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Abstract: Uncertainty in medical diagnosis is the main challenge in medical emergencies (MEs)
experienced by triage nurses and physicians in the emergency department (ED). The intuitionistic
fuzzy correlation coefficient (IFCC) approach is used to analyze and interpret the relationship between
variables in an uncertain environment. Assorted methods that involve applying a correlation coefficient
under intuitionistic fuzzy sets (IFSs) were constructed based on Pearson’s correlation model with
various drawbacks. In this work, we construct two new intuitionistic fuzzy correlation measures
(IFCMs) based on Spearman’s correlation model. It is demonstrated that the Spearman-based IFCMs
are appropriate for measuring correlation coefficients without any drawbacks. In addition, we show
that the Spearman-based IFCMs overcome all the shortcomings of the associated IFCC methods.
Equally, the Spearman-based IFCMs satisfy the maxims of the correlation coefficient that have been
delineated in the classical case of correlation coefficient. Due to the challenges that uncertainty in
medical diagnosis pose to MEs and the proficiency of the IFCC approach, we discuss the application
of the constructed IFCMs in a triage process for an effective medical diagnosis during an ME. The
medical data for the triage process are obtained via a knowledge-based approach. Finally, comparative
analyses are carried out to ascertain the validity and authenticity of the developed Spearman-based
IFCMs relative to other IFCC approaches.
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1. Introduction

A medical emergency (ME) is defined as an illness or acute injury that presents a life-threatening or
long-term health risk; it is also sometimes referred to as a “life or limb” situation. Many of these
emergencies, such as gastrointestinal, cardiovascular (heart), and respiratory emergencies, cannot
be handled by the patient alone; therefore, they may require help from a health expert [1]. When
someone experiences an ME, getting them medical attention quickly can save their lives. Finding
the location and quickest route to the closest emergency department (ED) is one of the main issues
for MEs. Unstoppable bleeding, breathing issues (difficulty breathing, shortness of breath), head or
spine injury, severe or persistent vomiting, abrupt injury from an accident, burns or smoke inhalation,
near drowning, deep or large wounds/injuries, sudden intense pain anywhere in the body, sudden
dizziness, weakness, swallowing of a poisonous substance, severe abdominal pain, unusual headache,
seizure, bluish or grey skin coloration (cyanosis), shift in mental status, chest pain, choking, persistent
coughing, vomiting of blood, fainting or losing consciousness, etc. are some of the warning signs of
an ME [2].

The ED is peopled by physicians, nurses, and other medical professionals. A triage nurse or doctor
is the first medical professional to treat a patient in an emergency; they assess the patient’s condition
and decide whether to call a consultant. The most seriously injured patients are treated right away. For
this reason, some patients who arrive at the ED late might receive medical attention first. In the ED, the
procedures to be followed are typically triage, registration, treatment, reevaluation, and discharge of the
patient. When a patient is brought to the ED, emergency technicians use the patient’s medical history
and a quick physical examination to ascertain the reason for the visit and severity of the patient’s illness.
The stages in the ED are as follows: Level 1 (resuscitation immediate life-saving intervention); Level
2 (emergency medical attention); Level 3 (urgent medical attention); Level 4 (semi-urgent medical
attention); and Level 5 (non-urgent medical attention). The triage registered nurse assigns a patient to
a priority level based on their medical history and current condition. Millions of people are affected
by MEs every year. Medical errors, insufficient access to timely care, and subpar healthcare systems
can result in fatalities. To shorten the time that patients must wait for medical attention, an emergency
registered nurse may occasionally begin diagnostic testing. Most of the time, errors in determining the
severity of ME cases have led to the deaths of some patients who were waiting to consult a professional.

Accurate and prompt diagnosis is crucial for optimizing the possible advantages of therapy.
Uncertainty must be controlled throughout the diagnostic process to enable a precise and prompt
diagnosis and treatments. However, an inability to control diagnostic uncertainty may result in
misdiagnosis or delayed conditions and/or postponed or unneeded tests and/or treatments [3, 4].
According to Sklar et al. [5], years of experience in practicing medicine reduces uncertainty in medical
decision-making. In actuality, practicing medicine involves a certain amount of uncertainty. As stated
by Platts-Mills et al. [6], uncertainty in an ME originates from a variety of sources. Some patients
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brought to the ED are unknowns; uncertainty about their history, especially the type and timing of
symptoms prior to the ED visit, uncertainty about the current understanding of their signs and causes
of their disease, uncertainty about the limitations of diagnostic tests, uncertainty about the advantages
and disadvantages of their treatments, etc. are a few examples of the uncertainties that may exist.
The introduction of fuzzy set theory [7], on the other hand, has significantly reduced uncertainty in
decision-making.

The fuzzy set is described by the membership degree (MD) of elements defined in a closed
unit interval [0, 1]. But, there are some decision-making problems that require a non-MD (NMD)
compartment with the flexibility to accommodate hesitancy, which a fuzzy set is unable to handle. To
address such challenges, Atanassov [8] introduced intuitionistic fuzzy sets (IFSs), which combine the
MD and NMD in such a way that, 1-MD is not necessarily equal to the NMD and the intuitionistic fuzzy
hesitation margin (IFHM) is one minus the sum of MD and NMD. Thses attributes position the theory
of IFSs as a formidable soft computing tool for resolving problems of uncertainty and imprecision in
everyday encounters. In [9–11], applications of IFSs in decision-making have been discussed from
the perspective of aggregation operators, and Szmidt et al. [12] discussed the usefulness of IFSs in
attributes selection. A ranking technique that applies information fusion under IFSs has been used
to address threat assessment [13], and Zeng et al. [14] discussed pattern recognition by employing a
distance method for IFSs. Some applications of the theory of IFSs have been discussed via composite
relations [15], distance measures [16–19], and similarity measures [20–25] due to the practicality of
IFSs. In addition, Alcantud [26] investigated multi-attribute group decision-making (MAGDM) under
IFSs by using weighted geometric mean aggregation operators, and a figure skating application based
on intuitionistic fuzzy divergences can be found in [27].

Many real-life applications of IFSs have been discussed from the perspective of IFCC. Correlation
analysis is a statistical method that is used to ascertain the grade of connection between two sets of
numerically continuous data. This type of analysis is used when an investigator needs to investigate
the relationship between two variables. The correlation coefficient is a statistical tool that is applied
to calculate the degree of association between two variables. To improve the applicability of IFSs in
real-world scenarios, intuitionistic fuzzy information has been integrated into a correlation analysis
construct [28]. Intuitionistic fuzzy correlation analysis has been conducted for probability spaces [29].
Huang and Guo [30] presented a strong method, but they did so by taking into account only two
parameters of the IFSs, and Hung [31] examined IFCM from a statistical standpoint. Liu et al. [32]
developed a statistical technique for computing IFCM via variance and covariance analyses and
implemented for decision-making. The method in [31] was independently improved in [33, 34] by the
inclusion of IFHMs to prevent omission error. Similarly, a statistical approach for computing IFCM
has been developed and implemented for decision-making [35]. A novel IFCC method was presented
by Xu [36] to discuss disease diagnosis. To improve accuracy, the methodology in [36] was altered by
adding all the convention parameters of IFSs [37].

The study in [38] examined comparable methods for computing the IFCC. Zeng and Li [39]
created a similar IFCC approach that incorporated IFHMs into the approach in [28] for the purposes
of inclusion and relaibility. In [40], the approach developed by Huang and Guo [30] was enhanced
by the inclusion of the complete parameters of IFSs and applied in pattern recognition; additionally,
and Bajaj and Kumar [41] modified the approach in [40] and realized better performance. Some
IFCMs have been constructed and applied in medical diagnosis [42], decision-making [43–46], and
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pattern recognition [47]. In addition, the study of correlation coefficients in the fuzzy domain has been
extended to higher variants of fuzzy sets with relevant applications [48–52].

The existing IFCM approaches have some limitations with regards to the conditions of the
correlation coefficient and reliable interpretation. Almost all of the existing approaches were developed
based on Pearson’s correlation coefficient model, and none of them were constructed by using
Spearman’s correlation coefficient model. The methods in [28, 38, 39] fails to provide reliable
information if the MDs and NMDs are either one or zero. The methods in [28, 31, 33, 35] indicate
that a perfect positive correlation exists, although the IFSs are not identical and thus violate a maxim
of the correlation coefficient. In addition, the IFCMs in [30, 32, 36, 37, 40, 41] provide values that are
not defined within either [0, 1] or [−1, 1], which violate another maxim of the correlation coefficient.
When the IFSs are equal, the IFCMs of [36, 37] produce 0/0, which is mathematically undefined. For
equal IFSs, the correlation coefficient should be one. Furthermore, the methods of [36, 37] yield a
perfect correlation coefficient in the absence of equality between the IFSs. To recap, all of the IFCMs
fail the metric conditions of the correlation coefficient in some ways.

Because of the limitations of the existing IFCMs, we develop two reliable approaches for measuring
IFCCs in this work. This study is aimed at creating two new Spearman correlation coefficient-based
IFCM approaches that have solid mathematical correctness, a reasonable level of interpretation, and
dependable precision. To prevent omission errors, the measures integrate all parameters of the IFSs.
The objectives of the work are delineated as follows: (i) to restate and evaluate the extant methods
of IFCM; (ii) to create new IFCMs based on Spearman’s correlation coefficient, where all of the
parameters of IFSs are incorporated to produce dependable output; (iii) to apply the created IFCMs
in the determination of an ME by using a knowledge-based approach; (iv) to conduct comparative
analysis between the available IFCMs and the new approaches to showcase the advantage of the former.

The paper is organized as follows: In Section 2, the basics of IFSs and some of the current IFCMs
are covered. In Section 3, the new methods are introduced, along with their numerical proofs and
the description of some of their properties. In Section 4, an ME designed based on a knowledge-based
approach is determined to ascertain the most critically ill patient to enhance effective treatment. Finally,
in Section 5, the findings are summarized and suggestions for additional research are provided.

2. Preliminaries

In this section, we reiterate the concept of IFSs and present IFCC together with some existing
IFCMs.

2.1. Basics on IFSs

Throughout this work, we take X as a non-empty set, which is the underlying set of IFSs.

Definition 2.1. [7] A set with the structure of the form, ℘ = {⟨x j, δ℘(x j)⟩|x j ∈ X}, where δ℘(x j) ∈ [0, 1]
is the MD of x j ∈ X to ℘, is called a fuzzy set.

