number of negative literals,    rN  

Number of combinations, CN  100 [37] 

Number of learning, lN  100 [37] 

Learning iteration, iN  i LN N [24] 

Synaptic weight method Wan Abdullah method (WA) [11] 

Number of testing trials tN  100 [37] 

Neuron states in the learning phase Random 1 or -1 

Neuron states in the testing phase Random 1 or -1 

Tolerance value, Tol  0.001 [23] 

Active function HTAF [32] 
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Table 2. List of symbols used in the learning phase. 

Parameter Parameter value 

Nf  Total fitness number 

Cf  Current number of fitness 

iW  Synaptic weights obtained currently 

W  Synaptic weights obtained by WA method 

WN  Number of synaptic weights each time 

TWN  Total number of synaptic weights 

Table 3. List of symbols used in the testing phase. 

Parameter Parameter value 
min

WL  Minimum energy 

WL  Lyapunov Energy  

TSN  Total number of solutions 

GSN  Number of global solutions 

LSN  Number of local solutions 

TN  Number of testing trials 

The ratios of value r  have been preset between 0.1 and 0.9, and the step size is set to 0.2r = . 

The research by Sidik et al. [39] has shown that the selection of the step size plays a crucial role in the 

process. Additionally, the alignment of the step size with the overall method is essential for ensuring 

optimal performance. While 0r =  means there are no negative literals in the logic structure, 1r =  

determines all the literals are negative in the logic phase in 3r SATW . The activation function used in the 

testing phase is the non-linear HTAF because of its discriminability and compatibility with bipolar 

entries. 

5.3 Performance metrics 

For each phase of this work, various metrics are utilized to value the performance of the model. 

The performances of all these models are evaluated by variables of metrics that are well known. As 

each phase has a different objective, each objective will be illustrated for the actual performance of the 

proposed model. To obtain the correct synaptic weights of 3r SATW , the cost function must be minimized. 

The quality of the final states can be evaluated by Eq (28) in the case of the quantity of global minimal 

solutions. Note that, the smaller the cost function, the better the logic structure. Additionally, the bigger 

the ratio of global solutions, the better. The optimal value of best fitness in the logic phase is related to 

the structure of the logic 3r SATW . Mean absolute error (MAE), root means square error (RMSE), and 

mean absolute percentage error (MAPE) are well known and are widely used to assess the 

measurement of the performance of logic models [40]. 

These metrics can measure the effect of the performance of the models and systems. MAE seems 

a more direct measurement of error. MAE is less affected by outliers and is relatively simple to 

calculate. As MAE is less sensitive to extreme values, it can provide a more stable evaluation of model 

performance, especially when the data has uneven distribution or contains noise [41]. MAPE presents 
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the percentage value of the proposed model [42]. RMSE is more sensitive to larger errors. RMSE has 

several mathematically advantageous properties. For example, it is expressed in the same units as the 

data, making the scale of the error more intuitively apparent in practical applications. RMSE is one of 

the standard methods for evaluating many statistical and machine learning models, thus, it has general 

applicability in model comparison and selection. The lower the value of these errors, the better the 

learning and retrieval phase. The effectiveness of the logic phase can be investigated in Eqs (29)–(31) 

as below: 
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where Nf  represents the best fitness of the logic phase and Cf  represents the current fitness. iN  

denotes the current number of learning trials. Equation (29) evaluates the effectiveness of the average 

of the performance for literals which can achieve the situation of 0Nf = . The discussions regarding 

the error are RMSE and MAPE, which are shown in Eqs (30) and (31). Both formulations can be used 

to evaluate the effectiveness of the fitness. 

The metric MAE is a standard error based on the average difference between the computed fitness 

values and the expected fitness of the model we have mentioned. One of our aims is to focus on the 

effectiveness of 3r SATW  logic model by different ratios of negative literals for total. To highlight the 

variations across different phases of the logic, the performance of each evaluation metric was analyzed. 

RMSE and MAPE, an extended version of MAE that incorporates percentage values, were discussed 

across the learning, training, and testing phases. 

In the learning phase, the best fitness will be gained when Eq (16) is equal to zero. Additionally, 

the lower the value of such metrics mentioned above, the better the logic model will be. When the 

effectiveness of the logic phase is evaluated by Eqs (29)–(31), we can also measure the fitness of 

neuron states and the clauses that generate the optimal synaptic weights. These metrics are all used to 

assess the performance of the training phase to evaluate the errors in synaptic weight analysis. 

