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Abstract: The iterated function system (IFS) is important in different fields like image compression.
An important feature of such systems is that they can be used to generate fractals. Yet, for the obtained
fractals, it is difficult to locally control them to generate new ones with desired structures at specific
places. In this paper, we gave an attempt to solve this problem based on a nonuniform multiple function
system. For this, we first analyzed the multiple function systems needed in the generation of the final
desired fractals. Based on such analysis, the final fractals with desired structures at specific places
can be generated using the nonuniform multiple function system. Moreover, these two procedures
were summarized into two algorithms for convenience. Examples were also given to illustrate the
performance of the nonuniform multiple function system and the two algorithms in this paper.
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1. Introduction

Since Mendelbrot proposed the notion of fractals in the 1970s [1], the research about different
properties and applications of fractals has been attracting scholars’ attention. Two geometric properties
characterizing fractals are that they are self-similar and they are attractors. Therefore, the iterated
function system (IFS) is a standard framework to generate them.

In connection with the study on IFS, there have been interesting works after its appearance [2].
For example, Barnsley et al. [3, 4] investigated the super IFS and recurrent IFS. Fisher et al. [5]
discussed the partitioned IFS. On the other hand, subdivision is an efficient tool to generate smooth
curves/surfaces and plays an important role in different applications [6]. For the connection between
these two different topics, Schaefer et al. [7] showed that stationary subdivision curves/surfaces are
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fractals and that many standard fractals, like the Koch curve, can be obtained using subdivision
rules. Later, Levin et al. [8] generalized this connection to give the connection between nonstationary
subdivision and IFS. For other similar works, refer to [9, 10] and the references therein.

However, none of the above works discussed how to generate fractals with desired structures at
specific places. Such a problem appeared in [11] in an example showing a fractal with different
structures at different locations. In fact, such fractals are irregular ones (see also [9]) and can
better reflect the nature. Therefore, in this paper, we give a first attempt to solve this problem and
generate fractals with desired structures at specific places. The fractals in this paper are obtained by
first analyzing two kinds of multiple function systems [12] and then are generated using a kind of
nonuniform multiple function system. Related works can be found in [13] and the references therein.
The nonuniform multiple function system in this paper chooses different IFSs for different sets of
generated points through iterations (see Section 3 for details). These corresponding procedures are
summarized into two algorithms for convenience. We point out that, with the nonuniform multiple
function system and the two algorithms, we can indeed generate fractals with desired structures at
specific places, which can enrich the theory and applications of fractals. Examples are also given to
show the performance of the new multiple function system and the two algorithms.

The rest of this paper is organized as follows. In Section 2, we give a brief review of the related
works together with an overview of the method to generate the final desired fractals. Section 3 is
devoted to present the new nonuniform multiple function system with the analysis of convergence.
In Section 4, we discuss how to use the new nonuniform multiple function systems to generate
fractals with desired structures at specific places and summarize the procedures into two corresponding
algorithms. In Section 5, we give examples to illustrate the performance of the new nonuniform
multiple function system and algorithms, while Section 6 concludes this paper.

2. Some preliminaries

In this section, we briefly review some related works and give an overview of the method to generate
the final desired fractals.

2.1. Related works

Let (X, d) be a complete metric space and the function f : X → X be a contractive one, which
means that the Lipschitz constant is

Lip( f ) := sup
x,y∈X,x,y

d( f (x), f (y))
d(x, y)

< 1.

An IFS is a collection of contractive functions F = { f1, · · · , fs}. A set X is an attractor of F if F (X) =

X, where F (X) = f1(X)
⋃
· · ·

⋃
fs(X). Using IFS, the fractals can be obtained as the corresponding

attractors.
On the other hand, subdivision schemes can generate smooth curves/surfaces [6] and play an

important role in different fields like wavelets [14] and computer-aided geometric design [15]. After
Schaefer et al. [7] gave the connection between stationary subdivision and IFS, Dyn et al. [11] discussed
the connection between IFS and a wider class of subdivision, like the nonuniform subdivision, and
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also gave the tree of maps. Similar works can be seen in [12], which generalized the trees of maps to
multiple function systems and can generate different kinds of fractals.