Definition 2.2. [8] A set with the form ℓ = {⟨x j, δℓ(x j), κℓ(x j)⟩|x j ∈ X}, where δℓ(x j), κℓ(x j) ∈ [0, 1]
denote the MD and NMD of x j ∈ X to ℓ with the property, 0 ≤ δℓ(x j) + κℓ(x j) ≤ 1 is called an IFS. In
addition, the IFHM of ℓ in X is described by ϱℓ(x j) = 1 − δℓ(x j) − κℓ(x j). The IFHM indicates whether
x j ∈ X or x j < X.
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Definition 2.3. [8] Suppose that ℓ and ℓ̃ are IFSs in X. Then, the following are some basic operations
on the IFSs:

(i) ℓc = {⟨x j, κℓ(x j), δℓ(x j)⟩|x j ∈ X}, ℓ̃c = {⟨x j, κℓ̃(x j), δℓ̃(x j)⟩|x j ∈ X}.
(ii) ℓ ∪ ℓ̃ = {⟨x j,max{δℓ(x j), δℓ̃(x j)},min{κℓ(x j), κℓ̃(x j)}⟩|x j ∈ X}.

(iii) ℓ ∩ ℓ̃ = {⟨x j,min{δℓ(x j), κℓ̃(x j)},max{δℓ(x j), κℓ̃(x j)}⟩|x j ∈ X}.
(iv) ℓ = ℓ̃ iff δℓ(x j) = δℓ̃(x j) and κℓ(x j) = κℓ̃(x j) ∀ x j ∈ X.
(v) ℓ ⊆ ℓ̃ iff δℓ(x j) ≤ δℓ̃(x j) and κℓ(x j) ≥ κℓ̃(x j) ∀ x j ∈ X.

Definition 2.4. Suppose that ℓ and ℓ̃ are IFSs in X. Then, the arithmetic average of the IFSs ℓ and ℓ̃
denoted by ℓ̂ is defined as follows:

ℓ̂ = {⟨x j, δℓ̂(x j), κℓ̂(x j)⟩|x j ∈ X},

where
δℓ̂(x j) = Average

(
δℓ(x j), δℓ̃(x j)

)
and κℓ̂(x j) = Average

(
κℓ(x j), κℓ̃(x j)

)
.

Definition 2.5. [28] If ℓ and ℓ̃ are IFSs in X = {x1, x2, · · · , xq} and q is the cardinality of X, then the
IFCC between ℓ and ℓ̃ represented by ρ(ℓ, ℓ̃) is a function ρ : IFS (X) × IFS (X) → [0, 1] or [−1, 1]
with the following properties:

A1. 0 ≤ ρ(ℓ, ℓ̃) ≤ 1 or −1 ≤ ρ(ℓ, ℓ̃) ≤ 1,
A2. ρ(ℓ, ℓ̃) = 1 iff ℓ = ℓ̃,
A3. ρ(ℓ, ℓ̃) = ρ(ℓ̃, ℓ).

To enable better understanding of the IFCC, we present the following information: ρ(ℓ, ℓ̃) tending
to 1 is an indication that ℓ and ℓ̃ have strong correlation; ρ(ℓ, ℓ̃) tending to −1 or 0 is an indication that
ℓ and ℓ̃ have weak correlation; ρ(ℓ, ℓ̃) = 1 indicates a perfect positive correlation; and ρ(ℓ, ℓ̃) = 0 or −1
indicates no correlation or a perfect negative correlation.

2.2. Various existing IFCM methods

Given two IFSs ℓ and ℓ̃ in X = {x1, x2, · · · , xq}, an existing IFCM can be described as follows [28]:

ρ1(ℓ, ℓ̃) =
K(ℓ, ℓ̃)√
I(ℓ)I(ℓ̃)

, (2.1)

where

K(ℓ, ℓ̃) =
q∑

j=1

(
δℓ(x j)δℓ̃(x j) + κℓ(x j)κℓ̃(x j)

)
I(ℓ) =

q∑
j=1

(
δ2
ℓ(x j) + κ2

ℓ (x j)
)

I(ℓ̃) =
q∑

j=1

(
δ2
ℓ̃
(x j) + κ2

ℓ̃
(x j)
)


. (2.2)
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Example 2.1. Suppose that ℓ = {⟨x, 1
3 ,

1
3⟩} and ℓ̃ = {⟨x, 1

4 ,
1
4⟩} are IFSs in X = {x}. Then, ρ1(ℓ, ℓ̃) = 1,

which is a violation of A2 of Definition 2.5 since ℓ , ℓ̃.

According to Hung [31],

ρ2(ℓ, ℓ̃) =
ρm(ℓ, ℓ̃) + ρn(ℓ, ℓ̃)

2
, (2.3)

where

ρm(ℓ, ℓ̃) =
Σ

q
j=1(δℓ(x j) − δℓ)(δℓ̃(x j) − δℓ̃)√

Σ
q
j=1(δℓ(x j) − δℓ)2

√
Σ

q
j=1(δℓ̃(x j) − δℓ̃)2

ρn(ℓ, ℓ̃) =
Σ

q
j=1(κℓ(x j) − κℓ)(κℓ̃(x j) − κℓ̃)√

Σ
q
j=1(κℓ(x j) − κℓ)2

√
Σ

q
j=1(κℓ̃(x j) − κℓ̃)2


, (2.4)

where

δℓ =
Σ

q
j=1δℓ(x j)

q
, δℓ̃ =

Σ
q
j=1δℓ̃(x j)

q

κℓ =
Σ

q
j=1κℓ(x j)

q
, κℓ̃ =

Σ
q
j=1κℓ̃(x j)

q

 . (2.5)

for j = 1, 2, · · · , q.

Example 2.2. Let ℓ = {⟨x1,
1
4 ,

1
4⟩, ⟨x2,

1
8 ,

1
8⟩} and ℓ̃ = {⟨x1,

1
2 ,

1
2⟩, ⟨x2,

1
4 ,

1
4⟩} be IFSs in X = {x1, x2}; then,

ρ2(ℓ, ℓ̃) = 1, which violates A2 of Definition 2.5 because ℓ , ℓ̃.

According to Zeng and Li [39],

ρ3(ℓ, ℓ̃) =
K(ℓ, ℓ̃)√
I(ℓ)I(ℓ̃)

, (2.6)

where

K(ℓ, ℓ̃) =

∑q
j=1

(
δℓ(x j)δℓ̃(x j) + κℓ(x j)κℓ̃(x j) + ϱℓ(x j)ϱℓ̃(x j)

)
q

I(ℓ) =

∑q
j=1

(
δ2
ℓ(x j) + κ2

ℓ (x j) + ϱ2
ℓ(x j)
)

q

I(ℓ̃) =

∑q
j=1

(
δ2
ℓ̃
(x j) + κ2

ℓ̃
(x j) + ϱ2

ℓ̃
(x j)
)

q


. (2.7)

Example 2.3. Let ℓ = {⟨x1, 1, 0⟩, ⟨x2, 0, 1⟩} and ℓ̃ = {⟨x1, 0, 1⟩, ⟨x2, 1, 0⟩} be IFSs in a set X = {x1, x2};
then, ρ3(ℓ, ℓ̃) = 0, which gives a misleading information since an imprecise correlation exists between
the IFSs.

According to Xu et al. [38],

ρ4(ℓ, ℓ̃) =
K(ℓ, ℓ̃)

max
{ √
I(ℓ),

√
I(ℓ̃)
} , (2.8)
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where

K(ℓ, ℓ̃) =
q∑

j=1

(
δℓ(x j)δℓ̃(x j) + κℓ(x j)κℓ̃(x j) + ϱℓ(x j)ϱℓ̃(x j)

)
I(ℓ) =

q∑
j=1

(
δ2
ℓ(x j) + κ2

ℓ (x j) + ϱ2
ℓ(x j)
)

I(ℓ̃) =
q∑

j=1

(
δ2
ℓ̃
(x j) + κ2

ℓ̃
(x j) + ϱ2

ℓ̃
(x j)
)


. (2.9)

Using Example 2.3, we get ρ4(ℓ, ℓ̃) = 0, which is not true because an imprecise correlation exists
between the IFSs.

According to Park et al. [33],

ρ5(ℓ, ℓ̃) =
ρm(ℓ, ℓ̃) + ρn(ℓ, ℓ̃) + ρh(ℓ, ℓ̃)

3
, (2.10)

where

ρm(ℓ, ℓ̃) =
Σ

q
j=1(δℓ(x j) − δℓ)(δℓ̃(x j) − δℓ̃)√

Σ
q
j=1(δℓ(x j) − δℓ)2

√
Σ

q
j=1(δℓ̃(x j) − δℓ̃)2

ρn(ℓ, ℓ̃) =
Σ

q
j=1(κℓ(x j) − κℓ)(κℓ̃(x j) − κℓ̃)√

Σ
q
j=1(κℓ(x j) − κℓ)2

√
Σ

q
j=1(κℓ̃(x j) − κℓ̃)2

ρh(ℓ, ℓ̃) =
Σ

q
j=1(ϱℓ(x j) − ϱℓ)(ϱℓ̃(x j) − ϱℓ̃)√

Σ
q
j=1(ϱℓ(x j) − ϱℓ)2

√
Σ

q
j=1(ϱℓ̃(x j) − ϱℓ̃)2



, (2.11)

where

δℓ =
Σ

q
j=1δℓ(x j)

q
, δℓ̃ =

Σ
q
j=1δℓ̃(x j)

q

κℓ =
Σ

q
j=1κℓ(x j)

q
, κℓ̃ =

Σ
q
j=1κℓ̃(x j)

q

ϱℓ =
Σ

q
j=1ϱℓ(x j)

q
, ϱℓ̃ =

Σ
q
j=1ϱℓ̃(x j)

q


(2.12)

for j = 1, 2, · · · , q. Using Example 2.2, we get ρ5(ℓ, ℓ̃) = 1 which violates A2 of Definition 2.5 because
ℓ , ℓ̃.

According to Xu [36],

ρ6(ℓ, ℓ̃) =
1
2q

q∑
j=1

(∆δmin + ∆δmax

∆δ j + ∆δmax
+
∆κmin + ∆κmax

∆κ j + ∆κmax

)
, (2.13)
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where
∆δ j = |δℓ(x j) − δℓ̃(x j)|
∆κ j = |κℓ(x j) − κℓ̃(x j)|

∆δmin = min
1≤ j≤q
{∆δ j},∆κmin = min

1≤ j≤q
{∆κ j}

∆δmax = max
1≤ j≤q
{∆δ j},∆κmax = max

1≤ j≤q
{∆κ j}


. (2.14)

Using Example 2.2, we get ρ6(ℓ, ℓ̃) = 1.1667 which violates A1 of Definition 2.5 because neither
1.1667 < [0, 1] nor 1.1667 < [−1, 1].