Equations (32)–(34) shows the parameters used in the training phase as below: 

1

iN
i

W

C W

W W
MAE

N=

−
= ,        (32) 

( )
2

1

1 iN

i

i

W

TW

R W WM
N

SE
=

= − ,      (33) 

1

100iN

W i

i W

MAPE W W
W N=

= −


 .      (34) 



176 

AIMS Mathematics  Volume 10, Issue 1, 159–194. 

iW   is the synaptic weight obtained currently and W   is the synaptic weight obtained by the WA 

method. WN  is the number of synaptic weights obtained during the retrieval phase each time. TWN  

is the total number of synaptic weights. The energy analysis is used to determine the efficiency of the 

weighted r3SAT in the testing phase, and the RMSE, MAE, and Global ratio are all used to evaluate 

the errors. Worth mentioning that, the smaller error leads to better logic and also a higher global 

optimization. When the signal GSN  denotes the number of global solutions and LSN  denotes the 

number of local solutions, the logic model is considered satisfied when the error values in Eqs (29) 

to (34) are equal to zero. In addition, the metrics determined in Eqs (35)–(37) showed the effectiveness 

of the parameters used in the retrieval phase. 
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Here, TN  is the number of testing trails. T CN N  is the total number of solutions. GSN  shows 

the number of solutions that can achieve the global minimum energy in the logic model. To make 

certain that the final neuron state can be satisfied, the global minimal solutions must be noticed. Guo 

et al. [25] have proposed a metric named Global Minimum Ratio (GR) to evaluate the energy of the 

network in recent work. The higher the value of GR and the lower value of the parameters mentioned 

in Eqs (35) and (36) mean a better satisfiability of the model and also an optimal model. 

5.4 Similarity analysis 

Analyzing the similarity index can evaluate the quality of the final states of the model. The 

Jaccard Index (JAC) is a ratio of similarity between two distinct data sets. The calculation of the JAC 

is straightforward and computationally efficient, making it suitable for large-scale datasets. Fletcher 

et al. [43] used the JAC to measure the similarity between sets of patterns by converting each pattern 

into a single element within the set. The measurement of the work of [43] focuses on providing 

conceptual simplicity, computational simplicity, interpretability, and wide applicability. JAC reflects 

the ratio of the intersection to the union of the two sets, making it intuitive and easy to understand in 

practical applications [44]. It is used to evaluate the global solutions in the proposed approach. The 

similarity index JAC is defined in Eq (38) as follows. 

( )max ,i iJ S S


  
=

+ +
.         (38) 

Note that   is the number of states where ( )max ,i iS S  when both the elements are equal to 1. 

   is the number of the set when 1iS = −   and max 1iS =  .    is the number of ( )max ,i iS S   when 
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1iS = −  and max 1iS = . Since the similarity index serves as a measure for evaluating the quality of the 

final states retrieved, the proposed model will utilize this formulation of the similarity index [45] to 

assess the final neuron states. As previously mentioned, the Jaccard (JAC) similarity analysis will be 

employed to compare the neuron states, as outlined in Table 4. 

Table 4. Variables for similarity index JAC. 

Variable 
max

iS  
iS  

  1 1 

  1 1−  

  1−  1 

5.5 Baseline logics 

To evaluate the performance of the proposed logic, the formulated logic model is compared with 

the baseline SAT models mentioned below: 

(a) Random 2 Satisfiability (RAN2SAT) [22]: This study was first proposed by Sathasivam et al. 

and was mentioned as the earliest work on the non-systematic logic rule. RAN2SAT consists 

of both first and second-order logic clauses. This approach broadens the potential to transition 

from systematic to non-systematic logic, with the latter being more applicable for real-world 

implementation. Consequently, no work was performed on the measurement of negative 

literals, nor was there a logic phase involved. 

(b) Random 3 Satisfiability (RAN3SAT) [23]: RAN3SAT is an expanding work of RAN2SAT 

which concluded third-order logic in the model. It consisted of three components: The first, 

second, and third-order clauses. The work by Karim et al. [23] noticed three types of logic 

combinations with different k . The literals were generated randomly while the clauses could 

be defined by the user. This approach significantly enhanced RAN2SAT by incorporating 

3SAT, thereby making the structure more flexible. The researchers addressed the limitations 

of RAN2SAT in existing non-systematic logic, but it did not account for measuring the number 

of negative literals in the logical model. 

(c) G-type Random k  Satisfiability (GRAN3SAT) [26]: GRAN3SAT was first put forward by 

Gao et al. [26] as a flexible logical rule by combining the structure of both systematic and non-

systematic logic. It was enumerated randomly with a higher order logical structure including 

the first-order, second-order, and third-order of clauses. The present research GRAN3SAT can 

be reduced to systematic logic 2SAT, 3SAT. We focused on the flexibility of the logical 

structure but overlooked the consideration of the weight of the negative literals. 

(d) Weighted Random k   Satisfiability (r2SAT) [28]: The work proposed by Zamri et al. 

considered a class of non-systematic satisfiability logic with the inclusive ratio of negative 

literals. The approach emphasizes the distribution of negative literals using GA to generate the 

logic phase. However, this paper only considers the weighting of the structure in first- and 

second-order clauses. Notably, third-order logic has not been considered in the proposed 

framework. 
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6. Results and discussion 

The proposed logic model was compared with state-of-the-art logic models in various aspects 

during the following work. Each phase of the proposed model will be assessed. Including the learning 

phase (logic phase), training phase, and the testing phase. ES is embedded into the logic phase to obtain 

the best value and the correct number of negative literals. It will be used to calculate the right number 

  with different ratio r , respectfully. The ratio of negative literals mentioned herein results different 

cases to compare with each other. For example, when 0.3r = , it means the negative literals have a 

percentage of 30% while the other 70% are positive. After the logic phase 3r SATW  was generated, 

3r SATW  was able to be trained to minimize the cost function embedded in DHNN. The metrics MAE, 

RMSE, and MAPE have been introduced in Eqs (29)–(31) and were used to evaluate the effectiveness 

of the logic model. To avoid the complexity of the comparison, the number of literals was set up to 100. 