In fact, similar to the trees of maps in [11], the multiple function systems can also be arranged
in a tree structure. Let B[k] := {εk : εk = (ε1ε2 · · · εk), ε j ∈ {1, 2}} = {1, 2}k and B[∞] := {ε : ε =

(ε1ε2 · · · εk · · · ), ε j ∈ {1, 2}} = {1, 2}∞. Let τl be the truncation operator defined as τkε = εk = (ε1 · · · εk) ∈
B[l]. With such notations, we give the multiple function system Fε = {F0,F1} as an example to show
the corresponding tree structure as in Figure 1. Here, each ε ∈ B[∞] defines a path in the tree structure
as in Figure 1.

Figure 1. The tree structure of the multiple function system Fε .

Remark 1. Here, for each εk = (ε1, · · · , εk) ∈ B[k], we have the function fεk(·) = fεk ◦ · · · ◦ fε1(·).

2.2. The method overview

We first point out that the contractive functions in this paper are affine transformations. The fractals
with desired structures at specific places in this paper are generated using the nonuniform multiple
function system.

In fact, the generation of such fractals starts from two kinds of multiple function systems: the one
generating the fractal with the specific place where we hope the desired structures to locate and the
one generating the fractals with the desired structures. For simplicity, we denote the fractal with the
specific place by the target fractal. In fact, the ‘specific places’ in this paper are polygons formed with
points generated by different rounds of iterations along the paths of multiple function systems, then the
final fractals with desired structures at specific places means that specific polygons in the target fractal
have the desired structures.

To generate such fractals, some necessary items are needed, like the paths leading to the specific
polygons in the target fractal and the paths leading to the desired structures. This can be done by
analyzing the above two kinds of multiple function systems (see Section 4 for details). Once the
necessary items are obtained, the final desired fractal can be generated by locally controlling the
structure of the specific polygons in the target fractal using the paths leading to the desired structures
and the nonuniform multiple function systems (see Section 4 for details).

We also summarize the above procedures into two algorithms to obtain the final desired fractals
(see Section 4 for details) for convenience. We point out that with such a nonuniform multiple function
system and the given two algorithms, we can indeed locally control the structures of fractals to generate
new ones with desired structures at specific places.
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3. The nonuniform multiple function system

This section is devoted to presenting the new nonuniform multiple function system and analyzing
its convergence. For this, we first review the connection between subdivision and IFS.

3.1. Subdivision and IFS

In fact, according to Schaefer et al. [7], based on subdivision rules, we can give a contractive
function in the form

f (A) = AP−1S P, A ∈ Qn−1,

where S is the corresponding n × n subdivision matrix, Qn−1 is the n − 1 dimensional hyperplane with
points of the form (x1, · · · , xn−1, 1), and P is the n × n matrix composed of n initial points in Rm, with
the last column 1n being the n × 1 vector of 1, i.e., (1, · · · , 1)>, and the rest of the columns such that P
is invertible [7]. Schaefer et al. [7] showed that such a contractive function can be rewritten as

f (A) = A
(

G 0n−1

v 1

)
,

where G is a (n − 1) × (n − 1) matrix, v is a 1 × (n − 1) vector, and 0n−1 is the (n − 1) × 1 vector of 0,
(0, · · · , 0)>.

Conversely, Schaefer et al. [7] also gave a general way to convert fractals into subdivision schemes.
Specifically speaking, given an IFS defined by a set of affine transformations F = { f1, · · · , fn}, we first
choose a set of control points P = {p1, · · · , pm}, then apply F to the set P to get the corresponding set
of points fi(P). For the vertex p j in fi(P), we represent it as

p j =
∑

k

α j,k pk.

The subdivision matrix S i can be constructed by setting the ( j, k) entry of S i to be α j,k, and the
subdivision matrix S for this fractal is the concatenation of S i.

In this way, from the IFS F = { f1, · · · , fn}, we have the new IFS F̃ = { f̃1, · · · , f̃n}, with

f̃i(A) = AP−1S iP, A ∈ Qn−1. (3.1)

Remark 2. With the above connection between stationary subdivision and IFS, all the contractive
functions in this paper are of the form (3.1).