According to Xu and Cai [37],

ρ7(ℓ, ℓ̃) =
1
3q

q∑
j=1

(∆δmin + ∆δmax

∆δ j + ∆δmax
+
∆κmin + ∆κmax

∆κ j + ∆κmax
+
∆ϱmin + ∆ϱmax

∆ϱ j + ∆ϱmax

)
, (2.15)

where
∆δ j = |δℓ(x j) − δℓ̃(x j)|
∆κ j = |κℓ(x j) − κℓ̃(x j)|
∆ϱ j = |ϱℓ(x j) − ϱℓ̃(x j)|

∆δmin = min
1≤ j≤q
{∆δ j},∆κmin = min

1≤ j≤q
{∆κ j}

∆ϱmin = min
1≤ j≤q
{∆ϱ j},∆δmax = max

1≤ j≤q
{∆δ j}

∆κmax = max
1≤ j≤q
{∆κ j},∆ϱmax = max

1≤ j≤q
{∆ϱ j}


. (2.16)

Example 2.4. Let ℓ = {⟨x1,
2
5 ,

3
10⟩, ⟨x2,

3
10 ,

1
5⟩} and ℓ̃ = {⟨x1,

3
10 ,

1
5⟩, ⟨x2,

1
5 ,

1
10⟩} be IFSs in X = {x1, x2};

then, ρ7(ℓ, ℓ̃) = 1 although ℓ , ℓ̃, which violates A2 of Definition 2.5. If ℓ = ℓ̃, we have ρ7(ℓ, ℓ̃) = 0
0 ,

which violates A1 of Definition 2.5.

According to Liu et al. [32],

ρ8(ℓ, ℓ̃) =
ϕ(ℓ, ℓ̃)√
ψ(ℓ)ψ(ℓ̃)

, (2.17)

where

ψ(ℓ) =
Σ

q
j=1D2(ℓ)

q − 1
, ψ(ℓ̃) =

Σ
q
j=1D2(ℓ̃)

q − 1

ϕ(ℓ, ℓ̃) =
Σ

q
j=1D(ℓ)D(ℓ̃)

q − 1


(2.18)

for

D(ℓ) =
(
δℓ(x j) − δℓ

)
−
(
κℓ(x j) − κℓ

)
D(ℓ̃) =

(
δℓ̃(x j) − δℓ̃

)
−
(
κℓ̃(x j) − κℓ̃

)
 , (2.19)

where δℓ, κℓ, δℓ̃, and κℓ̃ are as in (2.5).
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Example 2.5. Let ℓ = {⟨x1,
1
3 ,

1
3⟩, ⟨x2,

1
2 ,

1
2⟩} and ℓ̃ = {⟨x1,

1
4 ,

1
4⟩, ⟨x2,

1
2 ,

1
3⟩} be IFSs in X = {x1, x2}, then

we get ρ8(ℓ, ℓ̃) = 0
√

0×0
= ∞, which violates A1 of Definition 2.5.

According to Thao et al. [35],

ρ9(ℓ, ℓ̃) =
ϕ(ℓ, ℓ̃)√
ψ(ℓ)ψ(ℓ̃)

, (2.20)

where
ψ(ℓ) =

1
q − 1

Σ
q
j=1

(
(δℓ(x j) − δℓ)2 + (κℓ(x j) − κℓ)2

)
ψ(ℓ̃) =

1
q − 1

Σ
q
j=1

(
(δℓ̃(x j) − δℓ̃)

2 + (κℓ̃(x j) − κℓ̃)
2
)

ϕ(ℓ, ℓ̃) =
1

q − 1
Σ

q
j=1

(
(δℓ(x j) − δℓ)(δℓ̃(x j) − δℓ̃)

+(κℓ(x j) − κℓ)(κℓ̃(x j) − κℓ̃)
)


, (2.21)

where δℓ, κℓ, δℓ̃, and κℓ̃ are as in (2.5).

Example 2.6. Let ℓ = {⟨x1,
1
2 ,

1
2⟩, ⟨x2,

1
2 ,

1
2⟩} and ℓ̃ = {⟨x1,

1
3 ,

1
3⟩, ⟨x2,

1
3 ,

1
3⟩} be IFSs in X = {x1, x2}; then,

ρ9(ℓ, ℓ̃) = 0
√

0×0
= ∞, which violates A1 of Definition 2.5.

According to Huang and Guo [30],

ρ10(ℓ, ℓ̃) =
1
2q

q∑
j=1

(
α j(1 − ∆δ j) + β j(1 − ∆κ j)

)
, (2.22)

where

α j =
c − ∆δ j − ∆δmax

c − ∆δmin − ∆δmax

β j =
c − ∆κ j − ∆κmax

c − ∆κmin − ∆κmax

 (2.23)

for c > 2, and
∆δ j = |δℓ(x j) − δℓ̃(x j)|
∆κ j = |κℓ(x j) − κℓ̃(x j)|

∆δmin = min
1≤ j≤q
{∆δ j},∆κmin = min

1≤ j≤q
{∆κ j}

∆δmax = max
1≤ j≤q
{∆δ j},∆κmax = max

1≤ j≤q
{∆κ j}


. (2.24)

Example 2.7. Suppose that we have IFSs

ℓ =
{
⟨x1,

2
5
,

31
60
⟩, ⟨x2,

11
15
,

11
60
⟩, ⟨x3,

5
6
,

7
60
⟩, ⟨x4,

3
5
,

19
60
⟩, ⟨x5,

13
30
,

1
2
⟩, ⟨x6,

7
10
,

1
5
⟩, ⟨x7,

1
15
,

1
4
⟩
}
,

ℓ̃ =
{
⟨x1,

13
30
,

7
15
⟩, ⟨x2,

23
30
,

3
20
⟩, ⟨x3,

5
6
,

7
60
⟩, ⟨x4,

2
3
,

13
60
⟩, ⟨x5,

23
30
,

1
6
⟩, ⟨x6,

7
10
,

1
5
⟩, ⟨x7,

1
15
,

1
4
⟩
}
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defined in X = {x1, x2, · · · , x7}. Then, ρ10(ℓ, ℓ̃) = 1.0399, which is not within [0, 1]. Thus, it violates
A1 of Definition 2.5.

According to Ejegwa et al. [40],

ρ11(ℓ, ℓ̃) =
1

3q

q∑
j=1

(
α j(1 − ∆δ j) + β j(1 − ∆κ j) + γ j(1 − ∆ϱ j)

)
, (2.25)

where

α j =
c − ∆δ j − ∆δmax

c − ∆δmin − ∆δmax

β j =
c − ∆κ j − ∆κmax

c − ∆κmin − ∆κmax

γ j =
c − ∆ϱ j − ∆ϱmax

c − ∆ϱmin − ∆ϱmax


(2.26)

for c > 2, and
∆δ j = |δℓ(x j) − δℓ̃(x j)|
∆κ j = |κℓ(x j) − κℓ̃(x j)|
∆ϱ j = |ϱℓ(x j) − ϱℓ̃(x j)|

∆δmin = min
1≤ j≤q
{∆δ j},∆κmin = min

1≤ j≤q
{∆κ j}

∆ϱmin = min
1≤ j≤q
{∆ϱ j},∆δmax = max

1≤ j≤q
{∆δ j}

∆κmax = max
1≤ j≤q
{∆κ j},∆ϱmax = max

1≤ j≤q
{∆ϱ j}


. (2.27)

Using Example 2.7, we get ρ11(ℓ, ℓ̃) = 1.0272, which is not within [0, 1]. Thus, it violates A1 of
Definition 2.5.

According to Bajaj and Kumar [41],

ρ12(ℓ, ℓ̃) =
1

3q

q∑
j=1

(
α j(1 − ∆δ j) + β j(1 − ∆κ j) + γ j(1 − ∆ϱ j)

)
, (2.28)

where α j, β j and γ j are as in (2.26), and

∆δ j =
|δℓ(x j) − δℓ̃(x j)| + |δ2

ℓ(x j) − δ2
ℓ̃
(x j)|

2

∆κ j =
|κℓ(x j) − κℓ̃(x j)| + |κ2

ℓ (x j) − κ2
ℓ̃
(x j)|

2

∆ϱ j =
|ϱℓ(x j) − ϱℓ̃(x j)| + |ϱ2

ℓ(x j) − ϱ2
ℓ̃
(x j)|

2
∆δmin = min

1≤ j≤q
{∆δ j},∆κmin = min

1≤ j≤q
{∆κ j}

∆ϱmin = min
1≤ j≤q
{∆ϱ j},∆δmax = max

1≤ j≤q
{∆δ j}

∆κmax = max
1≤ j≤q
{∆κ j},∆ϱmax = max

1≤ j≤q
{∆ϱ j}



. (2.29)

Using Example 2.7, we get ρ12(ℓ, ℓ̃) = 1.0266, which violates A1 of Definition 2.5.
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3. New IFCMs based on Spearman’s correlation model

In consideration of the shortcomings of the existing IFCMs, we develop new IFCMs based on the
classical Spearman correlation coefficient as follows:

Definition 3.1. Suppose that ℓ and ℓ̃ are IFSs in X = {x1, x2, · · · , xq}. Then, the new IFCMs are as
follows:

ρa(ℓ, ℓ̃) =
1
3

(
ρm(ℓ, ℓ̃) + ρn(ℓ, ℓ̃) + ρh(ℓ, ℓ̃)

)
, (3.1)

where

ρm(ℓ, ℓ̃) = 1 −
6
∑q

j=1
(
δℓ(x j) − δℓ̃(x j)

)2
q(q2 + 1)

ρn(ℓ, ℓ̃) = 1 −
6
∑q

j=1
(
κℓ(x j) − κℓ̃(x j)

)2
q(q2 + 1)

ρh(ℓ, ℓ̃) = 1 −
6
∑q

j=1
(
ϱℓ(x j) − ϱℓ̃(x j)

)2
q(q2 + 1)


. (3.2)

In the case of the classical Spearman correlation model, we have q(q2 − 1) instead of q(q2 + 1). If
q(q2 − 1) is used and q = 1, we get

ρ(ℓ, ℓ̃) = ∞,

since

ρm(ℓ, ℓ̃) = 1 −
6
∑q

j=1
(
δℓ(x j) − δℓ̃(x j)

)2
q(q2 − 1)

= ∞

ρn(ℓ, ℓ̃) = 1 −
6
∑q

j=1
(
κℓ(x j) − κℓ̃(x j)

)2
q(q2 − 1)

= ∞

ρh(ℓ, ℓ̃) = 1 −
6
∑q

j=1
(
ϱℓ(x j) − ϱℓ̃(x j)

)2
q(q2 − 1)

= ∞


.