This drawback of the number controlling is tolerant of a new logic that was first proposed. After the 

generation of the logic phase, the obtained logic was trained in DHNN. Equations (32)–(34) can 

measure the effectiveness of the synaptic weight. Equations (35)–(37) was used to evaluate the quality 

of the proposed model in reaching the global minimum solutions. The comparison between the 

proposed model and exit SAT models in DHNN was analyzed. Moreover, the similarity of the 

benchmark station and the final neuron station is measured in terms of the JAC similarity index. 

6.1 Analysis of logic phase 

The purpose of the logic phase is to find a correct logic structure that has a strong ability for 

consistent interpretation. The proposed approach utilized ES to gain the number of negative literals for 

different ratio sets. The learning phase of the proposed model is specifically designed to achieve the 

desired number of negative literals, as formulated in Eq (15). It has been noted that r2SAT is unable to 

retrieve the correct structure when the number of neurons exceeds 45 for any negative ratio [28]. Due 

to the utilization of ES, the proposed work can obtain an optimal structure for all r  . Herein, the 

performance metrics lMAE  , 
lRMSE  , and 

lMAPE   shown in Eqs (29)–(31) are computed to 

measure the effectiveness of the clause fitness. 

As the performance metrics were used to analyze the fitness of neuron states, the value of these 

metrics can also be referred to as the fitness error. Note that the main object of the learning phase is to 

search for the optimal ratio of negative literals that can achieve optimal fitness. Figure 4 illustrates the 

comparative effectiveness of different ratios in the learning phase in the logic 3r SATW . The proposed 

value for a consistent step of ratio is determined as the symbol of r . To better observe the overall 

situation, we set the step of ratio equal to 0.2. Figure 4 was generated based on the data calculated 

under this condition shows that it can be concluded that the ratio 0.7r =  plays a good view in the 

proposed model while the step of ratio 0.2r = . It can achieve a smaller error to get the best fitness. 

Generally, when the number of neurons is below 20, the errors increase linearly as the number of 

neurons grows, except for certain values of r . However, when the number of neurons is between 20 

and 40, the errors decrease. As the number of neurons continues to increase, the fitness error also 

increases. This trend has been observed and is consistent with the findings of Karim et al. [23] and 

Zamri et al. [28]. 
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(a)                                   (b) 

 
(c) 

Figure 4. Metrics analysis based on different ratios within the step 0.2r = . 

Figure 4(a) represents the mean absolute error (MAE) during the learning phase, while Figure 4(b) 

illustrates the root mean squared error (RMSE) and Figure 4(c) demonstrates the mean absolute error 

(MAPE) during the learning phase with different value of the ratio. Although the differences based on 

different ratios has shown quite diminish when the number of neurons increased, it can be 

demonstrated that the ratio of negative literals plays a great part in the contribution of logics. It is worth 

mentioning that when the ratio gets its extreme value in the range of  0.1,0.9 , the solutions of the 

combination would not be very multiple. For example, when 0.1r =  or 0.9r =  and the number of 

literals is set to 15, the number of negative literals should be counted. The number of negative literals 

would equal to 1 under the condition of 0.1r =  and equal to 13 when the ratio 0.9r = . With no 

ordering arrangement of the literals where the negative ones should be, the possible combinations of 

3r SATW  is 
15 15

15
1

 
= = 

  1！
 or 

15 15 14 13 3
105

13 13

     
= = 

  ！
 respectively. When the value 0.5r = , 

the number of negative literals would be calculated and is equal to 7, while the number of possible 

3r SATW  would increase to 
15

6435
7

 
= 

 
. As the number of literals increased, the combinations would 

increase sharply. These differences in the structure are based on the division of negative literals. A huge 

amount of partition of literals would cause a huge number of states that must be noticed. In the study 
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of this work, the set of combinations is set up randomly, and the states of the logic are selected 

randomly also. The evolutionary algorithm ES works effectively when the number of literals is small. 

More iterations are needed in the learning phase to generate the right logic when the size of neurons is 

large. It can be noticed that when the work was focused on the specific and exact direction where the 

negative literals are, there would be a large probability leading to a mismatch in the approximating 

process. In the work of Zamri et al. [28], once the process is unable to minimize the near-optimal 

solution, the generated logic fails to proceed to the training phase of DHNN. The proposed model did 

a good work of solving this confusing by selecting both the logic structure and negative literals 

randomly. After calculating the number of negative literals, the direction of the negative ones was 

distributed randomly and as the number of first or third-order clauses. In addition to the analysis of the 

learning phase, which aims to achieve a correct logic phase that leads to a zero-cost function, it can be 

concluded that the model is capable of generating the optimal structure of 3r SATW  with each value of 

r  mentioned in the present research. 