Now, we give an observation of the IFS consisting of the contractive functions of the form (3.1).
In fact, for some contractive function of the form (3.1), when the matrix P is changed to be P′, this
function is also changed and we get a modified IFS. Here, P′ is also an invertible n × n matrix with
the last column 1n. Yet, since the final fractal is independent of the initial set [7] and the subdivision
matrices are kept the same, the fractal obtained using this modified IFS is a scaled one with the same
structure as the original one. Additionally, this obtained fractal is limited to the polygon formed with
the points constituting the first m columns of P′. We summarize this point as follows:

Proposition 1. For the IFS with the contractive functions of the form (3.1), if the n × n matrix P is
replaced by another invertible n × n matrix P′ with the last column 1n while the subdivision matrices
S i are kept the same, the corresponding fractal is a scaled one with the same structure as the original
fractal.
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3.2. The nonuniform multiple function system

Now, we derive the nonuniform multiple function system. Note that in the process of generating
fractals through iterations, both the trees of maps in [11] and the multiple function systems in [12]
choose some certain contractive function or IFS for all the generated points, as shown in Figure 2
(right) for the multiple function system. Based on this point, now we present the new nonuniform
multiple function system.

Let F̃ε = {F̃1, F̃2} with F̃1 = { f̃11, · · · , f̃1s1}, F̃2 = { f̃21, · · · , f̃2s2} denote a multiple function
system, where each contractive function f̃i j ( j = 1, · · · , si and i = 1, 2) are of the form (3.1). Let
© := {p0, · · · , pn} be a set of n initial points. For the first step iteration of the nonuniform multiple
function system, we choose F̃ε1 ∈ F̃ε with ε1 ∈ {1, 2} and generate sε1 sets consisting of n points, each
starting from ©. Now, we modify the functions in F̃1 and F̃2 by replacing the corresponding matrix
P with a new one, P′, according to Subsection 3.1. The new IFSs are denoted by F1 and F2, with the
corresponding multiple function system Fε . For the next step of iteration, we choose Fε2,1 ∈ Fε for the
first set and use Fε2,2 ∈ Fε for the second set, until Fε2,sε1

∈ Fε for the last set. Suppose after k steps of
iteration, we obtain m sets consisting of n points each. For the next step of iteration, from the modified
multiple function system, which is still denoted by Fε , we choose Fεk+1,1 ∈ Fε for the first set and use
Fεk+1,2 ∈ Fε for the next set, until Fεk+1,m ∈ Fε for the last set. The above process is shown in a tree
structure shown in Figure 2 (left).

From Figure 2, it can be seen that along a path of a multiple function system, if we replace F̃ε j in
the jth time of iteration by different modified ones for different sets, we get the nonuniform multiple
function system. In this way, ‘nonuniform’ here implies that the choice of IFS in each time of iteration
depends on the generated points.

In addition, for the multiple function system shown in Figure 2 (right), the path is (ε1, · · · , εk, · · · ).
Since the nonuniform multiple function system can be seen as obtained by replacing the chosen IFS
of a multiple function system with different modified ones in each time of iteration, in this paper,
we still denote one path of the nonuniform multiple function system by (ε1, · · · , εk, · · · ). In fact, the
path (ε1, · · · , εk, · · · ) here can actually be seen as the union of the ones (ε1, ε2,i1 , · · · , εk,ik , · · · ) shown in
Figure 2 (left).

Figure 2. The tree structure along a path of a nonuniform multiple function system (left) and
a multiple function system (right).
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3.3. Convergence

Now, we present the convergence of the nonuniform multiple function systems along a path. In
fact, similar to Proposition 2.3 in [11], we have the following result.

Theorem 1. For the path (ε1, ε2,i1 , · · · , εk,ik , · · · ) in the tree structure of a nonuniform multiple function
system with convergent IFSs, the iterations along this path starting from an initial set converges to a
unique limit.

In this way, similar to Proposition 2.4 in [11], the final fractal along a certain path (ε1, · · · , εk, · · · )
of a nonuniform multiple function system can be obtained as the union of all the limits obtained along
the paths (ε1, ε2,i1 , · · · , εk,ik , · · · ) constituting (ε1, · · · , εk, · · · ), which is stated as follows:

Theorem 2. For a nonuniform multiple function system, the attractor along the path
(ε1, · · · , εk, · · · ), which is composed of (ε1, ε2,i1 , · · · , εk,ik , · · · ), is actually the union of the limits along
(ε1, ε2,i1 , · · · , εk,ik , · · · ).