In the case of q(q2 − 1), the new IFCM is undefined when q = 1. Hence, we used q(q2 + 1) instead.
Similarly, we have

ρb(ℓ, ℓ̃) =
1
3

(
ρm∗(ℓ, ℓ̃) + ρn∗(ℓ, ℓ̃) + ρh∗(ℓ, ℓ̃)

)
, (3.3)

where

ρm∗(ℓ, ℓ̃) = 1 −
6
∑q

j=1
(
δℓ(x j) − δℓ̃(x j)

)2
(q + 1)3 − (q + 1)

ρn∗(ℓ, ℓ̃) = 1 −
6
∑q

j=1
(
κℓ(x j) − κℓ̃(x j)

)2
(q + 1)3 − (q + 1)

ρh∗(ℓ, ℓ̃) = 1 −
6
∑q

j=1
(
ϱℓ(x j) − ϱℓ̃(x j)

)2
(q + 1)3 − (q + 1)


. (3.4)

Now, we discuss the properties of the new IFCMs through the following theorems.
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Theorem 3.1. The new IFCM ρa(ℓ, ℓ̃) between IFSs ℓ and ℓ̃ in X is comparable to

1 −
6
∑q

j=1

3q(q2 + 1)

{(
δℓ(x j) − δℓ̃(x j)

)2
+
(
κℓ(x j) − κℓ̃(x j)

)2
+
(
ϱℓ(x j) − ϱℓ̃(x j)

)2 }
.

Proof. Recall that

ρa(ℓ, ℓ̃) =
1
3



1 −
6
∑q

j=1
(
δℓ(x j) − δℓ̃(x j)

)2
q(q2 + 1)

+

1 −
6
∑q

j=1
(
κℓ(x j) − κℓ̃(x j)

)2
q(q2 + 1)

+

1 −
6
∑q

j=1
(
ϱℓ(x j) − ϱℓ̃(x j)

)2
q(q2 + 1)


.

Then, we have

ρa(ℓ, ℓ̃) =
1
3



q(q2 + 1) − 6
∑q

j=1
(
δℓ(x j) − δℓ̃(x j)

)2
q(q2 + 1)

+
q(q2 + 1) − 6

∑q
j=1
(
κℓ(x j) − κℓ̃(x j)

)2
q(q2 + 1)

+
q(q2 + 1) − 6

∑q
j=1
(
ϱℓ(x j) − ϱℓ̃(x j)

)2
q(q2 + 1)


=

1
3q(q2 + 1)


3q(q2 + 1) − 6

∑q
j=1
(
δℓ(x j) − δℓ̃(x j)

)2
−6
∑q

j=1
(
κℓ(x j) − κℓ̃(x j)

)2
−6
∑q

j=1
(
ϱℓ(x j) − ϱℓ̃(x j)

)2


=
1

3q(q2 + 1)

3q(q2 + 1) − 6
∑q

j=1

((
δℓ(x j) − δℓ̃(x j)

)2
+(

κℓ(x j) − κℓ̃(x j)
)2
+
(
ϱℓ(x j) − ϱℓ̃(x j)

)2)


= 1 −
6
∑q

j=1

3q(q2 + 1)

{(
δℓ(x j) − δℓ̃(x j)

)2
+
(
κℓ(x j) − κℓ̃(x j)

)2
+
(
ϱℓ(x j) − ϱℓ̃(x j)

)2 }
as expected. □

Theorem 3.2. The IFCM ρb(ℓ, ℓ̃) between IFSs ℓ and ℓ̃ in X is comparable to

1 −
6
∑q

j=1

3
(
(q + 1)3 − (q + 1)

) {(δℓ(x j) − δℓ̃(x j)
)2
+
(
κℓ(x j) − κℓ̃(x j)

)2
+
(
ϱℓ(x j) − ϱℓ̃(x j)

)2 }
.

Proof. The proof is as in Theorem 3.1. □

Theorem 3.3. The new IFCM ρa(ℓ, ℓ̃) between IFSs ℓ and ℓ̃ in X satisfies the correlation coefficient
conditions.

Proof. We shall prove the following correlation coefficient conditions:

(i) |ρa(ℓ, ℓ̃)| ≤ 1,
(ii) ρa(ℓ, ℓ̃) = 1 iff ℓ = ℓ̃,
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(iii) ρa(ℓ, ℓ̃) = ρa(ℓ̃, ℓ).

Now, |ρa(ℓ, ℓ̃)| ≤ 1 implies that 0 ≤ ρa(ℓ, ℓ̃) ≤ 1. First, since
(
δℓ(x j)−δℓ̃(x j)

)2
≥ 0,
(
κℓ(x j)−κℓ̃(x j)

)2
≥

0 and
(
ϱℓ(x j) − ϱℓ̃(x j)

)2
≥ 0, then ρa(ℓ, ℓ̃) ≥ 0 follows immediately.

Second, assume that

6
q∑

j=1

(
δℓ(x j) − δℓ̃(x j)

)2
= Θ1, 6

q∑
j=1

(
κℓ(x j) − κℓ̃(x j)

)2
= Θ2

6
q∑

j=1

(
ϱℓ(x j) − ϱℓ̃(x j)

)2
= Θ3.

Then,

ρa(ℓ, ℓ̃) = 1 −
6
∑q

j=1

3q(q2 + 1)

{(
δℓ(x j) − δℓ̃(x j)

)2
+
(
κℓ(x j) − κℓ̃(x j)

)2
+
(
ϱℓ(x j) − ϱℓ̃(x j)

)2 }
≤ 1 −

1
3q(q2 + 1)

6
∑q

j=1
(
δℓ(x j) − δℓ̃(x j)

)2
+ 6
∑q

j=1
(
κℓ(x j) − κℓ̃(x j)

)2
+6
∑q

j=1
(
ϱℓ(x j) − ϱℓ̃(x j)

)2 
= 1 −

(Θ1 + Θ1 + Θ1)
3q(q2 + 1)

.

Thus,

ρa(ℓ, ℓ̃) − 1 = −
(Θ1 + Θ1 + Θ1)

3q(q2 + 1)
≤ 0,

and so ρa(ℓ, ℓ̃) ≤ 1. Because ρa(ℓ, ℓ̃) ≥ 0 and ρa(ℓ, ℓ̃) ≤ 1, we have |ρa(ℓ, ℓ̃)| ≤ 1, which proves (i).
Suppose that ρa(ℓ, ℓ̃) = 1; then, we get

6
∑q

j=1

3q(q2 + 1)

{(
δℓ(x j) − δℓ̃(x j)

)2
+
(
κℓ(x j) − κℓ̃(x j)

)2
+
(
ϱℓ(x j) − ϱℓ̃(x j)

)2 }
= 0,

i.e.,
(
δℓ(x j) − δℓ̃(x j)

)2
= 0,

(
κℓ(x j) − κℓ̃(x j)

)2
= 0 and

(
ϱℓ(x j) − ϱℓ̃(x j)

)2
= 0. Thus, δℓ(x j) = δℓ̃(x j),

κℓ(x j) = κℓ̃(x j) and ϱℓ(x j) − ϱℓ̃(x j). Hence, ℓ = ℓ̃.
Conversely, if ℓ = ℓ̃, then,

6
∑q

j=1

3q(q2 + 1)

{(
δℓ(x j) − δℓ̃(x j)

)2
+
(
κℓ(x j) − κℓ̃(x j)

)2
+
(
ϱℓ(x j) − ϱℓ̃(x j)

)2 }
= 0,

and hence, ρa(ℓ, ℓ̃) = 1, which proves (ii).
Finally, we prove (iii). Now, since

ρa(ℓ, ℓ̃) =
1
3



1 −
6
∑q

j=1
(
δℓ(x j) − δℓ̃(x j)

)2
q(q2 + 1)

+

1 −
6
∑q

j=1
(
κℓ(x j) − κℓ̃(x j)

)2
q(q2 + 1)

+

1 −
6
∑q

j=1
(
ϱℓ(x j) − ϱℓ̃(x j)

)2
q(q2 + 1)
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=
1
3



q(q2 + 1) − 6
∑q

j=1
(
δℓ(x j) − δℓ̃(x j)

)2
q(q2 + 1)

+
q(q2 + 1) − 6

∑q
j=1
(
κℓ(x j) − κℓ̃(x j)

)2
q(q2 + 1)

+
q(q2 + 1) − 6

∑q
j=1
(
ϱℓ(x j) − ϱℓ̃(x j)

)2
q(q2 + 1)



=
1
3



q(q2 + 1) − 6
∑q

j=1
(
δℓ̃(x j) − δℓ(x j)

)2
q(q2 + 1)

+
q(q2 + 1) − 6

∑q
j=1
(
κℓ̃(x j) − κℓ(x j)

)2
q(q2 + 1)

+
q(q2 + 1) − 6

∑q
j=1
(
ϱℓ̃(x j) − ϱℓ(x j)

)2
q(q2 + 1)


= ρa(ℓ̃, ℓ),

then, (iii) is proved. □

Theorem 3.4. The function ρb(ℓ, ℓ̃) between IFSs ℓ and ℓ̃ in X satisfies the correlation coefficient
conditions.

Proof. The proof is analogous to Theorem 3.3. □

3.1. Numerical analysis of the new IFCMs

Here, we justify the superiority of the developed IFCMs over the existing methods [28, 30–33, 35–
41]. Table 1 lists the results of the numerical analysis.
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Table 1. Results of the Numerical Analysis.