Table 5 shows the list of MAE for the proposed logic model 3r SATW  and other models that are 

used to compete in the learning phase. The following work shows that all the logics mentioned are 

non-systematic logics such as RAN2SAT, RAN3SAT, GRANSAT, and r2SAT. RAN2SAT included the 

following situations of clauses with first-order and second-order. RAN3SAT set an implementation of 

third-order clauses into RAN2SAT, which is higher ordered. GRAN3SAT did the work that the logic 

model has clauses set up with first-order, second-order, or both of these two orders. In the case of added 

weight which is the ratio of negative literals in the logic rules included first and second-order clauses. 

3r SATW  has the capability to contain the clauses both first and third-order. It has both positive and 

negative literals also. Although the ratio of the negative literals was first determined in the logic named 

r2SAT [28], it was the first time adding third-order clauses in the structure. Furthermore, the direction 

of negative literals was selected randomly. This random selection would make a more flexible model 

which can be better utilized in real-life implications. The comparison with these non-systematic models 

shows the drawback of the roles first-order clauses played in the logic rules. 

Table 5. Matrix diagram of 
lMAE  for different logic models. The bolded value signifies 

the best value of the given metric under the condition of different numbers of neurons. 

Number of neurons 16 20 30 40 50 60 70 80 90 100 

r3SAT 

r=0.1 0.0933  4.5723  2.4977  1.6917  3.0197  3.9192  3.2280  4.2865  4.9791  4.5998  

r=0.2 0.4141  1.6749  1.9935  1.8017  2.7331  3.7304  3.5173  4.2128  4.9947  4.4834  

r=0.3 0.6426  4.5481  2.2829  1.4180  2.8739  3.7704  3.1205  4.0824  5.0996  4.5948  

r=0.4 0.5264  1.3678  2.2057  1.6892  2.8247  3.7961  3.2716  4.1188  5.0310  4.5163  

r=0.5 0.7259  4.4284  2.4265  1.8199  2.7546  3.7430  3.0869  4.1111  5.0755  4.4643  

r=0.6 0.9004  1.4550  2.5154  2.0124  2.7623  3.7089  3.0614  4.1262  5.0890  4.4748  

r=0.7 0.6389  4.3911  2.2934  1.5009  2.7850  3.7880  3.0919  3.9801  5.0839  4.5833  

r=0.8 1.3204  1.3837  2.5303  1.5244  2.9659  3.6060  2.9906  3.8111  4.9517  4.4079  

r=0.9 1.0557  4.6448  2.1968  2.0677  2.8949  3.6966  3.2516  4.0996  5.1973  4.3898  

 RAN2SAT 4.1203  5.5092  5.2476  5.7118  7.7610  8.2361  9.4743  10.7543  12.0106  13.2734  

 RAN3SAT 0.8379  4.4673  2.3903  1.7272  2.7969  3.7504  3.1268  4.1517  5.0920  4.5191  

 GRAN3SAT 2.1387  3.5202  7.2670  9.4195  13.2555  17.2441  13.7019  15.0012  10.0350  14.3730  

 r2SAT(r=0.6) 3.2892  4.6438  7.4864  8.7559  17.5114  22.4759  9.5193  17.4561  22.4888  25.2883  

 Average 1.2849  3.5851  3.3333  3.1646  5.1491  6.5742  4.9571  6.4763  7.3175  7.5360  
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The marked values which are in highlighted values represent the best solution of the learning 

phase which has the lowest errors under the condition of different numbers of neurons. As the 

performance metric lMAE  can utilized to evaluate the different fitness of the neuron state, the value 

of 
lMAE  refers to fitness error. Table 5 demonstrates the value 

lMAE  of the proposed model 3r SATW  

and the comparison with other non-systematic logic rules. Especially for the condition of r2SAT, the 

value in the table shows only under the condition of 0.6r = . The following tables are the same as 

above. The value of 
lMAE  increased when the number of neurons increased. That means it is more 

difficult to obtain the optimal solutions satisfied 
3

0
r SATWE =  with a high value of N. When the number 

of neurons is smaller than 20, under the condition of 0.1r =  can generate the best model of logic 

which means it can obtain the optimal fitness obviously. 

 
(a)                 (b) 

 
(c) 

Figure 5. (a) Mean absolute errors (
lMAE ), (b) root mean squared error (

lRMSE ) and (c) 

mean absolute percentage error (
lMAPE ) for each ratio in 3r SATW  model and some other 

logic rules. 
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Figure 5 shows the value of different metrics for each ratio of 
3r SATW  and the average value of 

these metrics for r2SAT in the cases of all the ratios during the learning phase. While higher MAPE 

indicates a lower degree of accuracy, the smaller value of MAPE can obtain a better forecast [46]. The 

errors for each ratio of 3r SATW  are relatively close due to the similar structure of first and third-order 

logic. When the number of neurons is below 30, all the logics have an instability veritable MAPE. 