4. Generation of fractals with desired structures at specific places

Based on Section 3, we now show how to use the nonuniform multiple function system to generate
fractals with desired structures at specific places.

To this purpose, we first denote the multiple function systems generating the target fractal and
the fractals containing the desired structures by F1 = {F11, · · · ,F1n1} and F2 = {F21, · · · ,F2n2},
respectively. Here, all the contractive functions in the IFS Fi j with i = 1, 2 and j = 1, · · · , ni are
of the form (3.1) (see Remark 2). The contractive functions in F1 j with j = 1, · · · , n1 are from
F = { f1, · · · , fN}, which consists of all the contractive functions based on the relevant subdivision
matrices (see Subsection 3.1).

The whole process of generating the final desired fractals starts from analyzing F1 and F2 to derive
the following items:
1) for F1, the paths leading to the specific polygons in the target fractal;
2) for F2, the paths leading to the desired structures.
In fact, for the multiple function system F1, try different paths to generate the target fractal and record
the corresponding path. For the multiple function system F ′ = {F ′i } with F ′i = { fi}, i = 1, · · · ,N,
by comparing the results generated along different paths of F ′i and the target fractal, get the specific
polygons and the paths leading to them. For the multiple function system F2, try different paths in
order to generate the fractals containing the desired structures and record the corresponding paths.
This helps us to know along which paths the desired structures can be obtained. We summarize the
above analysis into Algorithm 1 as follows:

Algorithm 1 Analysis of the multiple function systems.
Step 0: Get the multiple function systems generating the target fractal and the fractals containing the
desired structures, i.e., F1 and F2;
Step 1: For F1, generate the target fractal and record the path;
Step 2: For F ′, get the specific polygons in the target fractal and the paths leading to them by
comparing the results generated along the paths of F ′ and the target fractal;
Step 3: For F2, generate the fractals with the desired structures and record the paths.
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With all the needed items gotten by Algorithm 1, we can now generate the final desired fractal. For
this, we first adjust each specific polygon so that we can use the points of each adjusted polygon to
construct a new matrix P′ with the same order as P in the contractive functions in F2 j, j = 1, · · · , n2.
We then modify these contractive functions by replacing the matrix P with P′ and get the modified
multiple function system F̃2 corresponding to each adjusted specific polygon. Starting from each
adjusted specific polygon, we then take iterations along the path leading to the desired structure using
the modified multiple function system corresponding to this adjusted polygon and get a scaled fractal
with the desired structure according to Proposition 1. By combining all the obtained fractals and the
target fractal, we get the final desired fractal. For this procedure, we also summarize it into Algorithm 2
as follows:

Algorithm 2 Generation of the desired fractal.
Step 0: Adjust each specific polygon according to the contractive functions in F2 j with j=1, · · · , n2,
and get the new adjusted specific polygons;
Step 1: Take the control points of each adjusted polygon in the target fractal;
Step 2: With the points of each adjusted polygon, construct a matrix P′ to replace P in the contractive
functions of F2 j with j = 1, · · · , n2 in order to get the modified one, F̃2, corresponding to this
adjusted polygon;
Step 3: Starting from each adjusted polygon from step 0, take iterations along the path leading to
the desired structures using the modified multiple function system corresponding to this adjusted
polygon, and get the corresponding scaled fractals;
Step 4: Get the final desired fractal by combining all the scaled fractals and the target fractal.

Remark 3. If we let P1 be the matrix in the contractive functions of the multiple function system
generating the target fractal and P2 be the matrix in the contractive functions of the multiple function
systems generating the fractals with desired structures, the adjustment of each specific polygon means
that the order of P1 is not less than that of P2.

5. Examples

Now, we use the algorithms in Section 4 to generate fractals with desired structures at specific
places.
Example 1. For the Sierpinski Carpets, some of them are based on quadrilaterals and the others
are based on triangles. Now, we try to generate a new interesting ‘Sierpinski Carpet-like’ fractal by
suitably combining them.