Examples Existing IFCMs New IFCMs

Example 2.1 ρ1(ℓ, ℓ̃) = 1
ρa(ℓ, ℓ̃) = 0.9584,
ρb(ℓ, ℓ̃) = 0.9861

Example 2.2

ρ1(ℓ, ℓ̃) = 1, ρ2(ℓ, ℓ̃) = 1,
ρ5(ℓ, ℓ̃) = 1, ρ6(ℓ, ℓ̃) = 1.1667,
ρ7(ℓ, ℓ̃) = 1.1667, ρ8(ℓ, ℓ̃) = 0,

ρ9(ℓ, ℓ̃) = 1

ρa(ℓ, ℓ̃) = 0.9063,
ρb(ℓ, ℓ̃) = 0.9609

Example 2.3

ρ1(ℓ, ℓ̃) = 0, ρ2(ℓ, ℓ̃) = −1,
ρ3(ℓ, ℓ̃) = 0, ρ4(ℓ, ℓ̃) = 0,
ρ5(ℓ, ℓ̃) = 0, ρ6(ℓ, ℓ̃) = 1,
ρ7(ℓ, ℓ̃) = 0, ρ8(ℓ, ℓ̃) = −1,
ρ9(ℓ, ℓ̃) = −1, ρ10(ℓ, ℓ̃) = 0

ρa(ℓ, ℓ̃) = 0.2, ρb(ℓ, ℓ̃) = 0.6667

Example 2.4
ρ6(ℓ, ℓ̃) = ρ7(ℓ, ℓ̃) = 1. If ℓ = ℓ̃,
ρ6(ℓ, ℓ̃) = ρ7(ℓ, ℓ̃) = 0

0 = ∞
ρa(ℓ, ℓ̃) = 0.976, ρb(ℓ, ℓ̃) = 0.99

Example 2.5 ρ8(ℓ, ℓ̃) = 0
√

0×0
= ∞

ρa(ℓ, ℓ̃) = 0.9806,
ρb(ℓ, ℓ̃) = 0.9919

Example 2.6 ρ9(ℓ, ℓ̃) = 0
√

0×0
= ∞

ρa(ℓ, ℓ̃) = 0.9333,
ρb(ℓ, ℓ̃) = 0.9722

Example 2.7
ρ10(ℓ, ℓ̃) = 1.0399,
ρ11(ℓ, ℓ̃) = 1.0272,
ρ12(ℓ, ℓ̃) = 1.0266

ρa(ℓ, ℓ̃) = 0.9986,
ρb(ℓ, ℓ̃) = 0.9990

Next, we discuss the effectiveness of the new IFCMs as compare to the existing IFCMs using the
information in Table 1 as follows:

(i) In Example 2.1, the IFCM ρ1 [28] fails because it gives a perfect positive correlation whereas ℓ
and ℓ̃ are not identical, which violates A2 of Definition 2.5. On the other hand, the new measures
indicate that a strong correlation exists between the IFSs ℓ and ℓ̃.

(ii) In Example 2.2, the IFCMs ρ1, ρ2, ρ5, and ρ9 [28, 31, 33, 35] indicate that a perfect positive
correlation exists between ℓ and ℓ̃, whereas ℓ and ℓ̃ are not identical. This is a violation of A2
of Definition 2.5. In addition, the IFCMs ρ6 [36] and ρ7 [37] provide a value that is not defined
within either [0, 1] or [−1, 1], which violates A1 of Definition 2.5. Surprisingly, the IFCM ρ8 [32]
shows that no correlation exists between the IFSs, which is a misleading information because
there exists an imprecise correlation between the IFSs. The new measures, ρa and ρb give more
precise results.

(iii) In Example 2.3, the IFCMs ρ1, ρ3, ρ4, ρ5, ρ7, and ρ10 [28,30,33,37–39] indicate that no correlation
exists between the IFSs, which is misleading because a somewhat uncertain correlation exists.
In addition, the IFCMs ρ2, ρ8, and ρ9 [31, 32, 35] indicate that a perfect negative correlation
exists between the IFSs, which is not true because a somewhat uncertain correlation exists.
Unexpectedly, the IFCM ρ6 [36] indicates that a perfect positive correlation exists between the
IFSs, which is again misleading because the IFSs are not identical. On the contrary, the new
measures suggest that a positive correlation exists between the IFSs.
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(iv) In Example 2.4, the IFCMs ρ6 [36] and ρ7 [37] show that a perfect positive relationship exists
between the IFSs although ℓ , ℓ̃. In addition, If ℓ = ℓ̃, we can see that ρ6(ℓ, ℓ̃) = ρ7(ℓ, ℓ̃) = 0

0 = ∞.
These IFCMs violate A1 and A2 of Definition 2.5. On the other hand, the new measures show
that a strong positive correlation exists between the IFSs; also, and whenever ℓ = ℓ̃, they show a
perfect positive correlation that is in agreement with the IFCC metric conditions.

(v) In Example 2.5, the IFCM ρ8 [32] gives a meaningless correlation value, which is not within
either [0, 1] or [−1, 1], i.e., it violates A1 of Definition 2.5. However, the new measures show
that a strong positive correlation exists between the IFSs. Similarly, for Example 2.6, the IFCM
ρ9 [35] yields an inappropriate result similar to ρ8 [32]. Also, the new measures indicate that a
strong positive correlation exists between the IFSs.

(vi) Finally, in Example 2.7, the IFCM ρ10, ρ11, and ρ12 [30, 40, 41] give correlation values that are
greater than 1, which violate A1 of Definition 2.5. On the contrary, the new measures suggest that
a positive correlation exists between the IFSs, which satisfies A1 of Definition 2.5.

To recap, all of the IFCMs fail to satisfy the IFCM metric conditions, except for the new IFCMs. In
addition, the new measures yield a more precise result than all of the existing techniques.

4. Triage process for prompt treatment under uncertainty

Triage is the medical process used to determine the patients in the ED who are most in need of
urgent treatment. This process is carried out by a triage nurse in the ED who assesses the patients’
medical conditions and decides whether to call a consultant for the most critical case. For this
reason, some patients who arrive at the ED late might receive medical attention first. Often, in a
medical facility, some patients urgently require medical attention to address their debilitating medical
conditions. However, the inability to control diagnostic uncertainty may result in misdiagnosis or
delayed conditions and/or postponed or unnecessary tests and/or treatments. Owing to the inherent
uncertainty in medical diagnoses, it is necessary to deploy an intuitionistic fuzzy approach to eliminate
diagnostic imprecision and uncertainty. To achieve a reliable diagnosis, we propose employing
a knowledge-based diagnostic process that captures the linguistic variables of patients’ symptoms
through the use of intuitionistic fuzzy numbers (IFNs), which are presented in Table 2.

The symptoms for this type of ME case are represented by a set:

S̆ = {S̆ 1, S̆ 2, S̆ 3, S̆ 4, S̆ 5, S̆ 6, S̆ 7},

where S̆ 1 is body temperature, S̆ 2 is pulse, S̆ 3 is prostration, S̆ 4 is dehydration, S̆ 5 is blood pressure,
S̆ 6 is dyspnea, and S̆ 7 is paleness.

AIMS Mathematics Volume 9, Issue 6, 15639–15670.



15655

Table 2. Linguistic variables for symptoms evaluation.

Linguistic variables IFNs
Extremely high (EH) (1, 0)
Very very high (VVH) (0.9, 0.05)
Very high (VH) (0.8, 0.15)
High (H) (0.7, 0.2)
Medium high (MH) (0.6, 0.25)
Medium (M) (0.5, 0.4)
Medium low (ML) (0.4, 0.5)
Low (L) (0.3, 0.65)
Very low (VL) (0.2, 0.75)
Very very low (VVL) (0.05, 0.9)
Extremely low (EL) (0, 1)

Suppose that six patients represented by a set P̆ = {P̆1, P̆2, P̆3, P̆4, P̆5, P̆6}, are brought to ED for
treatment. However, due to the limited number of consultants, all patients cannot receive medical
attention at the same time, so, it is expedient to attend to the patient with the most serious medical case
to avoid fatality. Three triage nurses attend to the patients to determine which of the patients’ cases is
most in need of emergency medical attention. The opinions of the triage nurses are presented in terms
of linguistic variables in Tables 3–5, respectively.

Table 3. Linguistic variables for triage nurse I.

Patients S̆ 1 S̆ 2 S̆ 3 S̆ 4 S̆ 5 S̆ 6 S̆ 7

P̆1 M H VH VL MH VH H
P̆2 VVL M VH MH MH M VL
P̆3 ML H VH VVH ML H ML
P̆4 VL H M ML MH VVH H
P̆5 L MH VH M VL H VH
P̆6 M L MH VH VVH H ML

Table 4. Linguistic variables for triage nurse II.

Patients S̆ 1 S̆ 2 S̆ 3 S̆ 4 S̆ 5 S̆ 6 S̆ 7

P̆1 M H M VVH VVH VL VVL
P̆2 ML VH H H L MH MH
P̆3 L VH VVH MH ML VH H
P̆4 VL M L M VL ML H
P̆5 VVL VH H L MH M VH
P̆6 M M ML MH VVH MH H
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Table 5. Linguistic variables for triage nurse III.

Patients S̆ 1 S̆ 2 S̆ 3 S̆ 4 S̆ 5 S̆ 6 S̆ 7

P̆1 ML L VH VVH H VL H
P̆2 L MH L H VVL M VH
P̆3 M H VVH L M MH VVH
P̆4 VL VH H MH H VH M
P̆5 M VVH VVL H VH H VL
P̆6 VVL H H L M VH MH

Using the information in Table 2, we obtained the results presented in Tables 6–8 from Tables 3–5,
respectively.

Table 6. IFNs for triage nurse I.

Patients S̆ 1 S̆ 2 S̆ 3 S̆ 4 S̆ 5 S̆ 6 S̆ 7

P̆1 (0.5, 0.4) (0.7, 0.2) (0.8, 0.15) (0.2, 0.75) (0.6, 0.25) (0.8, 0.15) (0.7, 0.2)
P̆2 (0.05, 0.9) (0.5, 0.4) (0.8, 0.15) (0.6, 0.25) (0.6, 0.25) (0.5, 0.4) (0.2, 0.75)
P̆3 (0.4, 0.5) (0.7, 0.2) (0.8, 0.15) (0.9, 0.05) (0.4, 0.6) (0.7, 0.2) (0.4, 0.5)
P̆4 (0.2, 0.75) (0.7, 0.2) (0.5, 0.4) (0.4, 0.5) (0.6, 0.25) (0.9, 0.05) (0.7, 0.2)
P̆5 (0.3, 0.65) (0.6, 0.25) (0.8, 0.15) (0.5, 0.4) (0.2, 0.75) (0.7, 0.2) (0.8, 0.15)
P̆6 (0.5, 0.4) (0.3, 0.65) (0.6, 0.25) (0.8, 0.15) (0.9, 0.05) (0.7, 0.2) (0.4, 0.5)

Table 7. IFNs for triage nurse II.

Patients S̆ 1 S̆ 2 S̆ 3 S̆ 4 S̆ 5 S̆ 6 S̆ 7

P̆1 (0.5, 0.4) (0.7, 0.2) (0.5, 0.4) (0.9, 0.05) (0.9, 0.05) (0.2, 0.75) (0.05, 0.9)
P̆2 (0.4, 0.5) (0.8, 0.15) (0.7, 0.2) (0.7, 0.2) (0.3, 0.65) (0.6, 0.25) (0.6, 0.25)
P̆3 (0.3, 0.65) (0.8, 0.15) (0.8, 0.15) (0.6, 0.25) (0.4, 0.5) (0.8, 0.15) (0.7, 0.2)
P̆4 (0.2, 0.75) (0.5, 0.4) (0.3, 0.65) (0.5, 0.4) (0.2, 0.75) (0.4, 0.5) (0.7, 0.2)
P̆5 (0.05, 0.9) (0.8, 0.15) (0.7, 0.2) (0.3, 0.65) (0.6, 0.25) (0.5, 0.4) (0.8, 0.15)
P̆6 (0.5, 0.4) (0.5, 0.4) (0.4, 0.5) (0.6, 0.25) (0.9, 0.05) (0.6, 0.25) (0.7, 0.2)

Table 8. IFNs for triage nurse III.