When the number of literals increases, the error tends to be more linearly increasing no matter with 

the structure of the models. Putting this matter of adding ES aside, all the logics can achieve a lower 

error when the number is bigger than 60 which can be concluded to emphasize a better synaptic weight 

management. Although r2SAT performs well in incorporating the ratio of negative literals during the 

learning phase, it achieves a MAPE value close to 1. A MAPE value of 1 indicates a significant 

difference between the maximum fitness and the current fitness [23]. Achieving a smaller MAPE 

percentage is a key objective during the learning phase for all logic, particularly for the proposed model 

3r SATW . 

6.2 Analysis of learning phase 

The analysis of the average errors for each metric indicated that the proposed model did better 

work than most of the existing models. Figure 6 Displayed the average value of each error metrics. 

There is only one model named RAN3SAT that is competitive with these 3r SATW   models. It is 

noticeable that the logic RAN3SAT is more consistent than the other non-systematic models shown 

above except the 3r SATW   with ratio 0.2r =  , 0.4, 0.6 and 0.8 in Figure 5. The phenomenon is 

interesting that when the ratio of negative literals is set to be 0.3r = , 0.5, 0.7 and 0.9 the average 

value seems the same with RAN3SAT. In the work of [47], it was emphasized that a constrained 

number of learning iterations does not improve the training phase to achieve higher fitness of neuron 

states. Therefore, the proposed logic is expected to benefit this study. 

 

Figure 6. The average value of each error metric for all models in the learning phase. 
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6.3 Analysis of retrieval phase 

Our goal of this section is to discuss and evaluate the effectiveness of the proposed model and 

different models during the retrieval phase of DHNN. The results of the analysis during the retrieval 

phase are presented in the next part. Four metrics are presented to evaluate the performance of retrieval 

errors upon the proposed logic rule and other non-systematic rules. The value of global minimum 

solutions (GR) can achieve totally near 1 with a low value of N. This is because the lower number of 

clauses tends to be satisfied in the learning phase. As the number of literals increases, RAN2SAT and 

r2SAT are diminished straightly in terms of the literals selecting are random and both of the logic have 

difficulties to be satisfied. Furthermore, the value of GR quickly reduced to almost zero when the 

number of neurons increased to more than 50. As mentioned in the work of Guo et al. [25], the value 

of GR would crash because of the first-order clauses generated randomly. This shows more learning 

iterations are acquired to satisfy the interpretation of this logic. Figure 7 depicts the values of MAE (a), 

RMSE (b) and MAPE (c) for all logic models mentioned here. These metrics are utilized to analyze 

the effectiveness of different ratios of 3r SATW   and all the other models. ES was also used in the 

learning phase to search for fitness. It is worth mentioning that ES was performed on a trial-and-error 

basis. Based on Figure 7, the conclusion is that when the ratio of 3r SATW  is 0.2r = , 0.4, 0.6, and 0.8, 

the errors are almost zero when 20N  . On the other hand, the errors are not very high when the 

number of neurons is not bigger than 40. Additionally, the fluctuation waved strongly when N increased. 

As the number of neurons increases, the capability of DHNN leads to the global optimal solutions 

decrease. This causes DHNN to store the synaptic weight randomly which will lead the final states to 

local minimum solutions. As the results are shown in Figure 7, the errors are almost nearly zero when 

40N    for all the corresponding 3r SATW   models. Besides, RAN3SAT obtained the right synaptic 

weights take contrast with RAN2SAT and r2SAT. GRAN3SAT also expressed a good performance in 

that situation. There is an interesting observation that all the values of GR are within a high level when 

the number of neurons is no more than 50 except RAN2SAT and r2SAT. For the proposed model 

3r SATW , the value is at a high level even though the number has increased to 70. These can be seen in 

Table 6. Where Table 7 shows the values of MAPE for different logic structures. Overall, the graph in 

Figure 8 and the values shown in Table 8 demonstrate that after adding the ratio of negative literals 

better GR can be achieved compared to other logics. It is noteworthy that the values in the table for 

r2SAT are only expressed when the ratio is 0.6r =  while the figure shows the average value of all 

the ratio contributions. 

In the simulations for the proposed model, both the number of possible combinations and the 

distribution of negative literals were randomly selected. As the number of neuron states increases, 

achieving a zero-cost function that yields the optimal solutions becomes increasingly challenging. The 

proposed model can be improved by a high number of learning and then achieve the maximum fitness 

of neuron states. 
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(a)                                           (b) 

 

(c) 

Figure 7. MAE, RMSE and MAPE for all logic rules in the training phase. 

 

Figure 8. The values of GR for all DHNN models. 
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Table 6. Matrix diagram of WRMSE   for different logic models. The bolded value 

signifies the best value of the given metric under the condition with different numbers of 

neurons. 