Zhang et al. [12] gave an example showing ‘Sierpinski Carpet-like’ fractals based on quadrilaterals.
Here, we use the points (0, 0), (1, 0), (0, 1), (1, 1) to derive the matrix P as

P =


0 0 0 1
1 0 0 1
0 1 0 1
1 1 1 1

 .
The multiple function system is F 1

ε = {F 1
0 ,F

1
1 } with F 1

0 = { f 1
1 , · · · , f 1

9 } and F 1
1 =
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{ f 1
1 , · · · , f 1

4 , f 1
6 , · · · , f 1

9 }, where f 1
i (A) = AP−1S iP, i = 1, · · · , 9 and the corresponding subdivision

matrices S i are as follows:

S 1 = 1/9


9 0 0 0
6 3 0 0
6 0 3 0
4 2 2 1

 , S 2 = 1/9


6 3 0 0
3 6 0 0
4 2 2 1
2 4 1 2

 , S 3 = 1/9


3 6 0 0
0 9 0 0
2 4 1 2
0 6 0 3

 ,

S 4 = 1/9


6 0 3 0
4 2 2 1
3 0 6 0
2 1 4 2

 , S 5 = 1/9


4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

 , S 6 = 1/9


2 4 1 2
0 6 0 3
1 2 2 4
0 3 0 6

 ,

S 7 = 1/9


3 0 6 0
2 1 4 2
0 0 9 0
0 0 6 3

 , S 8 = 1/9


2 1 4 2
1 2 2 4
0 0 6 3
0 0 3 6

 , S 9 = 1/9


1 2 2 4
0 3 0 6
0 0 3 6
0 0 0 9

 .
Let the initial set be ©1 = {(0, 0), (1, 0), (0, 1), (1, 1)}. Along different paths in the tree structure of

the above multiple function system, different ‘Sierpinski Carpet-like’ fractals can be obtained, like the
ones shown in Figure 3.

Figure 3. ‘Sierpinski Carpet-like’ fractals generated by the multiple function system F 1
ε with

ε = (0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 1, 0), (1, 0, 0, 0) (top to bottom and left to right).

Another multiple function system generating the ‘Sierpinski Carpet-like’ fractals are based on
triangles. The corresponding multiple function system here is F 2

ε = {F 2
0 ,F

2
1 }with F 2

0 = { f 2
1 , f 2

2 , f 2
3 , f 2

4 }

and F 2
1 = { f 2

1 , f 2
3 , f 2

4 }, where f 2
i (X) = XP−1S iP with
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S 1 = 1/2


2 0 0
1 1 0
1 0 1

 , S 2 = 1/2


1 1 0
0 1 1
1 0 1

 , S 3 = 1/2


1 1 0
0 2 0
0 1 1

 , S 4 = 1/2


1 0 1
0 1 1
0 0 2

 ,
and the matrix P formed using the points (0, 0), (1, 0), (1/2, 2/3) is as follows:

P =


0 0 1
1 0 1

1/2 2/3 1

 .
Starting from the initial set ©2 = {(0, 0), (1, 0), (1/2, 2/3)}, we can generate the corresponding

Sierpinski Carpet using the multiple function system F 2
ε , as shown in Figure 4 (left).

Figure 4. Sierpinski Carpet obtained by F 2
ε with ε = (1, 1, 1, 1) (left), the labeled result by

applying F 1
0 once (middle), and the final desired fractal (right).

Now, we give the first new fractal by combining the left fractal in the top row of Figure 3 with
the Sierpinski Carpet in Figure 4 (left). To be more specific, by applying F 1

0 once, we get the labeled
result with 9 smaller quadrilaterals as in Figure 4 (middle), and we want the parts in each smaller
quadrilateral (the labeled parts in the fractal in Figure 4 (middle)) of the left fractal in the top row of
Figure 3 to have the same structure as the Sierpinski Carpet in Figure 4 (left).

To generate such a fractal, we first analyze the multiple function systems generating the target
fractal, i.e., the left fractal in the top row of Figure 3, and the Sierpinski Carpet in Figure 4 (left). In
fact, F 1

ε generates the target fractal and F 2
ε generates the Sierpinski Carpet in Figure 4 (left). Starting

from the initial set©2, Figure 4 shows that the fractal with the desired structure can be obtained along
the path (1, 1, 1, 1) using F 2

ε while the target fractal is obtained along (0) using F 1
0 once. Let F1

i = { f 1
i }

with i = 1, · · · , 9, and use them to give a new multiple function system, with which we can get each
desired place by taking each IFS once.