Patients S̆ 1 S̆ 2 S̆ 3 S̆ 4 S̆ 5 S̆ 6 S̆ 7

P̆1 (0.4, 0.5) (0.3, 0.65) (0.8, 0.15) (0.9, 0.05) (0.7, 0.2) (0.2, 0.75) (0.7, 0.2)
P̆2 (0.3, 0.65) (0.6, 0.25) (0.3, 0.25) (0.7, 0.2) (0.05, 0.9) (0.5, 0.4) (0.8, 0.15)
P̆3 (0.5, 0.4) (0.7, 0.2) (0.9, 0.05) (0.3, 0.65) (0.5, 0.4) (0.6, 0.25) (0.9, 0.05)
P̆4 (0.2, 0.75) (0.8, 0.15) (0.7, 0.2) (0.6, 0.25) (0.7, 0.2) (0.8, 0.15) (0.5, 0.4)
P̆5 (0.5, 0.4) (0.9, 0.05) (0.05, 0.9) (0.7, 0.2) (0.8, 0.15) (0.7, 0.2) (0.2, 0.75)
P̆6 (0.05, 0.9) (0.7, 0.2) (0.7, 0.2) (0.3, 0.65) (0.5, 0.4) (0.8, 0.15) (0.6, 0.25)
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By using Definition 2.4, we combined the opinions of the three triage nurses as presented in Table
9.

Table 9. Medical information.

Patients S̆ 1 S̆ 2 S̆ 3 S̆ 4 S̆ 5 S̆ 6 S̆ 7

P̆1 ( 7
15 ,

13
30 ) (17

30 ,
7

20 ) ( 7
10 ,

7
30 ) (2

3 ,
17
60 ) ( 11

15 ,
1
6 ) ( 2

5 ,
11
20 ) ( 29

60 ,
13
30 )

P̆2 ( 1
4 ,

41
60 ) ( 19

30 ,
4

15 ) (3
5 ,

1
3 ) ( 2

3 ,
13
60 ) ( 19

60 ,
3
5 ) ( 8

15 ,
7
20 ) ( 8

15 ,
23
60 )

P̆3 ( 2
5 ,

31
60 ) ( 11

15 ,
11
60 ) (5

6 ,
7
60 ) ( 3

5 ,
19
60 ) ( 13

30 ,
1
2 ) ( 7

10 ,
1
5 ) ( 1

15 ,
1
4 )

P̆4 ( 1
5 ,

3
4 ) ( 2

3 ,
1
4 ) ( 1

2 ,
5
12 ) ( 1

2 ,
23
60 ) ( 1

2 ,
2
5 ) ( 7

10 ,
7
30 ) (19

30 ,
4

15 )
P̆5 ( 17

60 ,
39
60 ) (23

30 ,
3

20 ) (31
60 ,

5
12 ) (1

2 ,
5

12 ) ( 8
15 ,

23
60 ) (19

30 ,
20
75 ) (3

5 ,
21
60 )

P̆6 ( 7
20 ,

17
30 ) (1

2 ,
5

12 ) ( 17
30 ,

19
60 ) (17

30 ,
7

20 ) (23
30 ,

1
6 ) ( 7

10 ,
1
5 ) ( 17

30 ,
19
60 )

Summaries of the triage and data collection processes are as follows: (i) three triage nurses provide
the linguistic variables as seen in Tables 3–5; (ii) the linguistic variables are converted to IFNs (as
shown in Tables 6–8) based on the information in Table 2; and (iii) the IFNs from the linguistic
variables are compressed into one by taking the arithmetic average of the IFNs (as shown in Table
9).

The linguistic variables of a healthy person as determined based on expert knowledge are MH, MH,
EL, EL, M, EL, and EL for body temperature, pulse, prostration, dehydration, blood pressure, dyspnea,
and paleness, respectively. Assuming that a healthy person is represented by an IFS, denoted as H̆, the
medical information for H̆ is taken as follows:

H̆ = {⟨S̆ 1, 0.6, 0.25⟩, ⟨S̆ 2, 0.6, 0.25⟩, ⟨S̆ 3, 0, 1⟩, ⟨S̆ 4, 0, 1⟩, ⟨S̆ 5, 0.5, 0.4⟩, ⟨S̆ 6, 0, 1⟩, ⟨S̆ 7, 0, 1⟩}.

4.1. Approach I

An innovative method has been developed for the triage process to determine the most urgent case
among the six sick patients described in Table 9.

Target

Choose the most critically ill patient to optimize emergency treatment.

Algorithm for approach I

The triage process algorithm that chooses the most critically sick patient is as follows:
Step 1: Compute ρ(P̆ j, H̆) for j = 1, 2, · · · , 7 by using the measures given by (2.1, 2.3, 2.6, 2.8, 2.10,
2.13, 2.15, 2.17, 2.20, 2.22, 2.25, 2.28, 3.1, 3.3), where H̆ is the medical information of a healthy
person.
Step 2: Find

ρ∗(P̆ j, H̆) = max
1≤ j≤7
{ρ(P̆ j, H̆)}. (4.1)

Step 3: Compute the degree of confidence (DoC), defined by

♢ =

7∑
j

|ρ∗(P̆ j, H̆) − ρ(P̆ j, H̆)|, (4.2)
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where a small value of ♢ shows precision and reliability.
Step 4: The value of min{ρ(P̆ j, H̆)} determines the most critically ill patient for emergency treatment.

Now, we implement Step 1 to compute the correlation coefficients between each patient and the
healthy person to determine which of the patients has the weakest correlation with the healthy person
by using the new approaches. We obtained the following results from the computations:

ρa(P̆1, H̆) = 0.9820, ρa(P̆2, H̆) = 0.9790,
ρa(P̆3, H̆) = 0.9736, ρa(P̆4, H̆) = 0.9789,
ρa(P̆5, H̆) = 0.9814, ρa(P̆6, H̆) = 0.9781,
ρb(P̆1, H̆) = 0.9875, ρb(P̆2, H̆) = 0.9854,
ρb(P̆3, H̆) = 0.9817, ρb(P̆4, H̆) = 0.9853,
ρb(P̆5, H̆) = 0.9871, ρb(P̆6, H̆) = 0.9848.

By applying Steps 2 and 3, the DoCs of the correlation coefficients were calculated to be 0.019 and
0.0132, respectively. The ordering of the correlation coefficients is as follows:

ρa(P̆1, H̆) ≻ ρa(P̆5, H̆) ≻ ρa(P̆2, H̆) ≻ ρa(P̆4, H̆) ≻ ρa(P̆6, H̆) ≻ ρa(P̆3, H̆),
ρb(P̆1, H̆) ≻ ρb(P̆5, H̆) ≻ ρb(P̆2, H̆) ≻ ρb(P̆4, H̆) ≻ ρb(P̆6, H̆) ≻ ρb(P̆3, H̆).

The order shows that, P̆3 has the weakest correlation with H̆, which means that the patient with the
most critical health challenge is P̆3. In a situation in which there is only one medical consultant, P̆3

should be given treatment priority.

4.1.1. Comparative analysis under approach I

To demonstrate the superiority of the new IFCMs over the existing IFCMs, we present a comparative
study. The results of the comparison are listed in Table 10.

From Table 10, we see that the IFCMs in [36–38] are not appropriate because their results do not
fall within [0, 1] or [−1, 1]. Notably, our IFCMs yielded the most robust results. The ordering and DoC
results for the measures listed in Table 10 are presented in Table 11.
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Table 10. Results of comparative for approach I.

Measures (P̆1, H̆) (P̆2, H̆) (P̆3, H̆) (P̆4, H̆) (P̆5, H̆) (P̆6, H̆)
ρ1 [28] 0.6535 0.5915 0.4926 0.5905 0.6422 0.5738
ρ2 [31] 0.1028 −0.5747 −0.5650 −0.4324 −0.1207 −0.3933
ρ3 [39] 0.6548 0.5910 0.4943 0.5898 0.6422 0.5730
ρ4 [38] 1.2093 1.0773 0.9489 1.0893 1.1851 1.0506
ρ5 [33] 0.3196 −0.4856 −0.3649 −0.4335 −0.0634 −0.4822
ρ6 [36] 1.3522 1.2994 1.3572 1.3542 1.3114 1.2775
ρ7 [37] 1.3288 1.2832 1.3056 1.3250 1.2853 1.2489
ρ8 [32] 0.1034 −0.5749 −0.5655 −0.4334 −0.1206 −0.3955
ρ9 [35] 0.1089 −0.5725 −0.5614 −0.4330 −0.1195 −0.3972
ρ10 [30] 0.7612 0.6890 0.7437 0.7353 0.7137 0.6656
ρ11 [40] 0.8268 0.7719 0.8096 0.8028 0.7907 0.7531
ρ12 [41] 0.8432 0.7898 0.8271 0.8194 0.8077 0.7763
ρa 0.9820 0.9790 0.9736 0.9789 0.9814 0.9781
ρb 0.9875 0.9854 0.9817 0.9853 0.9871 0.9848

Table 11. Order and DoC results for the measures.