Number of neurons 16 20 30 40 50 60 70 80 90 100 

r3SAT 

r=0.1 0.1219  4.8144  2.8113  1.9643  3.3750  4.2869  3.6962  4.6755  5.3745  4.9855  

r=0.2 0.4982  1.9208  2.3093  2.1896  3.0808  4.0911  3.9165  4.6163  5.4115  4.8769  

r=0.3 0.7587  4.8137  2.6073  1.6543  3.2270  4.1317  3.5522  4.5034  5.4579  5.0133  

r=0.4 0.6526  1.6289  2.4953  1.9975  3.1982  4.1688  3.6899  4.5113  5.4257  4.9413  

r=0.5 0.9039  4.6970  2.7521  2.1419  3.0995  4.1016  3.5170  4.5114  5.4539  4.8904  

r=0.6 1.1225  1.7550  2.8433  2.3590  3.1474  4.0805  3.4596  4.5292  5.4971  4.8980  

r=0.7 0.7929  4.6605  2.7280  1.7547  3.1647  4.1422  3.5312  4.3769  5.4555  5.0165  

r=0.8 1.5820  1.6241  2.8520  1.8163  3.3376  3.9526  3.3824  4.1792  5.3260  4.8067  

r=0.9 1.2880  4.8953  2.4618  2.3898  3.2742  4.1276  3.5910  4.4522  5.5034  4.7648  

 RAN2SAT 4.4254  5.7775  5.5660  6.0513  8.0910  8.5891  9.8198  11.1049  12.3714  13.6176  

 RAN3SAT 1.0351  4.7431  2.7464  2.0675  3.1917  4.1189  3.5380  4.5437  5.4831  4.9206  

 GRAN3SAT 2.4459  3.8424  7.5350  9.6866  13.5325  17.5066  13.9830  15.2899  10.3519  14.6764  

 r2SAT(r=0.6) 3.5785  4.9457  7.7696  9.0438  17.7719  22.7384  9.8698  17.7500  22.7728  25.5747  

 Average 1.4774  3.8553  3.6521  3.4705  5.4993  6.9258  5.3497  6.8495  7.6834  7.9217  

Table 7. Matrix diagram of WMAPE   for different logic models. The bolded value 

signifies the best value of the given metric under the condition with different number of 

neurons. 

Number of neurons 16 20 30 40 50 60 70 80 90 100 

r3SAT 

r=0.1 0.0156  0.3810  0.2081  0.1208  0.1678  0.1781  0.1345  0.1531  0.1556  0.1353  

r=0.2 0.0690  0.2094  0.1661  0.1287  0.1518  0.1696  0.1466  0.1505  0.1561  0.1319  

r=0.3 0.1071  0.3790  0.1902  0.1013  0.1597  0.1714  0.1300  0.1458  0.1594  0.1351  

r=0.4 0.0877  0.1710  0.1838  0.1207  0.1569  0.1726  0.1363  0.1471  0.1572  0.1328  

r=0.5 0.1210  0.3690  0.2022  0.1300  0.1530  0.1701  0.1286  0.1468  0.1586  0.1313  

r=0.6 0.1501  0.1819  0.2096  0.1437  0.1535  0.1686  0.1276  0.1474  0.1590  0.1316  

r=0.7 0.1065  0.3659  0.1911  0.1072  0.1547  0.1722  0.1288  0.1421  0.1589  0.1348  

r=0.8 0.2201  0.1730  0.2109  0.1089  0.1648  0.1639  0.1246  0.1361  0.1547  0.1296  

r=0.9 0.1759  0.3871  0.1831  0.1477  0.1608  0.1680  0.1355  0.1464  0.1624  0.1291  

 RAN2SAT 0.3746  0.3935  0.3087  0.2720  0.2874  0.2657  0.2632  0.2623  0.2611  0.2603  

 RAN3SAT 0.1396  0.3723  0.1992  0.1234  0.1554  0.1705  0.1303  0.1483  0.1591  0.1329  

 GRAN3SAT 0.2673  0.3200  0.3825  0.3768  0.3899  0.4106  0.3425  0.3334  0.2509  0.2875  

 r2SAT(r=0.6) 0.3728  0.9460  0.6453  0.4536  0.5406  0.6417  0.4950  0.5653  0.6094  0.5107  

 Average 0.1698  0.3576  0.2524  0.1796  0.2151  0.2325  0.1864  0.2019  0.2079  0.1833  
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Table 8. The matrix diagram of global ratio (GR). The bolded value signifies the top three 

in average for all the situations. 

Number of 

neurons 
16 20 30 40 50 60 70 80 90 100 Avg 

r3S

AT 

r=0.1 1.0000  0.0688  0.9900  1.0000  0.9803  0.5812  0.9408  0.4517  0.4450  0.3733  0.6831  

r=0.2 1.0000  1.0000  0.9900  1.0000  0.9602  0.6317  0.8626  0.4152  0.2525  0.3424  0.7455  

r=0.3 1.0000  0.1300  0.9900  1.0000  0.9302  0.6051  0.9334  0.5453  0.2227  0.4075  0.6764  

r=0.4 1.0000  1.0000  0.9800  1.0000  0.9900  0.6325  0.9131  0.6319  0.2429  0.4743  0.7865  

r=0.5 1.0000  0.2100  0.9703  1.0000  0.9334  0.6650  0.9311  0.5832  0.2505  0.4422  0.6986  

r=0.6 1.0000  1.0000  0.9400  0.9900  0.9500  0.6406  0.8847  0.5027  0.2410  0.4736  0.7623  

r=0.7 1.0000  0.2572  1.0000  1.0000  0.9717  0.6458  0.9109  0.5884  0.2240  0.4315  0.7030  

r=0.8 1.0000  1.0000  1.0000  1.0000  0.9507  0.5773  0.9341  0.6130  0.1736  0.5612  0.7810  

r=0.9 1.0000  0.0277  0.9600  1.0000  0.8707  0.4310  0.8903  0.4500  0.0617  0.4622  0.6154  