Based on this analysis, we now get the final desired fractal. For this, we first split each desired
place into two triangles and take the points of each triangle. With such points, we then construct a
new matrix P′ and use it to replace the matrix P in the contractive functions f 2

j with j = 1, · · · , 4. In
this way, F 2

ε is changed to be F 2′
ε corresponding to each triangle. Starting from each triangle, take the

path (1, 1, 1, 1) using F 2′
ε corresponding to this triangle to get the corresponding scaled fractals, then

with all the scaled fractals, we get the final one as, shown in Figure 4 (right).
Example 2. With the fractals in Figure 3 and Figure 4 (left), now we obtain the fractal with the features:
keeping the structure in the four corner (see the parts labeled 1, 3, 7, 9 in Figure 4 (middle)) of the right
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fractal in the top row of Figure 3, and the absent center part (see the part labeled 5 in Figure 4 (middle))
with the structure as the one in Figure 4 (left) but without the rest parts (see the parts labeled 2, 4, 6, 8
in Figure 4 (middle)) of the right fractal in the top row of Figure 3.

Similar to the analysis in Example 1, F 1
ε generates the target fractal, which is the right fractal in

the top row of Figure 3, along the path (1, 1, 1, 1) starting from the initial set ©1. With F 2
ε , we can

generate the fractal with the desired structure along the path (1, 1, 1, 1) starting from the initial set©2.
The desired place in the target fractal can be obtained by taking F 1

i = { f 1
i }, i = 1, 3, 5, 7, 9 once.

Now, we generate the final desired fractal. For this, we first split the part (labeled 5 in the fractal
in Figure 4 (middle)) into two triangles, then we take the points of each triangle to construct a new
matrix P′, with which we replace P in f 2

j with j = 1, 2, 3, 4. In this way, F 2
ε is changed to be F 2′

ε

corresponding to each triangle. Starting from each triangle, we apply F 2′
ε corresponding to this triangle

along (1, 1, 1, 1) to get the desired scaled fractal. In a similar procedure, we can get the scaled fractal
in the four labeled corners. Combining all these fractals, we get the final desired fractal in Figure 5
(left). In a similar way, we can get the right two fractals in Figure 5.

Figure 5. New fractals with different structures at different places.

Example 3. Now, we continue to get a more interesting fractal. For the right fractal in the top row of
Figure 3, we want the center quadrilateral and the 8 smaller ones (the labeled ones in Figure 6 (left))
to have the same structure as the Sierpinski Carpet in Figure 4 (left).

Figure 6. The labeled fractal (left) and the new fractal (right).

The analysis of the corresponding multiple function systems is the same with that in Example 1,
except that the part labeled 1 in the fractal in Figure 6 (left) is obtained by taking F 1

5 = { f 1
5 } once while

the other labeled ones need the relevant iterations twice. For example, the one labeled 2 is obtained
by first applying F 1

2 = { f 1
2 } and then F 1

5 . To generate the final desired fractal, for each desired place,
we split it into two triangles, then we take the corresponding points and use them to get a matrix
P′ to replace P in f 2

j , j = 1, 2, 3, 4. In this way, we get the modified multiple function system F 2′
ε .
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Starting from each triangle, we take the path (1, 1, 1, 1) using F 2′
ε corresponding to this triangle to get

the corresponding scaled fractal. By combining all the scaled fractals with the target fractal, we get the
final desired fractal as shown in Figure 6 (right).

6. Conclusions

This paper proposed a way to generate fractals with desired structures at specific places, which can
be done using a new nonuniform multiple function system. To generate such desired fractals, we first
analyze two kinds of multiple function systems needed in the generation of such desired fractals, and
then generate them using the nonuniform multiple function system. Additionally, we also presented
two algorithms corresponding to these procedures for the generation of the final desired fractals for
convenience. The given examples show that the nonuniform multiple function system and the two given
algorithms can indeed be used to generate fractals with desired structures at specific places. Note that
the new fractals in this paper are actually generated by locally controlling the fractals obtained using
the multiple function systems. For the given nonuniform multiple function systems and algorithms,
it is still difficult to locally control the structures of the fractals with different structures at different
locations to obtain new fractals. Therefore, in the future, we hope to give a new way to locally control
such fractals to generate more interesting fractals and investigate the corresponding applications.
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