Measures Orderings Triage DoCs
ρ1 [28] ρ1(P̆1, H̆) ≻ ρ1(P̆5, H̆) ≻ ρ1(P̆2, H̆) ≻ ρ1(P̆4, H̆) ≻ ρ1(P̆6, H̆) ≻ ρ1(P̆3, H̆) P̆3 0.3769
ρ2 [31] ρ2(P̆1, H̆) ≻ ρ2(P̆5, H̆) ≻ ρ2(P̆6, H̆) ≻ ρ2(P̆4, H̆) ≻ ρ2(P̆3, H̆) ≻ ρ2(P̆2, H̆) P̆2 2.5501
ρ3 [39] ρ3(P̆1, H̆) ≻ ρ3(P̆5, H̆) ≻ ρ3(P̆2, H̆) ≻ ρ3(P̆4, H̆) ≻ ρ3(P̆6, H̆) ≻ ρ3(P̆3, H̆) P̆3 0.3837
ρ4 [38] fails A1 N/A N/A
ρ5 [33] ρ5(P̆1, H̆) ≻ ρ5(P̆5, H̆) ≻ ρ5(P̆3, H̆) ≻ ρ5(P̆4, H̆) ≻ ρ5(P̆6, H̆) ≻ ρ5(P̆2, H̆) P̆2 3.4276
ρ6 [36] fails A1 N/A N/A
ρ7 [37] fails A1 N/A N/A
ρ8 [32] ρ8(P̆1, H̆) ≻ ρ8(P̆5, H̆) ≻ ρ8(P̆6, H̆) ≻ ρ8(P̆4, H̆) ≻ ρ8(P̆3, H̆) ≻ ρ8(P̆2, H̆) P̆2 2.6069
ρ9 [35] ρ9(P̆1, H̆) ≻ ρ9(P̆5, H̆) ≻ ρ9(P̆6, H̆) ≻ ρ9(P̆4, H̆) ≻ ρ9(P̆3, H̆) ≻ ρ9(P̆2, H̆) P̆2 2.6281
ρ10 [30] ρ10(P̆1, H̆) ≻ ρ10(P̆3, H̆) ≻ ρ10(P̆4, H̆) ≻ ρ10(P̆5, H̆) ≻ ρ10(P̆2, H̆) ≻ ρ10(P̆6, H̆) P̆6 0.2587
ρ11 [40] ρ11(P̆1, H̆) ≻ ρ11(P̆3, H̆) ≻ ρ11(P̆4, H̆) ≻ ρ11(P̆5, H̆) ≻ ρ11(P̆2, H̆) ≻ ρ11(P̆6, H̆) P̆6 0.2059
ρ12 [41] ρ12(P̆1, H̆) ≻ ρ12(P̆3, H̆) ≻ ρ12(P̆4, H̆) ≻ ρ12(P̆5, H̆) ≻ ρ12(P̆2, H̆) ≻ ρ12(P̆6, H̆) P̆6 0.1957
ρa ρa(P̆1, H̆) ≻ ρa(P̆5, H̆) ≻ ρa(P̆2, H̆) ≻ ρa(P̆4, H̆) ≻ ρa(P̆6, H̆) ≻ ρa(P̆3, H̆) P̆3 0.019
ρb ρb(P̆1, H̆) ≻ ρb(P̆5, H̆) ≻ ρb(P̆2, H̆) ≻ ρb(P̆4, H̆) ≻ ρb(P̆6, H̆) ≻ ρb(P̆3, H̆) P̆3 0.0132

From the results in Table 11, it is evident that patients P̆3 and P̆6 have the weakest correlation
with the healthy person. Thus, patients who needed the most urgent medical attention are P̆3 and
P̆6. Although the measures in [30–33, 35, 40, 41] yield conflicting interpretations, their interpretations
cannot be trusted because they were found to be unrealistic, as shown in Table 1. We have used the
information in Table 11 to plot the DoC graph as shown in Figure 1.
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Figure 1. DoC results.

From Figure 1, we see that the new IFCMs have the lowest DoC. This shows the reliability of the
newly developed IFCMs.

4.2. Approach II

Here, we apply the multiple criteria decision-making (MCDM) approach to the triage process
because the MCDM is more reputable than the approach in Subsection 4.1.

Algorithm for Approach II

Step 1: Frame the intuitionistic fuzzy decision matrix (IFDM) ˜̆P j = {S̆ i(P̆ j)}(n×q), where i = 1, 2, · · · , n,
j = 1, 2, · · · , q and P̆ j and S̆ j represent the patients and symptoms, respectively.
Step 2: Determine the cost criterion (CC) (i.e., the lowest S̆ i) and the benefit criteria (BC) (i.e., the
non-lowest S̆ i).
Step 3: Normalize the IFDM to get the normalized IFDM denoted by ˜̆P = ⟨δ ˜̆P j

(S̆ i), κ ˜̆P j
(S̆ i)⟩n×q, where

⟨δ ˜̆P j
(S̆ i), κ ˜̆P j

(S̆ i)⟩ are IFNs, and ˜̆P j is defined as follows:

˜̆P j =

 ⟨δ ˜̆P j
(S̆ i), κ ˜̆P j

(S̆ i)⟩ for BC of P̆ j;
⟨⟨κ ˜̆P j

(S̆ i), δ ˜̆P j
(S̆ i)⟩ for CC of P̆ j.

(4.3)

Step 4: Compute the positive ideal solution (PIS) and negative ideal solution (NIS) as follows:

˜̆P+ = { ˜̆P+1 ,
˜̆P+2 , · · · ,

˜̆P+q },
˜̆P− = { ˜̆P−1 ,

˜̆P−2 , · · · ,
˜̆P−q },

(4.4)

where
˜̆P+ =

 ⟨max{δ ˜̆P j
(S̆ i)},min{κ ˜̆P j

(S̆ i)}⟩, if S̆ i is a BC;
⟨min{δ ˜̆P j

(S̆ i)},max{κ ˜̆P j
(S̆ i)}⟩, if S̆ i is a CC,

(4.5)

˜̆P− =

 ⟨min{δ ˜̆P j
(S̆ i)},max{κ ˜̆P j

(S̆ i)}⟩, if S̆ i is a BC;
⟨max{δ ˜̆P j

(S̆ i)},min{κ ˜̆P j
(S̆ i)}⟩, if S̆ i is a CC.

(4.6)
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Step 5: Obtain the correlation coefficients ρ(P̆ j,
˜̆P−) and ρ(P̆ j,

˜̆P+) based on the IFCMs.
Step 6: Determine the closeness coefficients, ∆ j(P̆ j) by using (4.7):

∆ j(P̆ j) =
ρ(P̆ j,

˜̆P+)

ρ(P̆ j,
˜̆P+) + ρ(P̆ j,

˜̆P−)
, (4.7)

for j = 1, · · · , n. For the case of correlation values defined in [−1, 1], we first compute

∆+j (P̆ j) =
ρ(P̆ j,

˜̆P+) − ρmin(P̆ j,
˜̆P+)

ρmax(P̆ j,
˜̆P+) − ρmin(P̆ j,

˜̆P+)
, (4.8)

∆−j (P̆ j) =
ρ(P̆ j,

˜̆P−) − ρmin(P̆ j,
˜̆P−)

ρmax(P̆ j,
˜̆P−) − ρmin(P̆ j,

˜̆P−)
, (4.9)

before calculating the closeness coefficients, ∆ j(P̆ j) as follows:

∆ j(P̆ j) =
∆+j (P̆ j)

∆+j (P̆ j) + ∆−j (P̆ j)
. (4.10)

Step 7: Choose the largest closeness coefficient for the triage process.
Following the algorithm (i.e., Steps 1 and 2), the IFDM is obtained as presented in Table 9, and the

CC is S̆ 1. By Step 3, the normalized IFDM values are obtained as presented in Table 12.

Table 12. Normalized IFDM.

Patients S̆ 1 S̆ 2 S̆ 3 S̆ 4 S̆ 5 S̆ 6 S̆ 7

P̆1 ( 13
30 ,

7
15 ) ( 17

30 ,
7
20 ) ( 7

10 ,
7

30 ) ( 2
3 ,

17
60 ) (11

15 ,
1
6 ) (2

5 ,
11
20 ) (29

60 ,
13
30 )

P̆2 ( 41
60 ,

1
4 ) (19

30 ,
4
15 ) ( 3

5 ,
1
3 ) (2

3 ,
13
60 ) (19

60 ,
3
5 ) ( 8

15 ,
7
20 ) ( 8

15 ,
23
60 )

P̆3 ( 31
60 ,

2
5 ) (11

15 ,
11
60 ) ( 5

6 ,
7

60 ) (3
5 ,

19
60 ) (13

30 ,
1
2 ) ( 7

10 ,
1
5 ) ( 1

15 ,
1
4 )

P̆4 ( 3
4 ,

1
5 ) (2

3 ,
1
4 ) ( 1

2 ,
5

12 ) (1
2 ,

23
60 ) (1

2 ,
2
5 ) ( 7

10 ,
7
30 ) ( 19

30 ,
4

15 )
P̆5 ( 39

60 ,
17
60 ) ( 23

30 ,
3
20 ) ( 31

60 ,
5

12 ) ( 1
2 ,

5
12 ) ( 8

15 ,
23
60 ) ( 19

30 ,
20
75 ) ( 3

5 ,
21
60 )

P̆6 ( 17
30 ,

7
20 ) ( 1

2 ,
5
12 ) (17

30 ,
19
60 ) ( 17

30 ,
7
20 ) ( 23

30 ,
1
6 ) ( 7

10 ,
1
5 ) (17

30 ,
19
60 )

By following Step 4, we get Table 13.

Table 13. ˜̆P+ and ˜̆P− results.

Patients S̆ 1 S̆ 2 S̆ 3 S̆ 4 S̆ 5 S̆ 6 S̆ 7
˜̆P+ (13

30 ,
7
15 ) ( 23

30 ,
3

20 ) ( 5
6 ,

7
60 ) ( 2

3 ,
13
60 ) ( 23

30 ,
1
6 ) ( 7

10 ,
1
5 ) ( 1

15 ,
1
4 )

˜̆P− (3
4 ,

1
5 ) (1

2 ,
5

12 ) (1
2 ,

5
12 ) ( 1

2 ,
5
12 ) ( 19

60 ,
3
5 ) ( 2

5 ,
11
20 ) ( 29

60 ,
13
30 )

Now, we use Step 5 and get the following results:

ρa( ˜̆P+, P̆1) = 0.9977, ρa( ˜̆P+, P̆2) = 0.9960, ρa( ˜̆P+, P̆3) = 0.9986,
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ρa( ˜̆P+, P̆4) = 0.9969, ρa( ˜̆P+, P̆5) = 0.9975, ρa( ˜̆P+, P̆6) = 0.9982,

ρa( ˜̆P−, P̆1) = 0.9964, ρa( ˜̆P−, P̆2) = 0.9961, ρa( ˜̆P−, P̆3) = 0.9951,

ρa( ˜̆P−, P̆4) = 0.9944, ρa( ˜̆P−, P̆5) = 0.9953, ρa( ˜̆P−, P̆6) = 0.9946.

ρb( ˜̆P+, P̆1) = 0.9984, ρb( ˜̆P+, P̆2) = 0.9973, ρb( ˜̆P+, P̆3) = 0.9990,

ρb( ˜̆P+, P̆4) = 0.9978, ρb( ˜̆P+, P̆5) = 0.9982, ρb( ˜̆P+, P̆6) = 0.9987,

ρb( ˜̆P−, P̆1) = 0.9975, ρb( ˜̆P−, P̆2) = 0.9973, ρb( ˜̆P−, P̆3) = 0.9966,

ρb( ˜̆P−, P̆4) = 0.9961, ρb( ˜̆P−, P̆5) = 0.9968, ρb( ˜̆P−, P̆6) = 0.9962.