 RAN2SAT 0.3510  0.0300  0.1000  0.1007  0.0000  0.0100  0.0000  0.0000  0.0000  0.0000  0.0592  

 RAN3SAT 1.0000  0.1791  0.9700  1.0000  0.9400  0.6300  0.8904  0.6909  0.2606  0.3932  0.6954  

 GRAN3SAT 0.9900  0.6800  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.1670  

 r2SAT(r=0.6) 0.6900  0.2600  0.0100  0.0000  0.0000  0.0000  0.0100  0.0000  0.0000  0.0000  0.0970  

 Average  0.9255  0.4494  0.7616  0.7762  0.7290  0.4654  0.7001  0.4209  0.1827  0.3355  0.5746  

6.4 Analysis of testing phase 

The following section demonstrates how the proposed model will be evaluated based on the 

management of synaptic weights. The efficiency of the testing phase will be indicated whether 3r SATW  

can successfully attain the optimal synaptic weights and produce global minimum solutions with the 

final neuron states. As shown in Table 6, note that the proposed logic model added a negative ratio 

first, and the value   can be calculated using Eq (14), the proposed model demonstrates the same 

training method. 3r SATW  can attain minimum errors of nearly zero for the ratio 0.2r = , 0.4, 0.6 and 

0.8 when the number of neurons is less than 50. The same circumstances have happened in the learning 

phase. Table 7 shows that the proposed logic has the lowest error value of MAPE when the number of 

neurons increases not less than 60. The error fluctuation occurred when the number of literals is 

continually increased but not because of the differences in the ratio. The results shown in Figure 9 

indicate that the MAE errors for RAN2SAT and r2SAT are at a very high level. This is because both 

logic structures have first and second-order clauses randomly. When the number of neurons increases, 

especially more than 50, the error can reach 1, so it appears that the global minimum solutions in the 

final states cannot be obtained. Strictly speaking, the model can obtain global minimum energy based 

on the optimal synaptic weight. Based on the values shown in Figure 10, RAN2SAT has the worst 

average value of GR. The reasons for this depend on the low capability of obtaining a consistent 

interpretation of non-systematic models. Research by Huang et al. [48] suggested that the 

implementation of improved differential evolution (IDE) can do some advantages in convergence 

speed and reduce optimization time for global searching in the testing phase. No matter how many 

neuron literals there are, MAE for testing seems similar between RAN3SAT and 3r SATW  . This 

interesting phenomenon occurs due to the structure of both RAN3SAT and 3r SATW   are selected 

randomly and they both have the fortune to generate high potential of third-order clauses. Moreover, 

3r SATW  can sometimes be generated as an extremely special item of RAN3SAT. Besides, first-order 
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logic which is one of the important structures in the proposed logic plays a great role in disturbing the 

process of retrieving and leading to a high level of testing error. 

 

Figure 9. The values of MAE in the testing phase. 

 

Figure 10. The average values of GR. 

There is another interesting point that has been underlined by Karim et al. [23], which is that 

RAN3SAT with first and third-order clauses has reached the highest error value compared with other 

logics. However, it is quite different after adding the ratio of negative literals to the proposed logic 

model. As shown in Figure 9, although 3r SATW  has components with first and third-order logic, it does 

have a lower value of error when the number of neurons grows larger than 30. 
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6.5 Similarity analysis 

The Jaccard similarity index (JAC) can be utilized to check the similarity between different data 

sets. It has been used to evaluate the global solutions in the work by Bag, S. et al. [49]. It was also 

suggested to assess the performance of logic with DHNN by the work [50]. JAC is a similarity ratio that 

measures the quality of final states, making it a standard parameter for indexing. In Figure 11, it can be 

observed that r2SAT has the highest value when 25 35N    and 65 75N   . Sharp decline 

happened when the number of neurons increased by more than 40. After the number reached 60, large 

fluctuations occurred for the logic r2SAT. This fluctuation does not only bechance in r2SAT but also 

took place in RAN2SAT and GRAN3SAT for different ranges of neurons. Compared with the existing 

model, ratio-adding logic 3r SATW  has a gentler variation with each mentioned ratio in the proposed 

model. RAN3SAT has a similar wave compared with the proposed model. The waves of the JAC values 

for each ratio of the Weighted Random Satisfiability show parallel lines in Figure 11. The oscillations 

for RAN2SAT, GRAN3SAT, and r2SAT are zero at 70N = . Even though 3r SATW  is satisfied, the 

proposed model would fail to achieve the optimal states. As the local solutions increase in terms of the 

neuron increase, the ratio plays an important role in distributing the effectiveness. The simulation stops 

at 70N =  is enough for other baseline logic, it is not abundant for the logic 3r SATW . Thus, the number 

is settled to 100. It is noteworthy that as the ratio of negative literals increases, the JAC similarity value 

changes in parallel. The higher the value of the ratio, the larger the similarity index. 