Next, we compute ∆ j for ρa and ρb; the results are listed in Table 14.

Table 14. Closeness coefficients, ∆ j(P̆ j) for j = 1, 2, · · · , 6.

Iterations ∆ j(P̆ j) for ρa Ranking for ρa ∆ j(P̆ j) for ρb Ranking for ρb

1 0.50032 5 0.50022 5
2 0.49998 6 0.49999 6
3 0.50088 2 0.50061 2
4 0.50062 3 0.50043 3
5 0.50054 4 0.50037 4
6 0.50090 1 0.50062 1

From the results in Table 14, we can state that patients P̆6 and P̆3 should be given urgent medical
attention to avoid death if there is a limited number of consultants.

4.2.1. Comparative analysis under approach II

Next, we show the superiority of the new IFCMs via comparative analysis. By following Step 5 of
the MCDM algorithm, we get the information in Table 15, which is illustrated in Figure 2.
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Table 15. Results for ρ( ˜̆P+, P̆ j), j = 1, 2, · · · , 6.

Measures ( ˜̆P+, P̆1) ( ˜̆P+, P̆2) ( ˜̆P+, P̆3) ( ˜̆P+, P̆4) ( ˜̆P+, P̆5) ( ˜̆P+, P̆6)
ρ1 [28] 0.9471 0.9066 0.9681 0.9277 0.9416 0.9594
ρ2 [31] 0.5013 0.6032 0.6573 0.7250 0.7239 0.6689
ρ3 [39] 0.9468 0.9077 0.9684 0.9279 0.9419 0.9590
ρ4 [38] 1.7486 1.6545 1.8593 1.7137 1.7383 1.7584
ρ5 [33] 0.2181 0.6153 0.7110 0.4789 0.5854 0.3528
ρ6 [36] 1.5012 1.4672 1.7428 1.4008 1.4187 1.4974
ρ7 [37] 1.5280 1.4697 1.7485 1.4146 1.4060 1.5348
ρ8 [32] 0.5087 0.6002 0.6570 0.7262 0.7238 0.6731
ρ9 [35] 0.5023 0.6002 0.6572 0.7215 0.7212 0.6668
ρ10 [30] 0.9458 0.9237 1.0399 0.8982 0.9139 0.9460
ρ11 [40] 0.9608 0.9465 1.0272 0.9272 0.9379 0.9621
ρ12 [41] 0.9629 0.9488 1.0266 0.9446 0.9441 0.9661
ρa 0.9977 0.9960 0.9986 0.9969 0.9975 0.9982
ρb 0.9984 0.9973 0.9990 0.9978 0.9982 0.9987

1 2 3 4 5 6

0.5

1

1.5

2

ρ

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12 ρa ρb

Figure 2. Illustration of the results presented in Table 15.

Similarly, we can obtain the results presented in Table 16, which are illustrated in Figure 3.
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Table 16. Results for ρ( ˜̆P−, P̆ j), j = 1, 2, · · · , 6.

Measures ( ˜̆P−, P̆1) ( ˜̆P−, P̆2) ( ˜̆P−, P̆3) ( ˜̆P−, P̆4) ( ˜̆P−, P̆5) ( ˜̆P−, P̆6)
ρ1 [28] 0.9055 0.8964 0.8769 0.8518 0.8768 0.8557
ρ2 [31] −0.2972 −0.2501 −0.2177 −0.7211 −0.6205 −0.9690
ρ3 [39] 0.9060 0.8970 0.8777 0.8536 0.8777 0.8570
ρ4 [38] 1.6352 1.6190 1.5840 1.5406 1.5841 1.5467
ρ5 [33] −0.1851 −0.1799 −0.3329 −0.2028 −0.5144 −0.6315
ρ6 [36] 1.5473 1.5726 1.2443 1.5423 1.5017 1.4681
ρ7 [37] 1.5649 1.5786 1.3483 1.5521 1.5342 1.4598
ρ8 [32] −0.2993 −0.2504 −0.2170 −0.7265 −0.6210 −0.9732
ρ9 [35] −0.2976 −0.2496 −0.2181 −0.7202 −0.6199 −0.9687
ρ10 [30] 0.9591 0.9881 0.8160 0.9652 0.9301 0.9043
ρ11 [40] 0.9710 0.9901 0.8745 0.9752 0.9517 0.9312
ρ12 [41] 0.9702 0.9920 0.8828 0.9775 0.9544 0.9360
ρa 0.9964 0.9961 0.9951 0.9944 0.9953 0.9946
ρb 0.9975 0.9973 0.9966 0.9961 0.9968 0.9962

1 2 3 4 5 6

−1

0

1

ρ

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12 ρa ρb

Figure 3. Illustration of the results presented in Table 16.

Comparison of the results in Tables 15 and 16 reveals that the new IFCMs yield the most precise
results, and that ρ4, ρ6, ρ7, ρ10, ρ11, and ρ12 give results that are not defined within the scope of
correlation coefficient values.

Next, we computed the closeness coefficients for the correlation coefficients. Because ρ4 [38],
ρ6 [36], ρ7 [37], ρ10 [30], ρ11 [40], and ρ12 [41] in Tables 15 and 16 yielded correlation values that were
not within [0, 1] and [−1, 1], we excluded them from the computations of the closeness coefficients.

Using the information in Tables 15 and 16, we obtained the closeness coefficients as shown in Table
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17, as well as and their ordering, as shown in Table 18.

Table 17. Closeness coefficients.

Measures ∆1(P̆1) ∆2(P̆2) ∆3(P̆3) ∆4(P̆4) ∆5(P̆5) ∆6(P̆6)
ρ1 [28] 0.51125 0.50282 0.52474 0.52133 0.51781 0.52858
ρ2 [31] 0.0000 0.32246 0.41092 0.75189 0.68210 1.0000
ρ3 [39] 0.51100 0.50294 0.52458 0.52085 0.51764 0.52808
ρ5 [33] 0.0000 0.44625 0.60194 0.35789 0.74190 1.0000
ρ8 [32] 0.0000 0.30555 0.40538 0.75400 0.67979 1.0000
ρ9 [35] 0.0000 0.31781 0.41394 0.75125 0.68238 1.0000
ρa 0.50032 0.49998 0.50088 0.50062 0.50054 0.50090
ρb 0.50022 0.49999 0.50061 0.50043 0.50037 0.50062

From Table 18, we infer that patient P̆6 had the most critical medical case that required urgent
medical attention. Because the new measures have been shown to be the most reliable IFCMs, it is
necessary to state that the patients should be queued as in the following order: P̆6, P̆3, P̆4, P̆5, P̆1, and
P̆2, respectively, for emergency treatment.

Table 18. Closeness coefficient ordering results.

Measures Orderings
ρ1 [28] ∆6(P̆6) ≻ ∆3(P̆3) ≻ ∆4(P̆4) ≻ ∆5(P̆5) ≻ ∆1(P̆1) ≻ ∆2(P̆2)
ρ2 [31] ∆6(P̆6) ≻ ∆4(P̆4) ≻ ∆5(P̆5) ≻ ∆3(P̆3) ≻ ∆2(P̆2) ≻ ∆1(P̆1)
ρ3 [39] ∆6(P̆6) ≻ ∆3(P̆3) ≻ ∆4(P̆4) ≻ ∆5(P̆5) ≻ ∆2(P̆2) ≻ ∆1(P̆1)
ρ5 [33] ∆6(P̆6) ≻ ∆5(P̆5) ≻ ∆3(P̆3) ≻ ∆2(P̆2) ≻ ∆4(P̆4) ≻ ∆1(P̆1)
ρ8 [32] ∆6(P̆6) ≻ ∆4(P̆4) ≻ ∆5(P̆5) ≻ ∆3(P̆3) ≻ ∆2(P̆2) ≻ ∆1(P̆1)
ρ9 [35] ∆6(P̆6) ≻ ∆4(P̆4) ≻ ∆5(P̆5) ≻ ∆3(P̆3) ≻ ∆2(P̆2) ≻ ∆1(P̆1)
ρa ∆6(P̆6) ≻ ∆3(P̆3) ≻ ∆4(P̆4) ≻ ∆5(P̆5) ≻ ∆1(P̆1) ≻ ∆2(P̆2)
ρb ∆6(P̆6) ≻ ∆3(P̆3) ≻ ∆4(P̆4) ≻ ∆5(P̆5) ≻ ∆1(P̆1) ≻ ∆2(P̆2)

5. Conclusions

Uncertainty in medical diagnoses is a fundamental problem that is faced by triage nurses and
physicians. In this study, a novel approach was developed for the triage process, and it involves the use
of new IFCMs via Spearman’s correlation coefficient approach to eliminate all possible uncertainties
that may prevent the user from obtaining reliable triage results. To justify the establishment of
new IFCMs, various existing IFCMs were investigated and their shortcomings were identified.
Furthermore, all of the extant IFCMs were established based on the classical Pearson correlation
coefficient approach, and none were constructed by using the Spearman’s correlation coefficient.
Because of this oversight, new IFCMs were constructed based on the classical Spearman’s correlation
coefficient, and we have shown how the new measures overcame all of the limitations of the extant
measures. To verify the validity of the new measures, some theoretical results were proved, which were
found to satisfy the conditions of the correlation coefficient. Because of the ease of use of the developed
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IFCMs, we applied them to solve the problem of triage processes in a typical ED to eliminate medical
diagnostic uncertainty. The data for the analysis were obtained via a knowledge-based system, where
the symptoms of the considered ailments were apportioned linguistic variables with corresponding
IFNs. To unequivocally show the merits of the new correlation coefficient models, we compared the
new IFCC methods with 12 extant IFCC methods [28, 30–33, 35–41]. It was observed that the new
IFCC methods are the most reliable, consistent and precise, and that sufficiently satisfy the conditions
of the correlation coefficient. This new triage process based on IFCMs can conveniently manage all
of the uncertainties associated with an ME. However, the developed IFCMs could only function in an
environment in which the sum of the MD and NMD is at most one. The novel IFCMs are restricted,
because they cannot be directly applied to other settings with higher fuzziness like the Pythagorean
fuzzy setting [53], Fermatean fuzzy setting [54], q-rung orthopair fuzzy setting [55], complemental
fuzzy setting [56], etc. without alterations since the new measures were not developed to consider
the properties of the aforementioned settings. The new IFCMs and the novel application should be
investigated in other fuzzy environments for further research.
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