 

Figure 11. JAC value of each model. 

Figure 11 presented the total trend is in the range of  0.50,0.65  when the ratio  0.1,0.4r . 

Under the situation  0.5,0.8r  , the result reduces to  0.27,0.47  . Furthermore, the value is 

declined by almost 0.1 when the ratio is up to 0.9. Despite the influence based on the diversification 

of the ratio in 3r SATW , oscillations happened when the number of neurons is below 30. It needs to be 

noticed that the frequent oscillations occur as the neurons increase under the condition 0.7r =  . 

Moreover, 0.5r =   indicates the gentlest diversification. As the metric JAC is aimed at neuron 
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variation produced by 
3r SATW  , additional similarity index should be invited. The logic rule that 

achieves the highest global optimum is also the most effective for logic mining. The final neuron state 

can be converted into the maximum induced logic [23]. The benefits of the proposed logic offer 

significant advantages for real-life applications. 

From the discussion mentioned above, the definition of minimizing the cost function, generating 

the optimal synaptic weigh, and the variation of final neuron states of 3r SATW  were all determined. 

Adding the ratio of negative literals presents better in obtaining higher global minimum solutions and 

affirming final neuron states. We outline that when adding the ratio 0.7r =  present the best logic 

model with producing lower errors and higher global minimum solutions. On the other hand, due to 

the learning phase of algorithm ES, this study limits it to 100 neurons. Overall, we can improve this 

limitation of the proposed model by adding other metaheuristics such as GA and EA (Election 

Algorithm). Despite the flexibility of 3r SATW   in DHNN, additional modifications can be done to 

improve the effectiveness of solutions. This means to not only increase the number of iterations but 

also decrease the errors and more global solutions. 

7. Open problems 

In the field of artificial intelligence, SAT has long been a foundation of theoretical research. 

Different logic structures and algorithms for SAT have been proposed and extensively discussed [18,20,35]. 

However, while higher-order logic has been broadly explored in computer science [20,23,35], higher-

order logic adding a negative ratio remains relatively under-explored. Specifically, how to effectively 

express this negative ratio during the training phase is an unsolved issue. One key problem is how to 

design new activation functions that can accommodate the property of higher-order logic within 

DHNN. 

Higher-order logic, which contains higher-order clauses, often involves more complex computing 

power. How to balance the effectiveness of benefit and computation cost remains a difficult task. 

Current neural network architectures, such as CNN [51], RNN [52], have limitations when the logical 

structure becomes more complex [53], especially for higher-order logic in high-dimensional spaces. 

In DHNN which has been discussed herein, the same problem must be solved and the computing time 

consumption also needs to be considered. Higher-order logic adding a negative ratio would make the 

network gradients unstable, which could lead to overfitting or gradient vanishing. How to design a 

model that can keep the properties of the logic in higher order while maintaining stability is a great 

challenge for further work.  

The treatment of Weighted Random Satisfiability with higher-order logic in DHNN is an open 

problem that leaves a lot of strategies unexplored. The solving of the problems would push the 

applications of AI in complex reasoning and decision-making systems. 

8. Conclusions 

We explore a novel logical model named 3r SATW , which was proposed with a different logical 

structure adding a ratio of negative literals as a new instruction in DHNN. The proposed logic rules 

provide different ratios and the generated negative literals distributed in each clause are randomly. A 

logic phase will be introduced to aid the generation of the correct Weighted Random k   SAT 

according to the initiated r  before being trained in DHNN. Random literals of Weighted Random k  

SAT will be generated according to the value of the input ratio r . The value of   will be evaluated 
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according to the value of weight in each clause. Although there are many algorithms for finding the 

number of negative literals, the minimization will be executed using ES in the logic phase. As the 

outperformance of the logic has shown that the differences are not quite clear, the step of the ratio 

chooses the length of 0.1r = . It is worth mentioning that further work can focus on a smaller step 

and make a more detailed work on the effectiveness of ratio. The results in the training and testing 

phase portrayed the capability of 3r SATW   in producing optimal solutions for all values of r  . The 

optimal model obtains a lower cost function, less error, and higher satisfaction in each step of the 

model. On the other hand, more diversity was obtained, which is more effective in real-life research. 

The comparisons between 3r SATW   and other non-systematic logic models (RAN2SAT, RAN3SAT, 

GRAN3SAT, and r2SAT) were quite distinct. The results showed that the proposed model 3r SATW  can 

obtain a better performance which indicates that adding a ratio will take advantage of global minimum 

generations. 

For future work, logic mining should be discussed based on the distribution of negative literals 

which can be set up to the prescribed order of clauses. Researchers have explored log-linear analysis 

combined with higher-order logic mining during the pre-processing phase [54,55]. Additionally, reverse-

based analysis logic mining has been investigated, leading to an increase in storage capacity [56,57]. 

Furthermore, logic mining and optimization of the learning phase provided improvement for the next 

step in research, and many other metaheuristic algorithms could be added in the learning phase to 

improve obtaining the optimal synaptic weight. Additionally, this can generate global minimum 

solutions with various final neuron states. Moreover, this can be utilized in many real-life problems. 
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